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I. INTRODUCTION

Because of dimensional transmutation, the properties of SU(N) gauge theories are of

great interest. Once one mass scale is set, all other properties are determined, at least in

principle. For example, if the theory exhibits a deconfining phase transition at a temperature

Td, then the nature of the phase transition is completely fixed.

Understanding the deconfining phase transition requires numerical simulations on the

lattice. These have been carried out both for a small [1, 2] and a large [3] number of colors.

Using these results, a matrix model was developed to model deconfinement. These models

involve zero [4, 5], one [6], and two [7, 8] parameters. They are soluble analytically for two

and three colors, and numerically for four or more colors.

This matrix model is also soluble analytically in the limit of infinite N [9]. The phase

transition at infinite N is exceptional, and can be termed a Gross-Witten-Wadia transition

[10–12]. For the deconfining transition, such a transition was first seen to occur on a femto-

sphere [13–17]. For such a transition, at infinite N it exhibits aspects of both first and

second order phase transitions. It is of first order, in that the latent heat is nonzero and

proportional to ∼ N2; also, the Polyakov loop jumps from 0 to 1/2 at Td. On the other hand,

it is of second order in that several quantities, such as the specific heat, exhibit nontrivial

critical exponents. Such an unusual transition only occurs at infinite N , as at finite N the

transition is of first order.

Consider a phase transition which can be characterized by the change of a single field.

If the transition is of first order, then at the transition temperature there are two degen-

erate minima, with a nonzero barrier between them. The order-disorder interface tension

is nonzero, given by the probability to tunnel between the two minima. Conversely, if the

transition is of second order, at the transition temperature the two minima coincide. There

is no barrier to tunnel between the two minima, and the order-disorder interface tension

vanishes.

In a gauge theory asking about the potential is more subtle. In a matrix model of an

SU(N) gauge theory, the potential exists in N − 1 dimensions (the number of commuting

diagonal generators). A physical question is to ask how the interface tensions behave, es-

pecially at the phase transition. There are two such interface tensions. There is the usual

order-disorder interface tension, which exists only at Td. There are also order-order interface
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tensions [18–24] , which are directly related to the ’t Hooft loops for Z(N) charges [25, 26].

These exist for all T ≥ Td.

In this paper we consider the interface tensions in the matrix model near Td. We find

that in the matrix model, at infinite N both the order-order interface tension and the order-

disorder interface tensions vanish identically at the transition temperature, Td.

There is a simple heuristic explanation for our results. Consider the potential for the

simplest Polyakov loop, that in the fundamental representation, `1 = (1/N)tr L, where L

is the thermal Wilson line. Then the Gross-Witten-Wadia transition occurs because at

infinite N , the potential for `1 is completely flat between 0 and 1/2. That is, at Td there

are two distinct minima, as expected for a first order transition. Nevertheless, because the

potential is flat at N = ∞ between the two minima, there is no barrier to tunnel between

them, and so the interface tensions vanish. Such a flat potential was first found for the

Gross-Witten-Wadia transition on a femto-sphere [13–17].

As noted, in a gauge theory there are other degrees of freedom. For example, one can

consider higher powers of L, `j = (1/N) tr Lj, for j = 2 . . . N − 1. For the Gross-Witten-

Wadia transition, though, all `j vanish at Td when j ≥ 2, which allows us to consider the

potential as a function of a single variable, `1. This is true only at Td, and not for T 6= Td.

Indeed, while we estimate the behavior of the order-order interface tensions for T > Td, we

cannot solve the problem in full generality. This is because away from Td, all `j contribute,

and it is a much more difficult problem than at Td.

The order-disorder interface tension, αod, has been measured through numerical simula-

tions on the lattice at N = 3 by Beinlich, Karsch, and Peikert [27], and for N = 3, 4, and 6

by Lucini, Teper, and Wenger [3, 28]. These results were used to extrapolate to infinite N ,

giving

αod

N2T 3
d

= 0.0138(3)− 0.104(3)

N2
. (1)

We find it striking that the coefficient of the leading term, ∼ N2, is an order of magnitude

smaller than that of the term at next to leading order.

In the matrix model the coefficient ∼ N2 vanishes identically, and the true behavior is

only ∼ N . This is because in the matrix model, the height of the barrier between the two

distinct minima is small, ∼ 1/N . Thus perhaps the small value of the order-order interface

tension found on the lattice is because the coefficient ∼ N2 vanishes. We discuss this further
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in Sec. (IV) and in the Conclusions, Sec. (V).

II. REVIEW OF LARGE N THERMODYNAMICS

We are interested in the thermodynamics of pure SU(N) gauge theory for temperatures

a few times that for the deconfining phase transition at Td. The order parameter of the

thermodynamics is taken to be the Wilson line:

L(~x) = P exp

(
ig

∫ β

0

A0(~x, τ)dτ

)
. (2)

By a gauge transformation, we can diagonalize the field A0 as

Aij0 =
2πT

g
qi δ

ij, (3)

where i, j = 1 · · ·N and the eigenvalues qi are subject to the SU(N) constraint
∑N

i qi = 0.

In our model qi are the fundamental variables to characterize the transition. We assume

that after integrating out the other components of gluon field Ai, that we obtain an effective

potential for qi [4–9].

Ṽeff (q) = −d1(T )Ṽ1(q) + d2(T )Ṽ2(q), (4)

Ṽn(q) =
N∑

i,j=1

|qi − qj|n (1− |qi − qj|)n . (5)

The potential includes both perturbative (proportional to T 4)and non-perturbative (propor-

tional to T 2T 2
d ) contributions. The temperature dependent functions d1 and d2 are given

by

d1(T ) =
2π

15
c1 T

2 T 2
d , d2(T ) =

2π

3

(
T 4 − c2T

2T 2
d

)
. (6)

At tree level, the kinetic term is

K̃(q) =
1

2
trF 2

µν =

(
2πT

g

)2 N∑
i=1

(∇qi)2 . (7)

In a mean-field approximation, the kinetic term does not contribution for a spatially homo-

geneous states, and so it can be ignored for thermodynamic quantities. The kinetic term

does enter in computation of interface tension in the following sections.
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In the infinite N limit we introduce a continuous variable x = i/N . Labeling the eigen-

value qi → q(x), we introduce the eigenvalue density

ρ(q) = lim
N→∞

1

N

N∑
i

δ (q − qi) =

∫ 1

0

dx δ (q − q(x)) =
dx

dq
. (8)

At finite N there are two identities,

N∑
i

1 = N,

N∑
i

qi = 0 (9)

which become ∫
dq ρ(q) = 1,

∫
dq ρ(q) q = 0 , (10)

at infinite N . The potential is proportional to N2,

Ṽn(q) = N2 Vn(q) = N2

∫
dx dy |q(x)− q(y)|n (1− |q(x)− q(y)|)n

= N2

∫
dq dq′ ρ(q) ρ(q′) |q − q′|n (1− |q − q′|)n . (11)

The minimum of Eq. (4) was found in Ref. [9]. The solution is

ρ(q) = 1 + b cos dq, −q0 < q < q0, (12a)

d =

√
12d2

d1

. (12b)

cot(dq0) =
d

3

(
1

2
− q0

)
− 1

d (1/2− q0)
, (12c)

b2 =
d4

9

(
1

2
− q0

)4

+
d2

3

(
1

2
− q0

)2

+ 1. (12d)

For this solution, the eigenvalues span the region between −q0 and +q0. Both q0 and b

are implicitly functions of temperature, determined through the above equations from the

dependence of the parameter d as a function of temperature, Eqs. (6) and (12b).

Above the transition temperature, q0 < 1/2, and the eigenvalues do not span the full

range in q. The density is discontinuous at the end points: ρ(±q0) 6= 0, but ρ(q) = 0 when

|q| > q0. Also, d > 2π for T > Td.

At the transition temperature, the eigenvalue density is continuous for all values of q in

the range between −1/2 to +1/2, and vanishes at the endpoint, ρ(±1/2) = 0. Also, d = 2π.
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Below the transition temperature, the theory is in confined phase, with a uniform distri-

bution of eigenvalues over the unit circle, with q0 = 1
2

and b = 0. This is the usual confined

phase expected in matrix models.

For the potential in Eq. (4) and the eigenvalue distribution of Eq. (12a), at Td, q0 = 1
2
,

and the potential is independent of b. Changing b from 0 to 1 interpolates between the

confined and deconfined phases, but does not change the potential. Hence b is a zero mode

of the potential corresponding to changing the overall shape of the distribution. This will

play an important role in the construction of the interface. For short we call the change of

shape related to the parameter b as the “b-mode”.

It is also worth emphasizing that in the derivation of Ref. [9], we have assumed that the

eigenvalue density is symmetric in q. We can obtain different distributions by applying an

arbitrary ZN transform to a given solution. A ZN transform of charge k, k = 1 . . . (N − 1),

is given by

q1, q2, · · · qN → q1 +
k

N
, · · · qN−k +

k

N
, qN−k+1 +

k −N
N

, · · · qN +
k −N
N

. (13)

Assuming q1 ≤ q2 ≤ · · · ≤ qN and |qi − qj| < 1, we can relabel the eigenvalues such that

they are in an increasing order:

q1, q2, · · · qN → qN−k+1 +
k −N
N

, · · · qN +
k −N
N

, q1 +
k

N
, · · · qN−k +

k

N
. (14)

In the infinite N limit, the ZN transform takes the following form. Define the inverse

function of x(q) =
∫ q
−q0 dq

′ρ(q′) as Q(x),

q = Q(x)→ q =

 Q(x+ 1−∆)− 1 + ∆ , 0 < x < ∆ ,

Q(x−∆) + ∆ , ∆ < x < 1 .
(15)

Since the potential is invariant under ZN transformations, a smooth change in ∆ is another

zero mode of the potential, which we call the “shift mode”. This is also relevant for the

construction of the interface.

We stress that both the b and shift modes are zero modes only at infinite N . The former

is because of the flatness of the potential. The latter is because the ZN symmetry becomes

a continuous symmetry of U(1) at infinite N . We comment on what happens at finite N

later.
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III. INTERFACE TENSION

An interface is a topological object interpolating between two vacua of the theory. Sup-

pose the two vacua are separated in the z direction and extended in the transverse plane.

The effective action has an area law when the transverse size Ltr is large: Seff = αβLtr. The

proportionality constant defines the interface tension. Up to cubic order in the perturbative

expansion, the order-order interface tension exhibits Casimir scaling [20, 21]

α ∝ k(N − k). (16)

An important question to address is whether the order-order interface tension satisfies

Casimir scaling in the matrix model.

An interface tension necessarily involves a spatial gradient along the z direction. Conse-

quently, the kinetic term must be included. Since the potential is simple when written in

terms of the eigenvalue density ρ(q), it is useful to write the kinetic term in terms of the

same variable as well. Assuming that there is a spatial gradient only along the z direction,

K̃(q) = N2 K(q) = N2 (2πT )2

g2N

∫
dz dx

(
∂q(x, z)

∂z

)2

, (17)

where the partial derivative is taken at fixed x. Notice that in this expression and henceforth,

that z is a spatial coordinate, while x labels the eigenvalue.

We start with the eigenvalue density ρ(q, z) = ∂x(q, z)/∂q, and assume that the range of

the eigenvalue distribution does not change over the interface,

x(q, z) =

∫ q

−q0
dq′ρ(q′, z) , (18)

modulo a Z(N) transform. Using the chain rule, we have

∂q(x, z)

∂z
= − ∂q(x, z)

∂x

∂x(q, z)

∂z
= − 1

ρ(q, z)

∂

∂z

∫ q

dq′ρ(q′, z) . (19)

The kinetic term becomes

K(q) =
(2πT )2

g2N

∫
dz dq

1

ρ(q, z)

(
∂

∂z

∫ q

dq′ρ(q′, z)

)2

. (20)

This form was derived previously by Polchinski [29].
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A. Interface tension at Td

We begin with the interface tension at the transition temperature. At Td there are both

order-order and order-disorder interfaces. Due to the complicated form of the kinetic energy

in Eq. (20), an explicit analytic solution for the interface appears difficult. However, the

presence of the zero modes allows us to show that both interface tensions vanish. It is

straightforward to construct an order-order interface using the shift mode:

q =

 Q(x+ 1−∆f(z))− 1 + ∆f(z) , 0 < x < ∆f(z);

Q(x−∆f(z)) + ∆f(z) , ∆f(z) < x < 1 ,
(21)

with f(−L) = 0 and f(L) = 1 at the two boundaries of the interface. A k-wall interpolating

two vacua related by a Z(N) transformation of charge k corresponds to ∆ = k/N .

The idea is to take f(z) = z/(2L)+1/2 such that ∂q/∂z ∼ 1/L. As f is a zero mode, this

not change the potential energy. There is a contribution from the kinetic energy, but at each

point in the z direction, this is ∼ (1/L)2, and so integrating over z, it is ∼ L(1/L)2 ∼ 1/L,

and so negligible as L→∞. Thus the interface tension vanishes at Td at infinite L.

Actually this construction using the shift mode does not work. To see that, we need to

take a closer look at the kinetic term. On the interface, the density of eigenvalues is given

by

ρ =

 1 + cos 2π(q + 1−∆f(z)) , Q(1−∆f(z))− 1 + ∆f < q < −1/2 + ∆f(z) ,

1 + cos 2π(q −∆f(z)) , −1/2 + ∆f(z) < q < Q(1−∆f(z)) + ∆f(z) .
(22)

Integrating with respect to q, we obtain

x = q +
1

2
+

1

2π
sin[2π(q −∆f)] , Q(1−∆f)− 1 + ∆f < q < Q(1−∆f) + ∆f, (23)

from which it follows

∂q

∂z
= −cos[2π(q −∆f)]∆f ′

1 + cos[2π(q −∆f)]
. (24)

Plugging Eq. (24) into Eq. (20), we identify a non-integrable singularity at q = 1/2 + ∆f .

Therefore, we conclude that the interface built by the shift mode is ruled out by a divergence

in the kinetic energy.

A second possibility is to build an interface with the b-mode. In this case, we build an

order-order interface by joining two order-disorder interfaces, so the two vacua at the ends
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of the interface are joined through a confining phase in the middle. Define Qb(x) as the

inverse function of

x = q +
1

2
+

b

2π
sin(2πq). (25)

At T = Td, Q1(x) reduces to the distribution for the deconfined phase, and Q0(x) for the

confined phase. The interface is constructed as

part I : q = Qb(z)(x) , −L < z < 0 ↔

part II : q =

 Qb(z)(x+ 1−∆)− 1 + ∆, 0 < x < ∆ ;

Qb(z)(x−∆) + ∆, ∆ < x < 1 .
0 < z < L , (26)

with the boundary conditions b(±L) = 1 and b(0) = 0. The distributions from part I and

part II join at z = 0, and given explicitly by q = x − 1/2. We note that part II is a Z(N)

transform of part I, flipped in z.

We show below that the kinetic energy for this configuration does not diverge, and that

its kinetic energy is as before, ∼ 1/L after integrating over L. Since the path given by the

first and second lines of Eq. (26) are related by ZN transformations, they necessarily have

the same kinetic and potential energies. It is sufficient to restrict ourselves to the first line.

The gradient is

∂q

∂z
= − b′

2π

sin 2πq

1 + b cos 2πq
, (27)

where here and in the following primes denote the derivatives with respect to the argument.

We see possible singularities at q = ±1/2 from the denominator are cancelled by the nu-

merator, giving rise to a finite result for the kinetic energy. For a given b, it is not difficult

to compute the integral in q by contour integration,∫ 1/2

−1/2

dq ρ(q)

(
∂q

∂z

)2

=

(
b′

2π

)2
(
−b4 + b2

(
5− 3

√
1− b2

)
+ 4

(
−1 +

√
1− b2

)
b2
√

1− b2
(
−1 +

√
1− b2

)2

)
. (28)

We checked that the kinetic term is finite in the limit b → 1. Consequently both the

order-order and the order-disorder interface tensions vanish identically at the transition

temperature.

B. Order-order interface tension above Td

The order-disorder interface tension is only defined at the transition temperature. Above

Td, the order-order interface tension, which is equivalent to the ’t Hooft loop, is nonzero.
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Because of the complexity of the kinetic term, we are not able to compute the order-order

interface tension in full generality. We can compute in two limiting cases, which we consider

in turn.

1. Small Z(N) rotations

A Z(N) rotation has charge k, where the parameter ∆ = k/N . In this subsection we

consider the case of a small Z(N) rotation, where ∆ � 1. At infinite N we consider an

infintesimal rotation, ∆→ 0.

In the case ∆→ 0, the end points of the interface are given by

q = Q(x), q =

 Q(x+ 1−∆)− 1 + ∆ , 0 < x < ∆ ;

Q(x−∆) + ∆ , ∆ < x < 1 .
(29)

The eigenvalues for x : ∆ → 1 shift infinitesimally, while those between x : 0 → ∆ have a

finite jump. The latter is suppressed when ∆ is small, though. We then take the following

path:

q = (Q(x+ 1−∆)− 1 + ∆−Q(x)) g(z) +Q(x) , 0 < x < ∆ ; (30)

q = (Q(x−∆) + ∆−Q(x)) f(z) +Q(x) , ∆ < x < 1 . (31)

The unknown functions g(z) and f(z) interpolate between 0 and 1. They could in principle

depend on x, which characterizes the change of shape of the eigenvalue density. To leading

order in ∆ we can ignore this dependence. The potential energy along this path is

V =

∫ ∆

0

dx

∫ ∆

0

dy V (q(x)− q(y)) +

∫ 1

∆

dx

∫ 1

∆

dy V (q(x)− q(y))

+ 2

∫ ∆

0

dx

∫ 1

∆

dy V (q(y)− q(x)). (32)

The first term is of order O(∆3) and may be ignored. The second term starts with the

vacuum potential energy at leading order. The third term is of order O(∆). We need to

know the O(∆) correction to the potential:

δV =

∫ 1

0

dx

∫ 1

0

dy
∂V

∂|q(x)− q(y)|
∆|Q′(x)−Q′(y)| f

+2

∫ ∆

0

dx

∫ 1

0

dy [V (q(y) + q0)− V (q(y) + q0 + (1− 2q0)g)] . (33)
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Evaluating Eq. (33) for the vacuum solution Eq. (12a), we find the first term vanishes

identically, while the second term gives

δV = d2(1− 2q0)4g2(1− g)2. (34)

The kinetic energy reads

(2πT )2

g2N

∫
dz dx

(
∂q

∂z

)2

(35)

with
∂q

∂z
=

 (2q0 − 1)g′ , 0 < x < ∆;

∆ (1−Q′(x)) f ′ , ∆ < x < 1.
(36)

We ignore the contribution from ∆ < x < 1 because it is of order O(∆2). Combining the

kinetic and potential terms, we have∫
dz(K + δV ) =

∫
dz

(
(2πT )2

g2N
∆ (1− 2q0)2 g′2 + ∆ d2 (1− 2q0)4 g2 (1− g)2

)
. (37)

We need to minimize the above action with the boundary condition g(−∞) = 0 and g(∞) =

1. Using the identity x2 + y2 ≥ 2xy, we can obtain the minimum without solving for g:∫
dz (K + δV ) ≥ ∆

2πT
√
d2√

g2N

∫
dz 2

√
(1− 2q0)2g′2(1− 2q0)4g2(1− g)2

= ∆
4πT
√
d2√

g2N

∫
dg g(1− g)

d(1− 2q0)3

√
3

= ∆
2πT
√
d2

3
√
g2N

(1− 2q0)3 . (38)

After rescaling the overall factor of N2,

α = ∆
2πT
√
d2

3
√
g2N

N2 (1− 2q0)3 . (39)

2. Near the deconfining transition

Now we consider temperatures close to the deconfining transition temperature, T → Td.

We expect the interface to mimic the T = Td case, given by two vacua joined through a

confined distribution. This suggests an interface composed of three parts. In the spatial

direction z, the three parts extend over

I : −L < z < −L
2

; II : −L
2
< z <

L

2
; III :

L

2
< z < L . (40)

In the first part of the interface, I, we use of the b-mode to deform the eigenvalue distribution.

For temperatures near Td, the b mode is nearly a zero mode, and so this should increase the
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potential energy by a small amount. The contribution from the second part, II, is suppressed

by (1− 2q0) because the eigenvalues do not move by a large amount. The third part, III is

just a ZN transform of part I, flipped in z. Explicitly,

I : ρ = a(z) + b(z) b0 cos d q , −q0 < q < q0 ,

II : ρ =

 1
2q0
, −q0 − (1−∆)(1− 2q0)f(z) < q < −(1− 2∆)q0 − (1−∆)(1− 2q0)f(z) ;

1
2q0
, −(1− 2∆)q0 + ∆(1− 2q0)g(z) < q < q0 + ∆(1− 2q0)g(z) ,

III : ρ =

 a(z) + b(z) cos d(q + 1−∆), Qb(1−∆)− 1 + ∆ < q < q0 − 1 + ∆ ;

a(z) + b(z) cos d(q + 1−∆), −q0 + ∆ < q < Qb(1−∆) + ∆ .
(41)

The boundary conditions are

b(±L) = 1 , b(±L/2) = 0 , f(−L/2) = 0 , f(L/2) = 1 . (42)

In Eq. (41) q0 and b0 are determined by Eqs. (12c) and Eq. (12d), respectively. The normal-

ization condition
∫
dq ρ(q) = 1 forces a(z)q0 + (b(z)/d) sin dq0 = 1/2, while the tracelessness

condition
∫
dq ρ(q) q = 0 sets f(z) = g(z).

We start with part I. We can expand in 1/2− q0, which is small when T ∼ Td:

δV = d1
60− d2

90
(1− b)2

(
1

2
− q0

)2

+O

(
1

2
− q0

)3

. (43)

The kinetic energy can be taken as at T = Td, ignoring higher order corrections Eq. (28).

With these ingredients, we can already work out the contribution to the interface tension

from part I. It is worth noting prior doing any computations that δV ∼
(

1
2
− q0

)2
, K ∼ O(1).

Next we consider part II. This case is particular easy because of the constant eigenvalue

density in this part. To leading order, the potential energy and kinetic energy are

δV =
d1

90

[
60− d2 − 60f(1− f)∆(1−∆)

(
12− d2∆(1−∆)

) ](1

2
− q0

)2

,

T =
(2πT )2

g2N
f ′2∆(1−∆)

(
1

2
− q0

)2

. (44)

We note in part II both potential and kinetic terms are suppressed by
(

1
2
− q0

)2
, leading

only to contributions of higher order in (T − Td) for the interface tension.

Adding up contributions from all three parts, we obtain a contribution to leading order

which is twice that of part I. It is not difficult to convince ourselves that α ∼
(

1
2
− q0

)
and

it is independent of ∆.
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We will improve the result by considering a more sophisticated ansatz. Note that in Eq.

(41), we have chosen to turn on the b-mode and f -modes separately. Here we consider more

general ansatz by turning them on simultaneously. Furthermore, we neglect contributions

from part II as subleading, and only modify part I, taking the ansatz

ρ = a(z) + b(z) cos d(q + (1−∆)fL(z)) , −q0 − (1−∆)fL < q < Qb(∆)− (1−∆)fL ,

ρ = a(z) + b(z) cos d(q −∆fR(z)) , Qb(∆) + ∆fR < q < q0 + ∆fR . (45)

The tracelessness condition forces fL = fR ≡ f . It is also natural to require f ∼ 1 − 2q0

such that the eigenvalues remain close together. The introduction of the f -mode induces

corrections to the potential in Eq. (44). Defining f = f̄
(

1
2
− q0

)
+O(1

2
−q0)2, we can expand

the potential as

δV = d1

(
R(∆, b) + P (∆, b)f̄ +Q(∆, b)f̄ 2

)(1

2
− q0

)2

, (46)

where

R =
1

90

[
60− d2 − 60f(1− f)∆(1−∆)

(
12− d2∆(1−∆)

) ]
, (47)

P = − 1

48
(b− 1)

(
32b+ (1− 4Qb(∆)2)(−48 + d2(1 + 8Qb(∆) + 12Qb(∆)2 − 16∆Qb(∆)))

)
− 16b(−1 + 12Qb(∆)2) cos dQb(∆), (48)

Q = 384b2 − 48bd2
(
1 + 4Qb(∆)2 −Qb(∆)(4− 8∆)

)
+ d2

[
48− 192Qb(∆)2

+ d2
(
−5− 24Qb(∆)2 + 48Qb(∆)4 +Qb(∆)3(32− 64∆) + 16∆(1−∆) + 24Qb(∆)(−1 + 2∆)

) ]
+ 48b

(
8b+ d2(1− 4Qb(∆)2)

)
cos dQb(∆). (49)

We have also factored out the overall
(

1
2
− q0

)2
dependence. One important property we

confirmed numerically is that Q > 0. To lower the potential energy, we choose f̄ = P
2Q

. As

a result,

δV =

(
R− P 2

4Q

)(
1

2
− q0

)2

. (50)

At the same time, the correction also makes the interface tension ∆ dependent. With the

same kinetic energy as at leading order, we obtain the interface tension

α = 2

∫
dz
√
δV K ∼ 1

2
− q0 . (51)
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3. Summary

The final result is obtained numerically and shown in Fig. (1). Both scenarios are

included. Comparing the dependece on (1 − 2q) in Eq. (39) and Eq. (51) we conclude

that the two scenarios do not have a common region of validity: with can either take an

infinitesimal Z(N) rotation, ∆� 1, or work close to Td.

We also note that despite the limited coverage in ∆, that the temperature dependence

is nontrivial. This is in contrast to the T 3 dependence in the perturbative regime [18, 23]

and T 4/MKK from holographic models [24]. Of course this nontrivial dependence upon

temperature arises because we are close to the transition temperature.

One explanation for the differences in the two limits of ∆ → 0 and T → Td is that at

infinite N , they do not commute. Given the unusual nature of the Gross-Witten-Wadia

transition, this would not be that remarkable. Thus it is important to evaluate corrections

at finite N near Td, where both results should match smoothly onto one another.

Δ≪1
1-2q0≪1

α

0

0.01

0.02

Δ
0 0.1 0.2 0.3 0.4 0.5

FIG. 1. Interface tension, in units of 2πT
√
d1N

2/(
√
g2N) at q0 = 0.3. Due to the symmetry

∆ ↔ 1 −∆, we have only shown half the range in ∆. The red linear line is for ∆ � 1, while the

black dashed line is obtained assuming T → Td, or 1/2− q0 � 1.
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IV. FINITE N CORRECTION NEAR Td

At finite N , corrections arise when the continuous integrals of infinite N are replaced by

discrete sums. This can be evaluated with Euler-MacLaurin formula [30]

N∑
i=1

F (i) = N

∫ 1

1
N

dxf(x) +
f(1) + f( 1

N
)

2
+
∞∑
k=1

B2k

(2k)!N2k−1

(
f (2k−1)′(1)− f (2k−1)′

(
1

N

))
,

(52)

where f(i/N) = F (i) and B2k are Bernoulli numbers. In the integral on the right hand side,

we wish to shift the lower bound of integration from 1/N to 0. By Taylor expansion, we

find

N∑
i=1

F (i) = N

∫ 1

0

dxf(x) +
f(1)− f(0)

2
+ . . . (53)

Applying Eq. (53) to the sums, we have

N =
N∑
i

1 = N

∫ 1

0

dx (54)

0 =
N∑
i

q = N

∫ 1

0

dx q +
q(1)− q(0)

2
+ · · ·

V =
N∑

i,j=1

V (qi, qj) = N2

∫ 1

0

dx

∫ 1

0

dy V (q(x)− q(y))

+ 2N

∫ 1

0

dx
V (q(x)− q(1))− V (q(x)− q(0))

2
+ . . .

where · · · denote terms of higher order in the 1/N expansion. As before, we define the

eigenvalue density ρ(q) = dx/dq, so that Eq. (54) becomes

1 =

∫ q+

q−

dq ρ(q) (55)

0 =

∫ q+

q−

dq ρ(q) q +
q+ − q−

2N
+ · · ·

V = N2

∫ q+

q−

dq

∫ q+

q−

dq′ ρ(q) ρ(q′) V (q − q′) +N

∫ q+

q−

dq ρ(q) (V (q+ − q)− V (q − q−)) + · · · ,

with q− = q(0) and q+ = q(1). For the infinite N eigenvalue distribution, ρ(q) = ρ(−q) and

q(0) + q(1) = 0. The correction of ∼ N , evaluated using the solution at infinite N , vanishes.
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However, the eigenvalue distribution at finite N changes from that at infinite N . To deter-

mine this, we vary V with respect to ρ, subject to the usual normalization and tracelessness

constraints in Eq. (55). This gives

2

∫ q+

q−

dq′ ρ(q′) V (q − q′) +
1

N
(V (q+ − q)− V (q − q−)) + λ1 + λ2 q = 0 , (56a)∫ q+

q−

dq ρ(q) = 1 , (56b)∫ q+

q−

dq ρ(q) q +
q+ − q−

2N
= 0 , (56c)

where λ1 and λ2 are Lagrange multipliers. We follow the method of [9] in solving for ρ.

Taking the derivative with respect to the equation of motion, q, four times, we arrive at

ρ′′(q) + d2(ρ(q)− 1) = 0. (57)

The general solution is given by

ρ(q) = 1 + b cos(d q) + c sin(d q) . (58)

Plugging this into Eq. (56a), we find the result is organized as a fourth order polynomial in

q. The coefficients of q and the constant term can always be set to zero by choosing λ1 and

λ2 properly. The remaining coefficients of q4, q3 and q2 give three independent equations.

Together with Eq. (56b) and Eq. (56c), we have in total five equations, to be satisfied

by four constants b, c and q±. It turns out if four of the equations are satisfied, then the

fifth automatically holds. In practice, we solve for cos(d q±) and sin(d q±) in terms of the

constants b, c and q±. Defining qs = q− + q+ and qd = q+ − q−, we first find an equation for

qd,

cot

(
dqd
2

)
= − 12− d2(1− qd)2

6d(1− qd)
. (59)

It is easy to see qd = 2q0 as defined in Eq. (12c) is free of corrections in 1/N , and that

qs =
1

N

−12− 2d2q0(1− 2q0)2

d2(1− 2q0)2
, (60)

(144 + 12d2(1− 2q0)2 + d4(1− 2q0)4) (36 + d2N2(1− 2q0)4)

d2(1− 2q0)4
= 144(b2 + c2)N2 (61)

The first shows that qs is suppressed in 1/N . The second combined with

tan

(
dqs
2

)
=

1− cos(d qs)

sin(d qs)
, (62)
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can be used to determine b and c. To have a consistent expansion in 1/N , we need to have

b = b0 +
b2

N2
+ · · · , c =

c1

N
+ · · · . (63)

At leading order b0 agrees with Eq. (12d). c1 is

c1 = −b0 d q0. (64)

We have obtained Eqs. (58), (59), (60), (63) and (64) as the new eigenvalue distribution,

valid up to corrections ∼ 1/N .

The appearance of sin(d q) in Eq. (58) is, at first sight, worrisome. It appears to imply

that the Polyakov loop has a nonvanishing imaginary part, which would violate charge

conjugation symmetry. This does not occur, as one has to expand consistently, taking all

factors of 1/N into account.

Using our experience from before, we expect that to order 1/N , the constants have the

following form:

b = b0, c =
c1

N
, qd = 2q0, qs =

qs1
N
. (65)

Plugging Eq. (65) into Eqs. (56a), (56b), (56c) and keeping terms up to order 1/N , we find

c1 = 0, qs1 = − 12

d2(1− 2q0)2
. (66)

The term sin(d q) naturally drops out, and we find explicitly that the imaginary part of all

Polyakov loops vanish to order 1/N .

To ∼ 1/N , the eigenvalue distribution is then

ρ = 1 + b cos(d q) , q− < q < q+ ; (67)

q− + q+ = − 12

d2N(1− 2q0)2
, q+ − q− = 2q0.

Thus we have

(q0 − q+)
d2N(1− 2q0)2

6
= 1 . (68)

In Fig. (2) we compare this combination with the numerical results for the maximal eigen-

value, qmax, which at high N is approximated by q+, for different number of colors and

different d, that is temperature. There is good agreement between the analytic expression
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N=3
N=5
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0)
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1-
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d/(2π)
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FIG. 2. The maximal eigenvalue, qmax, as a function of d for different number of colors, N .

in Eq. (68) and the numerical results. From Eq. (67) and our numerical simulations we also

see that when N(1− 2q0)2 ∼ 1, that the large N expansion breaks down. We also find that

in contrast to the behavior of the maximal eigenvalue in the confined and the deconfined

phase, qmax − q0 ∼ 1/N , that at the critical temperature, qmax − q0 ∼ 1/
√
N .

With the correct eigenvalue distribution, we can proceed to evaluate the correction to

the potential. We find the correction vanishes to order 1/N . To obtain the correction to the

next order, we need to find ρ at the corresponding order. This is a lengthy exercise, which

we defer for now. We can estimate this size of the correction by using Eq. (67). We use

V =

∫ q+

q−

dq

∫ q+

q−

dq′ ρ(q) ρ(q′)V (q − q′) +
1

N

∫ q+

q−

dq ρ(q) (V (q+ − q)− V (q − q−))

− V (q+ − q−)

2N2
+
B2

N2

∫ q+

q−

dq ρ(q)

(
V ′(q+ − q)
ρ(q+)

+
V ′(q − q−)

ρ(q−)

)
+ · · · . (69)

Taking into account the correction ∼ 1/N to qs, we have contributions ∼ 1/N2. After some
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FIG. 3. The non-equilibrium potential U(`) = Ṽ (`)− Ṽ (` = 0) at the transition temperature.

computation, we find

V1 = d1
180− 5 d4 q2

0(1− 2q0)5 + 24d2 q2
0(−5 + 20 q0 − 30 q2

0 + 16 q3
0)

30 d2N2(1− 2q0)3
(70)

V2 = −d1
q0(1− 2 q0)(6− d2 q0(1− 2 q0))

3N2
(71)

V3 = d1
q0(1− 2 q0)(6− d2 q0(1− 2 q0))

6N2
, (72)

where V1, V2 and V3 denote contributions from the orders ∼ 1, ∼ 1/N and ∼ 1/N2 in

Eq. (69), respectively. We note the large N expansion breaks down when N2(1− 2q0)3 ∼ 1.

In this, bulk thermodynamic quantities have a less stringent criterion for the convergence of

the 1/N expansion than the eigenvalue distribution.

We were able to analytically estimate corrections to the full potential only at the mini-
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FIG. 4. The maximum of the potential Umax for different N at T = Td.

mum. Numerically it is possible to go beyond this and compute the potential as a function

of the Polyakov loop ` = 1/N tr L at the transition temperature. In Fig. (3), we show

the potential, divided by N2 − 1, as a function of the Polyakov loop for different N . This

figure shows a surprising feature. The confining phase is ` = 0, and the deconfined phase,

` ≈ 1/2. For three colors, the potential looks like a standard potential for a transition of first

order, with significant curvature about each minimum. As N increases, though, the curva-

ture in the deconfined phase remains significant, while that in the confined phase decreases

significantly.

This suggests that in order to look for evidence of the Gross-Witten-Wadia transition,

that it is better looking at the decrease of the mass in the confined phase, and not that in

the deconfined phase. That is, to look for the decrease in the string tension below Td, and

not that of the Debye mass, above Td.

In Fig. (4) we concentrate on one particular feature of the potential, its maximum.

This shows that while the height of the potential increases from N = 3 to N = 5, it then

decreases as N increases further. For the sake of argument, let us assume that the interface

tensions at Td can be characterized entirely by the potential in `. At Td, the order-disorder

interface tension is given by the integral of the potential. The width is very nearly constant,

from 0 to ≈ 1/2 for all N ≥ 3. Consequently, the area under the barrier is approximately

proportional to its height. This suggests that the order-disorder interface tension, scaled by
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N2 − 1, increases from N = 3 to N = 5, and then decreases. We stress that this argument

is only qualitative: the order-disorder interface tension is a tunneling problem not in one

dimension, but in N − 1 dimensions. Even numerically, though, determining the path for

tunneling in such a high dimensional space is rather nontrivial.

V. CONCLUSIONS

The matrix model studied here is clearly only one of many possible matrix models. Its

advantage is that it can be solved analytically at infinite N , and numerically at finite N .

In this model all interface tensions vanish at the deconfining phase transition. Since the

transition is of first order, this would be striking evidence that it is an unusual transition,

perhaps of the Gross-Witten-Wadia type.

Presently, numerical simulations of SU(N) gauge theories can only be carried out at

relatively small N , N < 10. For two colors the order-disorder interface tension vanishes,

as the transition is of second order. For three colors the order-disorder interface tension is

relatively small [27]. This presumably reflects that the transition for three colors is weakly

first order, because of its proximity to the second order transition for two colors. This

leads one to expect that as N increases, that the order-disorder interface tension, divided

by N2 − 1, increases monotonically from N = 3, and becomes constant at infinite N .

As discussed at the end of the last section, the numerical solution of the matrix model

indicates the contrary: that the order-disorder interface tension, divided by N2−1, behaves

non-monotically with N . Fig. (4) suggests this quantity increases from N = 3 to N = 5,

and then decreases, slowly, as N increases further.

Such non-monotonic behavior in N is unexpected, and could well just be an artifact of

the model. This could be settled by numerical studies on the lattice of the order-disorder

interface tension for moderate values of N ∼ 5. It might even provide hints of a Gross-

Witten-Wadia transition at infinite N .
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