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We investigate some higher-loop structural properties of the β function in asymptotically free
vectorial gauge theories. Our main focus is on theories with fermion contents that lead to an
infrared (IR) zero in β. We present analytic and numerical calculations of the value of the gauge
coupling where β reaches a minimum, the value of β at this minimum, and the slope of β at the IR
zero, at two-, three-, and four-loop order. The slope of β at the IR zero is relevant for estimates
of a dilaton mass in quasiconformal gauge theories. Some inequalities are derived concerning the
dependence of the above quantities on loop order. A general inequality is derived concerning the
dependence of the shift of the IR zero of β, from the n-loop to the (n+ 1)-loop order, on the sign
of the (n + 1)-loop coefficient in β. Some results are also given for gauge theories with N = 1
supersymmetry.

I. INTRODUCTION

The evolution of an asymptotically free gauge theory
from high Euclidean momentum scales µ in the deep ul-
traviolet (UV) to small scales in the infrared is of fun-
damental field-theoretic interest. This evolution is de-
scribed by the β function of the theory. Following the
pioneering calculations of the β function at one-loop [1]
and two-loop [2] order, this function was subsequently
calculated to three-loop [3] and four-loop [4] order in the
modified minimal [5] subtraction (MS) scheme [6]. The
anomalous dimension of the (gauge-invariant) fermion bi-
linear operator, γm, has also been calculated up to four-
loop order in this scheme [7].

Here we consider the UV to IR evolution of an asymp-
totically free vectorial gauge theory with gauge group G
and Nf massless fermions transforming according to a
representation R of G [8]. An interesting property of
this type of theory is that, for sufficiently large Nf , the
two-loop β function has an IR zero [2, 9]. If Nf is near
to the maximum allowed by the property of asymptotic
freedom, then this IR zero occurs at a small value, but,
as Nf decreases, it increases to stronger coupling. This
motivates the calculation of the IR zero of β at higher-
loop order [10]. Calculations of this IR zero, and the
associated anomalous dimension of the (gauge-invariant)
fermion bilinear, γm, have recently been done to four-
loop order for an asymptotically free vectorial gauge the-
ory with gauge group G and Nf fermions in an arbi-
trary representation R, with explicit results for R equal
to the fundamental, adjoint, and symmetric and anti-
symmetric rank-2 tensor representations [11, 12]. A cor-
responding analysis was carried out for an asymptotically
free vectorial gauge theory with N = 1 supersymmetry
in [13]. Although the terms in the β function at three-
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and higher-loop order, and the terms in γm at two- and
higher-loop order are dependent on the scheme used for
regularization and renormalization of the theory, these
higher-loop calculations are valuable because they give a
quantitative measure of the accuracy and stability of the
lowest-order calculations of αIR and γm. A study of the
effect of scheme transformations on results for αIR was
performed in [14].
In this paper we will present calculations at the n-loop

level, where n = 2, 3, 4, of several important quanti-
ties that provide a detailed description of the UV to IR
evolution of a theory with an IR zero in its β function.
Our general results apply for an arbitrary (non-Abelian)
gauge group G. We denote the running gauge coupling at
a scale µ as g(µ), and define α(µ) = g(µ)2/(4π). (The µ
argument will often be suppressed in the notation.) The
loop order to which a quantity is calculated is indicated
explicitly via the subscript nℓ, standing for n-loop, so
that the n-loop β function and its IR zero are denoted
βnℓ and αIR,nℓ. Given the asymptotic freedom of the the-
ory, the UV to IR evolution, as described by βnℓ, occurs
in the interval

Iα : 0 ≤ α(µ) ≤ αIR,nℓ . (1.1)

In addition to αIR,nℓ, the three structural properties of
βnℓ that we study are (i) the value of α where βnℓ reaches
its minimum in the interval (1.1), denoted αm,nℓ, (ii) the
minimum value of βnℓ on this interval, (βnℓ)min, and
(iii) the slope of βnℓ at αIR,nℓ, denoted dβnℓ/dα|αIR,nℓ

.
The importance of the first two quantities for the UV to
IR evolution of the theory is clear. One would like to
know where the rate of running, β = dα/dt, has max-
imum magnitude, as a function of α, and hence, as a
function of µ. Further, one is interested in what this
maximum magnitude in the rate of running, i.e., (since
β ≤ 0), the minimum value of β is in the interval Iα.
The third quantity, the slope of the β function at αIR, is
of interest because it describes how rapidly β approaches
zero as α approaches αIR. A knowledge of this slope
is also valuable because it is relevant for estimates of
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a dilaton mass in gauge theories that exhibit approxi-
mate scale-invariance associated with an IR zero of β at
a value, αIR, that is sufficiently large that this approxi-
mate dilatation symmetry is broken by the formation of
a fermion condensate. For each of these structural quan-
tities, one would like to see how higher-loop calculations
compare with the two-loop computation. As part of our
work, we derive some inequalities concerning the relative
values of each of these quantities at the two- and three-
loop order.

We also generalize some results that were obtained in
[11] concerning αIR,nℓ. In [11] it was shown that in a the-
ory with a given G, R, and Nf for which the two-loop β
function β2ℓ has an IR zero, the three-loop zero satisfies
the inequality αIR,3ℓ < αIR,2ℓ in the minimal subtrac-

tion (MS) scheme used there [15]. The reduction in the
value of the IR zero going from two-loop to three-loop
level is typically substantial; for example, for G = SU(2)
and Nf = 8, αIR,2ℓ = 1.26, while αIR,3ℓ = 0.688, and
for G = SU(3) and Nf = 12, αIR,2ℓ = 0.754, while
αIR,3ℓ = 0.435. A natural question that arises from
the analysis in [11] is how general this inequality is and,
specifically, whether it also holds for other schemes. We
address and answer this question here. We prove that
for an asymptotically free theory with a given G, R,
and Nf for which β2ℓ has an IR zero, the inequality
αIR,3ℓ < αIR,2ℓ holds in any scheme which has the prop-
erty that the sign of the three-loop coefficient in β is
opposite to that of the one-loop coefficient for Nf ∈ I,
which thus preserves for β3ℓ the existence of an IR zero
that was true of β2ℓ. This preservation of the two-loop
IR zero in β is physically desirable, since β2ℓ is scheme-
independent, so if it exhibits an IR zero, then a reason-
able scheme should maintain the existence of this zero at
higher-loop level. More generally, we will derive a result
that shows how αIR,nℓ shifts, upward or downward, to
αIR,(n+1)ℓ, when it is calculated to the next higher-loop
order.

For a given gauge group G, the infrared properties
of the theory depend on the fermion representation R
and the number of fermions, Nf . For a sufficiently large
number, Nf , of fermions in a given representation (as
bounded above by the requirement of asymptotic free-
dom), the IR zero in β occurs at a relatively small value
of α and the theory evolves from the UV to the IR with-
out any spontaneous chiral symmetry breaking (SχSB).
In this case, the IR zero of β is an exact infrared fixed
point of the renormalization group. Thus, the infrared
behavior of the theory exhibits scale-invariance (actu-
ally conformal invariance [16]) in a non-Abelian Coulomb
phase. For small Nf , as the theory evolves from the
UV to the IR, and the reference scale µ decreases be-
low a scale which may be denoted Λ, the gauge inter-
action becomes strong enough to confine and produce
bilinear fermion condensates, with the associated spon-
taneous chiral symmetry breaking and dynamical gener-
ation of fermion masses of order Λ. As µ decreases be-
low Λ, and one constructs the effective low-energy field

theory applicable in this region, one thus integrates out
these now-massive fermions, and the β function changes
to that of a pure gauge theory, which does not have any
perturbative IR zero. Hence, in this case the infrared
zero of β is an approximate, but not exact, fixed point of
the renormalization group.

If Nf is only slightly less than the critical value Nf,cr

for spontaneous chiral symmetry breaking, so that αIR is
only slightly greater than the critical value, αcr (depend-
ing on G and R) for fermion condensation, then the UV
to IR evolution exhibits approximate scale (dilatation)
invariance for an extended logarithmic interval, because
as α(µ) increases toward αIR, while less than αcr, β ap-
proaches zero, i.e., the rate of change of α(µ) as a func-
tion of µ approaches zero. Thus, α(µ) is large, of O(1),
but slowly running (“walking”). This is quite different
from the behavior of αs(µ) in quantum chromodynam-
ics (QCD). This approximate scale invariance at strong
coupling plays an important role in models with dynam-
ical electroweak symmetry breaking [17, 18], and occurs
naturally in models with an approximate infrared fixed
point [18]. Since αIR ∼ O(1) and γm is a power se-
ries in α, there is an enhancement of γm in such models,
which, in turn, is useful for generating sufficiently large
Standard Model fermion masses. Approximate calcula-
tions of hadron masses and related quantities have been
performed using continuum field theoretic methods for
these theories [19]. Recently, an intensive effort has been
made using lattice methods to study the properties of
SU(Nc) gauge theories with various fermion contents, in
particular, theories that exhibit quasi-scale-invariant be-
havior associated witn an exact or approximate IR zero
of the respective β functions. For example, for SU(3)
with fermions in the fundamental representation, mea-
surements of γm have been reported in [20]. In theories
where Nc, R, and Nf are such that αIR is only slightly
greater than αcr, so this approximate scale invariance as-
sociated with an IR zero of β at strong coupling holds, the
spontaneous breaking of this symmetry by the formation
of a fermion condensate, may lead to a light state which
is an approximate Nambu-Goldstone boson (NGB), the
dilaton [21] (see also [19]). The mass of the dilaton de-
pends on several quantities, including the effective value
of the β function at the relevant scale µ ∼ Λ where the
SχSB takes place. The desire to study the quasi-scale-
invariant behavior of such a theory is an important moti-
vation for obtaining more detailed information about the
structure of the β function, as contained in the structural
quantities (i)-(iii) discussed above.
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II. BETA FUNCTION

A. General

The UV to IR evolution of the theory is described by
the β function

β ≡ βα ≡ dα

dt
, (2.1)

where t = lnµ. This has the series expansion

β = −2α

∞
∑

ℓ=1

bℓ a
ℓ = −2α

∞
∑

ℓ=1

b̄ℓ α
ℓ , (2.2)

where ℓ denotes the number of loops involved in the cal-
culation of bℓ, a ≡ g2/(16π2) = α/(4π), and

b̄ℓ =
bℓ

(4π)ℓ
. (2.3)

As noted above, the one- and two-loop coefficients b1
and b2, which are scheme-independent, were calculated
in [1, 2] (see Appendix A). The bℓ for ℓ ≥ 3 are scheme-
dependent; in the commonly used MS scheme, the bℓ
have been calculated up to four-loop order [3, 4]. For
analytical purposes it is more convenient to deal with
the bℓ, since they are free of factors of 4π. However, for
numerical purposes, it is usually more convenient to use
the b̄ℓ, since, as is evident from Table I of [11], the range
of values of b̄ℓ is smaller than the range for the bℓ. We
will use both interchangeably. We denote the β function
calculated to n-loop order as

βnℓ = −8π

n
∑

ℓ=1

bℓ a
ℓ+1 = −2

n
∑

ℓ=1

b̄ℓ α
ℓ+1 . (2.4)

Some explicit examples of four-loop β functions are given
in Appendix B. We recall the well-known fact, as we have
noted before [11, 13, 14], that Eq. (2.2) is an asymptotic
expansion rather than a Taylor series expansion.
With our sign conventions, the restriction to an asymp-

totically free theory means that b1 > 0. This is equivalent
to the condition

Nf < Nf,b1z , (2.5)

where [22, 23]

Nf,b1z =
11CA

4Tf
. (2.6)

(bℓz stands for bℓ zero). For the fundamental, adjoint,
and symmetric and antisymmetric rank-2 tensor repre-
sentations of G = SU(Nc), the upper bound (2.5) al-
lows the following ranges of Nf : (i) Nf < (11/2)Nc

for fundamental, (ii) Nf < 11/4 for adjoint, (iii) Nf <
11Nc/[2(Nc ± 2)] for symmetric (antisymmetric) rank-
2 tensor. In the case of a sufficiently large represen-
tation R, this upper bound may forbid even the value

Nf = 1. For example, for the rank-3 symmetric ten-
sor representation of SU(Nc), the upper bound is Nf <
11Nc/[(Nc + 2)(Nc + 3)], and the right-hand side of
this bound is larger than 1 only for Nc (analytically
continued to nonnegative real numbers) in the interval

3 −
√
3 < Nf < 3 +

√
3, i.e., 1.268 < Nf < 4.732 (to

the indicated floating-point accuracy). Hence, if Nc is
equal to 2, 3, or 4, the bound allows only the single value
Nf = 1, and if Nc ≥ 5, then the bound does not allow
any nonzero (integer) value of Nf . For G = SU(2), with
a representation labeled by the integer or half-integer j,
the inequality (2.5) is

Nf <
33

2j(j + 1)(2j + 1)
for G = SU(2) . (2.7)

This bound is: (i) Nf < 11 if j = 1/2; (ii) Nf < 11/4 if
j = 1; (iii) Nf < 11/10 if j = 3/2. The right-hand side
of (2.7) decreases through 1 as j (continued to real num-
bers) increases through 1.562, so that the upper bound
(2.7) does not allow a nonzero number of fermions in a
representation of SU(2) with j ≥ 2 [24].
To analyze the zeros of the n-loop β function, βnℓ, aside

from the double zero at α = 0, one extracts the overall
factor of −2α2 and calculates the zeros of the reduced
(r) polynomial

βnℓ,r ≡ − βnℓ
2α2

=

n
∑

ℓ=1

b̄ℓ α
ℓ−1 . (2.8)

or equivalently,
∑n

ℓ=1 bℓ a
ℓ−1. As is clear from Eq. (2.8),

the zeros of βnℓ away from the origin depend only on
n − 1 ratios of coefficients, which can be taken as b̄ℓ/b̄n
for ℓ = 1, ..., n − 1. Although Eq. (2.8) is an algebraic
equation of degree n − 1, with n − 1 roots, only one of
these is physically relevant as the IR zero of βnℓ. We
denote this as αIR,nℓ. In analyzing how the n-loop β
function describes the UV to IR evolution of the theory,
we will focus on the interval (1.1).
To investigate how αIR,nℓ changes when one calculates

it to higher-loop order, it is useful to characterize the full
set of zeros of βnℓ. In general, if one has a polynomial
of degree m, Pm(z) =

∑m
s=0 κsz

s, and one denotes the
set of m roots of the equation Pm(z) = 0 as {z1, ..., zm},
then the discriminant of this equation is defined as [25]

∆m ≡
[

κm−1
m

∏

i<j

(zi − zj)
]2

. (2.9)

Since ∆m is a symmetric polynomial in the roots of
the equation Pm(z) = 0, the symmetric function theo-
rem implies that it can be expressed as a polynomial in
the coefficients of Pm(z) [26]. We will sometimes indicate
this dependence explicitly, writing ∆m(κ0, ..., κm). The
discriminant ∆m is a homogeneous polynomial of degree
m(m− 1) in the roots {zi}. For our present purpose, to
analyze the zeros of βnℓ away from the origin, given by
the roots of Eq. (2.8), of degree m = n− 1, we will thus



4

use the discriminant ∆n−1(b̄1, b̄2, ..., b̄n), or equivalently,
∆n−1(b1, b2, ..., bn). Note that, because of the homogene-
ity properties,

∆n−1(b̄1, b̄2, ..., b̄n) = (4π)−(n+1)(n−2)∆n−1(b1, b2, ..., bn) .
(2.10)

Some further details on discriminants are given in Ap-
pendix C.
Although we focus on the behavior of βnℓ in the phys-

ical interval (1.1), in characterizing the zeros of βnℓ, we
will make use of some formal mathematical properties
of βnℓ as an abstract function of α. For large |α|, since
βnℓ ∼ −2b̄nα

n+1, it follows that if α is large and posi-
tive, then sgn(βnℓ) = −sgn(bn), while for large negative
α, sgn(βnℓ) = sgn((−1)nbn). Thus, sgn(βnℓ) for large
positive α is equal to (−1)n+1sgn(βnℓ) for large negative
α. Since βnℓ is negative in the vicinity of the origin, it
follows that for (both even and odd) n ≥ 2,

If bn < 0, then βnℓ has at least one zero at a

positive real value of α . (2.11)

Furthermore, again because β ∼ −2b̄nα
n+1 for large |α|,

a consequence is that for n ≥ 2,

If n is odd and bn < 0 or n is even and bn > 0, then

βnℓ has at least one zero at a negative real

value of α . (2.12)

Of course, the behavior of βnℓ at negative values of α is
not directly physical, and the behavior at large positive α
is beyond the range of validity of the perturbative calcu-
lation, but these mathematical properties will be useful
in characterizing the total set of zeros of βnℓ at higher-
loop order.
Given that Nf ∈ I, so that β2ℓ has an IR zero, we can

track how this zero changes as the loop order n increases.
One general result is as follows. As Nf ր Nf,b1z at the
upper end of the interval I, αIR,nℓ → 0. This is a result of
the fact that in this limit, b̄1 → 0, so that βnℓ,r reduces
to α

∑n
ℓ=2 α

ℓ−2, which has a root at α = 0. Starting
at the (n = 2)-loop level and tracking the physical IR
zero at three- and higher-loop order, one can infer that
generically αn,ℓ is the root of βnℓ,r that moves toward
zero in this limit Nf ր Nf,b1z .
Because βnℓ is a polynomial in α(µ) and hence a con-

tinuous function, and because βnℓ = 0 at the two ends
of the interval (1.1), at α = 0 and α = αIR,nℓ, and is
negative for small (positive) α, it follows that β reaches
a minimum in this interval (1.1). This occurs at a point
where dβnℓ/dα = 0, which we label αm,nℓ (where the
subscript m stands for “minimum β in Iα”), and we de-
note

(βnℓ)min ≡ βnℓ

∣

∣

∣

α=αm,nℓ

. (2.13)

From Eq. (2.4), one calculates dβnℓ/dα =
(4π)−1dβnℓ/da, with the result

dβnℓ
dα

= −2

n
∑

ℓ=1

(ℓ+ 1)bℓ a
ℓ = −2

n
∑

ℓ=1

(ℓ+ 1)b̄ℓ α
ℓ . (2.14)

The equation for the critical points, where dβnℓ/dα = 0,
is thus an algebraic equation of degree n, with n formal
roots, one of which is α = 0. Assuming that b2 < 0,
i.e., Nf ∈ I, so that the two-loop β function has an
IR zero (and also, in higher-loop calculations, that the
scheme preserves the existence of this IR zero), it follows
that, among the remaining n − 1 roots, one is real and
positive and yields the minimum value of βnℓ for α in
the relevant interval (1.1), and this root is the above-
mentioned αm,nℓ.
Given that β has an IR zero at αIR and is analytic at

this point, one may expand it in a Taylor series about
αIR. This involves the slope of the β function at αIR.
For compact notation, we denote

β′

IR ≡ dβ

dα

∣

∣

∣

α=αIR

(2.15)

and, for the n-loop quantities,

β′

IR,nℓ ≡
dβnℓ
dα

∣

∣

∣

α=αIR,nℓ

. (2.16)

With β(αIR) = 0, the expansion of β(α) for α near to
αIR is

β = β′

IR (α − αIR) +O
(

(α− αIR)
2
)

. (2.17)

Here we have written this expansion for the full β func-
tion; a corresponding equation applies for βnℓ.

B. IR Zero of β at the Two-Loop Level

We next review some background on the two-loop β
function that is relevant for present work. The two-loop
β function is β2ℓ = −2α2(b̄1 + b̄2α). This has an IR zero
at

αIR,2ℓ = − b̄1
b̄2

= −4πb1
b2

, (2.18)

which is physical if and only if b2 < 0. The coefficient b2 is
a linear, monotonically decreasing function of Nf , which
is positive for zero and small Nf and passes through zero,
reversing sign, as Nf increases through Nf,b2z, where

Nf,b2z =
17C2

A

2Tf(5CA + 3Cf )
. (2.19)

For arbitrary G and R, Nf,b1z > Nf,b2z, as is proved by
the fact that

Nf,b1z −Nf,b2z =
3CA(7CA + 11Cf)

4Tf(5CA + 3Cf)
> 0 . (2.20)
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Hence, there is always an interval I ofNf values for which
the two-loop β function has an IR zero, namely

I : Nf,b2z < Nf < Nf,b1z . (2.21)

For example, in the case of fermions in the fundamental
representation, denoted ,

I :
34N3

c

13N2
c − 3

< Nf <
11Nc

2
if R = , (2.22)

so that, for Nc = 2, the interval I is 5.55 < Nf < 11;
for Nc = 3, I is 8.05 < Nf < 16.5; and as Nc → ∞, I
approaches 34Nc/13 < Nf < 11Nc/2.
Since we are primarily interested in studying the IR

zero of β and since the presence or absence of an IR zero
of the two-loop β function, β2ℓ, is a scheme-independent
property, we focus on Nf ∈ I, where this IR zero of β2ℓ is
present. A general result is that for a given gauge group
G and fermion representation R and Nf ∈ I, αIR,2ℓ is
a monotonically decreasing function of Nf . As Nf de-
creases from Nf,b1z, αIR,2ℓ increases from 0. As Nf

decreases through a value labeled Nf,cr, αIR increases
through a critical value, αcr ∼ O(1), where fermion con-
densation takes place. Thus,

Nf = Nf,cr ⇐⇒ αIR = αcr . (2.23)

The value of Nf,cr is of fundamental importance in the
study of a non-Abelian gauge theory, since it separates
two different regimes of IR behavior, viz., an IR confor-
mal phase with no SχSB for Nf,cr < Nf and an IR phase
with SχSB for Nf < Nf,cr. As Nf approaches Nf,b2z at
the lower end of the interval I, αIR,2ℓ becomes too large
for Eq. (2.18) to be reliable.
Because of the strong-coupling nature of the physics

at an approximate IR fixed point with αIR ∼ O(1),
there are significant higher-order corrections to results
obtained from the two-loop β function, which motivated
the calculation of the location of the IR zero in β, and
the resultant value of γm evaluated at this IR zero, to
higher-loop order for a general G, R, and Nf [11, 12].

C. β Function and Dilaton Mass

Here we focus on a theory in which the IR zero of β,
αIR, is slightly greater than αcr, so that, in the UV to IR
flow, there is an extended interval in t = lnµ over which
α(µ) is approaching αIR from below, but is still less than
αcr. In this interval, α(µ) ∼ O(1), but β is small, and
hence the theory is approximately scale-invariant. As µ
decreases through Λ, α(µ) increases through α(Λ) = αcr,
the fermion condensate forms, and the fermions gain dy-
namical masses, this approximate scale invariance is bro-
ken spontaneously. In terms of the (symmetric) energy-
momentum tensor θµν , the dilatation current is Dµ =
θµνxν , and one has ∂µD

µ = [β/(4α)]Ga
µνG

aµν , where
Ga

µν is the field-strength tensor for the gauge field. When

taking matrix elements, the deviation of this divergence
∂µD

µ from zero, i.e., the nonconservation of the dilata-
tion current, thus arises from two sources, namely the
facts that β is not exactly equal to zero and the nonzero
value of the matrix element of Ga

µνG
aµν , defined appro-

priately at the scale Λ. An analysis of the matrix element
of Dµ between the vacuum and the dilaton state |χ(p)〉,
in conjunction with a dimensional estimate of the gluon
matrix element, and the Taylor series expansion (2.17)
evaluated with µ ∼ Λ yields the resulting estimate for
the dilaton mass mχ [21]

m2
χ ≃ β′

IR (αIR − αcr)Λ
2 . (2.24)

In terms of n-loop level quantities, the right-hand side of
Eq. (2.24) β′

IR,nℓ (αIR,nℓ − αcr)Λ
2. The importance of

the slope at αIR, β
′
IR, and the n-loop calculation of this

slope, β′

IR,nℓ, in estimating a dilaton mass in a quasicon-

formal theory is evident from Eq. (2.24). As is the case
with αIR,nℓ, because of the strong-coupling nature of the
physics, it is valuable to compute higher-loop corrections
to the two-loop result, β′

IR,2ℓ. Below, we will present
two- and higher-loop analytic and numerical calculations
of β′

IR,nℓ. Other effects on mχ have been discussed in the

literature [21], including the effect of dynamical fermion
mass generation associated with the spontaneous chiral
symmetry breaking as µ descends through the value Λ.
Owing to this and other nonperturbative effects on mχ,
we restrict ourselves here to presenting one input to this
calculation, namely β′

IR,nℓ, for which we can give definite
analytic and numerical results.

D. IR Zero of β at the Three-Loop Level

Let us assume that Nf ∈ I, so that β2ℓ has an IR zero.
Here we analyze how this IR changes as one calculates
the β function to three-loop order, extending our results
in [11] to (an infinite set of) schemes more general than
the MS scheme used in that paper. Since the existence
of of the IR zero in the two-loop β function is a scheme-
independent property of the theory, it is reasonable to
restrict to schemes that preserve this IR zero of β at the
three-loop level. We first determine a condition for this
to hold.
The three-loop β function is β3ℓ = −2α2β3ℓ,r, so, aside

from the double zero at α = 0 (the UV fixed point), β3ℓ
vanishes at the two roots of the factor β3ℓ,r ≡ b̄1 + b̄2α+
b̄3α

2 = 0, namely,

αβz,3ℓ,± =
1

2b̄3

(

− b̄2 ±
√

∆2(b̄1, b̄2, b̄3)
)

=
2π

b3

(

− b2 ±
√

∆2(b1, b2, b3)
)

. (2.25)

where ∆2(b1, b2, b3) = b22 − 4b1b3. The analysis of the
IR zero of β3ℓ requires an consideration of the sign of
∆2(b1, b2, b3). The condition that β3ℓ have an IR zero
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requires, in particular, that its two zeros away from the
origin be real, i.e., that ∆2(b1, b2, b3) ≥ 0. For a given G,
R, and Nf ∈ I, so that b1 and b2 are fixed, this condition
amounts to an upper bound on b3, namely b3 ≤ b22/(4b1).
Now, b2 → 0 at the lower end of the interval I, so that,
insofar as one considers the analytic continuation of Nf

from positive integers to positive real numbers, the above
bound generically requires that b3 ≤ 0 forNf ∈ I. This is
also required if R = , and one studies the theory in the
limit Nc → ∞ and Nf → ∞ with r ≡ Nf/Nc fixed, since
in this case there are discrete pairs of values (Nc, Nf )
that enable one to approach arbitrarily close to the lower
end of the interval I at r = 34/13 where b2 → 0. In
order to preserve the existence of the two-loop IR zero at
the three-loop level, one is thus motivated to restrict to
schemes in which b3 ≤ 0 for Nf ∈ I, and we will do so
here. (The marginal case b3 = 0 is not generic, since b3
varies as a function of Nc and Nf , so we will not consider
it further.)
Before proceeding, it is worthwhile to recall how the

property b3 < 0 for Nf ∈ I arises in the MS scheme.
In this scheme, b3 is a quadratic function of Nf with
positive coefficients of the N2

f term and the term in-
dependent of Nf . This coefficient b3 vanishes, with
sign reversal, at two values of Nf , denoted Nf,b3z,− and
Nf,b3z,+, given as Eq. (3.16) in [11], with b3 < 0 for
Nf,b3z,− < Nf < Nf,b3z,+ (and b3 > 0 for Nf < Nf,b3z,−

and Nf > Nf,b3z,+. In [11] it was shown that in this
scheme, for all of the representations considered there,
namely, the fundamental ( ), adjoint, and rank-2 sym-

metric ( ) and antisymmetric ( ) tensor representa-
tions, Nf,b3z,− < Nf,b2z and Nf,b3z,2 > Nf,b1z, so that
b3 < 0 for all Nf ∈ I. For example, for fermions in
the R = representation, (i) for Nc = 2, Nf,b3z,1 =
3.99 < Nf,b2z = 5.55 and Nf,b3z,2 = 27.6 > Nf,b1z = 11;
(ii) for Nc = 3, Nf,b3z,1 = 5.84 < Nf,b2z = 8.05,
and Nf,b3z,2 = 40.6 > Nf,b1z = 16.5; (iii) as Nc →
∞, Nf,b3z,1 → 1.911Nc while Nf,b2z → 2.615Nc and
Nf,b3z,2 → 13.348Nc, while Nf,b1z → 5.5Nc. In Table
II we list the values of ∆2(b̄1, b̄2, b̄3) with b̄3 calculated in
the MS scheme, for the illustrative cases Nc = 2, 3, 4
and Nf in the respective I intervals. Since b3 < 0 for

Nf ∈ I in this MS scheme, it follows that all of the
entries in this table have ∆2 > 0.
Given that b3 < 0 for Nf ∈ I, Eq. (2.25) can be rewrit-

ten as α = (2π/|b3|)(−|b2|∓
√

b22 + 4b1|b3|). The solution
with a − sign in front of the square root is negative and
hence unphysical; the other is positive and is αIR,3ℓ, i.e.,

αIR,3ℓ =
2π

|b3|
(

− |b2|+
√

b22 + 4b1|b3|
)

. (2.26)

In [11] it was shown that in the MS scheme, for all
Nf ∈ I, αIR,3ℓ < αIR,2ℓ. Here we demonstrate that

this result holds more generally than just in the MS
scheme. We prove that for arbitrary gauge group G,
fermion representation R, and Nf ∈ I, in any scheme
in which b3 < 0 for Nf ∈ I (which is thus guaranteed

to preserve the IR zero present at the two-loop level), it
follows that αIR,3ℓ < αIR,2ℓ. To prove this, we consider
the difference

αIR,2ℓ−αIR,3ℓ =
2π

|b2b3|

[

2b1|b3|+b22−|b2|
√

b22 + 4b1|b3|
]

.

(2.27)
The expression in square brackets is positive if and only
if

(2b1|b3|+ b22)
2 − b22(b

2
2 + 4b1|b3|) > 0 . (2.28)

This difference is equal to the nonnegative quantity
(2b1b3)

2, which proves the inequality. Note that, since
b1 is nonzero for asymptotic freedom, this difference van-
ishes if and only if b3 = 0, in which case αIR,3ℓ = αIR,2ℓ.
We have therefore proved that

αIR,3ℓ < αIR,2ℓ if b3 < 0 for Nf ∈ I. (2.29)

As noted above, αIR,2ℓ is a monotonically decreasing
function of Nf ∈ I. With b3 < 0 for Nf ∈ I, this mono-
tonicity property is also true of αIR,3ℓ. As Nf increases
from Nf,b2z to Nf,b1z in the interval I, αIR,3ℓ decreases
from

αIR,3ℓ = 4π

√

b1
|b3|

at Nf = Nf,b2z (2.30)

to zero as Nf ր Nf,b1z at the upper end of this interval,
vanishing like

αIR,3ℓ =
4πb1
|b2|

[

1− |b3|b1
|b2|2

+O(b21)

]

(2.31)

as Nf ր Nf,b1z and b1 → 0.

E. IR Zero of β at the Four-Loop Level

The four-loop β function is β4ℓ = −2α2β4ℓ,r, so β4ℓ
has three zeros away from the origin, at the roots of the
cubic equation

β4ℓ,r ≡ b̄1 + b̄2α+ b̄3α
2 + b̄4α

3 = 0 , (2.32)

(where βnℓ,r was given in Eq. (2.8)). These zeros were

analyzed for the MS scheme in [11, 12]. Here we extend
this analysis to a more general class of schemes that have
b3 < 0 for Nf ∈ I, and hence maintain at the three-loop
level the IR zero of the scheme-independent two-loop β
function.
The nature of the roots of Eq. (2.32) is determined by

the sign of the discriminant ∆3(b̄1, b̄2, b̄3, b̄4), or equiva-
lently,

∆3 ≡ ∆3(b1, b2, b3, b4) = b22b
2
3 − 27b21b

2
4 − 4(b1b

3
3 + b4b

3
2)

+ 18b1b2b3b4 . (2.33)
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The following properties of ∆3 are relevant here: (i) if
∆3 > 0, then all of the roots of Eq. (2.32) are real; (ii) if
∆3 < 0, then Eq. (2.32) has one real root and a complex-
conjugate pair of roots; (iii) if ∆3 = 0, then at least two
of the roots of Eq. (2.32) coincide. Given the scheme-
independent properties b1 > 0 and b2 < 0 (i.e., Nf ∈ I),
and provided that b3 < 0 for Nf ∈ I, we can write this
discriminant as

∆3(b1, b2, b3, b4) = b22b
2
3 − 27b21b

2
4 + 4(b1|b3|3 + b4|b2|3)

+ 18b1|b2||b3|b4 . (2.34)

If b4 were zero, then the zeros of β4ℓ would coincide with
those of β3ℓ, and the property that these are all real is in
accord with the reduction

∆3(b1, b2, b3, 0) = b23(b
2
2 + 4b1|b3|) = b23∆2(b1, b2, b3) ,

(2.35)
which is positive.
Now consider nonzero b4. First, assume that the

scheme has the property that b4 > 0. Then we can write
Eq. (2.32) as

b̄1 − |b̄2|α− |b̄3|α2 + b̄4α
3 = 0 if b4 > 0 . (2.36)

From an application of the Descartes theorem on roots
of algebraic equations, it follows that there are at most
two (real) positive roots of this equation and at most one
negative root. Moreover, from Eq. (2.12) we can deduce
that in this case with b4 > 0, in addition to the double
zero at α = 0, β4ℓ has a zero at a negative value of α,
so the upper bound on negative zeros from the Descartes
theorem is saturated. Furthermore, since β4ℓ is negative
at large positive α, there are then two possibilities: either
the two remaining zeros of Eq. (2.32) are a complex-
conjugate pair, or else they are both real and positive.
If, on the other hand, the scheme is such that b4 < 0,

then we can write Eq. (2.32) as

b̄1 − |b̄2|α− |b̄3|α2 − |b̄4|α3 = 0 if b4 < 0 . (2.37)

From a similar application of the Descartes theorem, we
infer that there is at most one positive real root and at
most two negative real roots of Eq. (2.37). From Eq.
(2.11) we deduce that β4ℓ has a zero at a positive real
value of α. Depending on |b4|, the other two roots of Eq.
(2.37) may be real and negative or may form a complex-
conjugate pair.
Combining the information from both the Descartes

theorem and the discriminant ∆3, we derive the following
conclusions about the roots of Eq. (2.32) and hence the
zeros of β4ℓ aside from the double zero at α = 0. As
before, we assume that b2 < 0 (i.e., Nf ∈ I) so that β2ℓ
has an IR zero, and also that the scheme is such that
b3 < 0 for Nf ∈ I, guaranteeing that this IR zero is
maintained at the three-loop level. Then,

1. If b4 > 0 and ∆3 > 0, then Eq. (2.32) has one
negative and two positive real roots,

2. If b4 > 0 and ∆3 < 0, then Eq. (2.32) has one neg-
ative root and a complex-conjugate pair of roots,

3. If b4 < 0 and ∆3 > 0, then Eq. (2.32) has one
positive root and two negative roots,

4. If b4 < 0 and ∆3 < 0, then Eq. (2.32) has one
positive root and a complex-conjugate pair of roots.

For a particular pair (Nc, Nf), the marginal case ∆3 = 0
might occur, and would mean that two of the roots of
Eq. (2.32) are degenerate. Since this equation is a cubic,
it would follow that all of the roots are real. If ∆3 = 0
and b4 > 0, then Eq. (2.32) has one negative root and
a positive root with multiplicity 2, while if b4 < 0, then
(2.32) has one positive root and a negative root with
multiplicity 2.
It is reasonable to avoid schemes that lead to the out-

come (2) above, with no real positive root of Eq. (2.32),
since these fail to preserve the IR zero of the scheme-
independent two-loop β function. Although the positiv-
ity of ∆3 is not a necessary condition for this preserving
of the IR zero, it is a sufficient condition. We thus investi-
gate the conditions under which ∆3 is positive. As shown
via Eq. (2.35), if b4 = 0, then ∆3 > 0. By continuity, for
small |b4|, ∆3 remains positive, and there is only a small
shift in the two zeros that were present in β3ℓ, together
with the appearance of a new zero. Since the highest-
degree term in ∆3(b1, b2, b3, b4) involving |b4|, namely
−27b21b

2
4 is negative-definite, it follows that, other things

being equal, for sufficiently large |b4|, ∆3(b1, b2, b3, b4)
will decrease through zero and become negative. The
two b4 values at which ∆3(b1, b2, b3, b4) = 0 are

(b4)∆3z,± =
|b2|(2b22 + 9b1|b3|)± 2(b22 + 3b1|b3|)3/2

27b21
(2.38)

Therefore, a sufficient condition for a scheme to be such
that β4ℓ preserves the IR zero that is present in β2ℓ and
β3ℓ for Nf ∈ I is

(b4)∆3z,− < b4 < (b4)∆3z,+ . (2.39)

Note that at the lower end of the interval I, where b2 → 0,
the interval (2.39) reduces to the upper bound |b4| <
2|b3|3/2/(27b1)1/2.
For reference, in the MS scheme, b4 is a cubic polyno-

mial in Nf and is positive for Nf ∈ I for Nc = 2, 3 but
is negative in part of I for higher values of Nc (see Table
I of [11], where Nc is denoted N). In Table II we list the
values of ∆3(b̄1, b̄2, b̄3, b̄4) with b3 and b4 calculated in
the MS scheme, for the illustrative values Nc = 2, 3, 4
and values of Nf in the respective I intervals. For all
of the four-loop entries in Table I, ∆3(b̄1, b̄2, b̄3, b̄4) > 0,
as is evident from the values listed explicitly in Table II,
so these entries correspond to the case (1) in the list of
possibilities for b4 and ∆3 given above.
Rather than calculating αIR,nℓ directly from βnℓ, a

different approach is to use βnℓ to compute Padé approx-
imants and then calculate zeros of these approximants.
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As before, since one is interested in the zeros away from
the origin, one extracts the factor −2α2 in Eq. (2.4) and
analyzes the polynomial βnℓ,r in Eq. (2.8), of degree n−1
in α, depending on the n coefficients b̄ℓ, ℓ = 1, .., n. From
this, one can construct a set of [p, q] Padé approximants,
i.e., rational functions, each with a numerator polyno-
mial of degree p and a denominator polynomial of degree
q in α, of the form (

∑p
j=0 pjz

j)/(
∑q

k=0 qkz
k). Without

loss of generality, one can divide numerator and denomi-
nator by q0, so that, after redefinition of the coefficients,
the [p, q] Padé approximant to Eq. (2.8) is

[p, q] =

∑p
j=0 pjα

j

1 +
∑q

k=1 qkα
k
. (2.40)

depending on the p+ q+1 coefficients pj with j = 0, ..., p
and qk with k = 1, .., q. These coefficients are determined
by matching the Taylor series expansion of [p, q] in α with
the n coefficients b̄ℓ, ℓ = 1, ..., n, so that p + q = n − 1.
Thus, from the four-loop beta function factor β4ℓ,r, one
can construct two relevant approximants with p+ q = 3,
namely the [1,2] and [2,1] Padé approximants [27]. We
did this in [11] and calculated the resultant unique IR
zero from the [1,2] approximant and the relevant IR zero
from [2,1], denoted αIR,4ℓ,[1,2] and αIR,4ℓ,[2,1], respec-
tively. These were found to be close to the directly cal-
culated IR zero, αIR,4ℓ. From the known results for βnℓ
with n = 2, 3, 4, one can make estimates of β5ℓ by
various methods, but since these only contain exact in-
formation up to the n = 4 loop level, we will not pursue
this direction here.
As the n = 4 special case of the result discussed above,

αIR,4ℓ decreases to zero as Nf ր Nf,b1z . For the R =
and for a given Nf ∈ I where it is reliably calculable,
αIR,4ℓ is slightly larger than αIR,3ℓ, but the difference,
αIR,4ℓ −αIR,3ℓ is sufficiently small that αIR,4ℓ is smaller
than αIR,2ℓ. For higher fermion representations and Nf

values where the IR zero is reliably calculable (i.e., not
too close to the lower end of the interval I), the difference
αIR,3ℓ − αIR,4ℓ is again smaller in magnitude then the
difference αIR,2ℓ−αIR,3ℓ but may have either sign. Thus,
where αIR,4ℓ is reliably calculable, it is smaller than α2,ℓ.
The finding that the fractional change in the location of
the IR zero of β is reduced at higher-loop order agrees
with the general expectation that calculating a quantity
to higher order in perturbation theory should give a more
stable and accurate result.
The scheme-dependence of αIR,nℓ for n ≥ 3 can be

studied by carrying out scheme transformations, recal-
culating α′

IR,nℓ in the new scheme, and comparing with

αIR,nℓ. This study was carried out in [14]. To be accept-
able, a scheme transformation must satisfy a number of
necessary conditions, such as mapping a a positive real α
to a positive real α′ and vice versa. Although these condi-
tions can be satisfied easily in the vicinity of the ultravio-
let fixed point of an asymptotically free theory at α = 0,
they are nontrivial and constitute significant restrictions
on scheme transformations at an infrared fixed point [14].
For example, the scheme transformation α = tanhα′,

with inverse α′ = (1/2) ln[(1 + α)/(1− α)], is acceptable
for small α, in the vicinity of the UV fixed point of an
asymptotically free gauge theory, but is not acceptable in
the vicinity of an IR fixed point at α = αIR ∼ O(1), since
α can approach 1 from below, in which case α′ diverges,
and α can exceed 1, in which case α′ is complex.
Scheme-dependence of higher-loop calculations is

present not just in calculations of an IR zero of βnℓ
at three- and higher-loop level, but also in higher-loop
perturbative QCD calculations. The fact that the MS
scheme is a reasonable one has been demonstrated, e.g.,
by the excellent fit that has been obtained to experi-
mental data for αs(µ) with µ2 = Q2 using this scheme
[28]. There has been much work on optimized schemes
for higher-order QCD calculations [29]. However, we note
that two of the simplest scheme transformations that one
might apply for QCD are not generally acceptable at an
IR zero of β with αIR ∼ O(1). These are the scheme
transformations denoted S2 and S3 in [14], which are
constructed to render the leading scheme-dependent co-
efficient in the new scheme, b′3, equal to zero. They are
acceptable at the UV zero of β and hence in perturbative
QCD applications, but are not, in general, acceptable in
the vicinity of an IR zero with αIR ∼ O(1) because they
can map a real positive α in theMS scheme to a negative
or complex coupling in the transformed scheme, as was
shown in [14].

F. Shift of IR Zero at (n+ 1)-loop Level

Here we derive a result on the direction of the shift in
the IR zero of the β function when one increases the order
of calculation of β from the n-loop level to the (n+1)-loop
level, where n ≥ 2. We assume, as before, that the theory
is asymptotically free and that b2 < 0 (i.e., Nf ∈ I), so
that there is an IR zero of β at the two-loop level. We
assume that the scheme-dependent coefficients bℓ with
ℓ = 3, ..., n+ 1 are such that they preserve the existence
of the IR zero of β at higher-loop level [30]. We focus
here on values of α close to αIR,nℓ, where dβnℓ/dα > 0.
Expanding βnℓ in a Taylor series expansion around α =
αIR,nℓ, with the abbreviation β′

IR,nℓ ≡ dβnℓ/dα|αIR,nℓ

defined above, we write the general Eq. (2.17) explicitly
in terms of n-loop quantities as

βnℓ = β′

IR,nℓ (α − αIR,nℓ) +O
(

(α− αIR,nℓ)
2
)

. (2.41)

Now let us calculate β to the next-higher-loop order, i.e.,
β(n+1)ℓ, and solve for the zero, αIR,(n+1)ℓ, which cor-
responds to αIR,nℓ (among the n − 1 zeros of β(n+1)ℓ

away from the origin). To determine whether αIR,(n+1)ℓ

is larger or smaller than αIR,nℓ, i.e., whether there is a
shift to the right or left, consider the difference

β(n+1)ℓ − βnℓ = −2b̄n+1α
n+2 . (2.42)

In a scheme in which bn+1 > 0, this difference, eval-
uated at α = αIR,nℓ, is negative, so, given that
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dβnℓ/dα|αIR,nℓ
> 0, to compensate for this, the zero

shifts to the right, whereas if bn+1 < 0, the difference
is positive, so the zero shifts to the left. That is,

If bn+1 > 0 , then αIR,(n+1)ℓ > αIR,nℓ

If bn+1 < 0 , then αIR,(n+1)ℓ < αIR,nℓ . (2.43)

(In a scheme with bn+1 = 0, obviously αIR,(n+1)ℓ =
αIR,nℓ). The application of this general result (2.43) is
evident in the specific calculations in [11] at the three-
loop and four-loop levels.

III. β FUNCTION STRUCTURE

At high scales in the UV, the β function is dominated
by the leading quadratic term, β ≃ −2b̄1α

2 + O(α3).
The calculation of the IR zero of βnℓ is important for
investigating the UV to IR evolution of the theory. But,
as discussed in the introduction, for a more detailed study
of this evolution, one needs not just the value of the IR
zero, αIR,nℓ, but the full curve of βnℓ for α ∈ Iα. Here we
present calculations of three quantities that give further
information about this curve, including (i) the value of
α where βnℓ reaches its minimum for α ∈ Iα, αm,nℓ, (ii)
the minimum value of βnℓ for α ∈ Iα, (βnℓ)min; and
the slope β′

IR,nℓ at the IR zero of β, as defined in Eq.

(2.16). The relevance of the third quantity to estimates
of the dilaton mass in a quasiconformal gauge theory has
been noted above. Our calculations are performed at the
n = 2, n = 3, and (n = 4)-loop level.

A. Two-Loop Level

1. Position of Minimum in β2ℓ for α ∈ Iα

At the two-loop level, given that b2 < 0 so that
β2ℓ function has an IR zero, the derivative dβ2ℓ/dα =
−2α(2b̄1 + 3b̄2α) vanishes at α = αm,2ℓ, where

αm,2ℓ = −2b̄1

3b̄2
= −8πb1

3b2
=

8πb1
3|b2|

. (3.1)

Explicitly,

αm,2ℓ =
8π(11CA − 4TfNf)

3[4(5CA + 3Cf )TfNf − 34C2
A]

. (3.2)

2. Minimum Value of β2ℓ for α ∈ Iα

At α = αm,2ℓ, β2ℓ reaches its minimum physical value
for α ∈ Iα, namely

(β2ℓ)min = − 8b̄31
27b̄22

= −32πb31
27b22

= − 32π(11CA − 4TfNf)
3

81[34C2
A − 4(5CA + 3Cf )TfNf ]2

. (3.3)

Note that

αm,2ℓ =
2

3
αIR,2ℓ . (3.4)

3. Slope of β2ℓ at αIR,2ℓ

The derivative dβ2ℓ/dα evaluated at α = αIR,2ℓ is

β′

IR,2ℓ = −2b̄21
b̄2

= −2b21
b2

=
2b21
|b2|

=
2(11CA − 4TfNf )

2

3[4(5CA + 3Cf )TfNf − 34C2
A]

, (3.5)

which is positive for Nf ∈ I.
As descriptors of the shape and structure of the β func-

tion, the quantities αm,nℓ, (βnℓ)min, and β
′
IR,nℓ are inter-

related. Thus, if one makes a rough, linear (lin.) approx-
imation to the β function in the interval from α = αm,nℓ

to α = αIR,nℓ, then this slope would be

∆βnℓ;lin.
∆α

=
−(βnℓ)min

αIR,nℓ − αm,nℓ
. (3.6)

For example, in the (n = 2)-loop case, substituting the
values of (β2ℓ)min, αIR,2ℓ, and αm,2ℓ, this approximation
yields

∆β2ℓ;lin.
∆α

= −8b̄21
9b̄2

=
8b21
9|b2|

, (3.7)

which exhibits the same dependence on the input coef-
ficients b1 and b2, with a somewhat smaller coefficient,
8/9 rather than the coefficient 2 in the exact two-loop
expression, β′

IR,2ℓ, in Eq. (3.5).
In Tables I, III, and IV we list numerical values of

αm,nℓ, (βnℓ)min, and β′

IR,nℓ for fermions in the R =

representation of SU(Nc), for some illustrative cases of
Nc and, for each Nc, values of Nf in the respective in-
tervals I. As illustrations, we show plots of βnℓ in Fig.
1 for Nc = 2 and Nf = 8 and in Fig. 2 for Nc = 3
and Nf = 12 as functions of α. The results in the tables
and figures are given for the quantities evaluated at the
n = 2, n = 3, and n = 4 loop levels. The n = 3 and
n = 4 loop results will be discussed further below.

B. Three-Loop Level

1. Position of Minimum in β3ℓ for α ∈ Iα

Here we assume a scheme in which b3 6= 0, since if one is
working with a scheme in which b3 = 0, then β3ℓ = β2ℓ, so
the analysis of the three-loop β function reduces to that
of the two-loop β function discussed above. Furthermore,
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FIG. 1: Plot of the n-loop β function βnℓ as a function of α for
n = 2, 3, 4 and Nc = 2, Nf = 8 with fermions in the fundamental
representation. At a given value of α, the curves, from bottom to
top, are for β2ℓ, β4ℓ, and β3ℓ, respectively. See text for further
details.

for the reasons explained above, we restrict to schemes
in which b3 < 0 for Nf ∈ I. The derivative dβ3ℓ/dα =
−2α(2b̄1 +3b̄2α+4b̄3α

2) is zero at α = 0 and at the two
other points,

α =
1

8b̄3

[

− 3b̄2 ±
√

9b̄22 − 32b̄1b̄3

]

. (3.8)

This can be written as α = π(2|b3|)−1(−3|b2| ∓
√

9b22 + 32b1|b3|). The critical point corresponding to the
− sign in front of the square root is negative and hence
unphysical, while the critical point corresponding to the
+ sign in front of the square root is αm,3ℓ, i.e.,

αm,3ℓ =
π

2|b3|
[

− 3|b2|+
√

9b22 + 32b1|b3|
]

. (3.9)

A general inequality is

αm,3ℓ < αm,2ℓ . (3.10)

We prove this by examining the difference

αm,2ℓ − αm,3ℓ =
π

6|b2b3|
[

16b1|b3|+ 9b22

− 3|b2|
√

9b22 + 32b1|b3|
]

(3.11)

The condition that this is positive is equivalent to the
condition that the square of the polynomial term in the

numerator of Eq. (3.11) minus the square of the term
in this numerator involving the square root is positive.
This difference of squares is equal to 256b21b

2
3, which is

positive. This proves the inequality (3.10).
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FIG. 2: Plot of the n-loop β function βnℓ as a function of α for n =
2, 3, 4 and the illustrative case Nc = 3, Nf = 12 with fermions in
the fundamental representation. At a given value of α, the curves,
from bottom to top, are for β2ℓ, β4ℓ, and β3ℓ, respectively. See
text for further details.

2. Minimum Value of β3ℓ for α ∈ Iα

At α = αβmin,3ℓ, β3ℓ reaches its minimum value for
α ∈ Iα, namely

(β3ℓ)min =
π

64|b3|3
[

−
(

144b1b
2
2|b3|+ 128b21b

2
3 + 27b42

)

+ |b2|
(

9b22 + 32b1|b3|
)3/2

]

. (3.12)

Note that one can write (β3ℓ)min in terms of the b̄ℓ co-
efficients by replacing each bℓ in Eq. (3.16) by the cor-
responding b̄ℓ and dividing the overall expression by 4π.
Since (βnℓ)min < 0, it is convenient to deal with the
magnitudes |(βnℓ)min|. We find the following general in-
equality: for a given G, R, and Nf ∈ I, in a scheme that
has b3 < 0 and hence maintains the existence of the IR
zero in β2ℓ,

|(β3ℓ)min| < |(β2ℓ)min| . (3.13)

To prove this, we consider the difference
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|(β2ℓ)min| − |(β3ℓ)min| =
π

1728b22|b3|3
[

2048b31|b3|3 + 27b22(144b1b
2
2|b3|+ 128b21b

2
3 + 27b42)− 27|b2|3(9b22 + 32b1|b3|)3/2

]

.

(3.14)

The positivity of this difference is equivalent to the pos-
itivity of the square of the polynomial terms in the nu-
merator minus the square of the term in the numerator
involving the radical. This difference of squares is equal
to

8192b31|b3|3
(

512b31|b3|3+3402b42b1|b3|+1728b22b
2
1b

2
3+729b62) .

(3.15)
This expression is manifestly positive-definite, which
proves the inequality (3.13).

3. Slope of β3ℓ at αIR,3ℓ

The derivative of β3ℓ at α = αIR,3ℓ is

β′

IR,3ℓ = =
1

|b3|2
[

− 4|b2|(b22 + b1|b3|)

+ (b22 + 2b1|b3|)
√

b22 + 4b1|b3|
]

. (3.16)

That this is positive follows from the fact that the square
of the term involving the square root minus the square
of −(4b1|b2||b3| + |b2|3) in the brackets is the manifestly
positive quantity 4b21b

2
3(b

2
2 + 4b1|b3|). Owing to the ho-

mogeneity properties, to express β′
IR,3ℓ in terms of the b̄ℓ

coefficients, one simply replaces each bℓ in Eq. (3.16) by
the corresponding b̄ℓ.

A general inequality is that for a given G, R, and Nf ∈
I, in a scheme with b3 < 0, which is thus guaranteed to
maintain the existence of the IR zero in β2ℓ at the three-
loop level,

β′

IR,3ℓ < β′

IR,2ℓ . (3.17)

To prove this, we examine the difference

β′

IR,2ℓ − β′

IR,3ℓ =
1

|b2|b23

[

2b21b
2
3 + 4|b2|(b22 + b1|b3|)− |b2|(b22 + 2b1|b3|)

√

b22 + 4b1|b3|
]

. (3.18)

The positivity of this difference is equivalent to the pos-
itivity of the square of the polynomial terms in the nu-
merator minus the square of the term in the numerator
involving the square root, which is

4b41b
4
3 + 12b42b

2
1b

2
3 + 15b82 + 24b62b1|b3| . (3.19)

This is manifestly positive-definite, which proves the in-
equality (3.17).
The shifts in the values of the IR zero, αIR,nℓ, the

position of the minimum in βnℓ, the value of βnℓ at the
minimum, and the slope of βnℓ at α = αn,ℓ are evident
from Tables I, III, and IV and Figs. 1 and 2.

C. Four-Loop Level

The derivative dβ3ℓ/dα = −2α(2b̄1 + 3b̄2α + 4b̄3α
2 +

5b̄4α
3) is zero at α = 0 and at the three other points

given by the zeros of the cubic equation 2b̄1 + 3b̄2α +
4b̄3α

2 + 5b̄4α
3 = 0. We have calculated these critical

points, evaluated β4ℓ at its minimum physical value, and
also evaluated the derivative dβ4ℓ/dα at α = αIR,4ℓ. We
give the numerical results for αm,4ℓ, (β4ℓ)min, and β

′

IR,4ℓ

in Tables I, III, and IV. These four-loop structural results
are also evident in Figs. 1 and 2.

In addition to the results that we have proved above,
we note some others here. As stated above, numerical re-
sults for three- and four-loop structural quantities were
calculated in the MS scheme. First, although the ra-
tios αm,3ℓ/αIR,3ℓ and αm,4ℓ/αIR,4ℓ are not constants as
functions of Nf , they do not differ very much from the
two-loop ratio, which is a constant, namely, 2/3, as given
in Eq. (3.4). With fermions in the representation, for a
given Nc and Nf ∈ I, αm,4ℓ is slightly larger than αm,3ℓ,
but still substantially smaller than αm,2ℓ, just as is true
of the corresonding αIR,nℓ quantities. Moreover, for a
given G and loop order n, αm,nℓ is a monotonically de-
creasing function of Nf ∈ I and vanishes as Nf ր Nf,b1z

and b1 → 0.

IV. SOME PROPERTIES OF γm

The anomalous dimension γm for the fermion bilinear
ψ̄ψ describes the scaling properties of this operator and
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can be expressed as a series in a or equivalently, α:

γm =

∞
∑

ℓ=1

cℓ a
ℓ =

∞
∑

ℓ=1

c̄ℓ α
ℓ , (4.1)

where c̄ℓ = cℓ/(4π)
ℓ is the ℓ-loop series coefficient. The

coefficient c1 is scheme-independent, while cℓ for ℓ ≥ 2
are scheme-dependent. The cℓ coefficients have been cal-
culated up to four-loop order in the MS scheme [7]. We
list cℓ for ℓ = 1, 2, 3 in Appendix A. We denote the
n-loop expression for γm as a series in α, evaluated at
the n-loop IR zero of β, α = αIR,nℓ, as γIR,nℓ.
In [11], we calculated γIR,nℓ up to (n = 4)-loop order in

the MS scheme. An important result was that we found
a substantial reduction in γIR going from the two-loop
to three-loop level for all of the fermion representations
that were considered. The difference going from three- to
four-loop level, γIR,3ℓ − γIR,4ℓ, was found to be smaller
and could be of either sign, depending on the represen-
tation and value of Nf . The resultant γIR,4ℓ was thus
substantially smaller than γIR,2ℓ.
One may investigate the reduction γIR,3ℓ < γIR,2ℓ

found in [11] further. To do this for a given gauge
group G and fermion representation R, we assume that
Nf ∈ I, so that the theory has an IR zero of β2ℓ, and,
further, that the scheme is such that b3 < 0 for Nf ∈ I,
so that this IR zero is guaranteed to be maintained at
the three-loop level. We will use the resultant prop-
erty that αIR,3ℓ < αIR,2ℓ. Let us consider the difference
γIR,2ℓ − γIR,3ℓ. This is given by

γIR,2ℓ − γIR,3ℓ = c̄1(αIR,2ℓ − αIR,3ℓ)

+ c̄2(α
2
IR,2ℓ − α2

IR,3ℓ)− c̄3α
3
IR,3ℓ . (4.2)

The (scheme-independent) coefficient c1 is positive, so
that, since αIR,2ℓ − αIR,3ℓ > 0, it follows that the first
term on the right-hand side of Eq. (4.2) is positive. The
factor (α2

IR,2ℓ−α2
IR,3ℓ) in the second term is also positive.

The coefficient c2 is scheme-dependent, so the analysis of
this term necessarily involves a choice of scheme, as does
the analysis of the third term. We next prove that in
the MS scheme, c2 > 0 for all of the representations
considered in [11], so that this second term is positive.

To show this, we begin with the representation, for
which

(c2)fund,MS =
(N2

c − 1)(203N2
c − 9− 20NcNf )

192N2
c

. (4.3)

The first factor in the numerator, N2
c − 1, is obviously

positive for all physical Nc. The second factor is positive
for Nf < Nf,c2z, where

Nf,c2z =
203N2

c − 9

20Nc
. (4.4)

This is larger than the upper bound on Nf from asymp-
totic freedom, Nf,b1z, as is clear from the difference

Nf,c2z −Nf,b1z =
3(31N2

c − 3)

20Nc
> 0 , (4.5)

so that c2,fund,MS > 0 for Nf ∈ I (actually for all physi-

cal Nf). This provides an analytic understanding of the
numerical results in Table V of [11], which indicated that
c2 > 0 for all Nc and Nf considered there.

We next consider the case of fermions in the adjoint
representation, for which

c2,adj,MS =
N2

c (53− 10Nf)

24
. (4.6)

This is positive for Nf < 53/10, which is larger than
the upper bound on Nf for this representation from the
requirement of asymptotic freedom, namely Nf,b1z =
11/4 = 2.75, so again, c2 > 0 for all Nf for the adjoint

representation in the MS scheme.

Finally, we consider the case of fermions in the sym-
metric or antisymmetric rank-2 tensor representation, de-
noted S2 and A2, respectively, with Young tableaux

and . Owing to the fact that the A2 representation
of SU(2) is the singlet, it is understood that Nc ≥ 3 in
this case. Since various formulas are similar for these
two representations, with appropriate reversals of signs
of certain terms, it is convenient to give them in a unified
manner, with T 2 referring to S2 and A2 together. We
have

c2,T2,MS =
(Nc ± 2)(Nc ∓ 1)

[

109N2
c ± 9Nc − 18− 10Nc(Nc ± 2)Nf ]

48N2
c

, (4.7)

where the upper (lower) sign applies for the S2 (A2) rep-
resentation, respectively. In the numerator of this ex-
pression, the factor (Nc±2)(Nc∓1) is obviously positive
for the relevant values of Nc, so one next examines the

factor [109N2
c ± 9Nc − 18 − 10Nc(Nc ± 2)Nf ]. This is

positive for Nf < Nf,c2T2z, where

Nf,c2T2z =
106N2

c ± 9Nc − 18

10Nc(Nc ± 2)
. (4.8)



13

As for the other representations, Nf,c2T2z is larger than
the respective upper bound on Nf from the requirement
of asymptotic freedom, Nf,b1z,T2,

Nf,b1z,T2 =
11(Nc

2(Nc ± 2)
. (4.9)

This is proved by considering the difference

Nf,c2T2z −Nf,b1z,T2 =
3(17N2

c ± 3Nc − 6)

10Nc(Nc ± 2)
(4.10)

This difference is positive for

Nc ≥
∓3 +

√
417

34
, (4.11)

i.e., 0.5124 for S2 and 0.6888 for A2, and hence for all
physical Nc. Therefore, this proves that c2 > 0 for all
relevant Nf < Nf,b1z and, in particular, for all Nf in the
respective intervals I for these theories with fermions in
the symmetric or antisymmetric rank-2 representation.
We have thus proved that for the MS scheme, for all

of the representations considered in [11], the first two
terms in the difference γIR,2ℓ − γIR,3ℓ are both positive.
We have also investigated the contribution of the third
term. By analytic methods similar to those exhibited
above, we find that this third term also makes a positive
contribution to the difference in Eq. (4.2), i.e., c3 < 0 for
Nf ∈ I, in most, although not all, cases. For example,
for G = SU(Nc) and fermions in the representation,
c3 < 0 for all Nc up to Nc = 15 and integer Nf values in
the respective intervals I. This includes all of the cases
of Nc and Nf ∈ I for which numerical results were given
in [11] and thus gives an analytic understanding of those
results. For Nc = 16, the interval I is 42 ≤ Nf ≤ 87,
and c3 < 0 for all of these values of Nf except the lowest
one, Nf = 42, where c3 > 0. Similar comments apply for
larger Nc.

V. SUPERSYMMETRIC GAUGE THEORY

A. IR Zeros of β

It is of interest to give some corresponding results on
properties of the β function and associated UV to IR
evolution in an asymptotically free, N = 1 supersym-
metric gauge theory with vectorial chiral superfield con-
tent Φi, Φ̃i, i = 1, ..., Nf in the R, R̄ representations,
respectively. A number of exact results have been de-
rived describing the infrared properties of the theory in
[31, 32]. Thus, one can compare findings from perturba-
tive calculations with these exact results, and this was
done in [13]. The β function of the theory has the form

βs =
dα

dt
= −2α

∞
∑

ℓ=1

bℓ,sa
ℓ = −2α

∞
∑

ℓ=1

b̄ℓ,sα
ℓ , (5.1)

where we use the subscript s, standing for supersymmet-
ric, to avoid confusion with the corresponding quantities
in the nonsupersymmetric theory, and b̄ℓ,s = bℓ,s/(4π)

ℓ.
The beta function calculated to n-loop order is denoted
βnℓ,s. For values of Nf for which βnℓ,s has an IR zero,
we denote this as αIR,nℓ,s. In addition to the scheme-
independent coefficients b1,s and b2,s, calculated in [33]
and [34], respectively, the three-loop coefficient, b3,ℓ, has

been calculated in [35] in the dimensional reduction (DR)
scheme [36]. Calculations of αIR,nℓ,s and corresponding
values of the anomalous dimension for the bilinear chi-
ral superfield operator ΦΦ̃ were given in [13] up to the
maximal order to which bℓ and the coefficients of the
anomalous dimension had been calculated, namely the
three-loop level.
We recall that, since b1 = 3CA−2TfNf [33], the upper

bound on Nf for the theory to be asymptotically free is

Nf < Nf,b1z,s , (5.2)

where

Nf,b1z,s =
3CA

2Tf
. (5.3)

The two-loop β function coefficient is b2,s = 6C2
A−4(CA+

2Cf )TfNf [34], which decreases through positive values
and passes through zero, reversing sign, as Nf increases
through

Nf,b2z,s =
3C2

A

2Tf(CA + 2Cf )
. (5.4)

Since Nf,b2z,s < Nf,b1z,s, there is always an interval of
values of Nf , namely

Is : Nf,b2z,s < Nf < Nf,b1z,s , (5.5)

in which the two-loop β function for this theory has an
IR zero for Nf . The value of this two-loop IR zero is

αIR,2ℓ,s = −4πb1,s
b2,s

=
2π(3CA − 2TfNf )

2(CA + 2Cf )TfNf − 3C2
A

. (5.6)

In particular, for chiral superfields in the and ¯ repre-
sentations, Nf,b1z,s = 3Nc and Nf,b2z,s = 3N3

c /[2N
2
c −1],

so

Is :
3N3

c

2N2
c − 1

< Nf <
3Nc

2
for R = . (5.7)

In this case, the exact value of Nf at the lower end of
the IR-conformal, non-Abelian Coulomb phase was de-
termined in Ref. [32] to be

Nf,cr,s =
3Nc

2
for R = . (5.8)



14

Here, since Nf,b2z,s > Nf,cr,s, the coefficient b2,s passes
through zero and reverses sign in the interior of the non-
Abelian Coulomb phase. Consequently, as was noted
in [13], for this case of chiral superfields in the and
¯ representations, one cannot study the IR zero of β2ℓ
throughout the entirety of this phase. The generalization
of Nf,cr,s to higher representations has been given as [37]

Nf,cr,s =
3CA

2Tf
. (5.9)

Assuming that γm saturates its upper bound of 1 in this
supersymmetric theory as Nf ց Nf,cr,s, Eq. (5.8) agrees
with the result obtained via a closed-form solution for β
[31] (see also [38]). Note that the fact that the scheme
used in [31] is different from the DR scheme does not
affect this, since Nf,cr,s is a physical quantity.
At the three-loop level, β3ℓ,s = −2α2β3ℓ,r,s, where

βnℓ,r is given by Eq. (2.8) with b̄ℓ replaced by b̄ℓ,s. One
makes use of the result [35]

b3,s = 21C3
A + 4(−5C2

A − 13CACf + 4C2
f )TfNf

+ 4(CA + 6Cf )T
2
fN

2
f (5.10)

in the DR scheme. The three-loop IR zero of βs, αIR,3ℓ,s,
was calculated and compared with αIR,2ℓ,s in [13]. One
can prove various inequalities similar to those that we
have proved above for a non-supersymmetric gauge the-
ory. We illustrate one of these, concerning the relative
size of αIR,2ℓ,s and αIR,3ℓ,s for chiral superfields in the
and ¯ representations. We begin by noting that b3,s in

theDR scheme is a quadratic function ofNf which is pos-
itive for small Nf , and, as Nf increases, passes through
zero, becoming negative, at a value denoted Nf,b3z,−,s,
reaches a minimum, and then passes through zero again
at Nf = Nf,b3z,+,s, and is positive for larger Nf . In
general,

Nf,b3z,±,s =
5C2

A + 13CACf − 4C2
f ±√

Rs

2Tf(CA + 6Cf )
, (5.11)

where

Rs = 4C4
A + 4C3

ACf + 129C2
AC

2
f − 104CAC

3
f + 16C4

f .
(5.12)

For the or ¯ representation, this reduces to

Nf,b3z,±,s =
21N4

c − 9N2
c − 2±

√

Rs,fund

2Nc(4N2
c − 3)

, (5.13)

where

Rs,fund = 105N8
c − 126N6

c − 3N4
c + 36N2

c + 4 . (5.14)

(Note that Rs,fund is positive-definite, vanishing at eight
complex values of Nf .) To prove that αIR,2ℓ,s < αIR,3ℓ,s

for this case, it suffices to show that b3,s < 0 for Nf ∈ Is,
since then one can apply the same proof that we used for
Eq. (2.29). To show that b3,s < 0 for Nf ∈ Is, we will
demonstrate that Nf,b3z,−,s < Nf,b2z,s and Nf,b3z,+,s >
Nf,b1z,s. First, for this case of R equal to the repre-
sentation, we consider the difference

Nf,b2z,s −Nf,b3z,−,s =
−18N6

c + 21N4
c − 5N2

c − 1 + (2N2
c − 1)

√

Rs,fund

2Nc(2N2
c − 1)(4N2

c − 3)
. (5.15)

Although the polynomial term in the numerator of (5.15)
is negative, it is smaller than the term involving the
square root. To show this, we observe that the square
of the term involving the square root minus the square
of the polynomial term in the numerator is 24Nc4(N2

c +
1)(N2

c −1)2(4N2
c −3). This is positive for all physical Nc,

proving that Nf,b2z,s > Nf,b3z,−,s for this case. Next, we
consider the difference

Nf,b3z,+,s −Nf,b1z =
−3N4

c + 9N2
c − 2 +

√

Rs,fund

2Nc(4N2
c − 3)

.

(5.16)
Although the polynomial term in the numerator is nega-
tive for physical Nc, it is smaller than the square root, as
is shown by the fact that the difference of the square of
the square root term minus the square of the polynomial
term is 24N2

c (N
4
c − 1)(4N2

c − 3), which is positive. So
we have proved that for this case, Nf,b3z,−,s < Nf,b2z,s

and Nf,b3z,+,s > Nf,b1z,s. In turn, this proves that for
this case with Nf chiral superfields in the and ¯ repre-

sentations, in the DR scheme, b3,s < 0 for Nf ∈ Is, and
hence

αIR,3ℓ,s < αIR,2ℓ,s . (5.17)

This inequality follows by the same type of proof as the
one that we gave for Eq. (2.29).

B. Structural Properties of βs

Because one has exact, nonperturbative results avail-
able for this theory, we will be brief in our discussion of
structural properties of the β function. The value of α
where β2ℓ,s has zero slope and a minimum in the interval
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FIG. 3: Plot of the n-loop β function βnℓ,s for an SU(Nc) gauge
theory with N = 1 supersymmetry, as a function of α, for n = 2
and n = 3 loops and Nc = 2, Nf = 5 with chiral superfields
in the fundamental representation. The lower and upper curves
correspond to β2ℓ,s and β3ℓ,s, respectively. See text for further
details.

(1.1) is given by Eq. (3.1) as

αm,2ℓ,s =
8π(3CA − 2TfNf)

3[4(CA + 2Cf )TfNf − 6C2
A]

. (5.18)

At this α, β2ℓ,s reaches its minimum physical value,

(β2ℓ,s)min = − 32π(3CA − 2TfNf )
3

27[4(CA + 2Cf )TfNf − 6C2
A]

2
. (5.19)

As in the nonsupersymmetric theory, αm,2ℓ,s =
(2/3)αIR,2ℓ,s.

The derivative dβ2ℓ,s/dα evaluated at α = αIR,2ℓ,s is
given by the analogue of Eq. (3.5), namely

β′

IR,2ℓ,s =
2(3CA − 2TfNf)

2

4(CA + 2Cf )TfNf − 6C2
A

, (5.20)

which is positive for Nf ∈ I.

At the three-loop level, αm,3ℓ,s, (β3ℓ)min, and β
′

IR,3ℓ,s

are given by Eqs. (3.9), (3.12), and (3.16) with the re-
placements bℓ → bℓ,s.

In Figs. 3 and 4 we show plots of the two-loop and
three-loop β functions for this supersymmetric gauge the-
ory with chiral superfields in the fundamental representa-
tion and with the illustrative values Nc = 2, Nf = 5 and
Nc = 3, Nf = 7, respectively. The three-loop β functions

are calculated in the DR scheme.

–0.1

–0.08

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

0.08

0.1

be
ta

0.2 0.4 0.6 0.8 1 1.2 1.4

alpha

FIG. 4: Plot of the n-loop β function βnℓ,s for an SU(Nc) gauge
theory with N = 1 supersymmetry, as a function of α, for n = 2
and n = 3 loops and Nc = 3, Nf = 7 with chiral superfields
in the fundamental representation. The lower and upper curves
correspond to β2ℓ,s and β3ℓ,s, respectively. See text for further
details.

VI. CONCLUSIONS

In this paper we have studied some higher-loop struc-
tural properties of the β function in an asymptotically
free vectorial gauge theory, focusing on the case where
the theory has an IR zero in the β function. These struc-
tural properties include the value of α where β reaches
a minimum (i.e., a maximal magnitude, since β ≤ 0
for α ∈ Iα), the value of β at this minimum, and the
derivative dβ/dα at the IR zero, calculated to the n-
loop order. We have given results up to four loops in a
non-supersymmetric gauge theory and up to three loops
in a gauge theory with N = 1 supersymmetry. In an
asymptotically free theory with an exact or approximate
infrared zero in the β function, these structural quanti-
ties provide further information about the running of α
as a function of the reference scale, µ. The derivative
of β at αIR is also of interest because it enters into es-
timates of the dilaton mass in a quasiconformal gauge
theory. A general inequality was proved concerning how
the shift in the IR zero of β as one goes from the n-loop
to the (n+1)-loop order depends on the sign of bn+1. For
schemes which have b3 < 0 for Nf ∈ I and which thus
are guaranteed to preserve the existence of the IR zero
in the (scheme-independent) β2ℓ at the three-loop level,
we have proved that αIR,3ℓ < αIR,2ℓ, αm,3ℓ < αm,2ℓ,
|(β3ℓ)min| < |(β2ℓ)min|, and β′

IR,3ℓ < β′

IR,2ℓ. Our re-
sults further elucidate the ultraviolet to infrared evolu-
tion of an asymptotically free vectorial gauge theory with
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fermions.
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VII. APPENDIX A

A. β Function Coefficients

For a vectorial gauge theory with gauge group G and
Nf fermions in the representation R, the coefficients b1
and b2 in the β function are [1]

b1 =
1

3
(11CA − 4TfNf ) (7.1)

and [2, 22]

b2 =
1

3

[

34C2
A − 4(5CA + 3Cf )TfNf

]

. (7.2)

In the MS scheme [3]

b3 =
2857

54
C3

A ++TfNf

[

2C2
f − 205

9
CACf − 1415

27
C2

A

]

+ (TfNf )
2

[

44

9
Cf +

158

27
CA

]

. (7.3)

We have also used the four-loop coefficient, b4, calculated
in the MS scheme in [4], for our calculations. This coef-
ficient b4 is a cubic polynomial in Nf .

B. Coefficients for γm

We list here the cℓ for ℓ = 1, 2, 3:

c1 = 6Cf (7.4)

c2 = 2Cf

[3

2
Cf +

97

6
CA − 10

3
TfNf

]

. (7.5)

c3 = 2Cf

[

129

2
C2

f −
129

4
CfCA +

11413

108
C2

A +Cf (TfNf)
(

− 46+ 48ζ(3)
)

−CA(TfNf)
(556

27
+ 48ζ(3)

)

− 140

27
(TfNf)

2

]

,

(7.6)
where ζ(s) =

∑∞

n=1 n
−s is the Riemann zeta function, and ζ(3) = 1.2020569.... We have also used the four-loop

coefficient c4, calculated in the MS scheme in [7], for our calculations.

VIII. APPENDIX B

Here we give some illustrative explicit β4ℓ functions for
various values of Nc and Nf . The three-loop and four-

loop coefficients are calculated in theMS scheme. These
are written in the form

β4ℓ = −2b̄1α
2
[

1 +

4
∑

ℓ=2

( b̄ℓ

b̄1

)

αℓ−1
]

(8.1)

and are listed both analytically and numerically (to the
indicated floating-point accuracy).

Nc = 2, Nf = 8 : β4ℓ = −α
2

π

[

1− 5

2

(α

π

)

− 603

64

(α

π

)2

+
(−136859+ 198528ζ(3)

9216

)(α

π

)3
]

= −0.3183α2
(

1− 0.7958α− 0.9546α2 + 0.3562α3
)

(8.2)

Nc = 2, Nf = 9 : β4ℓ = −2α2

3π

[

1− 169

32

(α

π

)

− 154445

9216

(α

π

)2

+
(−22506041+ 50531904ζ(3)

1327104

)(α

π

)3
]
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= −0.2122α2
(

1− 1.6811α− 1.6980α2 + 0.9292α3
)

(8.3)

Nc = 3, Nf = 10 : β4ℓ = −13α2

6π

[

1− 37

26

(α

π

)

− 41351

3744

(α

π

)2

+
(−13418011+ 13331592ζ(3)

404352

)(α

π

)3
]

= −0.6897α2
(

1− 0.4530α− 1.1191α2 + 0.2080α3
)

(8.4)

Nc = 3, Nf = 12 : β4ℓ = −3α2

2π

[

1− 25

6

(α

π

)

− 6361

288

(α

π

)2

+
(−140881+ 219192ζ(3)

3456

)(α

π

)3
]

= −0.4775α2
(

1− 1.3263α− 2.2379α2 + 1.1441α3
)

. (8.5)

IX. APPENDIX C

Consider the polynomial of degree m in z, Pm(z) =
∑m

s=0 κsz
s. As discussed in Section II, information on

the nature of the roots of the equation Pm(z) = 0 is
given by the discriminant ∆m defined in Eq. (2.9). Since
∆m is a symmetric function of the roots (being propor-
tional to the square of the Vandermonde polynomial of
these roots), the theorem on symmetric functions [26] im-
plies that ∆m can be expressed as a polynomial in the
coefficients κs, s = 0, ...,m. We indicate this in the no-
tation ∆m = ∆m(κ0, ..., κm). The discriminant ∆m is
most conveniently calculated in terms of the Sylvester
matrix of P (z) and dP (z)/dz, equivalent to the resultant
matrix, denoted SP,P ′ , of dimension (2m−1)× (2m−1):

∆m = (−1)m(m−1)/2κ−1
m det(SP,P ′) . (9.1)

Since we will use ∆m for m = 2 and m = 3, we list the
explicit expressions here:

∆2(κ0, κ1, κ2) = κ21 − 4κ0κ2 . (9.2)

For m = 3,

SP3,P ′

3
=











κ3 κ2 κ1 κ0 0
0 κ3 κ2 κ1 κ0

3κ3 2κ2 κ1 0 0
0 3κ3 2κ2 κ1 0
0 0 3κ2 2κ2 κ1











(9.3)

so that

∆3(κ0, κ1, κ2, κ3) = (κ1κ2)
2 − 27(κ0κ3)

2 − 4(κ0κ
3
2 + κ3κ

3
1)

+ 18κ0κ1κ2κ3 . (9.4)
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TABLE I: Value of αm,nℓ at the n-loop level with n = 2, 3, 4
for an SU(Nc) gauge theory with Nf fermions in the fundamental
representation, with Nf ∈ I. As discussed in the text, αm,nℓ is the
value at which the n-loop β function takes on its minimum value in
the interval 0 ≤ α ≤ αIR,nℓ. Results are given for the illustrative
values Nc = 2, 3, 4. For comparison, we also list the IR zeros of β
calculated at n-loop level, αIR,nℓ, for n = 2, 3, 4, from Ref. [11].
For this and other tables, quantities evaluated at the n = 3 and
n = 4 loop level are calculated in the MS scheme.

Nc Nf αm,2ℓ αm,3ℓ αm,4ℓ αIR,2ℓ αIR,3ℓ αIR,4ℓ

2 7 1.89 0.735 0.823 2.83 1.05 1.21

2 8 0.838 0.476 0.515 1.26 0.688 0.760

2 9 0.397 0.286 0.300 0.595 0.418 0.444

2 10 0.154 0.133 0.135 0.231 0.196 0.200

3 10 1.47 0.534 0.563 2.21 0.764 0.815

3 11 0.823 0.402 0.429 1.23 0.579 0.626

3 12 0.503 0.300 0.320 0.754 0.435 0.470

3 13 0.312 0.217 0.228 0.468 0.317 0.337

3 14 0.185 0.146 0.151 0.278 0.215 0.224

3 15 0.0952 0.0834 0.0846 0.143 0.123 0.126

3 16 0.0277 0.0416 0.0267 0.0416 0.0397 0.0398

4 13 1.23 0.422 0.436 1.85 0.604 0.628

4 14 0.773 0.340 0.359 1.16 0.489 0.521

4 15 0.522 0.275 0.293 0.783 0.397 0.428

4 16 0.364 0.221 0.235 0.546 0.320 0.345

4 17 0.256 0.174 0.184 0.384 0.254 0.271

4 18 0.177 0.133 0.138 0.266 0.194 0.205

4 19 0.117 0.0954 0.0981 0.175 0.140 0.145

4 20 0.0697 0.0613 0.0621 0.105 0.0907 0.0924

4 21 0.0315 0.0472 0.0297 0.0472 0.044 0.0444
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TABLE II: Values of the discriminants ∆2(b̄1, b̄2, b̄3) and
∆3(b̄1, b̄2, b̄3, b̄4) (see Eqs. (2.9) and (2.10)) for the three-loop and
four-loop IR zero equations, with b̄3 and b̄4 calculated in the MS
scheme. Results are given for the illustrative values Nc = 2, 3, 4.
Notation ae-n means a× 10−n.

Nc Nf ∆2(b̄1, b̄2, b̄3) ∆3(b̄1, b̄2, b̄3, b̄4)

2 7 0.107 0.151e-2

2 8 0.113 0.399e-2

2 9 0.108 0.885e-2

2 10 0.0963 1.68e-2

3 10 0.557 0.0943

3 11 0.596 0.170

3 12 0.610 0.293

3 13 0.603 0.493

3 14 0.577 0.803

3 15 0.537 1.221

3 16 0.489 1.676

4 13 1.75 1.53

4 14 1.87 2.45

4 15 1.95 3.74

4 16 1.97 5.60

4 17 1.96 8.32

4 18 1.92 12.18

4 19 1.85 17.36

4 20 1.75 23.71

4 21 1.64 30.59
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TABLE III: Minimum value of the n-loop β function, βnℓ, denoted
(βnℓ)min, in the interval 0 ≤ α ≤ αIR,nℓ relevant for the UV to
IR evolution, calculated to n = 2, 3, 4 loop order for an SU(Nc)
theory with Nf fermions in the fundamental representation, with
Nf ∈ I. Values are given for Nc = 2, 3, 4. Notation ae-n means
a× 10−n.

Nc Nf (β2ℓ)min (β3ℓ)min (β4ℓ)min

2 7 −0.504 −0.998e-1 −0.117

2 8 −0.745e-1 −0.292e-1 −0.326e-1

2 9 −1.11e-2 −0.660e-2 −0.703e-2

2 10 −0.836e-3 −0.666e-3 −0.680e-3

3 10 −0.498 −0.863e-1 −0.934e-1

3 11 −1.32e-1 −0.394e-1 −0.432e-1

3 12 −0.4025e-1 −1.72e-2 −1.88e-2

3 13 −1.20e-2 −0.672e-2 −0.719e-2

3 14 −0.304e-2 −0.209e-2 −0.218e-2

3 15 −0.481e-3 −0.392e-3 −0.399e-3

3 16 −1.36e-5 −1.28e-5 −1.28e-5

4 13 −0.484 −0.752e-1 −0.790e-1

4 14 −0.169 −0.419e-1 −0.452e-1

4 15 −0.674e-1 −0.232e-1 −0.252e-1

4 16 −0.2815e-1 −1.24e-2 −1.35e-2

4 17 −1.16e-2 −0.6215e-2 −0.667e-2

4 18 −0.444e-2 −0.280e-2 −0.296e-2

4 19 −1.45e-3 −1.055e-3 −1.09e-3

4 20 −0.343e-3 −0.282e-3 −0.287e-3

4 21 −0.350e-4 −0.319e-4 −0.321e-4
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TABLE IV: Value of dβnℓ/dα at n = 2, 3, 4 loop order for an
SU(Nc) theory with Nf fermions in the fundamental representa-
tion, with Nf ∈ I, evaluated at the IR zero calculated to this order,
αIR,nℓ. We denote this here as β′

IR,nℓ
.

Nc Nf β′

IR,2ℓ β′

IR,3ℓ β′

IR,4ℓ

2 7 1.20 0.728 0.677

2 8 0.400 0.318 0.300

2 9 0.126 0.115 0.110

2 10 0.0245 0.0239 0.0235

3 10 1.52 0.872 0.853

3 11 0.720 0.517 0.498

3 12 0.360 0.2955 0.282

3 13 0.174 0.156 0.149

3 14 0.0737 0.0699 0.0678

3 15 0.0227 0.0223 0.0220

3 16 0.00221 0.00220 0.00220

4 13 1.77 0.965 0.955

4 14 0.984 0.655 0.639

4 15 0.581 0.440 0.424

4 16 0.348 0.288 0.276

4 17 0.204 0.180 0.1725

4 18 0.113 0.105 0.101

4 19 0.0558 0.0536 0.0522

4 20 0.0222 0.0218 0.0.215

4 21 0.00501 0.00499 0.00496


