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In the near future, gravitational wave detection is set to become an important observational tool
for astrophysics. It will provide us with an excellent means to distinguish different gravitational
theories. In effective form, many gravitational theories can be cast into an f(R) theory. In this
article, we study the dynamics and gravitational waveform of an equal-mass binary black hole system
in f(R) theory. We reduce the equations of motion in f(R) theory to the Einstein-Klein-Gordon
coupled equations. In this form, it is straightforward to modify our existing numerical relativistic
codes to simulate binary black hole mergers in f(R) theory. We considered binary black holes
surrounded by a shell of scalar field. We solve the initial data numerically using the Olliptic code.
The evolution part is calculated using the extended AMSS-NCKU code. Both codes were updated
and tested to solve the problem of binary black holes in f(R) theory. Our results show that the
binary black hole dynamics in f(R) theory is more complex than in general relativity. In particular,
the trajectory and merger time are strongly affected. Via the gravitational wave, it is possible to
constrain the quadratic part parameter of f(R) theory in the range |a2| < 1011m2. In principle, a
gravitational wave detector can distinguish between a merger of binary black hole in f(R) theory
and the respective merger in general relativity. Moreover, it is possible to use gravitational wave
detection to distinguish between f(R) theory and a non self-interacting scalar field model in general
relativity.

PACS numbers: 04.70.Bw, 05.45.Jn

I. INTRODUCTION

Einstein’s general relativity (GR) is currently the most
successful gravitational theory. It has excellent agree-
ment with many experiments (see e.g. [1–3]). However,
most of the tests involve weak gravitational fields. On
the other hand, recent cosmological observations require
ad-hoc explanations to fit in the framework of GR theory,
for example the dark energy and dark matter problems
[4–6]. In order to solve these difficulties, some alternative
gravitational theories have been proposed [7, 8].

In effective form, many gravitational theories can be
casted into an f(R) theory [9–13]. Additionally, f(R)
theory has a relatively simple form. Therefore, it is a
good alternative gravitational model. In this work, we
characterize the gravitational waveform of binary black
hole mergers in f(R) theory.

In the near future, gravitational wave detection will
become an observational method for astrophysics [14–
17]. The gravitational wave experiments can be excellent
tools for testing GR in strong field regime. Moreover,
it will be possible to distinguish different gravitational
theories. Quantitatively, future experimental data can
be used to constrain f(R) parameters, and to confirm
or to reject alternative gravitational theories. With this
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in mind, we analyze the waveforms in order to quantify
the differences. According to our results, it is possible to
distinguish quadratic models of f(R) and GR with future
experimental data.

The quadratic form of f(R) is given by f(R) = R +
a2R

2. The main free parameter is the coefficient of the
quadratic part a2. In the case a2 = 0, f(R) theory re-
duces to GR. In linearized f(R) it is possible to show that
Mercury’s orbit sets the value of |a2| ≤ 1.2 × 1018 m2

[18]. On the other hand, Eöt-Wash experiments re-
strict the value of |a2| ≤ 2 × 10−9 m2 [19, 20]. The
Laser Interferometer Space Antenna (LISA) may distin-
guish |a2| ≥ 1017 m2. Binary black holes in the mass
range 30 − 300Msun are expected to merge at frequen-
cies in the most sensitive region of the Laser Interferom-
eter Gravitational Wave Observatory (LIGO) frequency
band [21]. Therefore, we focused our attention on an
equal-mass binary black hole system with total mass
M = m1 + m2 = 100Msun. We find that the LIGO
detection can distinguish |a2| ≥ 1011 m2.

The paper is organized as follows: in Sec. II, we sum-
marize the equations of f(R) theory. This is followed
by a description of the initial data setup in Sec. III. In
Sec. IV A, we describe the numerical techniques used to
solve the equations of motion. In Sec. IV B, we give some
motivation and background for the configuration used in
this work. The evolution of equal-mass binary black hole
system is presented in Sec. IV C. Conclusions and dis-
cussions are presented in Sec. V.
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A. Notation and units

We employ the following notation: Space-time indices
take values between 0 and 3, with 0 representing the time
coordinate. The first Latin indices (a, b, c, . . . , h) refer to
four-dimensional space-time and take values between 0
and 3, while Latin indices (i, j, k, l, . . . ) refer to three-
dimensional space and take values from 1 to 3. The met-
ric signature is (−1, 1, 1, 1). Some references (e.g., [18]),
use a metric signature (1,−1,−1,−1). The difference is a
change of sign of the scalar curvature R as well as f(R).
We use Einstein’s summation convention. The symbol
a := b means that a is defined as being b. A dot over a
symbol, ~̇x, means the total time derivative, and partial
differentiation with respect to xi is denoted by ∂i. Dif-
ferentiation with respect to the Ricci scalar R is denoted

with a prime, for example f ′ := df(R)
dR .

In order to simplify the calculations, we use geometric
units, where the speed of light c and the gravitational
constant G are normalized to 1. A variable in bold font,
i.e. x, denotes physical quantities in international system
units. Particularly, the value of a2 ≈ 1 M2 in geometric
units corresponds to a2 ≈ 1011m2 for typical gravita-
tional wave sources of binary black hole for LIGO.

We use the following abbreviations: Einstein’s
general relativity (GR), Laser Interferometer Space
Antenna (LISA), Laser Interferometer Gravitational
Wave Observatory (LIGO), Einstein-Klein-Gordon
(EKG), Baumgarte-Shapiro-Shibata-Nakamura (BSSN),
Arnowitt-Deser-Misner (ADM) and binary black hole
(BBH).

II. MATHEMATICAL BACKGROUND

In vacuum spacetimes, f(R) theory generalizes the
Hilbert-Einstein action to

S =

∫
d4x

16π

√
−gf(R), (1)

where GR is recovered by setting f(R) = R. From this
action, we obtain the Euler-Lagrange equations of motion

f ′Rab −
1

2
fgab − [∇a∇b − gab2]f ′ = 0. (2)

Using the definition of Einstein tensor Gab := Rab −
gabR/2, we obtain after subtracting a Ricci tensor term
Rgab/2 in (2), and rearranging terms,

Gab =
1

f ′

[
∇a∇bf ′ − gab2f ′ −

1

2
gab (Rf ′ − f)

]
. (3)

On the other hand, considering the conformal transfor-
mation g̃ab = e2ωgab, the Ricci tensor transforms into

R̃ab = Rab−
2∇a∇bω − gab2ω + 2∇aω∇bω − 2gabg

de∇dω∇eω. (4)

The corresponding Ricci scalar transforms as

R̃ = e−2ω
(
R− 62ω − 6gde∇dω∇eω

)
. (5)

Therefore, the Einstein tensor transformation is given by

G̃ab = Gab−
2∇a∇bω + 2gab2ω + 2∇aω∇bω + gabg

de∇dω∇eω. (6)

Defining ω := 1
2 lnλ, we have

∇aω =
1

2λ
∇aλ, (7)

∇a∇bω =− 1

2λ2
∇aλ∇bλ+

1

2λ
∇a∇bλ. (8)

The substitution of (7) and (8) in (6) implies

G̃ab =Gab +
3

2λ2
∇aλ∇bλ−

3

4λ2
gabg

de∇dλ∇eλ

− 1

λ
(∇a∇bλ− gab2λ) . (9)

Substituting λ := f ′ in (3) and the result in (9), we get

G̃ab =
3

2λ2
∇aλ∇bλ−

3

4λ2
gabg

de∇dλ∇eλ−
(Rλ− f)

2λ
gab.

(10)
Since the conformal transformation satisfies g̃ab = λgab,
(10) takes the form

G̃ab =
3

2λ2
∇̃aλ∇̃bλ−

3

4λ2
g̃abg̃

de∇̃dλ∇̃eλ−
(Rλ− f)

2λ2
g̃ab.

(11)

Defining φ :=
√

3
16π lnλ, we get

G̃ab = 8π

[
∇̃aφ∇̃bφ− g̃ab

(
1

2
g̃de∇̃dφ∇̃eφ+ V

)]
, (12)

where

V :=
Re4
√
π/3φ − f

16πe8
√
π/3φ

. (13)

The right hand side of (12) has the form of the stress
energy tensor of a scalar field (see e.g. [22, 23])

T̃ab := ∇̃aφ∇̃bφ− g̃ab
(

1

2
∇̃cφ∇̃cφ+ V

)
. (14)

Therefore, in vacuum, the f(R) theory equations of mo-
tion are equivalent to GR equations coupled to a real
scalar field

φ =

√
3

4
√
π

ln f ′. (15)

The equation of motion of the scalar field is given by
the trace of (2) with gab

�̃f ′ = 2∇̃aω∇̃af ′ −
2f − f ′R

3
, (16)
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where we have employed the conformal metric transfor-
mation. Substituting the definition of φ we get

�̃φ =
2f − f ′R
4
√

3πf ′2

=
2f −Rf ′

16πf ′3
f ′′
dR

dφ

=
dV

dφ
. (17)

The result is the dynamical equation of a real scalar field
with potential V . Therefore, the equations of motion for
f(R) theory are equivalent to Eqs. (12) and (17), which
form the EKG system of equations. Notice that the scalar
field is introduced for numerical simulation convenience.
Moreover, it is related to the Ricci scalar. Therefore, it
does not represent a physical freedom.

The equations of motion derived with the metric g̃ab
are commonly referred to be in the Einstein frame. For
physical interpretation, we need to transform them us-

ing the physical metric gab = e−4
√

π
3 φg̃ab. The equa-

tions in that form are referred to be in the Jordan frame.
We use Newman-Penrose scalar Ψ4 to analyze gravita-
tional waveform. Therefore, it is calculated through

Ψ̃4 = e−4
√

π
3 φΨ4. Since the Weyl tensor is conformal

invariant, the pre-factor comes from a tetrad transfor-
mation.

We use 3+1 formalism to solve (12) and (17). For Ein-
stein equations (12) we adopt the BSSN formulation as
in our previous work [24]. The scalar field equations (17)
can be decomposed using the 3+1 formalism as follows
(see e.g., for detail about the 3+1 formalism [25, 26]):
First it is useful to define an auxiliary variable ϕ := Lnφ,
where Ln denotes the Lie derivative along the normal to
the hypersurface Σt. Expressing the Lie derivative in
terms of the lapse function α and the shift vector βi, the
evolution of φ is given by

∂tφ = αϕ+ βi∂iφ. (18)

On the other hand, the evolution of ϕ is given by the
substitution of Lnφ in (17)

∂tϕ = αχ

(
γ̄ij∂i∂jφ− (Γ̄i +

γ̄ij∂jχ

2χ
)∂iφ

)
+ χγ̄ij∂iα∂jφ

+ αϕK − αdV
dφ

+ βi∂iϕ, (19)

where we used the BSSN metric conformal transforma-
tion γ̄ij = χγij and the relationships

K = −γ
ij

2α

∂γij
∂t

, (20)

Γi = − 1
√
γ
∂j
(√
γγij

)
, (21)

with K the trace of the extrinsic curvature, γ the deter-
minant of the 3-metric and Γi the contracted Christoffel

symbol. The quantities with an upper bar are repre-
sented in the conformal metric of BSSN form.

The matter densities are given by

E := nanbT
ab

=
1

2
DiφD

iφ+
1

2
ϕ2 + V, (22)

pi := −γianbT ab

= −ϕDiφ, (23)

Sij := γiaγjbT
ab

= DiφDjφ− γij
(

1

2
DkφD

kφ− 1

2
ϕ2 + V

)
. (24)

For f , we consider a quadratic form f(R) = R + a2R
2,

which results in the potential

V =
1

32πa2
(1− e4

√
π/3φ)2e−8

√
π/3φ. (25)

This potential is analytic around φ = 0 and it can be
expanded as

V =
1

6a2
φ2− 2

3a2

√
π

3
φ3+

14π

27a2
φ4− 8π

9a2

√
π

3
φ5+O

(
φ6
)
.

(26)
The coefficient of φ2 is related to the mass of the scalar
field (m = 1/

√
6a2) and the other terms imply that the

scalar field has nonlinear self-interaction. With the sig-
nature convention taken in this work, only the positive
values of a2 are physically meaningful. Therefore, we
demand that a2 ≥ 0.

A. Formalism for numerical calculation of f(R)
dynamics

The dynamical equations for f(R) theory can be writ-
ten as (2), or equivalently as (12). There is a key com-
ponent in BSSN formalism where Γ̄i are consider to be
new independent functions. Similar to this, we promote
φ to a new independent function. Then the evolution
equation of φ is determined by (17). On the other hand,
the definition of φ (15) is a constraint equation. For later
reference, we summarize the equations for numerical cal-
culation of f(R) dynamics as follows

G̃ab = 8πT̃ab, (27)

�̃φ =
dV

dφ
. (28)

The constraint equation is

ln f ′ =
4
√
π√
3
φ. (29)

It is interesting to note that the original dynamical
equation (2) for f(R) theory includes 4th order deriva-
tive terms of metric. This is because f depends on R,
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which contains second derivative terms of the metric, and
(2) contains second derivative terms of f . After perform-
ing a conformal transformation, we obtain the dynami-
cal equation (12). If we look at the conformal metric g̃ab
instead of gab as dynamical variables, (12) involves 3rd
order derivatives which come from the derivative of φ.
This is because φ itself is a function of R which contains
second derivative of conformal metric. In (27) and (28),
we replace the 3rd order derivative terms by promoting
the auxiliary variable φ as an independent variable. This
treatment introduces an extra constraint equation (29)
which is similar to the role of the Gamma constraint
equations in BSSN numerical scheme. With this treat-
ment, equations (27) and (28) contain at most second
order derivative terms.

The system of equations (27) and (28) takes the form of
coupled Einstein-Klein-Gordon equations. For Einstein
equation we use the BSSN formulation. We monitor the
constraint equation (29) to check the consistency of our
numerical solutions.

III. INITIAL DATA

Under a 3+1 decomposition, the constraint equations
read as follows:

DjK
j
i −DiK = 8πpi, (30)

R+K2 −KijK
ij = 16πE, (31)

where R is the Ricci scalar, Kij is the extrinsic curvature,
K the trace of the extrinsic curvature, γij the 3-metric,
and Dj the covariant derivative associated with γij . E
and pi are the energy and momentum densities given in
equations (22) and (23).

A. Puncture method

The constraints can be solved with the puncture
method [27]. Following the conformal transverse-
traceless decomposition approach, we make the following
assumptions for the metric and the extrinsic curvature:

γij = ψ4
0 γ̂ij , (32)

Kij = ψ−20 Âij +
1

3
Kγ̂ij , (33)

where Âij is trace free and ψ0 is a conformal factor. We
choose a conformally flat background metric, γ̂ij = δij ,
and a maximal slice condition, K = 0. The last choice
decouples the constraint equations (30)-(31) to take the
form

∂jÂ
ij = 0, (34)

M ψ0 +
1

8
ÂijÂijψ

−7
0 = −ψ0δ

ij∂iφ∂jφ− 2πψ5
0V, (35)

where M is the Laplacian operator associated with Eu-
clidian metric. Notice that we have chosen ϕ ≡ Lnφ = 0
initially. This is consistent to the quasi-equilibrium pic-
ture. So pi = 0 which results in (34).

In a Cartesian coordinate system (xi) = (x, y, z), there
is a non-trivial solution of (34) which is valid for any
number of black holes [28] (here the index n is a label for
each puncture):

Âij =
∑
n

[
3

2r3n

[
xinP

j
n + xjnP

i
n −

(
δij − xinx

j
n

r2n

)
Pnk x

k
n

]
+

3

r5n

(
εiklS

n
k x

l
nx

j
n + εjklS

n
k x

l
nx

i
n

)]
,

(36)

where rn :=
√

(x− xn)2 + (y − yn)2 + (z − zn)2, εikl is
the Levi-Civita tensor associated with the flat metric,
and Pn and Sn are the ADM linear and angular momen-
tum of nth black hole, respectively.

The Hamiltonian constraint (35) becomes an elliptic
equation for the conformal factor ψ0. The solution splits
as a sum of a singular term and a finite correction u [27],

ψ0 = 1 +
∑
n

mn

2rn
+ u, (37)

with u → 0 as rn → ∞. The function u is determined
by an elliptic equation on R3, which is derived from (35)
by inserting (37), and u is C∞ everywhere except at the
punctures, where it is C2. The parameter mn is called
the bare mass of the nth puncture.

B. Numerical Method

The Hamiltonian constraint (35) is solved numerically
using the Olliptic code ([29]). Olliptic is a parallel
computational code which solves three dimensional sys-
tems of nonlinear elliptic equations with a 2nd, 4th, 6th,
and 8th order finite difference multigrid method [30–34].
The elliptic solver uses vertex-centered stencils and box-
based mesh refinement.

The numerical domain is represented by a hierarchy of
nested Cartesian grids. The hierarchy consists of L + G
levels of refinement indexed by l = 0, . . . , L + G − 1. A
refinement level consists of one or more Cartesian grids
with constant grid-spacing hl on level l. A refinement
factor of two is used such that hl = hG/2

|l−G|. The grids
are properly nested in that the coordinate extent of any
grid at level l > G is completely covered by the grids at
level l − 1. The level l = G is the “external box” where
the physical boundary is defined. We used grids with
l < G to implement the multigrid method beyond level
l = G.

For the outer boundary, we required an inverse power
fall-off condition,

u(r) = A+
B

rq
, for r � 1, q > 0, (38)
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where the factor B is unknown. It is possible to get an
equivalent condition which does not contain B by calcu-
lating the derivative of (38) with respect to r, solving the
equation for B and making a substitution in the original
equation. The result is a Robin boundary condition:

u(~x) +
r

q

∂u(~x)

∂r
= A. (39)

For the initial data, we set q = 1 and A = 0.

C. Results

1. Test problem

As a test, we set the mass parameter of the black hole
to zero and consider a spherical symmetric field φ and
potential V . The Hamiltonian constraint (35) reduces to
a second order ordinary differential equation

rψ′′0 + 2ψ′0 + πψ0(φ′)2 + 2πV (r)ψ5
0 = 0, (40)

where the prime denotes differentiation with respect to
r. In order to obtain a high-resolution reference solu-
tion, we solve (40) using Mathematica [35]. A useful
transformation for the case V = 0 is ψ1 := rψ0. Un-
der this transformation, regularity at the origin implies
limr→0 ψ1(r) = 0. The boundary condition (39) with
q = 1 and A = 1 reduces to ψ′1(rmax) = 1, where rmax is
the radius of our numerical domain. The problem then
becomes

ψ′′1 + πψ1(φ′)2 + 2πV (r)
ψ5
1

r4
= 0, (41)

ψ1(0) = 0, (42)

ψ′1(rmax) = 1. (43)

For the case V 6= 0, the term r−4 produces a singularity
at the origin. We cure artificially the singularity by solv-
ing the equation with a term (r4 + ε)−1 instead of r−4.
For the test, the value of ε is set to 10−12.

We considered 2 cases

Case I : φ(r) = φ0 tanh[(r − r0)/σ],
V (r) = 0.

Case II : φ(r) = φ0e−(r−r0)
2/σ,

V (r) = 1
32πa2

(
1− e4

√
π/3φ

)2
e−8
√
π/3φ,

where in both cases r0 = 120M , σ = 8M , φ0 = 1/40.
For case II, we set a2 = 1. The numerical domain is a
cubic box of size 4000 (rmax = 2000) and 11 refinements
levels. We use the fourth order finite difference sten-
cil since it provides a good convergence property at the
boundary for large domains (see [29] for details). The
convergence tests consist of a set of six solutions with
grid points Ni ∈ {43, 51, 75, 105, 129, 149}. The compar-
ison with the reference solution was performed along the

0
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1

u (a)

p = 3.7± 0.2

[×10−2]

0

1.25

2.5
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5

|u i
−ū
|

(b)

[×10−4]

0

2.5

5

-2000 -1500 -1000 -500 0 500 1000 1500 2000

|u i
−ū
|N

p i

(c)

Y(M)

[×102]

ū
N1 = 33
N2 = 37
N3 = 65

N6 = 149

i = 1
i = 2
i = 3
i = 6

i = 1
i = 2
i = 3
i = 6

FIG. 1: Initial data convergence test for case I. The upper
panel (a), shows the reference solution and 4 solutions com-
puted with Olliptic . The middle panel (b), presents the
estimated error. The lower panel (c), shows the scaled error
for convergence order p = 3.7± 0.2.

Y axis using a 6th order Lagrangian interpolation. For
each resolution, the difference Ei := |ui − ū| gives an
estimation of the error. Here ui denotes the solution
produced with Olliptic, i is an index which labels the
grid size, ū the reference solution and | · | the absolute
value (computed point by point). The functions are in-
terpolated in a domain with grid size ∆y = 1. The error
satisfies Ei ∼ Chpi , where C is a constant, hi ∼ 1/Ni is
the grid size and p the order of convergence. Using the
L1 norm of the error and performing a linear regression
of ln |Ei|L1 vs ln |hi|, we estimate the convergence order
p and the constant C.

Figure 1 shows the result of case I. There is a good
agreement between the several resolutions and the ref-
erence solution. The plot does not show noticeable dif-
ferences (see Fig. 1-(a)). The solution has convergence
properties, and the estimated error diminishes with in-
creased resolution (Fig. 1-(b)). The scaled error Ei/h

p
i

also shows good convergence with convergence order
p = 3.7± 0.2 given by linear regression (Fig. 1-(c)).

The results for case II are presented in Figure 2. The
solution is similar to case I, an almost constant solution
between 0 and r0 which joins a inverse power solution
after Y = r0. However, the solution of case II is around
2 orders of magnitude larger than the solution of case
I. Contrary to case I, there are noticeable differences be-
tween the reference solution and the lower-resolution ones
(Fig. 2-(a)). The solution shows convergence properties
and the scaled error shows convergence consistently with
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N1 = 33
N2 = 37
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i = 1
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i = 1
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FIG. 2: Initial data convergence test for case II. The upper
panel (a), shows the reference solution and 4 solutions com-
puted with Olliptic . The middle panel (b), presents the
estimated error. The lower panel (c), shows the scaled error
for convergence order p = 3.9± 0.3.

TABLE I: ADM mass as function of φ0 for a2 →∞ (Fig. 3).
The values are well represented by a quadratic function
MADM = A+Bφ2

0 with A = 0.99067 and B = 40569± 48.

# φ0 MADM # φ0 MADM

1 0 0.990669 7 0.004 1.632418

2 0.0001 0.991069 8 0.005 1.994890

3 0.0005 1.000670 9 0.006 2.439376

4 0.001 1.030680 10 0.007 2.966764

5 0.002 1.150790 11 0.008 3.578118

6 0.003 1.351237 12 0.009 4.274675

p = 3.9± 0.3 (Fig. 2-(b),(c)).

2. Initial data for evolution

The solution of (35) provides initial data for our
evolutions. The initial parameters of the BBH are:
puncture mass parameter m1 = m2 = 0.487209 (ap-
proximate apparent horizon mass equals to 0.5), initial
position (x, y, z) = (0,±5.5, 0) and linear momentum
(px, py, pz) = (∓0.0901099,∓0.000703975, 0). The linear
momentum parameter is tuned for non-spinning quasi-
circular orbits in GR.

For the scalar field part, we consider that the BBH is

TABLE II: ADM mass as function of a2 (Fig. 4). The value
of the maximum (# 8) is estimated using the minimization of
(46). The parameter φ0 of the scalar field is 0.001642.

# a2 MADM # a2 MADM

1 0 9.906691 9 4 1.153111

2 0.2 9.930327 10 6 1.140796

3 0.4 1.006901 11 8 1.132395

4 0.6 1.033066 12 10 1.126691

5 0.8 1.063929 13 20 1.113947

6 1 1.092333 14 40 1.106991

7 2 1.155675 15 60 1.104598

8 2.64791 1.160240 16 80 1.103388

surrounded by a shell of scalar field with initial profile

φ(r) =
a22

a22 + 1
φ0e
−(r−r0)2/σ, (44)

with r0 = 120M , σ = 8M and several values of φ0 (see
below). When a2 goes to zero, both φ and V go to zero.
Therefore, standard general relativity is recovered. On
the other hand, when a2 → ∞, the amplitude of the
scalar field tends to φ0 while the potential vanishes. Our
model provides an unified scheme to investigate standard
GR (a2 = 0), usual f(R) (0 < a2 <∞) and the free EKG
system in GR (a2 →∞).

From the solution of the conformal factor it is possible
to estimate the ADM mass through

MADM|r=r0 = − 1

2π

∮
S

∂jψ dSj , (45)

where the integration is performed in a sphere S of radius
r0 (formally the ADM mass is computed taking the limit
r0 → ∞). In our calculations r0 = 1537.5 and the inte-
grations are done numerically using 6th order Lagrange
interpolation in the sphere and 6th order Boole’s quadra-
ture [36, 37].

The estimation of the ADM mass gives us a way to
analyze the parameters φ0 and a2. On one hand, it is
possible to compute MADM for the case a2 →∞ for sev-
eral values of φ0 (see Table I). The result is a quadratic
relationship (see figure 3). The quadratic behavior is con-
sistent with the fact that the coefficient of ψ0 in (35) for
the scalar field profile (44) is quadratic in the amplitude
φ0.

On the other hand, for fixed φ0, we analyzed the
functional behavior of MADM as function of a2. Fig-
ure 4 shows the result (in this example φ0 = 0.001642).
For this particular value of φ0, the ADM mass reaches
its maximum value MADM = 1.16023966 when a2 =
2.64353. The estimation of the value a2 comes from the
maximization of the product of the coefficients of ψ0 and
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FIG. 3: ADM mass MADM as function of φ0 for a2 → ∞.
The functional behavior is well represented by a quadratic
function.
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FIG. 4: ADM mass MADM as function of log(a2). The am-
plitude of the scalar field is φ0 = 0.001642. The cross-circle
symbol denotes the maximum value MADM = 1.16023966 lo-
cated at a2 = 2.64353. The value of a2 is estimated from the
maximization of (46).

ψ5
0 (see right hand side of (35)):

C =

√
(φ̃0 − ã2)ã32(1− eã2)2e−2ã2 (46)

∼φ′(r = r0 +
√
σ/2)2V (r = r0)

where we define φ̃0 := 4
√
π/3φ0 and ã2 := φ̃0a

2
2/(a

2
2+1).

Notice that with respect to the radial coordinate r the
coefficients are evaluated in their respective maximums.
We are looking for the values (φ0, a2) which maximize the
product instead of the maximum value of C. Therefore,
we can drop all the multiplicative constants. The max-
imization of C is performed with respect to the variable
ã2. The extrema of the function reduces to computing
the roots of

C′(ã2) ∼ 4ã2(ã2 + eã2 + φ̃0 − 1)− 3(eã2 − 1)φ̃0. (47)

0
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0 0.02 0.04 0.06 0.08 0.1 0.12

ã 2 (a)

φ̃0

A = −1.3× 10−7 ± 6.1× 10−8

B = 0.875012± 2.2× 10−6

C = −0.02756± 1.7× 10−5

2.6

2.625

2.65

0 0.005 0.01 0.015 0.02 0.025 0.03

a 2 (b)

φ0

data
ã2 fit = A + Bφ̃0 +Cφ̃2

0

data
From quadratic fit
From linear fit

FIG. 5: Estimated values of (φ0, a2) which maximize MADM.

The upper panel (a) shows the result in the variables (φ̃0, ã2),
where we fit a second order polynomial. The lower panel
(b) shows the result in the variables (φ0, a2). Notice that in
both cases the behavior seems to be linear, however by using
a linear fit in the tilde variables the result does not fit the
data in the (φ0, a2) (dashed line).

We computed the values numerically using Mathemat-
ica. Figure 5 shows the result. From the numerical data,
it appears that ã2 is a linear function of φ̃0 (see Figure 5-
(a)). However, a comparison of the data with the fitted
linear function showed us that a higher order polyno-
mial is better a approximations. We choose a second
order polynomial since higher order polynomials do not
exhibit a significant reduction of the errors. The results
for (φ0, a2) variables confirm that a quadratic fit is a bet-
ter approximation (see Figure 5-(b)). Note that in the
interval investigated a2 ∼ 2.64. In international system
units, it corresponds to 1011m2 (considering the typical
gravitational wave sources of BBH for LIGO). This value
maximizes the f(R) effect for BBH collisions.

IV. EVOLUTION OF EQUAL MASS BINARY
BLACK HOLES IN f(R) THEORY

A. Numerical method

The evolution of the black hole and scalar field is solved
using the AMSS-NCKU code (see [24, 29, 38–40]). Al-
though AMSS-NCKU code supports both vertex center
and cell center grid style, we use the cell center style. We
use finite difference approximation of 4th order. We up-
date the code to include the dynamics of real scalar field
equations (18) and (19). We use the outgoing radiation
boundary condition for all variables. In addition, we up-
date our code to support a combination of box and shell
grid structures (according to [41, 42]).

The numerical grid consists of a hierarchy of nested
Cartesian grid boxes and a shell which includes six
coordinate patches with spherical coordinates (ρ, σ, r).
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For symmetric spacetimes, the corresponding symmetric
patches are dropped. Particularly, we adopt equatorial
symmetry. For the nested Cartesian grid boxes, a mov-
ing box mesh refinement is used. For the outer shell part,
the local coordinates of the six shell patches are related
to the Cartesian coordinates by

±x patch: ρ = arctan(y/x), σ = arctan(z/x), (48)

±y patch: ρ = arctan(x/y), σ = arctan(z/y), (49)

±z patch: ρ = arctan(x/z), σ = arctan(y/z), (50)

where both angles (ρ, σ) range over (−π/4 : π/4).
Notice that positive and negative Cartesian patches

are related through the same coordinate transformation.
This coordinate choice is right handed in +x, −y, +z
patches and left handed in −x, +y, −z patches. Dis-
regarding parity issues, left-handed coordinates do not
bring us any inconvenience. We have applied this coor-
dinate choice to characteristic evolutions in [43]. For an
alternative approach, see [41, 42]. The coordinate radius
r relates to the global Cartesian coordinate through

r =
√
x2 + y2 + z2. (51)

All dynamical equations for numerical evolution are writ-
ten in the global Cartesian coordinate. The local coordi-
nates (ρ, σ, r) of the six shell patches are used to define
the numerical grid points with which the finite difference
is implemented. The derivatives involved in the dynam-
ical equations in the Cartesian grid xi = (x, y, z) are re-
lated to the spherical derivatives in the shell coordinates
ri = (ρ, σ, r) through

∂

∂xi
=

(
∂rj

∂xi

)
∂

∂ri
, (52)

∂2

∂xi∂xj
=

(
∂rk

∂xi
∂rl

∂xj

)
∂2

∂rk∂rl
+

(
∂2rk

∂xi∂xj

)
∂

∂rk
. (53)

The spherical derivatives in (52) and (53) are approxi-
mated by center finite difference.

In the spherical shell two patches share a common ra-
dial coordinate and adjacent patches share the angu-
lar coordinate perpendicular to the mutual boundary.
Therefore, it is not necessary to perform a full 3D in-
terpolation between the overlapping shell ghost zones.
Moreover, it is enough to perform a 1D interpolation par-
allel to the boundary (see [41, 44] for details). For this
purpose, we use 5th order Lagrangian interpolation with
the most centered possible stencil.

For the interpolation between shells and the coarsest
Cartesian grid box, we use a 5th order Lagrange inter-
polation. This is a 3D interpolation done through three
directions successively. The grid structure for boxes and
shells are different. There is no parallel coordinate line
between the grid structures. Therefore, we have a region
which is double covered. Similar to the mesh refinement
interface, we also use six buffer points in the box and
shell. The buffer points are re-populated at a full Runge-
Kutta time step. For parallelization, we split the shell
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[×10−2] L −M
M − H

1.88 ∗ (M − H)

FIG. 6: Convergence test of the waveform. Real part of ` = 2,
m = 2 mode of Ψ4. The evolution corresponds to the param-
eters a2 = 2.64418 and φ0 = 0.000959 (see Table III). The
plot shows the differences between the low (L) and medium
(M) resolutions (solid line), and the medium (M) and high (H)
resolutions (dashed line). The difference between the medium
and high is scaled by 1.88 which corresponds to 4th order con-
vergence (dotted line). The corresponding values of the grid
size for the finest refinement level are (L) 0.009 M , (M) 0.0079
M and (H) 0.007 M .

patches into several sub-domains in three directions. The
same is done for boxes.

We have tested the convergence behavior of the up-
dated AMSS-NCKU code. Fig. 6, shows the waveform
produced with three resolutions. The corresponding val-
ues of the grid size for the finest refinement level are 0.009
M , 0.0079 M and 0.007 M . From here-on, we refer to
these values as the low (L), medium (M) and high (H) res-
olutions respectively. We shift the time in order to align
the waveforms at the maximum amplitude of Ψ4,22. The
results presented in sections IV B and IV C are performed
with the medium resolution.

The equation (15) represents a constraint equation
which is introduced by reducing the 4th order deriva-
tive dynamical formulation to the 2nd order. Based on
3+1 formalism, we have

(4)R = −2LnK +R+K2 +KijK
ij − 2

α
DiD

iα. (54)

Substituting LnK with the evolution equations for Kij

results in

(4)R = 8π(3E − S)−R−K2 +KijK
ij (55)

= 16π(DiφD
iφ+ 3V )−R−K2 +KijK

ij . (56)

Therefore, the constraint equation reads as

ln
(
1 + 2a2[16π(DiφD

iφ+ 3V )−R−K2 +KijK
ij ]
)

=
4
√
π√
3
φ. (57)
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FIG. 7: L2 norm of Hamiltonian constraint violation and f(R)
constraint violation (57). Here, a2 →∞ and φ0 = 0.000959.

From here-on, we will refer to (57) as the f(R) constraint.
In Fig. 7, we show an example of the violation of this
constraint during our simulations. This violation of f(R)
constraint is much smaller than that of the Hamiltonian
constraint.

B. Initial scalar field setup

One way to interpret f(R) theory is as an effective
model of quantum gravity. In the astrophysical con-
text, it is natural to assume that the systems are in
their ground states, and correspondingly, the scalar field
takes the profile of the ground state of the related quan-
tum gravity system. We simulate the development of
the scalar field from the ground state of the Schrödinger-
Newton system considered in [45]. Other authors model
the dark matter halo [46] in the center of a galaxy with a
similar profile (see e.g., [47]). Our result shows that the
scalar field evolves from the ground state configuration to
a shell-type profile (similar to (44)). Moreover, the shell
forms in the early stages of the evolution. Fig. 8 shows
two snapshots, the initial ground state profile and the
final shell configuration. In our test, the initial profile
of the scalar field is some general Gaussian shape, and
the shell shape soon forms. Our results imply that the
formation of a shell shape is generic in coupled systems
of scalar field and BBH.

Considering the development of a scalar field shell in
the early stages of the formation of a BBH system, we
start the evolution with the profile (44). The parameters
used in our simulations are listed in Table III. We di-
vide the parameters into three groups. The first group,
a2 = 0, φ0 = 0 corresponds to general relativity. The sec-
ond group, a2 → ∞ corresponds to the free EKG equa-
tions. In this case, the scalar field in the far zone is weak.
Therefore, the waveforms in the Jordan frame are similar
to the waveforms in the Einstein frame. The third group,

-0.8

-0.4

0

0.4

0.8

0 200 400 600 800 1000

φ

r(M)

[×10−4]

Time = 0(M)
Time = 186.85(M)

FIG. 8: Snapshots of a scalar field evolving with a BBH.
Time = 0 M corresponds to the ground state of the
Schrödinger-Newton system considered in [45]. At time =
186.85 M, a shell shape forms.

TABLE III: Parameters of the scalar field. There are three
groups of parameters. a2 = 0 corresponds to general rela-
tivity; a2 → ∞ group corresponds to the EKG equations in
general relativity; and 0 < a2 < ∞ corresponds to general
f(R) theory.

MADM φ0 a2

0.99067 0 0

0.99062 0.000048 ∞
0.99980 0.000480 ∞
1.02756 0.000959 ∞
0.99067 0.000048 2.61877

1.00490 0.000480 2.64297

1.04790 0.000959 2.64418

0 < a2 <∞ corresponds to general f(R) theory. In this
case, the value a2 is the one which maximizes MADM for
given φ0.

C. Results

In this subsection, we present the numerical simulation
results for the BBH evolution in f(R) theory. We focus
on the comparison between f(R) and GR evolution. We
refer to the difference between them as the f(R) effect.

1. Dynamics of the scalar field induced by binary black
holes

The characteristic dynamics of the scalar field in our
simulations is the following. Starting from a shell shape,
the scalar field collapses towards the central BBH. Then,
the maximum of the scalar field reaches the black holes.
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FIG. 9: Dynamics of scalar field induced by BBH. The pa-
rameters are a2 →∞ and φ0 = 0.000959 (see Table III). The
upper panel (a) shows the maximum of |φ| as a function of
time. The external lower panel (b) shows the radius position
of one black hole and the corresponding radius position of the
maximum of the scalar field. Internal lower panel (c) shows
the magnification of the collision part of the scalar field and
the black hole.

At that moment in the evolution, a burst of gravitational
radiation is produced . After that, the scalar field con-
tinues collapsing towards the origin of the numerical do-
main. The BBH excites the surrounding scalar field. The
perturbations produced by the BBH collapses to the ori-
gin, thereby joining the main part of the scalar field. Af-
ter reaching the origin, the scalar field is scattered in the
outgoing direction. Once the scalar field moves outside
of the orbit of the BBH, it is attracted by the BBH again
and remains there for some time. The scalar field slowly
radiates to the exterior of the numerical domain. In the
process, part of the scalar field is absorbed by the black
holes.

In Fig. 9-(a) we show the maximum of |φ| with re-
spect to time. Since the scalar field approximates a shell
shape, we only consider the radial position. The change
in the amplitude of the scalar field represents the collaps-
ing stage (increments) and the scattering stage (decre-
ments). There are two main peaks around time = 125
M. The first peak corresponds to the initial collapse (be-
fore reaching the BBH). The second peak corresponds
with the excitation of the scalar field produced by the
BBH. A small third peak corresponds to the attraction
produced by the BBH.

Fig. 9-(b) shows the radial position of max(|φ|) with
respect to time (solid line) and the radial position of black
hole (dashed line). The main collapsing and scattering
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f(R) a2 = ∞, φ0 = 9.59 × 10−3

FIG. 10: Comparison of the initial part of the waveform for a
BBH collision in GR and f(R) theory with parameters a2 →
∞ and φ0 = 0.000959. The collision between the scalar field
and the BBH produces a burst of gravitational radiation at
roughly time = 340 M.

process is clear. There are four coincidences of the scalar
field and the BBH. Three of them correspond to the peaks
showed in Fig. 9-(a). We enlarge the detail of the encoun-
ters in Fig. 9-(c).

As mentioned above, the collision between the scalar
field and the BBH produces a burst of gravitational radi-
ation. Fig. 10 shows the corresponding waveform of the
evolution presented previously (with parameters a2 →∞
and φ0 = 0.000959). In this plot, we extract the waves
at r = 200 M. After the radiation produced by the ini-
tial data configuration (so-call junk radiation), there is a
peak at about time = 340 M (dashed line). This burst
of radiation is not present in the BBH case (solid line).
Moreover, the pattern is encoded in every even m mode
of Ψ4.

Fig. 11 shows the dependence of the amplitude of the
burst as a function of φ0. The functional behavior is
well represented by a quadratic function A+Bφ0 +Cφ20,
with A = 3.04× 10−4 ± 3× 10−6, B = −0.08± 0.01 and
C = 2273± 14.

In the above description, we have presented the results
for the free EKG system (a2 → ∞). For our represen-
tative f(R) case, where a2 is finite but non-vanishing,
the behavior of scalar field is qualitatively different. We
compared the cases φ0 = 0.000959 and a2 = 2.64418 with
φ0 = 0.000048 and a2 = 2.61877. Fig. 12 shows the re-
sults. Contrary to the free EKG case, we found only one
collapsing stage without the scattering to infinity phase.
In both cases, almost all of the scalar field was absorbed
by the black holes. During the collapsing process, the
scalar field excites the spacetime. The back reaction
excites the scalar field, thereby producing several zig-
zags in its maximum amplitude (see Figures 12-d). After
the maximum of the scalar field passes over the black
hole, the dynamics of scalar field become much richer.
The scalar field is constantly excited near the black hole.
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FIG. 11: Burst amplitude as a function of the initial scalar
parameter φ0. In this case a2 → ∞. The fitting parameters
are A = 3.04 × 10−4 ± 3 × 10−6, B = −0.08 ± 0.01 and
C = 2273 ± 14. Notice that the value of A is approximately
equal to the amplitude of the waveform for GR.

Fig.12-(e) shows that the scalar field is trapped in the
inner region of the BBH’s orbit. The black holes play
the role of a semi-reflective boundary. A minor amount
of scalar field escapes to infinity. In comparison with the
free EKG system, the case φ0 = 0.000959 and finite a2
introduces a large amount of eccentricity to the BBH sys-
tem. However, there is no burst of gravitational radiation
(which corresponds to the one presented in Fig. 10).

2. Dynamics of the binary black hole induced by the scalar
field

The trajectory of the BBH is strongly affected by the
scalar field. When the scalar field is present, the BBH
merges faster. Notice that the ADM mass is not the
main cause of the fast merge. As shown in Table III, for
cases φ0 = 0.00048 and φ0 = 0.000959, the ADM mass
is larger than in the GR case. On the other hand, when
φ0 = 0.000048, the ADM masses for a2 → ∞ and a2 =
2.61877 are smaller and equal to the GR case respectively.
However, in both cases with non-vanishing scalar field,
the BBH merges faster than in the GR case (see Fig. 13).

For larger values of φ0, for example 0.00048, the scalar
field increases the eccentricity of the BBH’s orbit in ad-
dition to making it merge faster. This extra eccentricity
depends on the parameter a2. When a2 is big, the result-
ing eccentricity is large (see Fig. 14-(a)). In addition, we
observe that the f(R) effect makes the BBH merge faster
in finite a2 case than in the free EKG case. Previously
in Sec. IV C 1, we noticed that the interaction between
the scalar field and the black hole is weaker in finite a2
case than in the free EKG case. The behavior shown in
Fig. 14-(a) is consistent with this conclusion. When the
interaction is stronger, it introduces more eccentricity to
BBH evolution. More eccentric BBH orbits produce more
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FIG. 12: Dynamics of scalar field induced by BBH. The pa-
rameters are {φ0 = 0.000048, a2 = 2.61877} (solid line) and
{φ0 = 0.000959, a2 = 2.64418} (dashed line). The upper
panel (a) shows the maximum of |φ0| as a function of time.
The internal upper panel (b) shows a magnification of the
initial evolution. The external lower panel (c) shows the ra-
dius positions of one black hole for each case (dotted and dash-
dotted lines) and the corresponding radius positions of the
maximum of the scalar field. Internal lower panel (d) shows
a magnification of the collapse of the scalar field. Internal
lower panel (e) shows a magnification of the merger phase.
Notice that in this case the scalar field is constantly excited.
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gravitational radiation [48]. Therefore, the mergers are
faster.

Although the coordinate information is gauge depen-
dent, it is possible to verify a change in the eccentricity
by looking at the gravitational waves (see Fig. 14-(b)).
Notice that the amplitude of the gravitational radiation
burst in finite a2 case is smaller than in the free EKG
case. In Fig. 10, we can see the change in the eccentric-
ity for the case of φ0 = 0.000959.

So far, we have shown that small φ0 for free EKG cases
introduces more f(R) effects than finite a2 cases. On the
other hand, large φ0 for free EKG cases introduces less
f(R) effects than finite a2 cases. It is possible that the
nonlinear terms of the finite a2 cases are the cause of
these differences.

Considering the f(R) effect introduced by the scalar
field, we can distinguish the parameter a2 through grav-
itational wave detection. LIGO’s main BBH sources are
black holes with several tens of solar mass. If a2 is big-
ger than 1011m2, we expect to be able to distinguish be-
tween f(R) theory and GR, via the gravitational detec-
tion. On the other hand, LISA (or some similar space-
craft experiment) can distinguish between f(R) and GR
if a2 > 1017m2 [18]. All together, the merger phase of
BBH collisions allows distinction between the theories,
as proposed by [49].

3. Difference between f(R) and other
Einstein-Klein-Gordon models in GR

We have seen above that it is possible to distinguish
between f(R) theory and GR via the gravitational waves.
Astrophysical models often include EKG equations for
the description of certain phenomena. For example, there
are models of dark matter which use EKG in the weak

field limit [50–53]. One example of relativistic scalar field
is boson stars [54–58]. Therefore, it is interesting to ask
if gravitational wave detection can be used to distinguish
BBH collisions in f(R) theory from another system which
also contains scalar fields.

In the rest of this section, we analyze the differences
between the free EKG system (a2 → ∞) and the f(R)
theory. The main difference between free EKG and f(R)
theory is the nonlinear self interactions, present only in
f(R) theory. If the scalar field is strong, it is easy to dis-
tinguish between free EKG and f(R) . If the scalar field
is weak, a deeper analysis is necessary in order to dis-
tinguish between the theories. Our quantitative results
support this statement.

First row of Fig. 15 shows the results for φ0 = 0.00048.
Fig. 15-(a) shows the trajectory of one of the compo-
nents of the binary (the companion black hole trajectory
is symmetric with respect to the X axis). We can see
several crosses of the trajectories. This indicates differ-
ent fluctuations on the inspiral rate. This results from
the extra eccentricity introduced by the scalar field. In
Sec. IV C 2 and Fig. 14, we saw that the eccentricity is
larger in the free EKG system than in the representa-
tive case of f(R) theory. In addition, the BBH in f(R)
theory merges faster than in the free EKG. Therefore, it
is possible to distinguish between free EKG models and
f(R) theory.

The second row of Fig. 15 shows the results for φ0 =
0.000048 (the value is ten times smaller). In this case,
there are no noticeable differences between free EKG
models and f(R) theory. This is consistent with our as-
sumption that the self interaction becomes weak for small
scalar field. However, the quantitative difference of the
` = 2, m = 2 mode of Ψ4 is significant (see Fig. 16-(a)).
Moreover, the relative difference is larger than ten per-
cent (see Fig. 16-(b)). Once again, there is a small peak
at roughly time = 240 M in Fig. 16-(b). The peak is
the result of a burst of gravitational radiation produced
by the free EKG model, which is absent in the f(R) case
(see also Fig. 10). We expect that we will be able to char-
acterize the differences using more detailed quantitative
data analysis techniques. We plan to present the results
in a forthcoming paper.

V. DISCUSSION

Extending the work of [18], where the extreme mass ra-
tio BBH systems were considered to be the gravitational
wave sources for LISA, we studied an equal mass BBH
system. In order to simulate BBH in f(R) theory with
our existing numerical relativistic code, we performed
transformations of the dynamical equations of f(R) the-
ory from the Jordan frame to the Einstein frame. In this
way, we performed full numerical relativistic simulations.
The main result in [18] is that the gravitational wave de-
tection with LISA can distinguish between f(R) theory
and GR if the parameter |a2| > 1017m2. Our results im-



13

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

Y
(M

)

(a)

X(M)

GR vacuum

f(R)
a2 = 2.64297,
φ0 = 4.8 × 10−4

f(R)
a2 = ∞,
φ0 = 4.8 × 10−4

-8

-6

-4

-2

0

2

4

6

8

0 200 400 600 800 1000 1200 1400

r
R

e[
Ψ

l=
2,

m
=

2
4

]

(b)

Time (M)

[×10−2]

GR vacuum

f(R)
a2 = 2.64297,
φ0 = 4.8 × 10−4

f(R)
a2 = ∞,
φ0 = 4.8 × 10−4

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

Y
(M

)

(c)

X(M)

GR vacuum

f(R)
a2 = 2.64297,
φ0 = 4.8 × 10−5

f(R)
a2 = ∞,
φ0 = 4.8 × 10−5

-8

-6

-4

-2

0

2

4

6

8

0 200 400 600 800 1000 1200 1400

r
R

e[
Ψ

l=
2,

m
=

2
4

]
(d)

Time (M)

[×10−2]

GR vacuum

f(R)
a2 = 2.64297,
φ0 = 4.8 × 10−5

f(R)
a2 = ∞,
φ0 = 4.8 × 10−5

FIG. 15: Trajectories and waveforms. Comparison between BBH mergers in GR, a representative case of f(R) and the
corresponding free EKG model. Panel (a): BBH trajectory for vacuum GR (solid line), f(R) theory (dashed line) and free
EKG matter model in GR (dotted line). We show the trajectory of one of the two black holes, the trajectory of the companion
black hole is symmetric with respect to the Z axis. The scalar field amplitude parameter is φ0 = 4.8× 10−4. Panels (b): The
corresponding waveform (real part of Ψ4, mode ` = 2, m = 2). Panel (c): Same as in panel (a) but with φ0 ten times smaller
(φ0 = 4.8× 10−5). Panel (d): Corresponding waveform for the case φ0 = 4.8× 10−5.

ply that the gravitational wave detection with LIGO can
do the same for |a2| > 1011m2.

Mathematically, the dynamical equations of f(R) the-
ory in the Einstein frame require a scalar field. We found
an interesting dynamics between this scalar field and the
BBH. For example, the BBH excites the scalar field for
free EKG cases (a2 → ∞) near the collision. The scalar
field is constantly excited close to the BBH for finite a2
cases. Moreover, the interaction introduces extra eccen-
tricity to the evolution of the BBH orbit. We found that
the BBH eccentricity is affected by the initial parame-
ter of the scalar field φ0 depending on the value of a2.
For small φ0, the excitation of the BBH orbit is larger
in the representative f(R) case in comparison with the
free EKG system. On the other hand, for larger values of
φ0 the excitation of the BBH orbit is smaller in the rep-
resentative f(R) case in comparison with the free EKG
system.

Using gravitational waves, it is possible to distinguish
among f(R) theory, general relativity and a free Einstein-
Klein-Gordon system. We found that the perturbation
produced by the scalar field depends on the initial scalar
field configuration. Specifically, the waveform exhibits a
radiation burst which depends quadratically on the ini-
tial scalar field amplitude. The burst is a particular fea-
ture of the system which is useful when distinguishing
between f(R) and GR. For an initial amplitude of scalar
field φ0 = 0.000048, the relative difference in the gravita-
tional waveform between f(R) theory and the free EKG
model is more than 10%. Therefore, gravitational wave
astronomy may provide the necessary information to rule
in or rule out some alternative gravitational theories.
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