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ABSTRACT

We study conformally-invariant theories of gravity in six dimensions. In four dimensions,

there is a unique such theory that is polynomial in the curvature and its derivatives, namely

Weyl-squared, and furthermore all solutions of Einstein gravity are also solutions of the

conformal theory. By contrast, in six dimensions there are three independent conformally-

invariant polynomial terms one could consider. There is a unique linear combination (up

to overall scale) for which Einstein metrics are also solutions, and this specific theory forms

the focus of our attention in this paper. We reduce the equations of motion for the most

general spherically-symmetric black hole to a single 5th-order differential equation. We

obtain the general solution in the form of an infinite series, characterised by 5 independent

parameters, and we show how a finite 3-parameter truncation reduces to the already known

Schwarzschild-AdS metric and its conformal scaling. We derive general results for the

thermodynamics and the first law for the full 5-parameter solutions. We also investigate

solutions in extended theories coupled to conformally-invariant matter, and in addition we

derive some general results for conserved charges in cubic-curvature theories in arbitrary

dimensions.
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1 Introduction

Higher-derivative gravity theories are of interest for a variety of reasons. They arise natu-

rally in string theory and M-theory, in the form of higher-order corrections to the leading

Einstein-Hilbert term in the low-energy effective action. In this context, the corrections

take the form of an infinite series of terms that involve derivatives of arbitrarily high order.

There are also situations where it is of interest to consider theories where there are just a

finite number of higher-derivative terms. Examples include topologically massive gravity in

three dimensions [1, 2], where a gravitational Chern-Simons term gives a three-derivative

contribution, proportional to the Cotton tensor; New Massive Gravity in three dimensions

[3], where there is a four-derivative contribution arising from a curvature-squared term

in the action; and numerous higher-dimensional examples involving curvature-squared or

higher modifications to Einstein gravity. Recent examples that have been considered in

four dimensions include Einstein gravity with a cosmological constant, with an additional

Weyl-squared term whose coefficient may be tuned to give “critical gravity” for which the

additional normally massive spin-2 excitations around an AdS background become massless

[4]; and pure Weyl-squared conformal gravity, which has been argued to be equivalent to

Einstein gravity with a cosmological constant [5]. In dimensions D ≤ 6, supersymmetric

extensions of certain higher-derivative theories are also known. These can arise because the

supersymmetry is realised off-shell, with the added higher-derivative bosonic terms being

extended to complete and independent super-invariants. Thus, unlike the situation in the

string or M-theory effective actions, where supersymmetry is on-shell and works order by

order, requiring an infinity of higher-order terms, in the off-shell supergravities only a finite

number of terms are required.

In four dimensions there is a unique conformally-invariant pure gravity theory that is

polynomial in the curvature, for which the action is given by the square of the Weyl tensor.

It has the important feature that any Einstein metric is also a solution of the conformal

theory. Furthermore, since any conformal scaling of a solution is also a solution, this means

that any conformally-Einstein metric is automatically a solution of four-dimensional confor-

mal gravity. This is a useful property when one is looking for solutions to the theory, since

previously-known ones from Einstein gravity will be solutions too. Of course, since the equa-

tions of motion of the conformal gravity are of higher order than those in Einstein gravity,

there will exist further solutions over and above those of Einstein gravity. In a recent pa-

per [6], various classes of solutions in four-dimensional conformal gravity were investigated

in detail, including spherically symmetric asymptotically AdS black holes, and black holes

obeying asymptotically Lifshitz boundary conditions. The general spherically-symmetric

asymptotically AdS black hole solution was already known [7]. It has one additional pa-
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rameter, over and above the mass and the cosmological constant of the Schwarzschild-AdS

black hole. This parameter can be understood as coming from the freedom to make a

(spherically-symmetric) conformal rescaling of Schwarzschild-AdS. It does, nevertheless,

provide an interesting extension of the usual Schwarzschild-AdS black holes, in which the

additional parameter can be interpreted as a characterisation of massive spin-2 “hair.” In

[6], the thermodynamics and the first law for these extended solutions was studied. In four

dimensions, charged rotating black holes [8] and the generalized Plebanski solutions [9] were

also obtained. The neutral solutions are all conformal to Einstein metrics [8].

In the present paper, we carry out some analogous investigations in six-dimensional

conformal gravity. The situation is more complicated in six dimensions because there is no

longer a unique choice of conformal theory. In fact, there is a three-parameter family of

conformal gravities in six dimensions that have actions polynomial in the curvature and its

derivatives (see [10, 11]), described by the action I = β1 I1 + β2I2 + β3I3, where
1

I1 = CµρσνC
µαβνCα

ρσ
β ,

I2 = CµνρσC
ρσαβCαβ

µν ,

I3 = Cµρσλ

(

δµν �+ 4Rµ
ν −

6

5
Rδµν

)

Cνρσλ +∇µJ
µ ,

Jµ = 4R λρσ
µ ∇νRνλρσ + 3Rνλρσ∇µRνλρσ − 5Rνλ∇µRνλ + 1

2R∇µR

−R ν
µ ∇νR+ 2Rνλ∇νRλµ, (1.1)

and the coefficients β1, β2 and β3 are arbitrary. In general, Einstein metrics will not be

solutions of the theory, except in the special case where β1 = 4β2 = −12β3. In particular,

with this choice of parameters the theory allows Schwarzschild-AdS black holes as solutions,

and this has the advantage that at least some explicit spherically-symmetric solutions are

available for investigation.

Accordingly, we shall consider the Lagrangian

e−1Lconf = β(4I1 + I2 − 1
3I3)

= β
(

RRµνRµν − 3
25R

3 − 2RµνRρσRµρνσ −Rµν
�Rµν +

3
10R�R

)

+total derivative , (1.2)

The equations of motion of this system are given by

Eµν ≡ E(1)
µν − 3

25E
(2)
µν − 2E(3)

µν − E(4)
µν + 3

10E
(5)
µν = 0 , (1.3)

where the individual contributions E
(n)
µν coming from the variation of each term in (1.2) are

given in Appendix B.

1We use the same conventions as in [12].
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In section 2, we study the equations of motion for spherically-symmetric black hole

solutions. These can be reduced to a 5th-order ordinary differential equation for a single

undetermined metric function. As mentioned above, the Schwarzschild-AdS metric of six-

dimensional Einstein gravity is a solution, and furthermore, any conformal scaling is also a

solution. This provides us with an explicit three-parameter family of spherically-symmetric

black hole solutions, but, unlike the situation in four-dimensional conformal gravity, this

does not exhaust the space of solutions, which should be characterised by a total of five

parameters. We have not been able to construct the most general such solutions explicitly,

but we have constructed it as an infinite series expansion for the metric function, with

explicit expansion coefficients.

In section 3, we use the Noether procedure to construct a conserved charge which, when

integrated over a compact spatial surface at infinity, provides an expression for the mass

of the black hole. Only the first few terms in our series expansion for the metric function

contribute in this asymptotic formula, and so we are able to obtain an explicit expression

for the mass of the general five-parameter solution. The same conserved charge, when

integrated over the horizon, yields the expression for the product TS of the temperature

and the entropy. Furthermore, the temperature itself can be calculated via a computation

of the surface gravity. By this means, we are able to obtain explicit expressions for the

temperature and entropy of the exact three-parameter family of black holes whose expression

can be given in closed form.

In section 4, using the general methods developed by Wald [13, 14], we use the conserved

charge mentioned above to derive the first law of thermodynamics for the general five-

parameter spherically-symmetric black holes. We also derive a Smarr-type formula for

these solutions.

In section 5, we discuss extensions of the conformal gravity theory in which conformally-

invariant “matter” is added also. In particular, this can include a 2-form potential, and

also an electromagnetic field whose field strength couples quadratically to the Weyl tensor.

In section 6 we discuss various further explicit solutions of conformal gravity and these

conformal matter extensions.

In section 7, we give a general discussion of the calculation of conserved charges in

curvature-cubed theories of gravity in arbitrary dimensions, using the general conformal

methods developed by Ashtekar, Magnon and Das (AMD) [15, 16]. In section 8 we discuss

tricritical gravity in six dimensions, which was first constructed in [11].2 This is obtained

2The unitarity problem and consistent truncation of ghost-like logarithmic modes in multi-critical gravity

theories were studied in [17, 18, 19]. It was shown that at the level of the free theory, in special cases they

could admit a unitary subspace. However, as pointed out later by [20], the analysis carried out at for the

free theory is invalid at the non-linear level, and the would-be unitary subspace suffers from a linearisation
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by appending an Einstein-Hilbert term, a cosmological term, and a Weyl-squared term to

the conformal theory that we have been studying in this paper. The coefficients of the

additional terms are tuned so that the additional spin-2 modes around an AdS background,

which are generically massive, become massless. We include a discussion of consistent

boundary conditions that can be imposed in this theory. Following the conclusions in

section 9, we then include two appendices. In appendix A, we review the derivation of a

useful necessary condition [21, 22] that must be satisfied by any metric that is conformal

to an Einstein metric. This provides a valuable tool when investigating whether a given

solution in the conformal gravity might be “new,” as opposed to merely being a conformal

scaling of a previously-known Einstein metric. Finally, in appendix B, we give expressions

for the contributions to the field equations that result from the various six-derivative terms

that arise in the six-dimensional theories that we are considering.

2 Static Black Hole Solutions

We shall consider the ansatz for static solutions of the form

ds2 = −f dt2 +
dr2

f
+ r2dΩ2

4,k , (2.1)

where for k = 1, −1 or 0 the metric dΩ2
4,k describes a unit 4-sphere, hyperbolic 4-space or

the 4-torus respectively, and f is a function of r. (The metric functions in gtt and grr can be

taken to be inversely related, as we have done here, by using the conformal symmetry.) Since

we shall typically be concentrating on the k = 1 case we shall commonly refer to the metric

as being “spherically symmetric,” even when k is unspecified. Substituting the ansatz into

the equations of motion (1.3), we find that all the equations are satisfied provided that the

equation Err = 0 is satisfied. This gives rise to a 5th-order differential equation for the

function f(r). (Analogous solutions for an action using just I1 and I2 were obtained in

[23].)

It is in fact possible to exploit the conformal symmetry of the problem to obtain a

simpler parameterisation. Passing to the conformally-related metric dŝ2, and introducing a

new radial coordinate ρ and metric function h(ρ) defined by

dŝ2 = r−2ds2, ρ = 1/r, h(ρ) = r−2f(r) , (2.2)

we obtain

dŝ2 = −h(ρ) dt2 +
dρ2

h(ρ)
+ dΩ2

4,k . (2.3)

instability and is absent in the full non-linear theory. Including the ghost-like logarithmic modes seems to

be indispensable for the consistency of the theory. As a consequence, these multi-critical gravity theories

were conjectured to be the gravity duals of multi-rank logarithmic CFTs.
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Now in the new metric, the equations of motion imply simply

−216k3 + 42kh′′2 + 6h′′3 − 84kh′h(3) − 18h′h′′h(3) + 5h(h(3))2

+20h′2h(4) − 10hh′′h(4) + 10hh′h(5) = 0, (2.4)

where a prime means a derivative with respect to ρ, and h(n) denotes the n’th derivative of

h.

If Eqn. (2.4) is differentiated once more, it yields a rather simple 6th order equation3

10hh(6) + 30h′h(5) + 12h′′h(4) − 13(h(3))2 − 84kh(4) = 0 . (2.5)

Using on Eqs.(2.4) and (2.5), we can obtain the general spherically-symmetric solution

as a series expansion of the form

h(ρ) =
∑

n≥0

bn
n!

ρn , (2.6)

where {b0, b1, b2, b3, b4} are free parameters, while b5 and bn, (n ≥ 6) are determined by

6b32 − 18b1b2b3 + 5b0b
2
3 + 42kb22 − 84kb1b4 − 216k3 + 20b21b4 − 10b0b2b4 + 10b0b1b5 = 0,

10b0b2n +

n−1
∑

m=1

α(2n,m)bmb2n−m + β(2n, n)b2n − 84kb2n−2 = 0, n ≥ 3,

10b0b2n+1 +

n
∑

m=1

α(2n + 1,m)bmb2n+1−m − 84kb2n−1 = 0 , n ≥ 3, (2.7)

with the coefficients α(n,m) and β(2n, n) given by

α(n,m) = 2Cm−6
n−6 + 30Cm−5

n−6 + 12Cm−4
n−6 − 26Cm−3

n−6 + 12Cm−2
n−6 + 30Cm−1

n−6 + 10Cm
n−6 ,

β(2n, n) = 10Cn
2n−6 + 30Cn−1

2n−6 + 12Cn−2
2n−6 − 13Cn−3

2n−6 . (2.8)

Here Ck
n = n!/(k! (n−k)!) is the binomial coefficient, and it is understood that the factorial

of a negative integer is infinity. The first equation in (2.7) relating b0 to b5 is obtained by

substituting Eq.(2.6) into Eq.(2.4) and setting ρ to zero. Similarly, the second (and third)

equation in Eq.(2.7) is obtained by inserting Eq.(2.6) into the (2n − 6)’th (or (2n − 5)’th)

derivative of Eq.(2.5) and choosing ρ = 0. Contained within the five-parameter general

solution Eq.(2.6) are black hole solutions.

In terms of the previous spherically-symmetric ansatz Eq.(2.1), the five-parameter so-

lution takes the form

a(r) = f(r) = r2
(

a0 +
a1
r

+
a2
r2

+
a3
r3

+
a4
r4

+
a5
r5

+
∑

n≥6

an
rn

)

. (2.9)

3In the case of four-dimensional conformal gravity, the analogous equation that results from differentiating

the 3rd-order equation for h is simply h
(4) = 0, showing that the general spherically-symmetric static solution

of four-dimensional conformal gravity is given by a third-order polynomial.
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Here we use parameters an = bn/n! for later convenience.

We find that there exists a three-parameter subset of solutions that corresponds to a

finite truncation of the five-parameter general solutions. In terms of the usual parametriza-

tion Eq.(2.1), it is given by

f = r2
(

a0 +
a1
r

+
a2
r2

+
a3
r3

+
a4
r4

+
a5
r5

)

, (2.10)

where

a1 =
a4(a

3
4 + 50ka25)

125a35
, a2 = k +

2a34
25a25

, a3 =
2a24
5a5

, an = 0 for n ≥ 6 . (2.11)

In fact this three-parameter subset of the general solutions admits of a very simple

interpretation. As we already noted, any solution of the Einstein equations is also a solution

of the specific conformally-invariant theory we are considering here. Furthermore, any

conformal scaling of an Einstein metric will also be a solution. The solutions given by

(2.10) and (2.11) are in fact precisely the family of conformal scalings of the Schwarzschild-

AdS metric that can be cast within the form of the ansatz (2.1). To see this, we start from

the Schwarzschild-AdS metric in the standard form

ds2SAdS = −
(

k + y2/L2 − m

y3

)

dt2 +
(

k + y2/L2 − m

y3

)−1
dy2 + y2 dΩ2

4,k , (2.12)

which satisfies Rµν = −5L2 gµν . The metrics (2.1) with f given by (2.10) and (2.11) are

conformally related, with ds2SAdS = Ω2 ds2, where

Ω2 =
1

(cr + 1)2
, y =

r

1 + cr
,

a0 = c2k +
1

L2
− c5m, a1 = 2ck − 5c4m, a2 = k − 10c3m,

a3 = −10c2m, a4 = −5cm, a5 = −m. (2.13)

The “thermalized vacuum” corresponds to solutions with µ = 0 (see [6] for the analogous

discussion in four-dimensional conformal gravity). The thermodynamic quantities for the

Schwarzschild-AdS black hole in six-dimensional conformal gravity are given by

E = −96β
m

L4
, T =

5m− 2ky3+
4πy4+

, S = −96πβ(
y4+
L4

− k) . (2.14)

These quantities satisfy the first law of thermodynamics

dE = TdS . (2.15)

2.1 Spherically-symmetric solutions that are not conformally Einstein

In [6], it was shown that the general spherically-symmetric solution of four-dimensional

conformal gravity is conformal to the Schwarzschild-AdS (dS) metric. By contrast, we find
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that the general five-parameter solutions given in Eq.(2.6) are not conformal to any Einstein

metric. To see this, let us suppose that e2φdŝ2 was in fact an Einstein metric. By using

the necessary condition for a metric to be conformally Einstein in six dimensions [22] (see

Appendix A), we find φ must be a function of ρ and that

φ′ =
h′′′

3(2k − h′′)
. (2.16)

Combining this equality with the requirement that e2φdŝ2 be an Einstein metric implies

that h should satisfy

3h′′h(4) − 2(h(3))2 − 6kh(4) = 0 , (2.17)

which then implies that h is a certain 5th-order polynomial in ρ. Substituting back into

the equations of motion for conformal gravity then leads us back to the closed-form three-

parameter solution given by (2.10) and (2.11). Thus, we have proved that the general

spherically-symmetric solution of six-dimensional conformal gravity is not conformally Ein-

stein.

3 Energy of AdS Black Holes in D=6 Conformal Gravity

To calculate the energy of the black hole solutions in Eq.(2.6), we start from the conformally

invariant Lagrangian in Eq.(1.2), and derive the Noether charge associated with the Killing

vector ξµ. We consider the variation of Lagrangian 6-form induced by ξµ,

LξL = EαβLξgαβ + dΘ(gαβ ,Lξgαβ) , (3.1)

where Eαβ represents the equations of motion. When Eαβ = 0 is satisfied, then using the

identity

Lξ = diξ + iξd, (3.2)

for the Lie derivative of a differential form, we find a conserved current defined by

J = Θ− iξL, dJ = 0 ⇒ J = dQ[ξ]. (3.3)

Explicitly, in six-dimensional conformal gravity, the conserved charge is a 4-form

Q[ξ] =
1

2!4!

∫

ǫαβµνλρQ
αβdxµ ∧ dxν ∧ dxλ ∧ dxρ , (3.4)

which consists of two parts, Qαβ
1 +Qαβ

2 . Qαβ
1 and Qαβ

2 depend on ∇µξν and ξµ respectively:

Qαβ
1 = Xαβµν∇µξν ,

Xαβµν = −β

(

24C
[α |ν|
λ ρC

β]λµρ − 6C
[α
λρσg

β][νCµ]λρσ +
3

5
Cλρ

σδC
σδ
λρg

α[µgν]β
)
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−β

(

6Cαβ
λρC

λρµν − 2C
[α
λρσg

β][νCµ]λρσ +
1

5
Cλρ

σδC
σδ
λρg

α[µgν]β
)

+2
3β

(

2�Cαβµν + 4C
[α
λρσg

β][νCµ]λρσ +Rλ[αC
β]µν

λ +Rλ[µC
ν]αβ

λ

−RλρC
α [µ

λ ρ gν]β +RλρC
β [µ

λ ρ gν]α
)

− 2
5β

(

4RCαβµν + Cλρ
σδC

σδ
λρg

α[µgν]β
)

;

Qαβ
2 = ξν∇µX

αβµν + 2
3βξ

[αJβ] − 2
3β

(

2ξλC [β
νρσ∇α]R νρσ

λ − 2ξλC [α
νρσ∇λR

β]νρσ

−2ξλC
λνρσ∇[αRβ]

νρσ − 2ξλRλνρσ∇[αCβ]νρσ + 2ξλ∇λC
[α
νρσR

β]νρσ

+2ξλ∇[αCλνρσR
β]νρσ − Cλρσδξ[α∇β]Cλρσδ

)

. (3.5)

When evaluated at infinity, Q[ξ] gives the mass of black hole solutions in Eq.(2.6)

E = βV (Ωk)

(

96a20a5−12
25(17k

2a1−14ka1a2−3a1a
2
2+54ka0a3+5a21a3+46a0a2a3−60a0a1a4)

)

,

(3.6)

after using the on-shell relations among the ais. It should be emphasised that this expression

for the mass is valid for the full five-parameter family of solutions.

When evaluated on the horizon, Q[ξ] is equal to TS. Since ∇µξν = κǫµν , where κ is

the surface gravity on the horizon, ǫµν is the bi-normal vector horizon normalized to satisfy

ǫµνǫ
µν = −2 and the Killing vector ξ vanishes on the horizon, it follows that the entropy

formula can be simplified to give

S = π

∫

H
XαβµνǫαβǫµνdΣ , (3.7)

where Xαβµν is defined in the first line of Eq.(3.5). Explicit calculation for the three-

parameter closed-form solutions (2.10) and (2.11) leads to

S = −β96πV (Ωk)(5a5 + a4r+)
3(125a35 + 15a24a5r

2
+ + a34r

3
+ + 75a4a

2
5r+ + 250a25r

3
+)

15625a45r
6
+

, (3.8)

where r+ is the largest positive root of f(r) = 0, i.e. it is the radius of outer horizon. The

temperature is given by

T = −(5a5 + a4r+)(125a
3
5 + 75a4a

2
5r+ + 15a24a5r

2
+ + a34r

3
+ + 50a25r

3
+)

500πa35r
4
+

. (3.9)

By using the parameter relations in Eq.(2.13), it can be shown that the entropy and temper-

ature of the three-parameter black holes in six-dimensional conformal gravity are equal to

those of the conformally-related Schwarzschild-AdS black hole. In other words, the entropy

and temperature are conformal invariants, as is also the case in four dimensions [6].4 This

4It should be emphasised that the expression for the mass of the black holes, given by (3.6), is valid

for the general five-parameter solutions, since it is evaluated on a surface at infinity where only the leading

orders in the radial fall-off contribute. By contrast, the entropy (3.8) and temperature (3.9) are evaluated

on the horizon, and so without having closed-form expressions for the general solutions, these can only be

evaluated explicitly for the three-parameter closed-form truncation.
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is related to the fact that conformal factor Ω2 in (2.13) is regular on the horizon and the

near-horizon geometry is preserved. By contrast, the asymptotic region of the Schwarzschild

black hole is altered by the conformal transformation and hence the Schwarzschild black

hole energy in (2.14) becomes (3.6). It follows that the first law of thermodynamics (2.15) of

the Schwarzschild black hole no longer applies. The three-parameter black hole is a globally

distinct spacetime even though it is locally conformal to the Schwarzschild black hole. We

shall derive the first law of thermodynamics in the next section.

If we define the Helmholtz energy to be F = −TIE, where IE is the Euclidean action,

then we find that

F = E − TS. (3.10)

A simple way to see this is to calculate the Euclidean action of the conformally-related

Schwarzschild-AdS metric with y ∈ [y+, 1/c] (see Eq.(2.13)). In general, to obtain a finite

action, certain counterterms are needed. However, because of the conformality of the action

of conformal gravity, it turns out that without the addition of counterterms, the on-shell ac-

tion for the asymptotically AdS solutions discussed in this paper is finite. This phenomenon

has been observed previously in [5, 6, 11].

4 Black Hole Thermodynamics

In the previous section, we derived the conserved quantities in six-dimensional conformal

gravity by the Noether method. The expressions for the entropy and temperature of the

general spherical solution are given by

T = −h′(ρ+)

4π
, S =

4πβV (Ωk)

25

(

204− 84h′′(ρ+)− 9h′′(ρ+)
2 +10h′(ρ+)h

(3)(ρ+)
)

. (4.1)

From Eq.(3.3), one can see that

dQ = −iξL. (4.2)

Evaluating this equation in the region bounded by horizon and infinity just gives

F = E − TS. (4.3)

To study the first law of thermodynamics, we follow the construction of [13, 14]. We do this

by considering the difference between J [ξ, gαβ + δgαβ ] and J [ξ, gαβ ], where gαβ + δgαβ also

solves the equation of motion, in other words, where δgαβ satisfies the linearized equations

of motion. We have

δJ = LξΘ− iξδL. (4.4)

Utilizing the identity in Eq.(3.2) and the on-shell condition dΘ = δL, we find

d
(

δQ− iξΘ(gαβ , δgαβ)
)

= 0 , (4.5)
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where the definition of δ has been given in previous section. Evaluating this equation in

the region bounded by the horizon and infinity leads to the first law of thermodynamics

dE = TdS −
∫

∞
Θ(gαβ , δgαβ). (4.6)

In the context of conformal gravity, the cosmological constant a0 is a parameter of the

solution, rather than of the theory, and hence we may treat a0 as a further thermodynamic

variable. Treating the cosmological constant as a thermodynamic variable has been consid-

ered previously. See, for example, [24, 25, 6, 26]. Specific to the six-dimensional conformal

gravity, by calculating the second term in the above equation, we obtain for the general

five-parameter solutions

dE = TdS +Ψ0 da0 +Ψ1da1 +Ψ2da2 +Ψ3da3 , (4.7)

where

Ψ0 =
24βV (Ωk)

25

(

50a0a5 + 20a1a4 − 19a2a3 − 6ka3

)

,

Ψ1 =
12βV (Ωk)

25

(

3a22 + 14ka2 − 17k2 − 5a1a3 − 20a0a4

)

,

Ψ2 = −48βV (Ωk)

5
a0a3, Ψ3 = −72βV (Ωk)

5
a0

(

a2 − k
)

. (4.8)

These quantities satisfy the Smarr-like formula

E = 2Ψ0a0 +Ψ1a1 −Ψ3a3 , (4.9)

which coincides with the result from dimensional analysis. Since the solution is asymptoti-

cally AdS, a0 plays the role of a cosmological constant, with Ψ0 being its conjugate variable.

As was discussed in [6], in Einstein gravity, where the entropy is simply one quarter of the

horizon area, without explicit dependence on the cosmological constant, Ψ0 has the inter-

pretation of being the volume of the black hole. In conformal gravity, on the other hand,

the entropy has a manifest dependence on the cosmological constant, and hence Ψ0 is not

simply proportional to the volume. a1, a2 and a3 are the extra integration constants of

the fifth-order equations of six-dimensional conformal gravity, as compared with the second

order-equations in Einstein gravity. The extra canonical-conjugate pairs (Ψ1, a1), (Ψ2, a2)

and (Ψ3, a3) can be interpreted as “massive spin-2 hair,” because the spectrum of six-

dimensional conformal gravity contains in addition to the massless graviton, two massive

gravitons (strictly speaking, one of them is partially massless).

It is straightforward to verify that the explicit three-parameter black holes given by

(2.10) and (2.11) indeed satisfy the first law (4.7) and Smarr relation (4.9). It should be

emphasised, however, that the more general five-parameter solutions, which we are only able

to present as infinite series expansions, will also satisfy the first law and Smarr relation.
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5 Coupling to Conformal Matter

In four dimensions, Maxwell theory is conformally invariant, and so is the enlarged system

when it is coupled to conformal gravity. Charged black hole solutions in this theory can be

used for studying some strongly coupled fermionic systems, such as non-Fermi liquids. In

particular, the charged massless Dirac equation can be solved exactly for a generic frequency

ω and wave number k. Using this, an explicit expression for the Green function G(ω, k)

was obtained for general ω and k in Ref. [27, 28]. By contrast, such a Green function in the

Reissner-Nordstrøm black hole geometry can only be obtained explicitly for small ω, and

in the extremal or near-extremal limit [29, 30].

The analogous conformal “matter” in six dimensions is described by a 2-form potential

B whose field strength is H = dB. It is also possible to write down a conformally-invariant

coupling of a vector potential A coupled quadratically to the Weyl tensor through its field

strength F = dA. Slightly more generally, we may consider the a conformally-invariant

matter Lagrangian of the form

Lmat =
√−g

(

γ CµνρσFµνFρσ − 1
12H

2
)

+ σB ∧ F ∧ F , (5.1)

where the 3-form field strength is now given by

H = dB + σA ∧ F , (5.2)

with σ being a constant. The Bianchi identity and the equation of motion for H are given

by

dH = σF ∧ F = d∗H . (5.3)

It follows that it is consistent to impose the self-duality condition H = ∗H . Note that the

Maxwell field A can be replaced, more generally, by a Yang-Mills field without breaking the

conformal symmetry. The rich structure of conformal matter suggests that there should be a

variety of applications of six-dimensional conformal gravity in the AdS/CFT correspondence

6 Further Solutions

In this section, we present various further solutions of conformal gravity and of the conformal

theories with additional fields that we discussed in the previous section. Specifically, section

6.1 contains solutions of the pure conformal gravity theory, section 6.2 contains solutions of

the conformal theory including a Maxwell field, and sections 6.3 contains solutions in the

conformal theory with instead a 2-form potential.

12



6.1 Neutral solutions

Lifshitz Black Holes:

There are Lifshitz vacuum solutions in the theory described by (1.2), given by

ds2 = −r2z(1 +
1

r2
)dt2 +

σdr2

r2
(1 +

1

r2
)−1 + r2dΩ2

4 , (6.1)

with z = 0 or z = 8
3 :

z = 0 : σ = 4 ,

z =
8

3
: σ =

4

9
. (6.2)

We can find explicit black hole solutions that are asymptotic to these Lifshitz geometries,

and that are conformally related to the Schwarzschild-AdS solution. For z = 8
3 , we find the

black hole solution

ds2 = −r16/3 fdt2 +
4dr2

9r2f
+ r2dΩ2

4,k , (6.3)

where

f = r−10/3
[

− 1
5Λc

2 + k(r2/3 + a)2 −mc−3(r2/3 + a)5
]

. (6.4)

It is conformally related to the Schwarzschild-AdS metric

dŝ2 = −c2(k − m

ρ3
− 1

5Λρ
2)dt2 +

dρ2

(1− m
ρ3

− 1
5Λρ

2)
+ ρ2dΩ2

4 , (6.5)

by ds2 = Ω−2 dŝ2 with ρ = Ωr and

Ω =
c

r5/3 + ar
. (6.6)

For the case z = 0, we find the black hole solution

ds2 = −fdt2 +
4dr2

r2f
+ r2dΩ2

4,k , (6.7)

where

f = r2
[

− 1
5Λc

2 + k(r−2 + a)2 −mc−3(r−2 + a)5
]

. (6.8)

It is conformally related to the Schwarzschild-AdS metric (6.5) by ds2 = Ω−2 dŝ2 with

ρ = Ωr and

Ω =
c

r−1 + ar
. (6.9)

String solution:

ds2 = f(r)(−dt2 + dx2) + f(r)−1(dr2 + r2dΩ2
3),

f =
(

1− m

r2

)−
1
2+

√

3
2
(

1 +
m

r2

)−
1
2−

√

3
2
. (6.10)

This solution has a power-law singularity at r =
√
m.
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6.2 Charged black hole

The neutral spherically-symmetric black hole solutions (2.6) can be generalised by turning

on the vector field A that enters the Lagrangian (5.1). We may consider the black hole

ansatz

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

4,k , A = φdt , (6.11)

where f and φ are functions of r only. Letting ρ = 1/r and h(ρ) = r−2f(r), we find that

the function φ satisfies

φ′(ρ) =
q

h′′(ρ)
, (6.12)

where a derivative is with respect to ρ. The function h then satisfies

β
(

10hh(6) + 30h′h(5) + 12h′′h(4) − 13(h(3))2 − 84kh(4)
)

= 15γ(φ′′2 + φ′φ′′′) . (6.13)

The general solution that is asymptotic to AdS takes the form

f = r2
(

c0 +
c1
r

+
c2
r2

+
c3
r3

+
c4
r4

+
c5
r5

+
∑

i=6

ci
ri

)

, (6.14)

and the coefficients ci with i ≥ 6 can be expressed in terms of the ci with i = 0, 1, · · · , 5, in
a manner analogous to the way the bi coefficients in (2.6) were solved in the neutral case.

We have found two special solutions:

Solution 1: We find a truncated solution

ds2 = −(c0r
2 + c1r + c2)dt

2 +
dr2

c0r2 + c1r + c2
+ r2dΩ2

4,k , A =
q

2c2 r
dt . (6.15)

This solution is analogous to the four-dimensional “BPS” black hole obtained in [32]. In

particular, when the ci are chosen such that (−gtt) is a perfect square, the metric has an

AdS2 factor in the near-horizon geometry, as in the four-dimensional example.

Solution 2: If β = 0, we find that the equations can be solved exactly, giving

a = a0(1 +
Q

r
)3/2 , f = r2

(

d0 +
d1
r

+ d̃0a
)

. (6.16)

6.3 Black dyonic string solutions

We consider the Lagrangian density of six-dimensional conformal gravity coupled to a 2-form

potential:

e−1L = β(4I1 + I2 − 1
3I3)− 1

12HµνλH
µνλ . (6.17)

The associated equations of motion are

0 = β(E(1)
µν − 3

25E
(2)
µν − 2E3

µν − E(4)
µν + 3

10E
(5)
µν )− 1

4(H
λρ

µ Hνλρ − 1
6gµνHλρσH

λρσ). (6.18)
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6.3.1 Type I

ds2 = −f(r)dt2 + r2dx2 + f(r)−1dr2 + r2dΩ2
3,k,

H(3) = Qr−2dt ∧ dx ∧ dr + PΩ(3,k). (6.19)

The solution is given by

f = r2
(

a0 +
a1
r

+
a2
r2

+
a3
r3

+
a4
r4

+
a5
r5

)

, (6.20)

where a0 and a1 can take arbitrary values, a3 = a4 = a5 = 0 and

24β

25
(2a2 − k)(a2 +2k)2 − (P 2 +Q2) = 0,

24β

25
(a2 +2k)(4a22 − a2k+2k2)+ (P 2 +Q2) = 0.

(6.21)

The above two equations lead to

a2 + 2k = 0, (P 2 +Q2) = 0,

3a2 + k = 0, 40β
9 k3 + (P 2 +Q2) = 0,

a2 = 0, 96β
25 k3 + (P 2 +Q2) = 0. (6.22)

Among these solutions, we find that the first one, with vanishing flux, is actually conformally

Einstein. Explicitly,

dŝ2 = Ω2ds2, Ω2 = r−2sech2
√
k(x− c)√

2
R̂µν =

5k

2
ĝµν . (6.23)

The conformal metric describes a static soliton located at x = c, when k > 0.

6.3.2 Type II

ds2 =
1

H(r)
(−f(r)dt2 + dx2) +H(r)(f(r)−1dr2 + r2dΩ2

3,k),

H(3) = QH(r)−2r−3dt ∧ dx ∧ dr + PΩ(3,k). (6.24)

One class of solution is found to be

H(r) = 1, f(r) = a0r
2 + a2,

96β

25
(a2 − k)2(a2 + k) + (P 2 +Q2) = 0. (6.25)

6.3.3 Other ansätze

We may consider the following ansatz [31]:

ds2 = f(r)(−dt2 + dx2) + f(r)−1(dr2 + r2dΩ2
3),

H(3) = Qf2r−3dt ∧ dx ∧ dr + PΩ(3) , (6.26)
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where Ω(3) is the volume form of the unit S3. Adopting the above ansatz, the equations of

motion for the 2-form potential are satisfied automatically. Before presenting the equation

following from the metric variations, it is useful to make the field redefinitions and coordinate

transformation

r = eρ , f(r) = eh(ρ)+ρ , ḣ(ρ) = W (ρ) , (6.27)

where a dot denotes a derivative with respect to ρ. In terms of W (ρ) we find

0 = 8− 8W 2 − 8W 4 + 8W 6 − 24W 2Ẇ − 136W 4Ẇ + 6Ẇ 2 + 14W 2Ẇ 2 − 16Ẇ 3 − 12WẄ

−28W 3Ẅ + 48WẆẄ + 5Ẅ 2 + 40W 2 ...
W − 10Ẇ

...
W + 10W

....
W +

25

12β
(P 2 +Q2) .(6.28)

A class of solutions of this equation is given by

f(r) = ra, 96
25β(a− 2)2a2(a2 − 2a+ 2) + (P 2 +Q2) = 0 . (6.29)

For this solution to be real β must be negative, coinciding with condition under which

the energy and entropy of the AdS black holes are positive. Especially, when a = 2, the

solutions is AdS3 × S3 with vanishing string charges. By a conformal scaling, the solutions

can be mapped to

dŝ2 = r−2ads2 = (−dt2 + dx2) + dρ2 + (a− 1)2ρ2dΩ2
3 . (6.30)

This has a conical singularity at the origin of the transverse space of the string.

To obtain AdS3 × S3 solutions with non-trivial flux, we reparametrize the metric and

H(3) as

ds2 = r2(−dt2 + dx2) + r−2dr2 + a2dΩ2
3,

H(3) = Qf2r−3dt ∧ dx ∧ dr + Pa3Ω(3) . (6.31)

The equations of motion are solved provided that

96
25β(a

2 − 1)2(a2 + 1) + a6(P 2 +Q2) = 0 . (6.32)

The theory also admits AdS3 × S̃3 as a solution, where S̃3 is a squashed 3-sphere. The

AdS3 × S̃3 metric is given by

ds2 = r2(−dt2 + dx2) + r−2dr2 + a2σ2
3 + (σ2

1 + σ2
2) . (6.33)

If we choose the vielbeins to be

e0 = rdt, e1 = rdx , e2 = r−1dr , e3 = aσ3 , e4 = σ2 , e5 = σ1 , (6.34)

and H(3) to be given by

H(3) = Qe0 ∧ e1 ∧ e2 + Pe3 ∧ e4 ∧ e5 , (6.35)

then we obtain a solution when

96
25β(a

2 − 1)(41 − 63a2) + (P 2 +Q2) = 0 . (6.36)
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7 AMD Charge for General Cubic Curvature Theories

In this section we apply the conformal methods developed by Ashtekar, Magnon and Das

(AMD) [15, 16] for calculating conserved charges in asymptotically AdS backgrounds to the

case of cubic-curvature theories in arbitrary dimensions. The AMD conserved quantities are

extracted from the leading fall-off of the electric part of the Weyl tensor. The fall-off rate

of the curvature is weighted by a smooth function Ω, with the conformal boundary I being

defined at Ω = 0. For further details about the conditions on the choice of Ω,the reader is

referred to Refs. [15, 16]; here we only mention some necessary points. For a d-dimensional

asymptotically AdS spacetime (d ≥ 4), on the boundary I we require

ĝµν = Ω2gµν , (7.1)

At Ω = 0, n̂µ = ∂µΩ 6= 0, (7.2)

n̂µn̂
µ =

1

ℓ2
, ∇̂µn̂ν = 0 . (7.3)

Since I is defined to be at Ω = 0, it follows that nµ is normal vector on the boundary I.
Near the boundary,

Rµνλρ → − 1

ℓ2
(gµλgνρ − gµρgνλ), (7.4)

Tµν → Ωd−2τµν , (7.5)

Cµνλρ → Ωd−5Kµνλρ , (7.6)

where gµν is the physical metric, the hatted quantities are referred to the conformal metric

ĝµν , and Tµν is the energy momentum tensor. As first noticed in [33], the condition (7.4)

is required in higher-curvature theories in order to ensure that the metric that satisfies

the equations of motion is indeed asymptotically AdS. (In Einstein gravity, by contrast, as

discussed in [15, 16], Eq. (7.4) is implied by the Einstein equations together with Eqs. (7.5)

and (7.6).)

For any theory of gravity with the equations

Eµν = 8πG(d)Tµν , (7.7)

one can show that

Ω−(d−3)(∇[λPµ]ν)n̂
λn̂νξµ =

d− 2

2ℓ2
8πG(d)τµν n̂

νξµ +O(Ω) , (7.8)

where

Pµν ≡ Eµν − 1
d−1gµνEλρg

λρ . (7.9)

In general, the leading fall-off of (∇[λPµ]ν)n̂
λn̂νξµ is of the order Ωd−3, and can be expressed

as − (d−2)
2(d−3)Ξ∇̂ρ(Kλµνρn̂

λn̂νξµ)Ωd−3. The conserved quantity associated to the Killing vector
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ξµ can be defined, when τµν vanishes on the boundary, as

Qξ[C] = − ℓΞ

8πG(d)(d− 3)

∫

C
dŜm

(d−2)Êmnξ
n , Êmn ≡ ℓ2Kλmρnn̂

λn̂ρ , (7.10)

where the indices m and n label the coordinates on the (d − 1)-dimensional boundary I,
since the electric part of the Weyl tensor, Êmn, has no components in the normal direction.

C is a (d− 2) dimensional spherical cross-section on I.
Consider the Lagrangian for the general class of cubic-curvature theories of the form

16πG(d)e
−1L = −2Λ +R+ α1LGB + α2R

2 + α3RµνR
µν + β1RRµνR

µν + β2R
3

+β3RµλνρR
µνRλρ + β4Rµν�Rµν + β5R�R+ β6R

ν
µ R λ

ν R µ
λ

+β7RµνR
µλρσRν

λρσ + β8RRµνλρRµνλρ + β9R
µν
λρR

λρ
σδR

σδ
µν

+β10R
µ ν
λ ρR

λ ρ
σ δR

σ δ
µ ν . (7.11)

The AMD formula for quadratic-curvature theories has been obtained in [34]. By repeating

the procedure (the corrections to the equations of motion from cubic curvature terms are

presented in Appendix), we can obtain the contributions from the cubic-curvature terms

to the AMD charges. In the general cubic-curvature theories Eq.(7.11), the AMD charges

take the same form as in Eq.(7.10), with the coefficient of proportionality Ξ given by

Ξ = 1 +R0

[

2α1
(d− 3)(d − 4)

d(d − 1)
+ 2α2 +

2α3

d

]

+R2
0

[

3β1
d

+ 3β2 +
3β3
d2

+
3β6
d2

+β7
2(9 − 2d)

d2(d− 1)
+ β8

2(9 − 2d)

d(d− 1)
+ β9

12(7 − 2d)

d2(d− 1)2
+ β10

3(3d− 8)

d2(d− 1)2

]

,

R0 = −d(d− 1)

ℓ2
. (7.12)

We notice that the terms Rµν�Rµν and R�R do not contribute to the charge, for solutions

whose asymptotic behavior obeys Eqs.(7.4) and (7.6).

As a check of the above formula, we can calculate the charge for the case of the six-

dimensional Euler density

E6 =
1
8ǫµ1ν1µ2ν2µ3ν3ǫ

ρ1σ1ρ2σ2ρ3σ3Rµ1ν1
ρ1σ1R

µ2ν2
ρ2σ2R

µ3ν3
ρ3σ3 . (7.13)

In terms of the quantities in Eq.(7.11), the Euler density E6 corresponds to the combination

of cubic-curvature terms with coefficients

β1 = −12, β2 = 1, β3 = 24, β4 = 0, β5 = 0,

β6 = 16, β7 = −24, β8 = 3, β9 = 4, β10 = −8 . (7.14)

Inserting these coefficients into Eq.(7.12), we find that the coefficient Ξ for E6 is given by

ΞE6 = R2
0
24(d − 3)(d − 4)(d − 5)(d − 6)

d2(d− 1)2
, (7.15)
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which indeed vanishes for d = 6 as expected.

The AMD formula for general cubic-curvature theories can also be used for finding the

criticality condition and computing the conserved quantities in quasi-topological gravity

[35, 36]. The d-dimensional quasi-topological gravity is defined by the action

I =
1

16πGd

∫

ddx

(

(d− 1)(d− 2)

L2
+R+

λL2

(d− 3)(d − 4)
X4

− 8(2d − 3)

(d− 6)(d− 3)(3d2 − 15d+ 16)
µL4ZD

)

, (7.16)

where X4 is the Gauss-Bonnet combination and ZD is the quasi-topological combination

consisting of cubic-curvature terms with

β1 =
−3(3d − 4)

2(2d− 3)(d − 4)
, β2 =

3d

8(2d − 3)(d− 4)
, β3 =

3d

(2d − 3)(d− 4))
, β4 = 0,

β5 = 0, β6 =
6(d− 2)

(2d − 3)(d− 4)
, β7 = − 3(d − 2)

(2d− 3)(d − 4)
, β8 =

3(3d − 8)

8(2d − 3)(d− 4)
,

β9 = 0, β10 = 1 . (7.17)

This theory has as a solution the asymptotically AdS metric

ds2 = −(k +
r2

L2
f)dt2 +

dr2

k + r2

L2 f
+ r2dΩ2

k , (7.18)

where f(r) satisfies the cubic equation

(1 − ωd−1

rd−1
)− f + λf2 + µf3 = 0 . (7.19)

To compute the mass of these black holes using the AMD formula Eq.(7.12), we choose

Ω = 1/r. We then find that

CtΩtΩ → −1
2(d− 2)(d − 3)Ωd−5 ωd−1

L2(1− 2λf∞ − 3µf2
∞)

Ξ = 1− 2λf∞ − 3µf2
∞ , (7.20)

where f∞ denotes the asymptotic value of f(r) as r tends to infinity. Therefore Eq.(7.10)

gives the mass of the black holes in quasi-topological gravity as

M =
(d− 2)ωd−1V (Ωk)

16πG(d)L2
. (7.21)

The temperature and entropy (using Wald’s formula) are [36]

T =
(d− 1)

4π

( ωd−1r6−d
+

L2(r4+ + 2λkL2r2+ − 3µk2L4)
− 2k

(d− 1)r+

)

,

S =
V (Ωk)

4G(d)

(

rd−2
+ + 2(d−2)

d−4 λkL2rd−4
+ − 3(d−2)

d−6 µk2L4rd−6
+

)

. (7.22)

It is straightforward to check that the first law of thermodynamics holds in this case.
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8 Tricritical Gravity in Six Dimensions

“Critical gravity” is the name given to higher-derivative theories of gravity that admit AdS

backgrounds, and which generically describe massive as well as massless spin-2 modes, in

the special case where the parameters of the theory are tuned such that the massive spin-2

modes become massless. One example is the chiral point in three-dimensional topologically-

massive gravity, discussed in [2], and another is the four-dimensional critical theory discussed

in [4], where a Weyl-squared term with an appropriately tuned coefficient is added to

cosmological Einstein gravity. In that case, with a fourth-order Lagrangian, there is one

massive spin-2 excitation in addition to the usual massless spin-2. In theories of the kind we

are considering in this paper, with sixth-order Lagrangians, there are in general two massive

spin-2 excitations in addition to the massless spin-2, and so the possibility of tuning the

parameters so that all three are massless arises. This is known as tricritical gravity.

8.1 The theory

In six dimensions, one tricritical gravity model has been constructed in which the scalar

modes do not propagate [11]. The Lagrangian for this theory is given by

16πG(6)σ
−1e−1L6 = −2Λ +R+ 1

2αC
µνλρCµνλρ − Lconf , (8.1)

where Lconf is defined in Eq.(1.2) and σ is the overall sign. In the AdS6 background, the

spin-2 modes satisfy

−(�+ 2)

(

1 + 3
2α(� + 6) + β(�+ 6)(� + 8)

)

hµν = 0 . (8.2)

The tricriticality condition is achieved when

α = − 5

12
, β =

1

16
, (8.3)

where the AdS “radius” has been set to 1.

Another tricritical model has the Lagrangian

16πG(6)σ
−1e−1L6 = −2Λ +R+ 1

4α(R
µνRµν − 3

10R
2)− Lconf . (8.4)

This also admits all Einstein metrics as solutions. The spin-2 modes in this case satisfy

−(�+ 2)

(

1 + 1
4α(� + 10) + β(� + 6)(� + 8)

)

hµν = 0 , (8.5)

and the tricriticality condition is achieved when

α = −5

7
, β =

1

56
. (8.6)

In both models, at the tricritical point the spin-2 modes satisfy

−(�+ 2)3hµν = 0 . (8.7)

Massless, massive and log modes of the spin-2 field hµν in AdS6 were obtained in [37].
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8.2 Consistent boundary conditions in tricritical gravity

Our starting point is the AdS6 metric coordinatized as

ds2 = ℓ2
(

− cosh2 ρdt2 + dρ2+sinh2 ρ(dθ21 +sin2 θ1(dθ
2
2 +sin2 θ2dφ

2
1 +cos2 θ2dφ

2
2))

)

. (8.8)

Near the AdS6 boundary, the solutions to Eq.(8.7) [37] have the fall off behavior

h55 = O(ρ2e−7ρ) , h5i = O(ρ2e−5ρ) , hij = O(ρ2e−3ρ) , (8.9)

where xi = {t, θ1, θ2, φ1, φ2} for 0 ≤ i ≤ 4 and x5 = ρ. This implies that near the AdS6

boundary, the Weyl tensor has the asymptotic behavior

Cµνλρ → Ω

(

log2 Ω Jµνλρ + log ΩLµνλρ +Kµνλρ

)

, (8.10)

where Ω approaches e−2ρ near the boundary. In this case, we find that for the two tricritical

models, (∇[λPµ]ν)n̂
λn̂νξµ remains of order Ω, and therefore one can obtain finite AMD

charges for these two models.

Explicitly, for the first tricritical model, the AMD charge at the tricritical point is given

by

Qξ[C]1 = − 25ℓσ

192πG(6)

∫

C
dŜm

4 Êmnξ
n, Êmn ≡ ℓ2Jλmρnn̂

λn̂ρ . (8.11)

Similarly, for the second tricritical model, the AMD charge at the tricritical point is

given by

Qξ[C]2 = − 25ℓσ

672πG(6)

∫

C
dŜm

4 Êmnξ
n, Êmn ≡ ℓ2Jλmρnn̂

λn̂ρ . (8.12)

Asymptotic Killing vectors should be compatible with the boundary conditions (8.9),,

implying that they should obey

Lξ g55 = O(ρ2e−7ρ) , Lξ g5i = O(ρ2e−5ρ) , Lξ gij = O(ρ2e−3ρ) . (8.13)

Vector fields ξ satisfying these equations (modulo “trivial” diffeomorphisms) generate the

asymptotic symmetry group. We denote the Killing vector fields by Uµ
ab (a, b = 1, . . . , 7).

Since in the coordinate system used in Eq.(8.8), these obey Uµ
ab = O(1), we find that the

asymptotic Killing vector fields can only differ from the Killing vectors at the order

ξµ = 1
2ξ

ab
∞Uab +O(ρ2e−7ρ) , (8.14)

where ξab∞ is constant. The boundary conditions Eq.(8.9) can be verified to be consistent,

yielding well-defined charges that are finite, integrable and conserved. It can be shown that

the associated asymptotic symmetry group is still SO(2, 5).
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9 Conclusions

In this paper, we have studied some aspects of conformally-invariant gravities in six dimen-

sions. Unlike in four dimensions where there is a unique theory that is polynomial in the

curvature or its derivatives (described by a Weyl-squared Lagrangian), in six dimensions

there are three such independent conformally-invariant terms that could be considered.

However, if we impose the additional requirement that, like in four dimensions, Einstein

metrics should also be solutions of the theory, then this implies that a unique linear com-

bination of the three terms is singled out. It is this specific theory that has formed the

focus of most of our attention in this paper, since it has the advantage that at least some

solutions, namely Einstein metrics and their conformal scalings, can be obtained explicitly.

Using the freedom to perform coordinate transformations and conformal scalings, the

general ansatz for spherically-symmetric black holes can be expressed in terms of a single

function of the the radius. This function obeys a 5th-order differential equation which,

unfortunately, we have not been able to solve in closed form in general. We were, how-

ever, able to construct the general solution as an infinite series expansion, characterised by

the expected number of five independent parameters. Within this class of solutions is a

three-parameter subset for which the series expansion terminates. This closed-form class

of solutions corresponds precisely to the standard Schwarzschild-AdS metrics, and their

spherically-symmetric conformal scalings. We studied the thermodynamics of the black

holes, obtaining a first law for the five-parameter family of solutions, and verifying that this

was indeed satisfied by the explicit closed-form subset of solutions.

We considered also some more general conformal theories in six dimensions, in which

conformally-invariant “matter” is coupled to conformal gravity. Specifically, we looked at a

bilinear coupling of a Maxwell field strength to the Weyl tensor, and also kinetic and Chern-

Simons terms involving a 2-form potential. We obtained a variety of further solutions for

these theories, and also for the pure conformal gravity.

In our work, we concentrated on the particular choice of six-dimensional conformal

gravity for which conformally-Einstein metrics are also solutions. It would be of interest

also to study the broader class of conformal gravities in six dimensions for which this is

no longer the case. It may not be easy, within the broader class of theories, to obtain

explicit closed-form solutions, but nevertheless it could be of interest to investigate black

hole solutions, and their thermodynamics.

A further interesting question is whether any of the six-dimensional conformal gravities

could be supersymmetrised. As far as we are aware, there are no known obstacles to doing

this, other than the complexity of the problem. If it could be achieved, then it would

presumably be an off-shell theory, since experience suggests that this is the only way in
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which one is likely to be able to construct a higher-derivative supergravity that does not

require an infinity of higher-order terms (such as in string theory).
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A Necessary Condition for Conformally Einstein

In this appendix, we present a detailed derivation of a necessary condition for a d-dimensional

metric to be conformally Einstein. This condition was derived first in four dimensions in

[21], and subsequently, in arbitrary dimensions, in [22].

A d-dimensional spacetime with metric gab is conformally Einstein if there exists a

conformal transformation to a new metric ĝab = Ω2gab such that

R̂ab − 1
d ĝabR̂ = 0 , (A.1)

or, equivalently,

P̂ab − 1
d ĝabP̂ = 0 , (A.2)

where

Pab ≡ − 1

(d− 2)
Rab +

1

2(d− 1)(d − 2)
Rgab . (A.3)

Defining Υa ≡ ∇a ln Ω, then from the conformal transformation of the Ricci scalar and

Ricci tensor we have

Ω−2(R+ 2(d − 1)∇cΥc + (d− 1)(d − 2)ΥcΥ
c) = constant , (A.4)

Rab −
1

d
gabR+ (d− 2)∇aΥb −

d− 2

d
gab ∇cΥ

c − (d− 2)ΥaΥb +
d− 2

d
gab Υ

cΥc = 0 , (A.5)

and (A.2) becomes

Pab − 1
dgabP −∇aΥb +

1

d
gab∇cΥ

c +ΥaΥb −
1

d
gabΥ

cΥc = 0 . (A.6)

Taking a derivative of (A.4) gives

0 = ∇aR− 2RΥa − 4(d− 1)Υa∇cΥc − 2(d− 1)(d− 2)ΥaΥ
cΥc

+2(d− 1)∇a∇cΥ
c + 2(d − 1)(d− 2Υc∇aΥc

= ∇aP − 2PΥa + 2Υa∇cΥc + (d− 2)ΥaΥ
cΥc −∇a∇cΥ

c − (d− 2)Υc∇aΥc . (A.7)
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Using this, we obtain

∇[aPb]c +
1
2CabcdΥ

d = 0 . (A.8)

Using

∇dCabcd = 2(d− 3)∇[aPb]c , (A.9)

we finally obtain

∇dCabcd + (d− 3)ΥdCabcd = 0 . (A.10)

This necessary condition must be satisfied by any conformally Einstein metric.

B Equations of General Cubic Curvature

In this appendix, we present the detailed results for the variations of each of the terms

in the Lagrangian (7.11). In particular, this includes the results needed for obtaining the

equations of motion (1.3) for the conformally-invariant theory that forms the focus of most

of our attention in this paper.

1) : RRµνRµν ⇒
E(1)

µν = (�(RλσR
λσ) +∇λ∇σ(RRλσ)− 1

2RRλσR
λσ)gµν +RλσR

λσRµν + 2RRλµR
λ
ν

+�(RRµν)−∇µ∇ν(RλσR
λσ)−∇λ∇µ(RRλ

ν)−∇λ∇ν(RRλ
µ) ,

2) : R3 ⇒
E(2)

µν = (3�R2 − 1
2R

3)gµν + 3R2Rµν − 3∇µ∇νR
2 ,

3) : RµνRλρRµλνρ ⇒
E(3)

µν = −1
2R

σδRλρRσλδρgµν +
3
2R

ρσRρµσλR
λ
ν +

3
2R

ρσRρνσλR
λ
µ

+�(RρσRρµσν) +∇σ∇δ(RλρRλσρδ)gµν

−∇λ∇µ(R
ρσRρλσν)−∇λ∇ν(R

ρσRρλσµ)

−∇(σ∇λ)(R
σ
µ R λ

ν ) +∇σ∇λ(RµνR
σλ),

4) : Rµν
�Rµν = −gµν∇µR

λρ∇νRλρ ⇒
E(4)

µν = 1
2gµν(g

σδ∇σR
λρ∇δRλρ)− (2∇σRµλ∇σR

λ
ν +∇µRσλ∇νR

σλ)

+2∇λ(Rσ(µ∇ν)R
λσ) + 2∇λ(∇λRσ

(νRµ)σ)− 2∇σ(∇(µRν)λR
σλ)

+�
2Rµν +∇σ∇λ�Rσλgµν −∇λ∇ν(�Rλ

µ)−∇λ∇µ(�Rλ
ν),

5) : R�R = −gµν∇µR∇νR ⇒
E(5)

µν = 1
2gµν(g

σλ∇σR∇λR)−∇µR∇νR+ 2(�R)Rµν

+2(�2R)gµν − 2∇µ∇ν�R,

6) : R ν
µ R λ

ν R µ
λ ⇒

E(6)
µν = −1

2gµνR
ρ
λ R σ

ρ R λ
σ + 3RλµRρνR

λρ + 3
2�(R λ

µ Rλν) +
3
2∇ρ∇σ(R

ρ
λR

λσ)gµν

−3
2∇λ∇ν(R

λ
ρR

ρµ)− 3
2∇λ∇µ(R

λ
ρR

ρν),
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7) : RµνR
µλρσRν

λρσ ⇒
E(7)

µν = −1
2gµνRδτR

δλρσRτ
λρσ + 1

2gµν∇δ∇τ (R
δλρσRτ

λρσ) +
1
2�(R λρσ

µ Rνλρσ)

−1
2∇δ∇µ(R

δλρσRνλρσ)− 1
2∇δ∇ν(R

δλρσRµλρσ) +RδσR
δ λρ
µ Rσ

νλρ

+2RδσR
δλρ

µR
σ
λρν − 2∇ρ∇σ(Rλ(µR

λρσ
ν) )− 2∇ρ∇σ(Rλ(µR

λρσ
ν))

+2∇ρ∇σ(R
ρ
λR

λ σ
(µ ν)),

8) : RRµνλρRµνλρ ⇒
E(8)

µν = −1
2gµνRRλρσδRλρσδ +RµνR

λρσδRλρσδ + 2RRµλρσR
λρσ
ν + gµν�(RλρσδRλρσδ)

−∇µ∇ν(R
λρσδRλρσδ)− 4∇λ∇ρ(RRλ ρ

(µν)),

9) : Rµν
λρR

λρ
σδR

σδ
µν ⇒

E(9)
µν = −1

2gµνR
τη
λρR

λρ
σδR

σδ
τη +

3
2R

τ
µλρR

λρ
σδR

σδ
τν +

3
2R

τ
νλρR

λρ
σδR

σδ
τµ

+3
2∇

σ∇δ(R λρ
σµ Rλρδν) +

3
2∇

σ∇δ(R λρ
σν Rλρδµ),

10) : Rµ ν
λ ρR

λ ρ
σ δR

σ δ
µ ν ⇒

E(10)
µν = −1

2gµνR
τ η
λ ρR

λ ρ
σ δR

σ δ
τ η +

3
2R

σ ρ
δ τR

δ τ
λ µR

λ
σνρ +

3
2R

σ ρ
δ τR

δ τ
λ νR

λ
σµρ

−3
2∇δ∇σ(R

λσρ
µ Rδ

λνρ)− 3
2∇δ∇σ(R

λσρ
ν Rδ

λµρ) + 3∇δ∇σ(R
λ ρ

(µ ν)R
δ σ
λ ρ). (B.1)
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[11] H. Lü, Y. Pang and C.N. Pope, Conformal gravity and extensions of critical gravity,

Phys. Rev. D 84, 064001 (2011), arXiv:1106.4657 [hep-th].

[12] F. Bastianelli, G. Cuoghi and L. Nocetti, Consistency conditions and trace anomalies

in six-dimensions, Class. Quant. Grav. 18, 793 (2001), hep-th/0007222.

[13] R. M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48, 3427 (1993),

gr-qc/9307038.

[14] V. Iyer and R. M. Wald, Some properties of Noether charge and a proposal for dynam-

ical black hole entropy, Phys. Rev. D 50, 846 (1994), gr-qc/9403028.

[15] A. Ashtekar and A. Magnon, Asymptotically anti-de Sitter space-times, Class. Quant.

Grav. 1, L39 (1984).

[16] A. Ashtekar and S. Das, Asymptotically Anti-de Sitter space-times: Conserved quanti-

ties, Class. Quant. Grav. 17, L17 (2000), hep-th/9911230.

[17] E. A. Bergshoeff, S. de Haan, W. Merbis, J. Rosseel and T. Zojer, On three-dimensional

tricritical gravity, Phys. Rev. D 86, 064037 (2012),arXiv:1206.3089 [hep-th].

[18] T. Nutma, Polycritical gravities, Phys. Rev. D 85, 124040 (2012), arXiv:1203.5338

[hep-th].

[19] A. Kleinschmidt, T. Nutma and A. Virmani, On unitary subsectors of polycritical

gravities, arXiv:1206.7095 [hep-th].

[20] L. Apolo and M. Porrati, Nonlinear dynamics of parity-even tricritical gravity in three

and four dimensions, JHEP 1208, 051 (2012), arXiv:1206.5231 [hep-th].

[21] C. N. Kozameh, E. T. Newman and K. P. Tod, Conformal Einstein spaces, Gen. Rel.

Grav. 17, 343 (1985).

[22] A. R. Gover and P. Nurowski, Obstructions to conformally Einstein metrics in n di-

mensions, math/0405304 [math-dg].

[23] J. Oliva and S. Ray, Classification of six derivative Lagrangians of gravity and static

spherically symmetric solutions, Phys. Rev. D 82, 124030 (2010), arXiv:1004.0737 [gr-

qc].

26



[24] D. Kastor, S. Ray and J. Traschen, Enthalpy and the Mechanics of AdS Black Holes,

Class. Quant. Grav. 26, 195011 (2009), arXiv:0904.2765 [hep-th].

[25] M. Cvetic, G. W. Gibbons, D. Kubiznak and C. N. Pope, Black Hole Enthalpy and an

Entropy Inequality for the Thermodynamic Volume, Phys. Rev. D 84, 024037 (2011),

arXiv:1012.2888 [hep-th].

[26] B. P. Dolan, D. Kastor, D. Kubiznak, R. B. Mann and J. Traschen, Thermodynamic

Volumes and Isoperimetric Inequalities for de Sitter Black Holes, arXiv:1301.5926 [hep-

th].
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