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The presence of massive neutrinos has a characteristic impact on the growth of large scale struc-
tures such as galaxy clusters. We forecast on the capability of the number count and power spectrum
measured from the ongoing and future Sunyaev-Zeldovich (SZ) cluster surveys, combined with cos-
mic microwave background (CMB) observation to constrain the total neutrino mass Mν in a flat
ΛCDM cosmology. We adopt self-calibration for the mass-observable scaling relation, and evaluate
constraints for the South Pole Telescope normal and with polarization (SPT, SPTPol), Planck, and
Atacama Cosmology Telescope Polarization (ACTPol) surveys. We find that a sample of ≈ 1000
clusters obtained from the Planck cluster survey plus extra information from CMB lensing extrac-
tion could tighten the current upper bound on the sum of neutrino masses to σMν = 0.17 eV at 68%
C.L. Our analysis shows that cluster number counts and power spectrum provide complementary
constraints and as a result they help reducing the error bars on Mν by a factor of 4− 8 when both
probes are combined. We also show that the main strength of cluster measurements in constrain-
ing Mν is when good control of cluster systematics is available. When applying a weak prior on
the mass-observable relations, which can be at reach in the upcoming cluster surveys, we obtain
σMν = 0.48 eV using cluster only probes and, more interestingly, σMν = 0.08 eV using cluster +
CMB which corresponds to a S/N ≈ 4 detection for Mν ≥ 0.3 eV. We analyze and discuss the de-
generacies of Mν with other parameters and investigate the sensitivity of neutrino mass constraints
with various surveys specifications.

I. INTRODUCTION

Measuring masses of neutrinos is one the major goals
of particle physics and cosmology. While atmospheric
and solar neutrino oscillation experiments are sensitive
to neutrino flavor, mixing angle, and the mass difference
among different species, cosmological data are instead
more sensitive to the absolute mass scaleMν =

∑

mν . In
fact, the most stringent upper bound of the total neutrino
mass is coming from CMB and large scale structures since
massive neutrinos leave detectable imprints throughout
the history of the universe. Most recently, [1] obtained
Mν < 0.23 eV at 95% C.L. by combining CMB data and
BAO from Sloan Digital Sky Survey (SDSS)

In this work, we explore the prospects of employing
ongoing and future galaxy cluster surveys detected by
the SZ effect in constraining neutrino masses. Galaxy
clusters are in principle a powerful tool for probing neu-
trino properties. Neutrino becomes nonrelativistic af-
ter the epoch of decoupling if its mass scale is smaller
than O(0.1) eV. The relativistic behavior of neutrinos,
as opposed to cold dark matter, causes the suppression
of matter perturbations on small scales with respect to
the case in which neutrinos are massless and all dark
matter is cold. The presence of massive neutrinos affects
the growth rate of perturbations in the linear regime,
and, as a consequence, the shape of the matter power
spectrum and cluster abundance. Current measurements
from X-ray cluster surveys obtained a tight upper limit of
Mν < 0.33 eV [2] by combining measurements of Chan-
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dra X-ray observations of galaxy clusters, CMB from
WMAP 5 year data, BAO and type 1A supernova (both
from HST Key Project). Similarly, measurement from
galaxy power spectrum from the SDSS-III BAO survey
+ CMB + SN found Mν < 0.34 eV [3].

Subsequently, several works were dedicated to discuss
the prospects of utilizing large future surveys of large
scale structures (galaxy or galaxy clusters) in different
wavelengths (e.g. [4–11]). These works showed that con-
straints of neutrino mass depend on assumptions of the
underlying cosmology (e.g. inclusion of dark energy or
flatness), cluster physics, and the use of external priors
(e.g. CMB lensing extraction). Here we revisit the analy-
sis to forecast the constraint of the total neutrino mass, in
the framework of flat ΛCDM universe and, like past con-
straints, the standard scenario with only three neutrino
species. We use cluster abundance and power spectrum
as the observables that will be obtained from various SZ
cluster surveys: the Planck, ACTPol, SPT, and SPTPol
cluster surveys. These surveys are very promising and,
in the next couple of years, will provide large samples
of mass selected clusters out to high redshift. With re-
spect to previous works [e.g 9, 10] which also employ SZ
cluster surveys, we provide a more realistic survey specifi-
cations to characterize the cluster detection and include
the self-calibration to characterize the uncertainties of
the mass-observable relations. We also discuss the de-
generacy of the neutrino mass with dark energy, which
is lacking in previous studies, and compare the strength
of cluster probes with CMB on the constraining power of
neutrino mass.

The paper is organized as follows. In Sec. II we discuss
the effects of Mν on the large scale structures. In Sec. III
we present the methodology which includes the descrip-
tion of the future SZ cluster samples and the Fisher ma-
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trix formalism. The main results are presented Sec. IV
and discussed in Sec. V. Finally, a conclusion is presented
in Sec. VI.

II. IMPACT OF NEUTRINO MASSES ON

GROWTH OF THE LARGE SCALE

STRUCTURES

The presence of massive neutrinos mildly affects ex-
pansion history but significantly impacts the growth of
structure through free-streaming. Fluctuations on co-
moving scales that enter the horizon when neutrinos are
still relativistic may be reduced in amplitude because
neutrinos would tend to leave the perturbation. This
effect, that is neutrino mass dependent, typically occurs
on length scales below the free–streaming scale: lfs =
1/kfs = 1/(1.5

√

ΩMh2/(1 + z))(eV/Mν)Mpc. Thus, the
growth of any structure that have scale smaller than lfs
will be less efficient. A smaller neutrino mass increases
the free-streaming scale, but also reduces the neutrino
fraction with respect the total amount of dark matter,
mitigating the overall suppression.
As a result of these dependences measurements of the

large scale structures such as cluster number counts and
power spectrum can be used to place constraints on neu-
trino masses.
The late-time evolution of perturbations in a ΛCDM

cosmology with massive neutrinos can be accurately de-
scribed by the product of a scale dependent growth func-
tion and a time dependent transfer function. For ex-
ample, [12] derived a reasonable approximation to the
analytical expression of the transfer function for small
scales. In this work, we employ the transfer function de-
termined numerically from CAMB [13] which provides
precise estimate on the matter power spectrum and in-
clude non-linear effects at large–k limit in which the an-
alytical expressions fail to give an accurate estimate.

III. ANALYSIS

Our analysis closely follows the treatment of [14], here
we only outline the method and refer the readers to [14]
for details. For cluster abundance and clustering, we use
the results of numerical simulations from [15] for the clus-
ter mass function n(M, z), and [16] for the halo bias.

A. Cluster survey

We consider four upcoming SZ cluster surveys studied
in [14]: the Planck survey, the South Pole Telescope nor-
mal and polarization survey (SPT and SPTPol respec-
tively), the Atacama Cosmology Telescope polarization
survey (ACTPol). Each of these surveys has different
specifications for the selection threshold, i.e. Mlim(z),
and their properties are summarized in Tab. I.

TABLE I: Properties of SZ cluster survey

Survey Area (sq. deg) No. of clusters

Planck 30000 1000

SPT 2500 500

SPTPol 625 1000

ACTPol 4000 500

Briefly, for the Planck survey we adopt a flux limit
of Y200,ρc ≥ 2 × 10−3arcmin2 [17], where Y200,ρc is the
integrated comptonization parameter within the radius
enclosing a mean density of 200 times the critical density.
This corresponds to a 5σ detection threshold and would
yield ∼ 1000 clusters.
For the SPT survey, i.e. single frequency at 150 GHz,

we employ the calibrated selection function of the survey
by [18] and adopt a detection threshold at 5σ. This yields
∼ 500 clusters . The SPTPol has an increased sensitivity
at 150 GHz than the normal survey and we account for
this, following previous work, by scaling the mass limits
by a factor of 3.01/5.95. The expected number of clusters
is ∼ 1000.
For the ACTPol survey, we include clusters with

M200,ρ̂c
> 5 × 1014M⊙h

−1 (Sehgal 2011, private com-
munication) which corresponds to a 90% completeness.
This straight mass cut result in ∼ 500 clusters.
We construct cluster sample for the Planck survey in

the redshift range 0 < z < 1. We impose a lower cut
zcut = 0.15 for the SPT, SPTPol, and ACTPol survey.
Currently, the SPT team is setting a low redshift cut at
zcut = 0.3 in their released cluster sample, due to difficul-
ties in reliably distinguishing low-redshift clusters from
CMB fluctuations in single frequency observations. Nev-
ertheless, with upcoming multi-frequency observations, a
lower cut zcut = 0.15 will likely be attained. We therefore
apply this cut in our work.

B. Fisher matrix forecasts and cosmological

parameters

We estimate the constraints on cosmological parame-
ters by applying the Fisher matrix formalism to future
SZ cluster surveys. This approach can best approximate
the likelihood when the fiducial model is close to the true,
underlying model and the likelihood is close to gaussian.
Typically, the gaussian approximation is more accurate,
and the use of the Fisher matrix better justified, when the
likelihood is peaked and the parameter in hand has little
degeneracies with other parameters. In order to achieve
this goal, the use of external priors can be beneficial.
For example, [19] noted that the CMB power spec-

tra likelihood function for the neutrino mass differs from
the gaussian case due to strong parameter degeneracies,
particularly for models with many parameters. These
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authors suggested the use of CMB lensing extraction in-
formation in order to sharpen the likelihood and make
it better approximated by Gaussian. We will adopt the
same strategy, as described below.

The Fisher matrix for the cluster number counts and
power spectrum is described in detail in [14]. Similarly,
for our main results, we here consider self-calibration to
account for the uncertainties of the observed cluster mass.
We add the Planck CMB lensing extraction (LE) that is
considered to be a very promising way to constrain neu-
trino mass (e.g. [12, 20]). The CMB anisotropies obey
Gaussian statistics in the absence of weak lensing, and
therefore they are fully described by the temperature and
polarization power spectrum. Weak lensing, however, in-
troduces non-gaussianity in both the temperature and
polarization anisotropies [21, 22]. Therefore, extracting
the lensing information from CMB (e.g. using quadratic
estimators [23–26]) would provide the lensing potential
and delensed CMB anisotropies, and hence extra infor-
mation to the Fisher matrix. In the following, we refer
to the Fisher matrix results obtained from CMB lensing
extraction as the CMB LE. As shown in [27], CMB LE is
useful in providing strong neutrino mass constraints and
potentially breaking of the major neutrino mass degen-
eracies with other parameters [19]. While very promis-
ing, the exploitation of higher order statistics may suf-
fer from subtle ways from the effect of galactic and ex-
tragalactic contaminants. For this reason, we also con-
sider constraints coming from the CMB power spectrum
only (with lensing) when combining probes with cluster’
s ones.

We note that the latest Planck results were released
during the preparation of this work. They derive a tight
upper limit ofMν ≤ 0.93 eV when using CMB data alone
and Mν ≤ 0.23 eV when further combined with BAO
data. Nevertheless, these limits use information from
polarization of the WMAP data and not from the Planck
data itself (the Planck CMB polarization data will be
employed in the next data release). Therefore instead
of using these numbers as priors on Mν constraints, we
derive our Planck CMB prior that takes into account the
Planck polarization information which is believed to be
better than that from WMAP . Thus this prior should be
considered as the self-contained and improved one than
the current constraint in [1].

We adopt a spatially flat ΛCDM model as the fiducial
model. The set of parameters included in our analy-
sis is (Ωbh

2,ΩMh2,ΩΛ,Mν , ns, σ8, w0, wa). The fiducial
values are adopted from the best fit flat ΛCDM model
from WMAP 7yr data, BAO and H0 measurements [28]:
Ωbh

2 = 0.0245, ΩMh2 = 0.143, ΩΛ = 1 − ΩM = 0.73,
Mν = 0.3 eV, ns = 0.963, σ8 = 0.809, w0 = −1, wa = 0.

As proposed in [29, 30], we can use cluster surveys
to constrain the mass observable relation by considering
self-calibration, hence taking into account the systematic
errors of the SZ surveys due to uncertainties in observed
cluster mass. In this work, we follow [31] to introduce
four nuisance parameters, BM0, α, σlnM,0, β, that spec-

ify the magnitude and redshift dependence of the frac-
tional mass bias BM (z) = BM,0(1+ z)α and the intrinsic
scatter σlnM (z) = σlnM,0(1+ z)β. We adopt fiducial val-
ues of BM0 = 0, α = 0, σlnM,0 = 0.1, β = 0, hence
corresponding to zero mass bias and 10% intrinsic scat-
ter. In deriving the main results, we will not make any
assumption on the four nuisance parameters and leave
them free to vary. We discuss the impact of this assump-
tion in Sec. IVC.

IV. RESULTS

A. Cluster number count and power spectrum

Tab. II summarizes the neutrino mass constraints from
the Fisher matrix analysis for Planck CMB (with and
without LE), cluster number counts, and power spectrum
for the four cluster surveys. Constraints ofMν from clus-
ter number counts alone are better than power spectrum
ones, however, each of them is very weak when consid-
ered separately, with σMν > 4 eV. When combining infor-
mation from both probes, the constraints are improved
significantly by a factor of 4 − 8. The best case is ob-
tained from the Planck cluster survey with σMν = 0.94
eV, whereas the constraints from other surveys are a fac-
tor of two worse.

B. Cluster probes + CMB

Adding the Planck CMB priors breaks degeneracies
(see Sec. VA) and improves the constraints (number
count or power spectrum alone) further by a factor of
> 4 (without LE) and > 5 (with LE). When including
all the information but LE, i.e. count + power spec-
trum + CMB, we find the best constraint comes from
the Planck and ACTPol cluster survey with σMν = 0.23
eV. This is 80% better than that obtained from Planck

CMB alone (σMν = 0.41 eV). Including CMB priors also
shrinks the difference in σMν among different surveys in
which it is now σMν = 0.23− 0.30 eV. Similar results are
obtained when we add the CMB LE and the best con-
straint is σMν = 0.17 eV. This suggests that the improve-
ments in σMν are mainly driven by CMB information.
We note that a perfect cleaning of all the astrophysi-
cal foregrounds is assumed when computing the CMB
Fisher matrix in this work. Foreground contamination
dominates at small angular scales (e.g. l ≥ 1000) and
would introduce extra non-gaussianity and spoil the lens-
ing extraction process [32]. Nevertheless, [27] found that
the effect of no foreground subtraction in Planck CMB
(with and without LE) only degrades the Mν constraint
marginally (by 9%). Therefore, our results that involve
CMB information can be considered to be robust against
foreground contamination.
We repeat the analysis with a fiducial Mν = 0.1 eV

instead to investigate the effect on the constraint with
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less massive neutrinos. The results are very close (within
15%) to those for Mν = 0.3 eV when using cluster probes
only, and are almost the identical when CMB priors are
added.

C. Self-calibration and uncertainty of nuisance

parameters

The dominant systematic errors for SZ derived con-
straints are the uncertainties in the mass observable re-
lation due to structure and evolution of clusters. We
can ask how much could be gained by eliminating such
uncertainties. For example, we can expect some exter-
nal constraints on the nuisance parameters by using de-
tailed studies of individual clusters or combining differ-
ent information from optical, weak lensing, X-ray and SZ
measurements. To estimate the effect of self-calibration
of systematic uncertainties on the neutrino mass con-
straints, we repeat the forecasts with different priors on
the four nuisance parameters as summarized in Tab. III.
We first discuss the results when applying a ”weak”

prior, i.e. using current knowledge on the calibration
on the mass proxies ∆σM,0 = 0.1, ∆β = 1, ∆BM,0 =
0.05, ∆α = 1. In the case of cluster count + power
spectrum, the 1σ error reduces marginally for SPT and
SPTPol, but significantly (by a factor of two) for Planck
and ACTPol. This results in σMν = 0.48 eV for the
Planck cluster survey which is competitive with the CMB
only constraint. In the case of adding the CMB (with and
without LE) priors, the 1σ errors generally reduce by a
factor of two and resulted in, for the best case as obtained
by the Planck survey, σMν = 0.08 eV, which corresponds
to a S/N ≈ 4 detection for Mν ≥ 0.3 eV
Similar results are obtained when applying a ”strong

prior”, i.e. the four nuisance parameters are held fixed
at their fiducial values, which is equivalent to assuming a
perfect knowledge of cluster true masses. The constraints
are improved significantly by 66 − 236% in the case of
cluster count + power spectrum, and a factor 2− 3 when
the CMB priors are further added. The best constraint
is, again with the Planck cluster survey, σMν = 0.07 eV
which is a relative marginal improvement with respect
to the weak prior case. While it is unrealistic to have
perfect knowledge on the mass observable relations, one
can achieve similar scenario by restricting the analysis
to a relatively small subset of clusters for which follow
up observations are available. This would ensure a sam-
ple with well calibrated mass proxies. For example, it
has been shown in [2] that the ability to constrain dark
energy parameters from a small sample of ≈ 50 well cal-
ibrated X-ray clusters is comparable to a larger sample
of ≈ 10000 optical clusters (e.g. SDSS [33]).
Unlike other parameter constraints (e.g. non-

Gaussianity with galaxy clusters [14]), the results of the
weak prior are sufficiently close to the those from the
strong prior. The prospect of achieving the weak prior
conditions is promising, e.g. clusters detected in weak

lensing measurements or a subsample of objects hav-
ing extensive multi-wavelength follow-up. Therefore the
cluster probes are good enough to provide interesting Mν

constraint even without perfect knowledge of the scaling
relations.

As a final remark, we would like to compare our
count + CMB result with [10] which similarly presented
Mν constraints assuming perfect knowledge of cluster
mass and used Planck cluster count + CMB. Our result
(σMν = 0.17 eV) is a factor of 2.8 worse than that ob-
tained in [10]. We note that the discrepancy is due to the
different assumption on the total number counts: ≈ 6000
in [10] and ≈ 1000 in this work for the Planck survey if
a 5σ survey detection limit is assumed. Our estimate is
based on the conservative assumption that ensures high
level of completeness (90%) and realistic mass limits that
vary at different redshifts, while [10] assumed a constant
and lower mass threshold.

V. DISCUSSION

A. Parameter Degeneracies

The dark energy equation of state w0 and Mν is one of
the major parameter degeneracies. Fig. 1 shows the 1σ
constraints on Mν and w0 computed from cluster number
counts, power spectrum, combination of the two, with
and without LE of the Planck CMB. The contour for
number count shows a clear diagonal alignment, and the
degeneracy direction can be understood as follows: an
increase in neutrino mass suppresses the growth of struc-
ture formation, this can be compensated by a larger rate
of accelerated expansion (i.e. more negative w). The
constraints from power spectrum is less degenerate but
show different degeneracy directions. As a result, com-
bining information from both probes greatly improve the
constraints. To see the effect of w0 on Mν constraint, we
derive σMν again by marginalizing over w0 and wa. We
find that, as expected, only the constraints from number
count are affected (improve by a factor of > 2), while
those from power spectrum are barely affected. Further-
more, only modest improvements are obtained when com-
bining number count and power spectrum in this case.

The degeneracy between curvature ΩK and neutrino
mass Mν is also known to be significant and impact on
both Mν and the number of neutrino species Neff , which
could affect the constraints coming from CMB [e.g 34,
35]. However we note that the cluster probes used in this
work are related to the growth of structures which are not
sensitive to ΩK . Thus we expect that including ΩK in
the Fisher matrix analysis would not impact our results.
It is out of the scope of this paper to study in depth
the impacts of including an extended set of parameters
(e.g. ΩK , Neff ). Nevertheless it would be potentially
interesting to study their effects for growth of structures
and we leave it for future works.
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TABLE II: Marginalized 1σ errors on Mν (in units of eV).

no prior + CMB prior + CMB LE prior

CMB CMB LE Survey NC P (k) Comb NC P (k) Comb NC P (k) Comb
fiducial Mν = 0.3 eV

0.41 0.21

Planck 4.06 7.83 0.94 0.29 0.29 0.23 0.20 0.20 0.17

ACTpol 6.04 11.73 3.33 0.29 0.29 0.23 0.20 0.20 0.17

SPT 12.44 12.45 2.12 0.33 0.31 0.30 0.21 0.20 0.20

SPTpol 12.59 7.81 1.79 0.32 0.30 0.28 0.21 0.20 0.19
fiducial Mν = 0.1 eV

0.52 0.19

Planck 5.09 19.98 0.77 0.37 0.42 0.23 0.18 0.19 0.15

ACTpol 17.97 48.63 2.83 0.43 0.38 0.26 0.19 0.18 0.16

SPT 6.56 31.39 1.78 0.43 0.39 0.28 0.19 0.18 0.17

SPTpol 12.59 7.81 1.79 0.32 0.30 0.28 0.21 0.20 0.19

TABLE III: Fractional improvement
σMν,no

σMν,weak/strong
with various priors (see Sec. IVC). The values of σMν ,no of the corre-

sponding cases are those from Tab. II. A fiducial Mν = 0.3 eV is assumed. The best case is obtained by the Planck survey,
σMν = 0.08 eV (same for + CMB or + CMB LE).

Probes prior Planck ACTpol SPT SPTpol

dN/dz + P (k) weak 1.97 2.43 1.18 1.06

strong 2.34 3.36 1.67 1.66

dN/dz + P (k) + CMB weak 2.76 2.16 2.12 2.53

strong 3.25 2.53 2.33 2.88

dN/dz + P (k) + CMB LE weak 2.25 1.67 1.64 1.95

strong 2.63 1.92 1.77 2.19

FIG. 1: Joint constraints on the Mν and w0. All curves de-
note 68% confidence level, and are for number counts only
(blue), power spectrum only (cyan), and combination of the
two (green), Planck CMB (yellow), and Planck CMB LE (dot-
ted yellow).

B. Survey sensitivities to neutrino mass constraints

In order to better understand what aspects of SZ sur-
veys would improve the constraints on neutrino mass, we
repeat the Fisher matrix calculation that includes differ-
ent range of wavenumber k and cluster mass M .

One of the major dependences is the maximum k val-
ues (kmax) as it determines the smallest scales that can
be probed by a survey. The effect of massive neutrino is
particularly prominent at small scales (large k values), in
which free streaming of neutrinos prevent structure for-
mation. In this work, we use the same kmax = 0.1 h/Mpc
in the power spectrum Fisher matrix for all surveys con-
sidered. We do not attempt to increase the kmax beyond
this value to avoid the non-linear effects at smaller scales.
Furthermore, this scale is the limit that can be reached
by SZ cluster surveys. Instead we study the dependence
when small scale modes are lost, as shown in Fig. 2 (left).
The effect of losing small scales information begins at
k ≈ 0.06 h/Mpc, which corresponds to the free stream-
ing scale kfs at z = 2, with Mν = 0.3 eV. The prospect of
using smaller scale modes in constraining neutrino mass
would be coming from galaxy surveys which can probe
down to k ≈ 0.5 Mpc/h. A number of studies forecasted
the neutrino mass constraints from future galaxy sur-
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veys (e.g. [36] (BOSS) and [7] (EUCLID-like)) and found
that the improvement in σMν beyond k = 0.1 Mpc/h is
marginal (see Fig. 6 in [36]).
The other relevant dependence is the limiting cluster

mass that differentiates the various SZ surveys. We show
in Fig. 2 (right) the fully marginalized σMν from the
power spectrum + Planck CMB as a function of min-
imum cluster mass used in the calculation. It is clear
that a deeper survey that can probe down to lower mass
would improve the constraints. It is also interesting to
note that the SPTPol survey, despite of its small sky cov-
erage, can perform better than the ACTPol and SPT sur-
vey because it can detect clusters down to ≈ 2×1014M⊙.
Therefore a deep survey can compensate for the sky cov-
erage when constraining neutrino mass.

VI. CONCLUSION

In this work, we explored the possibility of using future
and upcoming SZ cluster surveys to constrain neutrino
masses. We employ the Fisher Matrix analysis to forecast
the sensitivities of various SZ surveys in constraining the
total neutrino mass Mν in the context of flat ΛCDM
cosmology. We do so by making use of the cluster number
counts and power spectrum, and taking into account the
self-calibration of mass-observable scaling relations.
In general, we find that the Mν constraints from clus-

ter number count and power spectrum is weak if they
are considered separately, due mainly to strong parame-
ter degeneracy between Mν and w0, especially in the case
of cluster number count. However, such degeneracy can
be broken if the two probes are combined, which helps
to improve the constraints considerably. For example, a
sample of ≈ 1000 clusters obtained from the Planck clus-
ter survey gives σMν = 0.94 eV (0.43 eV with weak prior).
The constraints can be further improved when combined
with CMB priors. The best constraint is obtained for the
Planck and ACTPol survey, with σMν = 0.23 eV (CMB)
and σMν = 0.17 eV (CMB LE). This is ≈ 80(25)% im-
provement with respect to the CMB (CMB LE) only con-
straint. The use of CMB lensing extraction can better
help the cluster only constraints because it determines
the neutrino’s free streaming effect on the matter power
spectrum and break some of the parameter degeneracies.
While we find that Mν constraint is mainly driven by

CMB and the addition of cluster probes, i.e. number
count + power spectrum, to CMB only helps marginally,
the use of clusters is still beneficial if we have good con-
trol of cluster systematics. For example, when applying a
weak prior on the mass-observable relation, the 1σ error
on Mν as obtained from cluster count + power spectrum
goes down to 0.48 eV and is competitive with CMB only
constraint. If we further combine with CMB priors, σMν

reduces to 0.07 eV, which corresponds to a ≈ 4σ de-
tection for Mν ≥ 0.3 eV. The prospect of achieving the
weak prior conditions is promising, e.g. clusters detected
in weak lensing measurements or a subsample of objects

having extensive multi-wavelength follow-up. Therefore,
cluster measurements are useful, as an independent probe
of the Mν with respect to the CMB, in tightening the
current bound on Mν .
We find that a deeper cluster survey that detects

smaller mass clusters, e.g. down to 2 × 1014M⊙ like
SPTPol, improves neutrino mass constraints. This is
because of the effect of free streaming of massive neu-
trinos that prevents structure formation to happen at
small scales. Likewise, the availability of the small scale
modes, i.e. the maximum k values that can be probed
by a cluster survey, also helps the constraints. We show
that the modes at k ≥ 0.06 h/Mpc are important as they
help decreasing σMν significantly.
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FIG. 2: Fully marginalized constraints on Mν from the power spectrum of clusters + Planck CMB prior, as a function of
maximum wavenumber kmax (left) and minimum cluster mass Mmin (right).
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