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We show that dark matter annihilation around the time of recombination can lead to growing ion-
ization fraction perturbations, that track the linear collapse of matter over-densities. This amplifies
small scale cosmological perturbations to the free electron density by a significant amount compared
to the usual acoustic oscillations. Electron density perturbations distort the CMB, inducing sec-
ondary non-gaussianity. We calculate the CMB bispectrum from recombination, that is marginally
observable by Planck. Even though electron perturbations can be markedly boosted compared with
the Standard Model prediction, the dark matter effect in the CMB bispectrum turns out to be small
and will be difficult to disentangle from the standard model in the foreseeable future.

I. INTRODUCTION

Galaxy and galaxy cluster dynamics and cosmological observations seem to imply that five out of six parts in mass
of all matter in the Universe is composed of dark matter (DM), that is not accounted for by the Standard Model
of particles. The particle nature of DM is one of the most intriguing puzzles of our time. Many efforts are invested
in trying to solve this puzzle at direct and indirect detection experiments. It is important to identify astrophysical
and cosmological processes where the particle interactions of DM, rather than its gravitational pull alone, may be
of relevance. In this paper, we discuss a cosmological observable where DM interactions can modify appreciably the
Standard Model prediction: linear perturbations to the ionization fraction of hydrogen.
To summarize our main findings: DM annihilation can significantly change the evolution of linear cosmological

perturbations to the free electron density, at and after the last scattering epoch of the Cosmic Microwave Background
(CMB). Consistent with all current constraints, the effect can be as large as an O(10) enhancement for perturbations
on small scales. Of course, it is not enough for DM effects to be large. For us to learn about it, the effect must also be
visible. In the current paper, we looked for observable imprints of the electron perturbations in CMB non-gaussiainity.
To no avail: even though electron perturbations can be markedly boosted, the main boost occurs slightly after last
scattering, and on scales below the Silk damping scale, and so the non-gaussianity signal is small. In the rest of this
introduction we expand on our motivations and lay out the structure of the paper.
As is well known, dark matter annihilation or decay could modify the ionization history of the universe, giving

rise to excess Thomson scattering compared to the Standard Model prediction [1–13]. This extra scattering damps
power in small scale CMB temperature anisotropies and adds power in polarization. For DM annihilation, CMB
constraints apply to the parameter combination (〈σv〉/mχ), where 〈σv〉 is the thermal-averaged velocity-weighted
pair annihilation cross section and mχ is the DM mass. For simple thermal freezeout models, the cross section is
fixed 〈σv〉 ∼ 3 × 10−26 cm3s−1 and current constraints based on precision measurements of the CMB temperature
and polarization fields [14–16] become important for DM masses below and of order 10 GeV. Planck data expected
in the near future will either provide a detection or tighten the constraints.
All of the CMB constraints in the current literature apply to temperature and polarization two-point correlation

functions, or power spectra. Existing analyses usually consider the homogeneous ionization history, where the free
electron density is taken to be a function of time only, ne = ne(t). In some analyses (e.g., recently, [12, 17]), late time
(z . 30) annihilation in non-linear halos is included but only in terms of a (model-dependent) boost to the smooth
component.
In contrast, our interest in the current paper is with linear cosmological perturbations to the electron density,

characterized by δe such that ne → ne(t) (1 + δe(~x, t)). Power spectra are insensitive to these fluctuations, because in
two point functions they enter at fourth (4th) order in the primordial curvature perturbations ξ ∼ 10−5. Thus they
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cannot compete with the leading quadratic contributions. The leading observable where δe may play a role is CMB
non-gaussianity, in particular the three-point function or bispectrum. Many inflationary models predict a very small
primordial bispectrum so the first non-zero contribution may be due to deviations from linear evolution, that can
be described via second order cosmological perturbation theory. A finite first order δe produces second-order CMB
inhomogeneities, transforming into finite anisotropy bispectrum.
The paper is organized as follows. In §II we calculate electron density perturbations. First, in §II A we review the

standard recombination model and show that DM can make a sizable impact on the homogeneous hydrogen ionization
fraction xe after last scattering, that may in fact be dominated by DM annihilation. As is well known, an O(1) relative
correction here is allowed experimentally, because (i) the residual ionization xe after last scattering is small anyway,
and (ii) in the temperature power spectrum, the best measured CMB observable, excess Thomson optical depth is
partially degenerate with the normalization As and tilt ns of the primordial curvature fluctuations.
In §II B we move on to cosmological perturbations. We build on the analysis of [18] and give a semi-analytical

derivation of the perturbation δe that applies at high redshift z & 700, relevant for CMB studies. It was realized in
[19, 20] that at early times electron density perturbations follow an amplified copy of the baryon acoustic oscillations,
with amplification factor ∼ 5 corresponding to ionization waves. Extending the analysis to include DM annihilation
we find a growing, non-oscillating, ionization mode that tracks the DM perturbations. The main result of this paper
is that on small scales, this growing mode can boost δe by more than an order of magnitude compared to the Standard
Model prediction, with peak amplification right after last scattering. Our calculations generalize earlier work that
focused on later times long after recombination, see e.g. [21].
In §III we consider non-gaussianity. Several analytical and numerical studies have shown that the bispectrum from

recombination is relevant for Planck and should be accounted for when searching for primordial non-gaussianity [22–
28]. The leading sources appear to be second order metric and first order electron perturbations, inducing second
order radiation terms. Refs. [22–24] found the bispectrum induced by δe may be marginally observable by Planck.
An order of magnitude amplification by DM annihilation then looks naively quite promising; we therefore compute
the bispectrum induced by δe. In doing so, we have found the current literature lacking, specifically when it comes to
perturbations on small scales. Our treatment of this problem will be reported separately in [29].
Our analysis shows that unfortunately, DM annihilation has little impact on the recombination bispectrum. The

main reasons for this are: (i) the amplification to electron perturbations peaks immediately after CMB last scattering
– largely missing the visibility window and hitting the early Dark Ages, instead; (ii) the DM effect rises on small
scales below the Silk damping scale; (iii) in general, short wave electron fluctuations cannot affect long wave photon
modes. This reduces the effect on squeezed triangles, where much of the signal-to-noise for the bispectrum is.
DM annihilation can affect the evolution of matter temperature perturbations during the cosmic dark ages. While

we do not pursue this avenue here, a natural means to try and detect the effect in the future would be through
observations of 21 cm absorption [21, 30–34]. Our calculation of the temperature perturbations extends previous
analyses by properly accounting for the early initial conditions from the time of recombination.
We conclude in §IV. In App. A we discuss the implications of non-local energy deposition by DM annihilation.
Throughout this paper we work with the following fiducial WMAP 7-year [35] cosmology: Ωbh

2 = 0.0226, ΩDMh2 =
0.112, h = 0.704, ΩK = 0, τ = 0.087, As = 2.16× 10−9, ns = 0.963, with kp = 0.05 Mpc−1. We comment that using
the best-fit cosmological parameters found by WMAP 9-year or Planck would have a negligible effect on our results.

II. DARK MATTER ANNIHILATION EFFECTS IN THE RECOMBINATION HISTORY

In this section we compute the cosmological electron density to first order in perturbation theory. We show that
DM annihilation can cause a growing ionization mode, beginning around the time of recombination. This growing
mode can boost electron perturbations by an order of magnitude compared to the case without DM annihilation. We
start by a brief review of the homogeneous calculation and then move on to the perturbation analysis.

A. Homogeneous calculation

We follow the standard Peebles three-level atom formalism [36–39] and neglect helium ionization. The homogeneous
free electron density is found by solving an effective Boltzmann equation,

∂ne

∂t
+ 3Hne = Qe, (1)
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with the DM ionization rate Iχ included in the collision term

Qe =
(

βHe−ǫ12/TR(nH − ne)− αHn2
e

)

CH + Iχ. (2)

Here, the type-B recombination and ionization coefficients, αH(TM ) and βH(TR), are given in [38, 39]; ǫ12 = 10.2 eV
denotes the first excitation energy of hydrogen; TM is the kinetic matter temperature; and nH is the total number
density of hydrogen, ionized and neutral. The factor CH denotes the probability of an n = 2 hydrogen atom to relax
to the ground state before being photoionized and without exciting an adjacent ground state atom. It is given by

CH =
1 +KHΛH(nH − ne)

1 +KH(ΛH + βH)(nH − ne)
, (3)

where ΛH ≈ 8.3 Hz is the two-photon 2s → 1s transition rate and the Lα redshifting rate, K−1
H (z) = (8πH(z)/λ3

α),
is described in [38, 39].
The DM ionization term is given by

Iχ =
u̇

a4 ǫH
Cion. (4)

The quantity
(

u̇/a4 ǫH
)

denotes the proper rate per unit volume at which energy from DM annihilation is absorbed
in the plasma, measured in units of the hydrogen ionization energy ǫH = 13.6 eV; we will return to this quantity
shortly. The factor Cion encodes the fraction of the absorbed energy which goes to ionizing the plasma. We use a
crude parametrization of the partitioning of the absorbed energy between direct ionization, atomic excitation, and
heating [1]:

Cion =

(

nH − ne

3nH

)(

1 +
4

3
(1− CH)

)

. (5)

We stress that Eq. (5) is a rough estimate. A more careful account of the energy partitioning deserves further
study [40, 41], but is beyond the scope of this paper.
We now discuss

(

u̇/a4
)

, the proper rate per unit volume at which energy from DM annihilation is absorbed in
the plasma. For later convenience, where possible we will switch to work with conformal time dη = (dt/a). Thus
here and in what follows an over-dot represents derivative with respect to η. We will also use comoving coordinates
a x = xproper. Note however that unless stated otherwise, we still use proper particle densities, e.g. ne denotes the
free electron density per unit proper volume, etc.
Jumping ahead of ourselves for a minute by including spatial inhomogeneity, the comoving power density injected

into the plasma is given by1

u̇inj(~x, η) = a4(η)
〈σv〉

mχ
ρ2χ(~x, η). (6)

The energy absorption rate is, in general, different from the injected power. At the epoch of interest, namely during
and after recombination, particles coming out of an annihilation event can propagate over non-negligible time before
their energy is absorbed by the plasma. The propagation time and distance depend on the particle type, initial
energy, and time of injection, with final states of relevance being photons, electrons, and protons (with neutrinos
trivially escaping indefinitely). The local rate of energy absorption is then given by folding the injection rate with
some distribution, F , specifying the propagation of the annihilation products,

u̇(~x, η) =

∫ η

0

dη′
∫

d3x′F (~x, ~x′, η, η′) u̇inj(~x
′, η′). (7)

We will have more to say about the quantity F in App. A. For now, returning to the homogeneous calculation, the
spatial integral in Eq. (7) goes away and one is left with

u̇(η) =

∫ η

0

dη′ u̇inj(η
′) fdep (η, η

′) , (8)

1 For concreteness, we assumed Majorana DM and neglected possible time dependence in 〈σv〉. Note that an annihilation event injects
an amount of energy equal to 2mχ into the plasma. We remind that ρχ here still refers to the proper – not comoving – DM density. In
the homogeneous limit it is given by a3ρχ(η) = a′3ρχ(η′).
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FIG. 1: Left: Ionization fraction, without DM annihilation (blue, solid; lowest curve) and with (〈σv〉/mχ) = 1.5 ×
10−27 cm3/s/GeV (green, solid; middle curve) and (〈σv〉/mχ) = 1.5 × 10−26 cm3/s/GeV (red, solid; uppermost curve). We
omit late time reionization in the plot. Dashed lines denote the floor approximation, Eq. (13). Right: Relevant time scales;

recombination rate per electron αHne (blue solid thin curve), standard photoionization rate per electron βHe−ǫ12/TR (x−1
e − 1)

(black solid thick curve), DM ionization rate per electron Iχ/ne (red dot-dashed), and expansion 3H (green dashed). We take
(〈σv〉/mχ) = 1.5× 10−26 cm3/s/GeV.

where

fdep (η, η
′) =

1

ǫinj

∂ǫ

∂η
=

∫

d3x′F (~x, ~x′, η, η′) (9)

describes the amount of energy absorbed by the plasma at time η per interval dη, after injecting initial energy ǫinj at
the annihilation time η′. The time integral in Eq. (8) can be factored out as [5, 17, 42],

u̇(η) = u̇inj(η)f(η). (10)

For time-independent velocity-weighted annihilation cross section,

f(η) =

∫ η

0

dη′
a2(η)

a2(η′)
fdep (η, η

′) . (11)

In App. A we discuss f(η) in the context of concrete particle physics model examples. These examples illustrate
the sensitivity of f(η) to model details. Nevertheless, it is a reasonable approximation to take f(η) as constant, f ,
over the time scale of recombination; for garden variety standard model final states, f ranges between 0.3 to 1 [5, 17].
Thus in this paper, as a rule, we simply absorb f into the definition of 〈σv〉.
Sample numerical solutions of Eq. (1) are depicted by solid lines in the left panel of Fig. 1, where we plot the

ionization fraction,

xe =
ne

nH
, (12)

vs. redshift. As is well known, DM of mass mχ = O(GeV) and annihilation cross section compatible with thermal
freeze-out can have a significant effect on the ionization fraction after recombination.
To understand the relevant processes, it is instructive to inspect the time scales appearing in Eq. (1). In the right

panel of Fig. 1 we consider DM with (〈σv〉/mχ) = 1.5× 10−26 cm3/s/GeV. We represent the DM ionization rate per

electron by (Iχ/ne), the standard ionization term (due to CMB photons) by βHe−ǫ12/TR(x−1
e − 1), and recombination

by αHne. Notably, beginning at z ∼ 1000 and down to z ∼ 200, both DM ionization and recombination are faster
than Hubble expansion. Thus, for large enough annihilation rate, ne follows a quasi-equilibrium solution balancing
recombination off DM ionization alone,

xfloor
e =

ρχ
ρb

√

32

27

m2
H

mχǫH

〈σv〉

αH
, (13)
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where we expanded to zeroth order in xe. This is the “floor solution” pointed out in [42]. Because αH ∝ z−2/3 at the
relevant redshift, a constant velocity weighted annihilation cross section results in

xfloor
e ≈ 4.2× 10−3

( z

1000

)1/3
(

〈σv〉

3× 10−26 cm3/s

)1/2
( mχ

2 GeV

)−1/2

. (14)

In the left panel of Fig. 1 we depict the floor solutions by dashed lines.
We caution the reader that DM with mass mχ ∼ 1 GeV and thermal relic annihilation cross section, as depicted by

the red curves in Fig. 1, is already excluded by CMB constraints. The strongest constraints we are currently aware
of combine WMAP7 and SPT data to derive the bound (〈σv〉/mχ) . 1.6 × 10−27 cm3s−1GeV−1 at 95%CL [12].
WMAP7+ACT gives (〈σv〉/mχ) . 2.1 × 10−27 cm3s−1GeV−1 at 95%CL [8]. WMAP7 alone gives (〈σv〉/mχ) .
5.7× 10−27 cm3s−1GeV−1 at 95%CL [10]. Thus, the curve corresponding to (〈σv〉/mχ) = 1.5× 10−27 cm3/s/GeV, in
the left panel of Fig. 1, represents the strongest currently available experimental limit, while the curves corresponding
to a larger annihilation cross section are merely depicted to highlight the physics.
The important point to take home is that DM annihilation can easily dominate the fractional ionization immediately

after recombination. This remains true as long as the DM-induced ionization rate is comparable to the expansion
right after recombination, namely, as long as (〈σv〉/mχ) & 10−27 cm3s−1GeV−1, corresponding roughly to the green
curve in Fig. 1. Somewhat surprisingly, the current CMB constraints do allow for sufficient annihilation power.
This is because most of the effect on the CMB temperature power spectrum on small angular scales, l & 100, is
contained by an overall suppression factor Cl → e−2∆τ Cl, where ∆τ denotes the excess optical depth due to the
extra ionization. This overall factor is degenerate with adjusting the amplitude of the primordial curvature power
spectrum, As → e2∆τ As [42]. The amplitude degeneracy is not complete, and is ameliorated by polarization data;
nevertheless, additional degeneracy with the primordial tilt ns and with other cosmological parameters leads to the
fact that CMB constraints still allow a much larger role for DM annihilation at recombination than could naively be
guessed.
The main simple result of this paper can be understood directly from Eq. (13). Generalizing to include cosmological

perturbations, Eq. (13) tells us that in the quasi-equilibrium limit, we may expect the electron density perturbations
to track DM perturbations,

δe =
δne

ne
∼ δχ, (15)

where the DM density contrast is given by δχ = (δρχ/ρχ). During and soon after recombination, DM perturbations
on small scales are orders of magnitude larger than the corresponding baryon perturbations, δχ ≫ δb, because the
latter are trapped in acoustic oscillations until the end of the baryon drag epoch while the former simply collapse
gravitationally since horizon entry. Thus we may expect a large enhancement in the free electron density δe compared
to the Standard Model prediction. Here we neglected several factors, including e.g. photon and kinetic matter
temperature perturbations. However, in the next section we show that the simple reasoning behind Eq. (15), motivated
by the floor solution Eq. (13), is essentially correct.
Finally, DM annihilation affects also the kinetic matter temperature, though around the time of recombination this

effect is much less important than the effect on the ionized fraction. The equation for matter temperature is given
by2

dTM

dt
+ 2HTM ≈

γ

nb + ne
, γ = γC + γχ, (16)

with

γC =
8σTaR
3mec

neT
4
R(TR − TM ), (17)

γχ =
2

3kB

〈σv〉ρ2χ
mχ

(

nH + 2ne

3nH

)

, (18)

where aR is the radiation constant.

2 We omit negligible corrections associated with photorecombination/ionization cooling/heating [43]. We thank Yacine Ali-Häımoud for
a discussion on this point.
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At redshifts z & 200, Compton scattering dominates and the matter temperature TM tracks the CMB temperature
TR. At those early times, DM annihilation has negligible effect on the matter temperature. This is different than what
we have just seen for the ionized fraction, and will carry over to the perturbation analysis in the next section. The
reason is that, compared to the power available from DM annihilation, the CMB energy reservoir is intense but cool.
DM annihilation can dominate ionization, because ionization can only feed off the deep Boltzmann tail of the CMB
spectrum. The matter kinetic energy, however, is driven by Thomson scattering off the bulk of the CMB spectrum
and thus DM looses this battle by a large margin. Quantitatively, we readily see this by inspecting the ratio of heating
rates,

γC
γχ

≈ 12
σT c

〈σv〉

mχTR

mHme

ρHργ
ρ2χ

xe

(

1−
TM

TR

)

∼ 2 · 104
(

〈σv〉

3 · 10−26cm3/c

)−1
( mχ

GeV

)( z

103

)2 ( xe

10−1

)

(

1−
TM

TR

)

. (19)

This comparison means that around recombination, when z ∼ 103 and xe ∼ 10−1 − 10−2, DM annihilation cannot
break the relation TM = TR, enforced by Thomson scattering. Only later at z . 102 and with xe ∼ 10−3 − 10−4, can
DM annihilation compete with CMB heating. At this later time baryons kinetically decouple from the CMB and DM
annihilation can change the evolution of TM appreciably.

B. Cosmological perturbations: inhomogeneous recombination

We now compute the first order perturbations to the free electron density. Our aim is to refine the rough analysis
leading to Eq. (15). As we discuss in more detail in Sec. III, what motivates us in pursuing this calculation, is
that electron density perturbations during recombination induce apparent non-gaussianity in the CMB anisotropies
as measured by a late time observer [18, 22–24]. This non-gaussianity can in principle be measurable by Planck and
future experiments, offering a way to test our scenario.
For simplicity we assume that the energy from DM annihilation is instantaneously absorbed by the plasma. As

mentioned earlier, this can be a poor approximation, the extent to which it applies depending on model details. The
smearing of energy absorption by the plasma leads to damping of small scale power. We analyze this issue in some
detail in App. A.
We work in synchronous gauge,

ds2 = −a2
(

dη2 − (δij + hij) dx
idxj

)

, (20)

fixing the gauge as usual by eliminating the DM velocity perturbations. Considering only scalar perturbations, we
denote the trace and the trace-less parts of the scalar mode of hij by h and κ. (These correspond to h and η in
the notation of Ma and Bertschinger [44].) Our normalization for the primordial curvature perturbation is such that
ξ~k = 1 on superhorizon scales.
The Boltzmann and Einstein equations for metric (h, κ), radiation (δTR

), dark matter (δχ) and baryon density and
velocity perturbations (δb and vb), are not coupled to the electron and matter kinetic temperature perturbations (δe
and δTM

) at first order. Therefore, for all perturbations other than δe and δTM
, we may use the usual set of Boltzmann

and Einstein equations, given e.g. in Ma and Bertchinger [44].
Given the solutions for h, κ, δTR

, δχ, δb, and vb – amounting to the usual transfer functions – we use them as
sources for the linearized electron and matter temperature perturbations. Starting with the results of [18], we add
DM annihilation to obtain:

δ̇e = δ̇b +
aQe

ne

(

∑

X

(

∂ logQe

∂ logX

)

δX − δe

)

, (21)

δ̇TM
= −

ḣ

3
−

2ik

3
vb +

aγ

(nb + ne)TM

(

∑

X

(

∂ log γ

∂ logX

)

δX − δTM
−

neδe + nbδb
nb + ne

)

. (22)

HereX = {H,ne, nb, nχ, TM , TR}, and
3 δH ≡ −

(

δ̇b/3aH
)

denotes the perturbation to the baryon velocity divergence,

as measured by a comoving local observer.

3 Note that the H−dependence of Qe is contained in the CH factor for Lα escape, Eq. (3). For the matter temperature, we have
(∂ log γ/∂ logH) = 0.



7

It is straightforward to solve Eqs. (21-22) numerically. However, a simplification occurs if one is interested primarily
in observable effects in the CMB4. As discussed in the previous section, the matter temperature is clipped to the
radiation temperature around last scattering. This partially carries over to the perturbations: δTM

≈ δTR
, all the way

until the end of the baryon drag epoch when δTM
rises by compression as the baryons fall into the DM potential wells.

By the time δTM
finally breaks loose of δTR

, then, the Thomson optical depth for photons is small and the electron
perturbation has little residual effect on the observed CMB anisotropy.
Setting δTM

= δTR
, we can write a direct integral solution for δe,

δe(k, η) =

∫ η

ηinit

dη′Ge(k, η
′) exp

(

−

∫ η

η′

dη′′Fe(η
′′)

)

, (23)

Fe =
aQe

ne

(

1−

(

∂ logQe

∂ logne

))

, Ge = δ̇b +
aQe

ne

∑

X′

(

∂ logQe

∂ logX

)

δX′ ,

where the sum over X ′ now does not include ne. The initial time ηinit is chosen early enough so that δe(k, ηinit) =
δb(k, ηinit). Eq. (23) allows us to obtain δe directly and quickly, reading all other perturbations from the numerical
code CAMB [45–47]; it agrees well with the full numerical solution to Eq. (21) throughout and for a good while after
recombination.
As expected from the discussion in the previous section, the calculations confirm the presence of a growing ionization

mode sitting on top of the usual baryon acoustic oscillations (BAOs). We now examine this result in some detail.
We begin with an eye towards observability in the CMB. In Fig. 2 we fix the wave number of the perturbation and ex-

amine its time dependence. Green line shows the electron perturbation with (〈σv〉/mχ) = 3.75×10−27 cm3s−1GeV−1;
blue shows the electron perturbation with no DM annihilation. For reference, we show also the baryon and DM den-
sity perturbations in grey and black, respectively. Note that for δe and δb, we plot the absolute value of the transfer
functions, while the DM transfer function is positive. The grey shaded band depicts the full width half-maximum
(FWHM) of the visibility function (taken here with no DM annihilation). In the left panel we fix k = 0.04 Mpc−1,
corresponding to observed anisotropy multipole l ∼ kη0 ∼ 600, where η0 ∼ 1.4×104 Mpc is the conformal time today.
In the right panel we fix k = 0.3 Mpc−1, corresponding to l ∼ 4200.
The growing ionization mode due to DM annihilation is clearly visible. This mode grows towards, and finally

catches up with the DM perturbations, eventually amplifying δe by more than an order of magnitude compared with
the Standard Model prediction. However, it takes finite time for the quasi-equilibrium configuration to manifest
itself, particularly so on larger scales; this causes much of the amplification effect of δe to only take place after CMB
last scattering. In addition, note that dragging the electron perturbation in the positive direction towards the DM
perturbation, can actually lead to suppression of the magnitude – in absolute value – for perturbations that enter the
last scattering surface with negative amplitude. This is seen in the left panel of Fig. 2.
In Fig. 3 we study the scale dependence. In the left panel, we show the k dependence of the perturbations in a

snapshot close to the peak of visibility η = 285 Mpc. On the right we focus on the half-maximum width, η ∼ 310 Mpc.
The effect is larger for larger wavenumber, as DM perturbations on smaller scales enter the horizon earlier and have
more time to collapse before recombination, leading to more efficient ionization. In addition, as noted above, the
growing mode becomes significant only somewhat after the peak of the visibility. We caution the reader again that
the red curve with mχ = 2 GeV is excluded experimentally by CMB data, and is only shown here for illustration.
In Fig. 4 we show δe vs. redhsift at times significantly after CMB last scattering, again for two different wavenumbers.

Fig. 4 concerns the deep Dark Ages; the detailed dynamics at last scattering, crucial for CMB analyses, is merely seen
as small wriggles around z ∼ 1100. Here we confirm the naive estimate of Eq. (15), that says that for high enough
annihilation power, the electron perturbation reaches quasi-equilibrium and roughly sticks to the DM perturbation. In
this regime, δe is roughly independent of the DM mass and annihilation rate and is boosted by a factor 2-3 compared
with the Standard Model prediction. Reducing the annihilation power below (〈σv〉/mχ) ∼ 10−27 cm3s−1GeV−1, as
seen for mχ = 36 GeV, causes ionization and recombination to drop below the Hubble rate, freezing the ionization
fraction below the quasi-equilibrium value.
During the dark ages, the relevant future probe of DM annihilation would be in the absorption of 21 cm radiation [21,

30–34]. (See Ref. [48] for a review.) Here, the relevant quantity is the matter temperature entering the computation
of the spin temperature [49, 50]. In the left panel of Fig. 5 we plot the matter temperature perturbation at z = 200
as a function of wavenumber. We learn that a factor of ∼ 2 enhancement in δTM

can arise from DM annihilation. In
the right panel, we plot the ratio of the baryon and matter temperature perturbations to the DM perturbation as a

4 The reasoning here may well need to be modified if one aims to address physics at later epochs, e.g. for 21 cm analyses. For such late
time effects one needs to solve Eqs. (21) and (22) simultaneously – as we do were required in this paper.
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ξ = 1 on superhorizon scales. We caution the reader that the red curve with mχ = 2 GeV is excluded experimentally by CMB
data, and is only shown here for illustration.

function of redshift, for fixed wavenumber k = 0.1 Mpc−1. As an aside, using Eqs. (21-22) we can solve for the matter
temperature perturbations from the correct initial conditions at recombination down to the deep dark ages. Doing
this, we note that the scale-independent relation δTM

(k, η) = s(η) δb(k, η) with s(η) independent of k, assumed e.g.
in [21] and later references, is violated at O(1).
Previous analyses of CMB non-gaussianity induced by perturbations to the free electron density around recombi-

nation [18, 22–24], have found a level of non-gaussianity that could be marginally detectable by Planck. We have
seen that DM annihilation could boost small scale electron perturbations by a sizable amount. It is thus interesting
to assess the bispectrum when DM annihilation is taken into account.
As we show in Sec. III, despite the amplified electron perturbations, the DM annihilation effect on the CMB

bispectrum is small. This comes about from three unfortunate reasons. First, photon diffusion acts to erase power on
small angular scales, where the DM effect is pronounced. Second, as we saw recombination has a finite response time.



9

10
2

10
3

0

50

100

150

200

z

k=0.05/Mpc

δ e

 

 

no annihilation
m

χ
=8 GeV

m
χ
=18 GeV

m
χ
=72 GeV

10
2

10
3

0

100

200

300

400

500

600

700

z

k=0.3/Mpc

 

 

δ e

no annihilation
m

χ
=8 GeV

m
χ
=18 GeV

m
χ
=72 GeV

FIG. 4: Electron perturbations vs. redshift. Left: wavenumber k = 0.05 Mpc, corresponding to l ∼ 700. Right: k = 0.3 Mpc,
corresponding to l ∼ 4.2 × 103. Thermal relic annihilation cross section is assumed. The curves are, from top to bottom:
mχ = 8, 18, 72 GeV, and no annihilation. Synchronous gauge; ξ = 1 on superhorizon scales.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

k [1/Mpc]

δ T
m

z=200

 

 

no annihilation
m

χ
=8 GeV

m
χ
=18 GeV

m
χ
=72 GeV

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

z

k=0.1/Mpc

 

 

δ
b
/δ

χ

δ
Tm

/δ
χ
, no annihilation

δ
Tm

/δ
χ
, m

χ
=8 GeV

δ
Tm

/δ
χ
, m

χ
=18 GeV

δ
Tm

/δ
χ
, m

χ
=72 GeV

FIG. 5: Left: matter temperature perturbation vs. wavenumber. Thermal relic annihilation cross section is assumed. The
curves are, from top to bottom: mχ = 8, 18, 72 GeV, and no annihilation. Right: baryon and temperature perturbations
relative to dark matter perturbation. The top (dashed) curve shows δb/δχ. The bottom four curves are as in the left panel.
Synchronous gauge; ξ = 1 on superhorizon scales.

By the time the DM-induced amplification reaches its full swing, photon last scattering is mostly over. And third,
Thomson scattering cannot transmit power from a short wave electron perturbation down to a long wave photon
anisotropy5. Thus, short wave electron perturbations do not contribute directly to the bispectrum in the squeezed
limit, where much of the signal-to-noise is contained. Our final results indicate that the large boost to δe will be very
difficult to detect in the CMB even if the recombination bispectrum is measured, at least in the foreseeable future.

5 In the relevant limit of photon number conservation.
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III. NON GAUSSIANITY: CAN WE OBSERVE ENHANCED SMALL SCALE ELECTRON

PERTURBATIONS IN THE CMB?

Assuming gaussian initial conditions, any observed non-gaussianity and, in particular, a finite bispectrum comes
about at second order in perturbation theory. In this section we write approximate formulae for the second order
temperature anisotropies in the presence of (first order) electron density perturbations, and estimate the induced
bispectrum.
We stress that the analysis presented here is meant as a rough estimate of the observability of the effect highlighted

in the previous section. We defer a more comprehensive analysis to [29]. There, special care is given to electron
perturbations on small scales, that have not been accounted for by existing analytical studies. The results then
apply generically and no special treatment is required to include DM annihilation, beyond utilizing the modified δe
computed above.
To save the reader from disappointment: our final answer to the question posed in the title of this section is negative.

We find that even an O(10) enhancement, compared to the Standard Model, in small scale electron perturbations,
will leave only a very subtle imprint on the bispectrum. As most of the DM annihilation effect during last scattering
is concentrated on such small scales, the CMB bispectrum will likely not provide means of detection.

A. The bispectrum

Our notation for the homogeneous (unperturbed) differential and integrated optical depth and the visibility function
are given by

τ̇(η) = −acσTne, τ(η) = −

∫ η0

η

dη′τ̇ (η′), g(η) = −e−τ(η)τ̇ (η). (24)

We write the Fourier space temperature anisotropy as

Θ(~k, η, n̂) = Θ(1)(~k, η, n̂) + Θ(2)(~k, η, n̂). (25)

We neglect second order metric perturbations. Then, the first and second order anisotropies today are given by the
line of sight (LOS) solutions:

Θ(1)(~k, η0, n̂) =

∫ η0

0

dηeikµk(η−η0)S(1)(~k, η, n̂), (26)

Θ(2)(~k, η0, n̂) =

∫ η0

0

dηeikµk(η−η0) g(η)
(

Sδg(~k, η, n̂) + S(2)(~k, η, n̂)
)

, (27)

where we define µk = k̂ · n̂. The source terms are:

S(1)(~k, η, n̂) = g

(

Θ
(1)
0 (~k) + µkv

(1)
b (~k)−

1

2
P2(µk)Π

(1)(~k) + 2α̇(~k)

)

+ e−τ
(

κ̇(~k) + α̈(~k)
)

+ ġα(~k), (28)

Sδg(~k, η, n̂) =

∫

d3q

(2π)3
δe(~k − ~q)

(

Θ
(1)
0 (~q) + µqv

(1)
b (~q)−

1

2
P2(µq)Π

(1)(~q)−Θ(1)(~q, n̂)

)

, (29)

S(2)(~k, η, n̂) = Θ
(2)
0 (~k) + n̂ · ~v

(2)
b (~k)−

1

2
P2(µk)Π

(2)(~k). (30)

We define α = (ḣ+6κ̇)/2k2 [51] and suppress the η dependence on the RHS for clarity. The first order baryon velocity

perturbation is assumed to be irrotational, ~v
(1)
b (~k, η) = k̂v

(1)
b (~k, η).

In Eq. (30) we neglect vector and tensor contributions (m = ±1,±2, respectively; note that the rotational velocity
vanishes in the bispectrum). Then, in the source terms, we can use the same Legendre multipole decomposition for
first and second order terms,

Θl(~k, η) =
il

4π

∫

dn̂Pl(n̂ · k̂)Θ(~k, η, n̂), (31)

where Pl(x) are Legendre polynomials and with similar decomposition for the polarization ΘPl, feeding into Π =
Θ2+ΘP0+ΘP2. Note that for the second order perturbation, Θ(2), the Legendre decomposition of Eq. (31) contains
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only part of the information because at second order, azimuthal symmetry around the wave vector no longer holds.
Thus when we compute spherical harmonic coefficients, we will need to use the full Ylm transform for Θ(2) (see
Eq. (33) below). Nevertheless, focusing on scalar contributions, the Legendre moments in Eq. (30) suffice to compute
the second order source S(2) because there azimuthal averaging occurs by Thomson scattering.
Physically, the contribution Sδg comes about from perturbing τ̇ and τ in the first order solution, Eq. (26). This term

is equivalent to perturbing the visibility function, up to corrections proportional to the integrated Sachs-Wolfe effect
that are only relevant on large scales. As written in Eq. (29), this term is ready to deploy in an explicit calculation
of the three-point function.
The contribution S(2) contains the second order feedback. Namely, it includes the actual effect of the electron

perturbation on the photon field, rather than, as in the previous term, the effect of perturbing the way we see that
field today. We defer a derivation of S(2) to subsequent work [29]. Our results for this term extend and improve the
analysis of [22], and disagree with [24].
In what follows, we derive the bispectrum contribution due to the visibility term Sδg and discuss the effect of DM

annihilation. We then discuss qualitatively the contribution due to the second term S(2).

The spherical harmonic coefficients alm = a
(1)
lm + a

(2)
lm are given by

a
(1)
lm = 4π

∫

d3k

(2π)3
(−i)lΘ

(1)
l (~k, η0)Y

∗
lm(k̂), (32)

a
(2)
lm =

∫

d3k

(2π)3

∫

dn̂Y ∗
lm(n̂)Θ(2)(~k, n̂, η0). (33)

Using Eqs. (32-33) we compute the bispectrum, Bℓ1ℓ2ℓ3
m1m2m3

= 〈aℓ1m1aℓ2m2aℓ3m3〉. After the dust settles, we find that

the contribution due to Sδg leads to the following result6:

Bℓ1ℓ2ℓ3
m1m2m3

= Gl1l2l3
m1m2m3

×
4

π2

∫ η0

0

dηg(η) (fℓ1(η)gℓ2(η) + five permutations) , (34)

gℓ(η) =

∫

dkk2P (k)Θ
(1)
ℓ (k, η0) jℓ[k(η0 − η)]δe(k, η),

fℓ(η) = (−1)l
∫

dkk2P (k)Θ
(1)
ℓ (k, η0)

∑

l′,l′′

(2l′ + 1)(2l′′ + 1)

(

ℓ ℓ′ ℓ′′

0 0 0

)2

il+l′+l′′jl′ [k(η0 − η)]

×

(

δl′′1
θ
(1)
b (k, η)− θ

(1)
γ (k, η)

3k
+ δl′′2

Π(1)(k, η)

10
− (1− δl′′0) (1− δl′′1) Θ

(1)
l′′ (k, η)

)

.

In Eq. (34), by δe(k, η), Θl(k, η), etc. we refer to transfer functions, namely, we mean to have mod out the random

initial curvature perturbation ξ~k from δe(~k, η), Θl(~k, η). The variables θb = ikvb and θγ = 3kΘ1 are as in [44]. We
assume gaussian adiabatic initial curvature perturbations, with power spectrum

〈ξ~kξ~p〉 = (2π)3δ(3)
(

~k + ~p
)

P (k). (35)

Finally, the gaunt coefficient is

Gl1l2l3
m1m2m3

=

√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(

ℓ1 ℓ2 ℓ3

0 0 0

)(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

. (36)

The information about the electron density perturbation is contained in the function gl(η). DM annihilation affects
gl(η) at high l. In Fig. 6 we plot gl(η) (in absolute value, µK units) vs. l, with a snapshot at peak visibility (left) and
half-maximum visibility (right). We examine different DM masses, assuming standard thermal freezeout annihilation
cross section. As it turns out, the growing ionization mode develops too late to show up significantly during last
scattering where the visibility is large, and on angular scales that are too small to be accessible to current and
upcoming experiments. Only in the 2 GeV case, that is already excluded experimentally, a noticeable effect occurs

6 Our derivation of Eq. (34) follows closely that of [23, 24], but the result disagrees with theirs in a few terms.
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FIG. 6: The function gl(η) of Eq. (34), capturing the DM annihilation effect in the visibility contribution to the recombination
bispectrum. We plot gl (in absolute value, units of µK) vs. l, with a snapshot at peak visibility (left) and half-maximum
visibility (right), for different DM masses assuming thermal freeze out cross section.

at peak visibility and on scales l . 2000. Imposing existing constraints, the effect is small even on scales l & 2000,
beyond the reach of Planck.
Obviously the effect of DM annihilation in the bispectrum is small, on scales l . 2000 where other secondaries

such as point sources are under control (see e.g. [52]). Nevertheless, for completeness we estimate the signal-to-noise.
The signal-to-noise ratio for the detection of the bispectrum, for an experiment with detector noise Nℓ and covering
a fraction of the sky fsky, is given by

(

S

N

)2

=
∑

ℓmin≤ℓ1≤ℓ2≤ℓ3≤ℓmax

fsky
(

Bℓ1ℓ2ℓ3
)2

∆ℓ1ℓ2ℓ3 (Cℓ1 +Nℓ1) (Cℓ2 +Nℓ2) (Cℓ3 +Nℓ3)
, (37)

with ∆ℓ1ℓ2ℓ3 = 1, 2, 6 for zero, two and three equal ℓ’s. The reduced bispectrum is obtained by summing overm-modes,

Bℓ1ℓ2ℓ3 =
∑

m1,m2,m3

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

Bℓ1ℓ2ℓ3
m1m2m3

. (38)

The S/N arising from Eq. (34) is plotted in Fig. 7, for the case without annihilation and for thermal freezeout
annihilation cross section with mχ = 8 GeV. Where S/N is not negligibly small, the annihilation scenario is essentially
indistinguishable from the Standard Model. In computing S/N , we follow [22] and only include angular scales
l > lmin = 100, that are well within the horizon during recombination. This procedure is meant to eliminate the
sensitivity of the result to second order metric perturbations, that have not been included in our estimate of the
bispectrum. We checked that using smaller values of lmin has negligible effect on the results. We consider cosmic
variance limited (CVL) experiment with zero detector noise and fsky = 17.
Lastly, so far we analyzed the bispectrum contribution coming from perturbed visibility, Sδg, but ignored the

contribution of the second order source S(2). This is not because the contribution due to S(2) is small; it is in fact
comparable to the Sδg term that we discussed [22]. To our knowledge, a correct analytical estimate for the bispectrum

contribution from S(2) is yet to be published. This analysis is motivated regardless of the specific implications for
DM and we take it up in [29], where we also explain where current estimates [22, 24] are lacking. However, even
without the detailed answer for the contribution due to S(2), there is a simple physical argument which makes clear
that DM annihilation can only slightly modify this contribution from the Standard Model result. To understand this
argument, note that S(2) encodes the cumulative effect of the electron perturbation on the photon multipoles up until
last scattering.

7 To compare with expected performance of Planck, there the beam size will cut the growth of S/N above l ∼ 1500.
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FIG. 7: Signal-to-noise ratio for a CVL experiment. Blue – no DM annihilation, green – mχ = 8 GeV with thermal freezeout
annihilation cross section. The plot includes the bispectrum from perturbed visibility only, Eq. (34).

Now, a rather accurate description of CMB anisotropies can be obtained within the tight coupling approxima-
tion [53], where the effect of Thomson scattering on the CMB multipoles is packaged into effective diffusion (or Silk)
damping,

Θ0,1(k, η) ∼ Θ̂0,1(k, η) e
− k2

k2
D . (39)

Here, Θ̂0,1(k, η) are the photon monopole and dipole, obtained from the Boltzmann equation deleting Thomson
scattering and neglecting all other multipoles, and

1

k2D(η)
=

∫ η

0

dη′
c2s
2τ̇

(

16

15
+

R2

1 +R

)

(40)

is the diffusion scale with R = (4ρb/3ργ) and c−2
s = 3(1 +R).

Ref. [22] used Eq. (39) to derive a rough estimate of the bispectrum contribution due to S(2), limiting the analysis
to electron perturbations δe(k) on very large scales, k ≪ kD. By construction, their derivation can not strictly apply
to small scale δe and thus can not be used to assess quantitatively the effect of DM annihilation. Nevertheless,
Ref. [22] pointed out that small scale δe has negligible contribution to the bispectrum, and this observation remains
qualitatively correct. The reason to this is simple: electron perturbations on scales smaller than the diffusion mean
free path, can not affect diffusion damping. Thus Eq. (39), by packing Thomson scattering into an effective diffusion
coefficient, already implies that short wave electron perturbations cannot lead to big effects.
We comment that additional contributions associated with S(2) exist, that are not captured by diffusion damping;

these contributions are identified in [29] in terms of perturbations to the photon-baryon sound speed and baryon drag.
However, these terms are less significant than the diffusion effect and do not change the results appreciably.

IV. CONCLUSIONS

We compute linear perturbations to the free electron density δe, including the effect of dark matter (DM) annihi-
lation. We find a growing, non-oscillating, ionization mode that tracks the DM perturbations. The main result of
this paper is that on small scales, this growing mode can boost δe by more than an order of magnitude compared to
the Standard Model prediction, with peak amplification right after last scattering. The kinetic matter temperature
is also affected with potentially O(1) corrections from the Standard Model prediction during the cosmic dark ages,
relevant for 21 cm observations.
CMB power spectra are insensitive to these linear electron density fluctuations. The leading observable where δe

may play a role is CMB non-gaussianity, in particular the three-point function or bispectrum. There, a first order
electron perturbation feeds into second order, non-gaussian temperature multipoles. Several analytical and numerical
studies have shown that the bispectrum from recombination is relevant for Planck and should be accounted for
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when searching for primordial non-gaussianity. Refs. [22–24] found the bispectrum induced by δe may be marginally
observable by Planck. An order of magnitude amplification by DM annihilation then looks naively quite promising;
we thus computed the bispectrum induced by δe. In doing so, we have found the current literature lacking, specifically
when it comes to perturbations on small scales. Our treatment of this problem will be reported separately in [29].
We find that the non-gaussianity signal is small, very difficult to disentangle from the Standard Model by any

current or upcoming experiment. This is because even though electron perturbations can be markedly boosted, the
main boost occurs slightly after last scattering and on scales below the Silk damping scale.
While the prospects for observation in the CMB look slim, our analysis does show that significant O(1) changes

to the ionization history of the Universe may be caused by DM interactions during the early cosmic dark ages. In
particular, an O(1) enhancement of electron density and matter temperature perturbations, with power rising on small
scales similarly to DM perturbations, would follow from DM annihilation. Similar conclusions were found for later
epochs relating to DM halos; our analysis extends these findings to the early linear regime. A natural observational
tool to try and detect these effects in the future is 21 cm radiation.

Acknowledgments

We thank Tracy Slatyer for early collaboration, and Yacine Ali-Häımoud for comments on the manuscript. CD is
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Appendix A: Non-local energy deposition

Not all of the energy injected by DM annihilation is absorbed by the plasma, and the deposition of the part that is
absorbed takes non negligible time. The eventual energy deposition occurs when the annihilation shower becomes an
electromagnetic cascade, with electrons and photons cooling down to the ∼ keV range where ionization and heating
takes over. Here we describe this effect in the homogeneous limit and then proceed to estimate the implications when
cosmological perturbations are included. We also make contact with computations of [17] to illustrate the effect in
some concrete model examples.
Ref. [17] computed the object T (z, z′), defined separately for different initial energy ǫinj and done for electrons and

photons:

T (z, z′) dz =
dz

ǫinj

∂ǫ

∂z
. (A1)

This relates to our conventions via

fdep(η, η
′) = T (z, z′)H(z). (A2)

In the homogeneous limit, the effect of non-local energy absorption is then encoded by the function f(η) of Eq. (11),

f(η) =

∫ η

0

dη′ (a/a′)
2
fdep (η, η

′) =

∫

dz
H(z)

H(z′)

(

1 + z′

1 + z

)2

T (z, z′). (A3)

The case of DM decay, or of time-dependent 〈σv〉, is a simple generalization of Eqs. (11) and (A3).
For the purpose of computing cosmological perturbations, both the time and the spatial smearing of the energy

deposition are relevant. Linearizing Eq. (7) and moving to Fourier space for clarity,

δu̇dep(~k, η) = u̇inj(η)

∫ η

0

dη′(a/a′)2
(

δfdep

(

~k, η, η′
)

+ 2 δχ(~k, η
′)F (k, η, η′)

)

. (A4)

For the homogeneous part of F , we used F (~x, ~x+ ~r, η, η′) = F (0, |~r|, η, η′), with Fourier transform F (k, η, η′). For
the perturbation in F , it is natural to generalize the quantity fdep,

∫

d3x′δF (~x, ~x′, η, η′) = δfdep (~x, η, η
′) , (A5)
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with Fourier transform δfdep(~k, η, η
′).

The term δfdep comes from various non-DM perturbations. For instance, electron density perturbations affect the
cooling time of energetic photons in the electromagnetic shower following DM annihilation. At late times, z . few
hundreds, baryonic perturbations are as large as DM density perturbations. Then, we expect the δfdep term to be as
relevant as the DM δχ term8. In this paper, however, we restrict our interest to the recombination epoch where, for
modes inside the horizon, the DM perturbations δχ are much larger than all other baryonic (and metric) perturbations.
To obtain basic understanding of the physics, it is safe to neglect the δfdep term in Eq. (A4). In addition, again around

recombination and for modes inside the horizon a′δχ(~k, η) ≈ aδχ(~k, η
′). Using these observations we can write,

δu̇dep(~k, η) ≈ 2 u̇inj(η) δχ(~k, η)

∫ η

0

dη′(a/a′)F (k, η, η′) . (A6)

To proceed further, we need information about the model dependent distribution F . Let us consider simple
examples.

• Instanteneous deposition: consider DM with mass mχ ∼ 100 MeV annihilating to e+e−. Close to the time of
recombination at z ∼ 103, the electrons cool quickly by inverse Compton (IC) scattering on CMB photons, with
a comoving cooling scale

kc ≈ 2.5 · 103
(

z/103
)3

(ǫ/GeV) Mpc−1. (A7)

For ∼ 100 MeV electrons, this gives kc ∼ 260 Mpc−1 corresponding today to angular resolution l ∼ 106, beyond
our current ambition. Thus these electrons quickly and locally deliver their energy to IC photons with typical
energy ǫγ ∼ γ2

e ǫCMB ∼ keV. The ionizing photons quickly deposit their energy in the plasma. For this model it
is a reasonable approximation to assume instantaneous deposition,

F (~x, ~x′, η, η′) ≈ δ(3)(~x− ~x′)δ(η − η′), (A8)

leading to δu̇dep(~x, η) ≈ 2u̇inj(η)δχ(~x, η).

In the left panel of Fig. 8 we explore fdep(η, η
′) for the 100 MeV, χχ → e+e− example9.

• Deposition smearing: consider now DM annihilating to e+e−, but with larger DM mass mχ ∼ GeV. The initial
electrons still cool quickly by IC scattering, however, some fraction of the energy will now go to IC photons with
energy ǫγ ∼ MeV. These MeV photons are non-ionizing; they must cascade down by Thomson scattering to
the keV range before they can be absorbed by the plasma. Thus, some fraction finst of the initial annihilation
energy will be deposited locally, but the remaining 1− finst will be smeared over significant distance and time.
Consider an ansatz for the deposition smearing,

F (~x, ~x′, η, η′) ≈ finst(η
′)δ(3)(~x − ~x′)δ(η − η′) (A9)

+ (1− finst(η
′))





1
√

2πσ2
γ(η, η

′)





3

e
− ∆x2

2σ2
γ (η,η′) fdep,γ (η, η

′) .

Here, fdep,γ describes the energy loss rate of the secondary IC photons in the plasma. As the photons of
interest have MeV energy – comparable, but not much exceeding the self energy of electrons in the plasma –
the spatial smearing here should be quite similar to CMB diffusion damping. In particular, around the time of
recombination we can estimate

σ2
γ(η, η

′) ∼

∫ η

η′

dη′′

3τ̇(η′′)
∼

4

k2D
. (A10)

For the non-local part of the energy deposition, then, we have diffusion damping. Plugging into Eq. (A6),

δu̇dep(~k, η) ≈ 2u̇inj(η)δχ(~k, η)

(

finst(η) +

∫ η

0

dη′(a/a′) (1− finst(η
′)) fdep,γ (η, η

′) e
− 2k2

k2
D

)

. (A11)

8 This can be relevant e.g. for 21 cm analyses.
9 We thank Tracy Slatyer for providing us with high resolution grids of her results of energy deposition.
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FIG. 8: Left: energy deposition for χχ → e+e−, mχ = 100 MeV, at z = 1080. Right: same, but for mχ = 1 GeV.

In the right panel of Fig. 8 we plot the function fdep(η, η
′) for the 1 GeV, χχ → e+e− example. A certain

fraction of the injection energy can be attributed to a narrow peak immediately attached to the annihilation
time. However, much of the absorbed energy exhibits significant deposition time, much larger than for the
previous example and relevant in comparison with the time scale of recombination. This extended deposition
can be shown to arise from the shallow behavior of fdep,γ .

To summarize, annihilation energy deposition on small scales is damped by photon diffusion. Considering Eq. (A11),
neglecting the time dependence of all factors compared with that of fdep,γ (η, η

′) in the η′ integral, we can estimate

δu̇dep(~k, η) ≈ 2 u̇inj(η) δχ(~k, η)
(

finst(η) + (1− finst(η)) f̄γ(η) e
−2k2/k2

D

)

, (A12)

where f̄γ(η) =
∫

dη′(a/a′)fdep,γ (η, η
′). In analyzing DM annihilation as a source for cosmological ionization and

matter temperature perturbations, we should thus keep in mind that a model dependent, but potentially non-negligible
fraction of the annihilation power in DM density perturbations on small scales, k > kD ∼ 0.15 Mpc−1, is washed out
and does not source ionization or temperature perturbations on these scales.
Finally it is clear that, analyzing distributions such as in Fig. 8, the quantities finst and fdep,γ (or more generally,

the smeared component) can be readily extracted. Once this is done, Eq. (A11) or (A12) can be used to calculate the
energy absorption damping effect for cosmological perturbations. In this paper, due to the model dependence of the
processes involved, we will not go into these details.
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