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We develop an approach for linking the power spectra, bispectrum, and trispectrum to the ge-
ometric and kinematical features of multifield inflationary Lagrangians. Our geometric approach
can also be useful in determining when a complicated multifield model can be well approximated
by a model with one, two, or a handful of fields. To arrive at these results, we focus on the mode
interactions in the kinematical basis, starting with the case of no sourcing and showing that there
is a series of mode conservation laws analogous to the conservation law for the adiabatic mode in
single-field inflation. We then treat the special case of a quadratic potential with canonical kinetic
terms, showing that it produces a series of mode sourcing relations identical in form to that for
the adiabatic mode. We build on this result to show that the mode sourcing relations for general
multifield inflation are extension of this special case but contain higher-order covariant derivatives
of the potential and corrections from the field metric. In parallel, we show how these interactions
depend on the geometry of the inflationary Lagrangian and on the kinematics of the associated field
trajectory. Finally, we consider how the mode interactions and effective number of fields active dur-
ing inflation are reflected in the spectra and introduce a multifield consistency relation, as well as a
multifield observable β2 that can potentially distinguish two-field scenarios from scenarios involving
three or more effective fields.

I. INTRODUCTION

Inflation solves cosmic conundrums such as the hori-
zon, flatness, and relic problems [1–5]. It also offers a
mechanism for producing the primordial density fluctua-
tions. According to the inflationary paradigm, our Uni-
verse experienced an early period of quasi-exponential
expansion that stretched quantum fluctuations beyond
the causal horizon. Once beyond the horizon, the fluctu-
ations became locked in as classical perturbations, even-
tually initiating the formation of galaxies and large-scale
structure [6–11].

Generically, inflation predicts that these classical per-
turbations should produce a small, nearly scale-invariant
spectrum of primordial density fluctuations. Measure-
ments of the Cosmic Microwave Background (CMB),
large-scale structure, supernovae, and gravitational lens-
ing so far support the inflationary paradigm. These mea-
surements reveal that not only were the primordial fluc-
tuations nearly scale-invariant, small, and include super-
horizon fluctuations, but also that our Universe is essen-
tially flat, as predicted by inflation (see [12] and refer-
ences therein).

But the ultimate goal is to use cosmic data not just
to test the inflationary paradigm but to find the partic-
ular inflationary model that describes our Universe. Of
the myriad inflationary models that might describe our
Universe, there is good reason to consider models where
inflation is driven by multiple scalar fields. First, many
theories beyond the Standard Model—such as grand uni-
fication, supersymmetry, and effective supergravity from
string theory—predict the existence of multiple scalar
fields, which makes the presence of multiple fields likely
during the hot, early Universe. Second, multifield models
have become increasingly popular in recent years.

But the sobering reality of searching for multifield

models that could describe our early Universe is that
there is a staggeringly large number of multifield scenar-
ios, making it impractical to test every scenario against
cosmic data. Unlike for single-field models, both the ini-
tial conditions and one or more Lagrangian parameters
must be varied in order to fully test the range of sce-
narios arising from a given form of the Lagrangian. We
illustrated this point in [13] by examining both two-field
quadratic and power-law product potentials. For each
class of potentials, we tested more than 10,000 scenar-
ios by varying both a parameter value in the Lagrangian
and the initial conditions, in order to constrain the model
using WMAP data on the power spectra. Rigorously con-
straining models like this is extremely time-consuming.

Rather than testing inflationary scenarios one by one
like this, a more promising approach is to determine how
constraints on the spectral observables in turn constrain
the features of the inflationary Lagrangian. Clearly, fea-
tures such as the geometry of the inflationary potential
influence the evolution of the field perturbations, so the
spectra should constrain the geometry of the potential.
But in what ways do the spectra constrain the geome-
try of the inflationary potential? Is there a way to tell
from cosmic data whether a one-field or two-field model
can fit all measurements, as illustrated in Figure 1, or
whether more fields are required? And what is the role
of nonstandard kinetic terms in determining the cosmic
observables? In this paper, we aim to give greater insight
into these and related questions.

As background, initial work on understanding the per-
turbations and power spectra in general multifield in-
flation was done in [14–30]. The specific case of two-
field inflation was treated in [13, 28, 31–42]. Work to-
wards calculating other spectra, such as the bispectrum
and trispectrum, in general two-field and multifield infla-
tion was done by [43–67], among others. While develop-
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FIG. 1. Examples of three-field inflation trajectories that can
be accurately approximated by an effective model with (a)
one, (b) two, and (c) three fields, respectively. For example,
the field trajectory in (b) requires more than one effective
field to represent the trajectory because it curves, but the
trajectory curves in a plane, so only two effective fields are
needed.

ing formulas for the spectra from multifield inflation has
received much attention, the sourcing relations among
the modes in general multifield inflation where the La-
grangian is unspecified has received less attention. The
powerful δN formalism introduced in [17] enables one to
calculate the spectra in terms of gradients of the num-
ber of e-folds, N , but it has its limitations: it can be
applied analytically only to a fraction of models, and it
does not provide any insight into the sourcing relations
among modes. This situation contrasts with the case
of general two-field inflation [13, 28, 31–42] and certain
classes of multifield potentials (e.g., product potentials,
sum potentials), where the mode interactions have been
studied in depth.

In this paper, we fill this important gap in the lit-
erature by examining the series of mode sourcing rela-
tions and how they reflect the geometric and kinematical
properties of the inflationary Lagrangian. This paper
extends and complements some of our earlier work on
two-field inflation [13, 68]. The rest of this paper is or-
ganized as follows. In Sections II A-II B, we cover the
dynamics and kinematics of the background fields, and
we discuss underappreciated subtleties of the slow-roll
limit as it applies to multifield inflation in Section II C.
In Sections III A-III B, we present equations of motion
for the field perturbations in both the given and kine-

matical bases. We then discuss mode evolution in the
absence of sourcing and present mode conservation laws
in Sections III C-III D. Section III E treats the special
case of quadratic potentials with canonical kinetic terms
in which the mode sourcing equations radically simplify,
and we use this as a reference point in Section III F for
deciphering how the mode sourcing relations in general
multifield inflation depend on the geometric and kine-
matical features of the inflationary Lagrangian. Finally,
in Sections IV A-IV F, we use these sourcing equations to
examine the effective number of fields in multifield mod-
els and to explore how this number is reflected in spectral
observables. We also generalize our two-field semiana-
lytic formulas for the bispectrum and trispectrum [68]
to multifield inflation, identify a spectral observable that
can be used to distinguish two-field models from models
with three or more fields (Section IV E), and introduce a
new multifield consistency condition (Section IV F). This
work helps pave the way towards a better understanding
of how the cosmic observables can be used to constrain
the form of the multifield inflationary Lagrangian.

II. BACKGROUND FIELDS

This section covers the dynamics and kinematics of
the background inflationary fields. In turn, we review
notation and the equation of motion for the background
fields in Section II A, outline a framework for parsing
the field vector kinematics in Section II B, and cover the
slow-roll and slow-turn limits in Section II C.

A. Background Field Equation

We consider general multifield inflationary scenarios
with the following characteristics. Inflation is driven
by an arbitrary number of scalar fields, φi, where i =
1, 2, ..., d, and d is the total number of scalar fields present
during inflation, not all of which may be contributing to
the inflationary expansion at a given time. We use Latin
indices to represent quantities related to the fields, φi,
and we represent the fields compactly as

φ ≡ (φ1, φ2, ..., φd), (1)

calling φ the field vector for short, even though the
fields do not transform as vectors. During and after in-
flation, we assume Einstein gravity and that the non-
gravitational part of the inflationary action is described
by

S =

∫ [
−1

2
gµνGij(φ)

∂φi

∂xµ
∂φj

∂xν
− V (φ)

]√
−g d4x, (2)

where gµν is the spacetime metric, the fields are expressed

in units of the reduced Planck mass, m̄ ≡ 1/
√

8πG, and
c = ~ = m̄ = 1. The tensor Gij is a function of only the
fields, and it determines the form of the kinetic terms in
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the Lagrangian; it can be viewed as inducing a field man-
ifold and hence is called the field metric. If the kinetic
terms are canonical, then Gij = δij . In this manuscript,
we treat the case of general multifield inflation, meaning
we do not assume a particular functional form for either
the field metric or the inflationary potential.

Before proceeding, we introduce some notational short-
hand. For vectorial quantities lying in the tangent and
cotangent bundles of the field manifold, we use boldface
vector notation and standard inner product notation:

A†B ≡ A ·B ≡ GijAiBj , (3)

where we use the symbol † on a naturally contravariant

or covariant vector to denote its dual, e.g., φ̇
†
≡ (Gij φ̇

j)

and ∇† ≡ (Gij∇j). Also, instead of working in terms
of the coordinate time, t, we work in terms of N , which
represents the logarithmic growth of the scale factor, a(t):

dN ≡ d ln a = H dt, (4)

where H ≡ ȧ
a is the Hubble parameter. N represents

the number of e-folds of the scale factor, a(t). We work
in terms of N because it is dimensionless, it relates to
a more physical measure of time, and it simplifies the
equations of motion [13, 19]. Differentiation with respect
to N is denoted by

′ ≡ d

dN
. (5)

The background equation of motion for the fields is
derived by imposing covariant conservation of energy. We
derived such an equation using N as the time variable for
general two-field inflation in [13], and the same equation
holds for the general case of multifield inflation:

η

(3− ε)
+ φ′ + ∇† lnV = 0, (6)

where

ε ≡ −(lnH)′ =
1

2
φ′ · φ′, (7)

and the covariant field acceleration η is defined as

η ≡ Dφ′

dN
. (8)

The symbol D acting on a contravariant vector Xi means

DXi ≡ dφj ∇jXi = dφj
(
∂jX

i + ΓijkX
k
)
, (9)

where Γijk and ∇j are the Levi-Civita connection and
the covariant derivative, respectively, associated with the
field metric. Therefore, the covariant acceleration η rep-
resents deviations from perfect parallel transport of φ′.
By working in terms of D and the covariant derivative
∇, we are able to write all the equations of motion in
manifestly covariant form.

Finally, we make the common assumption that over the
course of inflation, the field vector picks up speed but not
necessarily monotonically. Eventually, the field vector
picks up enough speed to end inflation, which we take to
be at ε = 1. The choice of exactly when inflation ends
does not impact the results presented in this manuscript.

B. Field Vector Kinematics

The kinematical framework presented here is based
mostly on work by [13, 21, 23, 32], with small mod-
ifications. Here, the coordinates are the scalar fields,
which represent the coordinate position on the manifold
induced by the field metric. In analogy to Newtonian
mechanics, φ represents the position, φ′ is the veloc-

ity, and η ≡ Dφ′

dN represents the covariant acceleration,

where D
dN is defined through Eq. (9). Similarly, we can

define higher-order covariant derivatives of the field ve-
locity. The jerk is defined as

ξ ≡ D2φ′

dN2
. (10)

An equation of motion for the jerk can be obtained by
differentiating Eq. (6) once, which yields

ξ

(3− ε)
+ η = −

[
M +

ηη†

(3− ε)2

]
φ′, (11)

where the mass matrix, M , is defined as

M ≡∇†∇ lnV (12)

and is symmetric. Similarly, we represent the (n− 1)-th
covariant derivative of the velocity by the notation1

χ(n) =

(
D

dN

)(n−1)

φ′, (14)

1 For comparison, Nibbelink and Van Tent [23] defined a series of
higher-order kinematical vectors as

η̃(n) ≡
D(n−1)φ;(
a;

a

)(n−1) |φ;|
, (13)

where ; represents the derivative with respect to the arbitrary
time variable τ and D is the “slow-roll derivative”. The “slow-
roll derivative” is defined asD(bnA) ≡ ( D

dτ
−n d ln b

dτ
)(bnA), where

b = −g00 and A is independent of b. Our kinematical vectors dif-
fer from Nibbelink and Van Tent’s in two ways: (1) the effective
order in the slow-roll expansion, which differs because of the fac-
tor of |φ;| in the denominator in Eq. (13), and (2) the expressions
themselves—that is, our series differs from theirs even when the
order of Eq. (13) is adjusted by multiplying by |φ;|. Both con-
structs have their utility: Nibbelink and Van Tent’s construct
makes their vectors manifestly independent of the choice of time
coordinate, while our construct is physically intuitive since it is
based on using N as the time variable and can be used to simplify
certain expressions to a greater degree.
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and an equation of motion for χ(n) can be obtained by
differentiating Eq. (6) a total of n− 2 times.

These kinematical vectors induce a basis in which the
perturbed equations of motion can be better understood
[21, 23, 32]. The construction of this basis is as follows.
The first basis vector, e1, is chosen to lie in the direc-
tion of the field velocity, parallel to the field trajectory.
The second basis vector, e2, is constructed to lie along
the part of the field acceleration that is orthogonal to
the field velocity, in the direction that makes e2 · η ≥ 0.
Continuing the Gram-Schimdt orthogonalization proce-
dure produces a set of d basis vectors:

e1 ≡
φ′

|φ′|
,

e2 ≡
(I− e1e

†
1)η

|(I− e1e
†
1)η|

,

... (15)

ed ≡

(
I−

d−1∑
i=1

eie
†
i

)
χ(d)∣∣∣∣(I−

d−1∑
i=1

eie
†
i

)
χ(d)

∣∣∣∣ ,
where I is the identity matrix of the appropriate dimen-
sionality. If, however, one of the kinematical vectors χ(n)

already lies in the subspace defined by the basis vectors
e1, e2, ..., en−1, then it is not possible to find a projection
of χ(n) that represents a new direction in field space. In
this case, en can simply be constructed at will so that it
represents a new direction that is orthogonal to the sub-
space spanned by the basis vectors e1 through en−1, and
then the orthogonalization process can naturally proceed
again. While our kinematical vectors differ from those of
Nibbelink and Van Tent [21, 23], our kinematical basis
vectors are equivalent to theirs.

With these basis vectors, we can take projections of
vectors and matrices. For example,

χ(m)
n ≡ en · χ(m) (16)

represents the projection of the mth kinematical vector
onto the nth basis vector. Note that because of the def-
inition of the kinematical basis vectors in Eq. (15), if

n > m, then χ
(m)
n = 0. That is, in the kinematical basis,

φ′ has the sole nonzero component

v ≡ |φ′|; (17)

η has nonzero components η1 and η2; ξ has nonzero com-
ponents ξ1, ξ2, and ξ3; and so on. The projection of any
vector along e1 is particularly noteworthy, as it represents
the vector component parallel to the field trajectory and
hence single-field-like behavior. Whereas vector compo-
nents orthogonal to the field trajectory relate to effects
unique to multifield inflation. For this reason, it is useful
to use the shorthand notation

Amn ≡ e†mAen (18)

e1 

e2 

e3 

ϕ1 

ϕ2 

ϕ3 

FIG. 2. An example showing how the kinematical basis is con-
structed from the kinematics of the background fields. The
green curved path represents the trajectory of the field vector
in a three-field inflation scenario. At each point on the tra-
jectory, the e1 basis vector is chosen to point in the direction
of the field velocity, e2 points in the direction of the perpen-
dicular acceleration, and e3 is constructed to be orthogonal
to the first two basis vectors.

for the matrix coefficients of any matrix A and

A⊥⊥ ≡
(
I− e1e

†
1

)
A
(
I− e1e

†
1

)
(19)

for the above special matrix projection.
Lastly, we consider the time derivatives of the kine-

matical basis vectors, which represent how quickly the
basis vectors are covariantly changing direction with re-
spect to the field manifold. In particular, the derivative
of the basis vector parallel to the field velocity, e1, repre-
sents how quickly the field trajectory itself is covariantly
changing direction and is given by

De1

dN
=
η2
v

e2. (20)

Similarly, differentiating the second basis vector in Eq.
(15) gives

De2

dN
=
ξ3
η2

e3 −
η2
v

e1. (21)

The derivative of the nth basis vector is

Den
dN

=
χ
(n+1)
n+1

χ
(n)
n

en+1 −
χ
(n)
n

χ
(n−1)
n−1

en−1. (22)

In analogy to our work in [13], we call |Den

dN | the turn rate
for the nth basis vector. Note that Eq. (22) means that
when the en basis vector changes direction, it can pick up
components along only the en−1 and en+1 directions. We
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emphasize that this fact will greatly simplify the equa-
tions of motion for the field perturbations. Furthermore,
because D

dN (en+1 · en) = 0, the matrix

Zmn ≡ em ·
Den
dN

(23)

is skew-symmetric with the only nonzero components be-
ing

Zn+1,n = −Zn,n+1 =
χ
(n+1)
n+1

χ
(n)
n

. (24)

The kinematical quantity Zn+1,n represents how quickly
the en basis vector is turning into the direction of en+1.
Because Z summarizes the turn rates for all d basis vec-
tors, we call Z the turn rate matrix. The turn rate ma-
trix is therefore the multifield generalization of the idea
of a single covariant turn rate for two-field inflation. The
turn rate matrix, along with the kinematical basis vec-
tors, plays a key role in determining the dynamics of the
field perturbations.

C. Slow-Roll And Slow-Turn Limits

The final element of the background solution is the
“slow-roll limit,” the standard approximation invoked
when the fields are slowly rolling and the inflationary ex-
pansion is quasi-exponential. In this section, we uncover
some important nuances and make some distinctions re-
garding different formulations of the slow-roll approxi-
mation that have been assumed to be equivalent.

In multifield inflation, the slow-roll limit is typically
defined (e.g., [31, 34, 35, 37, 38]) by the two conditions:

ε� 1, (25)

|Mij | � 1, (26)

which forces the field vector to be slow-rolling and the
masses of the fields and their couplings to be small. In
other approaches (e.g., [19, 21, 23]), the second condition
above is effectively replaced by

η � φ′, (27)

which more narrowly forces the dimensionless field accel-
eration to be much smaller than the dimensionless field
velocity.

In [13], we examined the above conditions in the case
of two-field inflation and argued for a more nuanced ap-
proach that splits the second slow-roll condition in Eq.
(27) into two separate limits—the slow-roll limit and the
slow-turn limit.2 We defined the two-field slow-roll limit

2 In two-field inflation, the conditions in Eq. (26) differ from those
in Eq. (27) by the extra constraint M22 � 1.

as

ε� 1, (28)∣∣∣η1
v

∣∣∣� 1, (29)

which is identical to the single-field definition; that is,
Eqs. (29) and (29) correspond to limits on single-field-
like behavior. We elevated the second component of Eq.
(27) into a separate limit dubbed the slow-turn limit :∣∣∣∣De1dN

∣∣∣∣ =
η2
v

= Z21 � 1. (30)

It corresponds to limits on how quickly the field trajec-
tory is covariantly changing direction—a distinctly mul-
tifield behavior. The power of our distinction is that
the rolling (single-field behavior) and turning (multifield
behavior) of the field vector have very different effects
on the power spectra. For example, two-field models
that strongly violate the slow-turn limit around horizon-
crossing but not the slow-roll limit are ruled out by
WMAP constraints on the density power spectrum [13]
and can potentially produce large isocurvature modes,
depending on the amplitude of the entropy mode [68].

To extend this more nuanced approach to general mul-
tifield inflation, now multiple turn rates must be taken
into consideration. We say that a basis vector en is slowly
turning if ∣∣∣∣Den

dN

∣∣∣∣� 1. (31)

When all d basis vectors are slowly turning, we say that
the inflationary scenario is in the slow-turn limit, and the
magnitude of every component of the turn rate matrix,
Z, is significantly less than one:

|Zij | � 1. (32)

We claim that both the conditions in Eqs. (26) and
(32) are needed to correctly analogize the slow-roll limit
from single-field inflation to general multifield inflation.
One might wonder why Eq. (32) is needed in addition to
Eq. (26), since in two-field inflation, Eq. (26) implies Eq.
(32). The answer is that while Z21 ≈ −M21, in general it
is not true that |Mij | ≈ |Zij |. For this reason, a total of
three limits (or four if the field metric is nontrivial) are
needed to simplify the perturbed equation of motion in
a manner similar to that in single-field inflation. These
three conditions are the slow-roll limit Eq. (25), the small
mass limit in Eq. (26), and the slow-turn limit in Eq.
(32); an additional limit on the curvature of the field
manifold for nontrivial field metrics will be introduced in
the next section. These subtle but more important points
have not been fully recognized before, to our knowledge.
(After our manuscript was posted on the arXiv, another
manuscript later appeared [69] that discusses and extends
many of these points.) Nonetheless, in this paper, we
will refer to these four limits as the multifield slow-roll
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approximation to avoid introducing new nomenclature
that might create confusion.

Having clarified the correct analogous slow-roll condi-
tions for multifield inflation, we now apply these three
limits to the background equations of motion and to the
perturbed equations of motion in Section III. Eq. (6) for
the evolution of the fields reduces to

φ′ ≈ −∇† lnV, (33)

and the field speed is given by

v ≈ |∇ lnV | , (34)

or equivalently by

ε ≈ 1

2
|∇ lnV |2 . (35)

By virtue of Eq. (33), the operator D
dN = φ′ ·∇ becomes

D

dN
≈ −∇ lnV ·∇, (36)

and the kinematical vectors can be approximated by

χ(n) ≈ (−∇ lnV ·∇)
(n−1)

(−∇† lnV ). (37)

For example,

η ≈ −Mφ′ ≈M∇† lnV. (38)

Note the special result that follows from Eq. (38):

η2
v

= Z21 ≈M12. (39)

The approximations for the basis vectors follow directly
from the above results, with Eq. (37) substituted for χ(n)

in Eq. (15); in particular,

e1 ≈ −
∇† lnV

|∇ lnV |
. (40)

In later sections, we use = instead of ≈ and simply indi-
cate when the slow-roll limit applies. These results will
help simplify the equations of motion and the interactions
among modes.

III. FIELD PERTURBATIONS

In this section, we show how the evolution of the field
perturbations is determined by the kinematics of the
background fields and the geometries of the potential and
field manifold. While this has been done in detail for
general two-field inflation and for subcases of multifield
inflation such as product potentials, our goal here is to
provide the first more thorough treatment in the general
multifield case. In Sections III A and III B, we present
an equation of motion for the field vector perturbation
in terms of the time variable N in both the given and

kinematical bases, respectively. In Sections III C-III F,
we uncover how the mode interactions are determined by
the kinematics of the field trajectory and geometric fea-
tures of the inflationary Lagrangian. We start with the
case of no sourcing in Section III C and develop a series
of mode conservation laws in Section III D. In Section
III E, we treat the special and very interesting case of
quadratic potentials with canonical kinetic terms where
all mode equations greatly simplify and assume the same
form. We use this case as a reference for exploring the
mode interactions in general multifield inflation in Sec-
tion III F.

A. Field Vector Perturbation Equation

Here we work exclusively in the flat gauge. In this
gauge, the field perturbations decouple from the metric
perturbations and equal the gauge-invariant Mukhanov-
Sasaki variable δφf = δφ + ψφ′, where ψ represents
the scalar metric perturbation on spatial hypersurfaces
[70, 71]. From here forward, we drop the subscript f
from δφf for simplicity.

The equation for the field perturbations is obtained by
imposing covariant conservation of energy, as has been
demonstrated before [17, 18, 21]. However, we break from
convention by using N as the time variable, both because
it is physically intuitive and it makes the equation of mo-
tion dimensionless. We derived such an equation in the
context of general two-field inflation with noncanonical
kinetic terms in [13]. Following the same series of steps
as outlined in [13], we arrive at the same expression, with
the exception of the curvature term arising from the field
metric is more complicated, reflecting the additional field
degrees of freedom.3 The resulting equation in Fourier
space is

1

(3− ε)
D2δφ

dN2
+
Dδφ

dN
+

(
k2

a2V

)
δφ

= −
[
M̃ +

ηη†

(3− ε)2

]
δφ, (41)

where k is the comoving wavenumber. The term M̃ is
the effective mass matrix,4 and we define it as

M̃ ≡M− 1

(3− ε)
R, (42)

and the curvature matrix, R, is defined as [21]

Rad ≡ 2εRabcde
b
1e
c
1, (43)

3 For comparison, in two-field inflation, the curvature term effec-
tively reduces to a single degree of freedom, the Ricci scalar,
times a scaled outer product of two kinematical basis vectors.

4 For comparison to our dimensionless definition of the effective
mass matrix, Nibbelink and Van Tent defined the effective mass
matrix as M̃2 ≡∇∇†V −H2R [23].
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where Rabcd is the Riemann curvature tensor associated
with the field metric. Because of the symmetry and anti-
symmetry properties of the Riemann curvature tensor, it
follows that R is symmetric. Moreover, Rφ′ = 0, and
hence R = R⊥⊥.

Now we simplify Eq. (41) for use in the superhorizon
limit. In this limit, the modes are significantly outside

the horizon such that
(
k
aH

)2 � 1 and the subhorizon

term
(
k2

a2V

)
δφ can be neglected. We also invoke the

multifield slow-roll approximation, as correctly outlined

in Section II C. To start, the term ηη†

(3−ε)2 can be neglected

since this term is much smaller than M as long as the
field trajectory is not turning rapidly. In brief, the sim-
plification follows from the fact that η ≈ −Mφ in the
multifield slow-roll limit, as we showed in more depth
in [13] for two-field inflation. We also introduce another
simplifying condition, which completes the extrapolation
of the slow-roll limit to the multifield case: like for M
and Z, the dimensionless components of R must satisfy

|Rij | � 1. (44)

Whenever all these conditions apply in the superhorizon
limit, it can be shown [23, 72] that the acceleration of the
field perturbations can also be neglected and Eq. (41)
reduces to

Dδφ

dN
= −M̃ δφ, (45)

where

M̃ = M− 1

3
R (46)

in the slow-roll limit. Equation (46) shows that the
superhorizon, slow-roll evolution of the modes is deter-
mined by only M, which can be viewed as the covari-
ant couplings of the fields, and R, which encapulates the
curvature of the field manifold. We point out that the
simplicity of this equation follows from working in terms
of the time variable N and hence justifies our choice to
depart from convention.

B. Mode Evolution Equations in the Kinematical
Basis

Now we examine the interactions among the d modes
in the superhorizon limit. These interactions have been
studied in depth for general two-field inflation and for
certain classes of multifield potentials (e.g., product po-
tentials, sum potentials) [13, 31–42, 66, 67, 73]. But sur-
prisingly, studying the interactions among modes one by
one like this has not received much attention in the gen-
eral multifield case. Here we fill this important gap in
the literature.

In general, the interactions among modes are most eas-
ily understood in the kinematical basis. First, in this

basis, the density mode can be teased out from the d
modes. Second, it turns out that the turn rate matrix
can simplify in this basis. In the kinematical basis, the
nth mode is represented as

δφn ≡ en · δφ; (47)

that is, the modes are decomposed by their projections
along the kinematical basis vectors. The adiabatic or
density mode corresponds to δφ1, the component of δφ
that is parallel to the field trajectory. The remaining
components of δφ in the kinematical basis correspond to
entropy modes, represented collectively as δφ⊥. Entropy
modes are linear combinations of the field perturbations
that leave the overall density unperturbed. As there are d
fields in the system, there will be d−1 entropy modes, all
of which are orthogonal to the field trajectory and to each
other. We note that when a mode δφm affects the evolu-
tion of mode δφn, we say that δφm sources δφn, regard-
less of whether that interaction causes δφn to increase or
decrease in amplitude. Since we group all sourcing terms
on the right-hand side of each equation, we refer to such
equations as mode sourcing equations.

We start with the well-known mode sourcing equation
for the adiabatic mode, δφ1, which is most easily de-
rived from the fact that the comoving density perturba-
tion vanishes in the superhorizon limit. Imposing this
constraint yields [13, 23, 32](

δφ1
v

)′
= 2

De1

dN
· δφ
v

= 2Z21

(
δφ2
v

)
. (48)

In the slow-roll limit, the above equation can be written
as

δφ′1 +M11δφ1 = 2Z21δφ2, (49)

where we have used that Z21 ≈ −M12 in Eq. (39). Exam-
ining Eq. (48) reveals that the adiabatic mode is sourced
only when the field trajectory changes direction with re-
spect to the field manifold (e.g., [3, 13, 21, 23, 32]). The
strength of the sourcing depends on the e1 turn rate:
the faster the background trajectory changes direction,
the faster the adiabatic density mode grows.5 Moreover,
the adiabatic mode can be sourced only by the entropy
mode δφ2; none of the other modes can source the adi-
abatic mode. Otherwise, when the field trajectory does
not turn or δφ2 vanishes, it follows that δφ1 ∝ v, which
is tantamount to single-field behavior.

For each of the entropy modes, we can also derive a
mode sourcing equation. We start from Eq. (46), which

5 In the classical treatment of Eq. (48), this statement is implied
to be taken with respect to assuming that δφ1 and δφ2 are both
positive. In the quantum treatment, when we speak of the mode
δφ1 growing, it is implied that we are referring to the variance
of δφ1 growing. Similar assumptions are made when discussing
the other modes.
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is a vector equation but takes a different form in the kine-
matical basis because the basis vectors can rotate, caus-
ing the equation of motion (41) to pick up extra terms
that trivially vanish in the original given basis. Using the
fact that

δφ′n = en · δφ′ − e†nZ δφ, (50)

it follows that the corresponding equation in the kine-
matical basis is

Dδφ

dN
≈ −

[
M̃ + Z

]
δφ. (51)

This quite simple but elegant equation is equivalent to
the corresponding equation derived in [23], but tells us
more straightforwardly that the evolution of modes de-
pends only on the turn rate matrix and the effective mass
matrix, which includes corrections from any nontrivial
field metric. Now projecting out the adiabatic mode and
using Eq. (39), the evolution of the d− 1 entropy modes

is described by

Dδφ⊥
dN

≈ −
[
M̃ + Z

]
⊥⊥

δφ⊥, (52)

where the special matrix projection was defined in Eq.
(19). Eq. (52) shows that the adiabatic mode does
not source any of the entropy modes in the superhori-
zon limit—a result that holds true regardless of whether
the slow-roll limit applies.

The individual equations for each of the d− 1 entropy
modes form a series of mode sourcing equations. The
evolution of the δφ2 entropy mode is

δφ′2 + M̃22δφ2 ≈ −
(
M̃23 − Z32

)
δφ3 +

d∑
m=4

M̃2mδφm,

(53)

where Z2n = 0 for n ≥ 4. Similarly, for the δφn mode,
where n ≥ 3, the sourcing equation is

δφ′n + M̃nnδφn ≈ −
(
M̃n,n−1 + Zn,n−1

)
δφn−1 −

(
M̃n,n+1 − Zn+1,n

)
δφn+1 +

d∑
m=2,|n−m|≥2

M̃nmδφm. (54)

This equation follows from the fact that Z is skew-
symmetric with Zmn = 0 when |m− n| ≥ 2.

C. Mode Evolution in the Absence of Sourcing

In the remainder of Section III, we analyze how the
geometry and kinematics of inflation dictates the super-
horizon evolution of modes.

First, consider what happens in the absence of sourc-
ing. For δφn to be unsourced, Eqs. (48), (53), and
(54) show that en must not be turning and the effec-

tive mass matrix coefficients M̃nm must vanish for all
m 6= n. When these conditions are met, the δφn mode is
unsourced and its evolution is governed solely by M̃nn.
In the past, the mode amplitude decay has sometimes
been modeled as being approximately proportional to

e−M̃
∗
nnN∗ , where M̃∗nn is the value of the effective mass

at horizon exit and N∗ is the number of e-folds since the
mode exited the horizon. But as we discussed in [13] for
the case of two-field inflation, this assumption often leads
to large inaccuracies of up to a few orders of magnitude
in estimating the mode amplitudes and the spectra (see
[13] and references therein.) Hence, to accurately model
the behavior of the unsourced mode, the expression

δφn(N) = δφn(N1) e
−

∫ N
N1

M̃nn(N2)dN2 (55)

should be used. That is, the integral of the effective

mass for the nth mode, M̃nn, most accurately gives that
mode’s relative change in the amplitude.

Now the effective mass M̃nn depends on two quanti-
ties: the covariant Hessian of the inflationary potential,
Mnn ≡ ∇n∇n lnV and 1

3Rnn, where R depends on the
curvature tensor of the field manifold contracted with
two field velocity vectors, as shown in Eq. (43). Since
both are geometric quantities, this means that we can
predict the behavior of δφn by determining the geometry
of the inflationary potential and field metric. Take first
the covariant Hessian of the inflationary potential, Mnn.
If the potential lnV is covariantly concave up along the
en direction—∇n∇n lnV > 0—this causes δφn to decay.
Conversely, if the potential is concave down along the en
direction, δφn will grow. A well-known example of this
behavior is the adiabatic mode in single-field inflation,
which is often likened to a ball rolling down a hill that
speeds up or slows down depending on the concavity of
its path. A second example is the δφ2 mode in two-field
inflation; if the two-dimensional field trajectory lies in a
valley (concave up), then δφ2 decays, but if it lies along a
hill (concave down) in lnV , then δφ2 grows in amplitude.

The second geometrical quantity involved, the curva-
ture term Rnn, involves the contraction of the Riemann
tensor of the field metric with two instances each of e1

and en. Geometrically, it represents 2ε times the en
component of the failure of e1 to be parallel-transported
around a closed loop defined by the directions e1 and en.
Therefore, its contribution to the mode sourcing can in



9

principle be determined from the geometry of the field
metric and the potential. If this deviation from parallel
transport of e1 results in a positive component along the
en direction, then this causes δφn to grow; conversely,
a negative value causes δφn to decay. For example, in
two-field inflation, since R22 is proportional to negative
ε times the Ricci scalar of the field manifold, if the field
manifold is locally elliptical, this will cause δφ2 to decay,
while a locally hyperbolic surface will cause δφ2 to grow.
Note that if both Mnn and Rnn have the same sign, they
will partially negate each other. Therefore, we can view
the effective mass as some sort of measure of the “net cur-
vature” or geometry of the inflationary Lagrangian along
the single direction specified by en.

D. Mode Conservation Laws

The corollary of Eq. (55) is that when δφn is un-
sourced, the quantity

δφne
∫
M̃nndN (56)

is conserved in the superhorizon limit. For example, in
single-field inflation, the δφ1 mode is automatically un-
sourced, and hence the quantity

δφ1e
∫
∗ M̃11dN ∝ δφ1

v
(57)

is conserved. In inflation with two effective fields, the
entropy mode δφ2 is unsourced, so the quantity

δφ2e
∫
∗ M̃22dN (58)

is conserved, allowing one to find a semianalytic expres-
sion for δφ1 without needing to solve a set of coupled
equations [13]. Therefore, it follows that Eq. (56) is
the multifield generalization of the well-known single-field
conservation law for the adiabatic mode in Eq. (57). Eq.
(56) endows each of the d modes with a conservation
equation that holds whenever δφn is not sourced—which
happens when en is not turning and the covariant Hes-
sian of lnV has no off-diagonal components along the
direction en. So there are up to d potential conserved
quantities related to the modes.

Understanding a mode’s effective mass is not just im-
portant in the absence of sourcing, but also when sourc-
ing is important. For example, consider two-field infla-
tion where the entropy mode δφ2 sources the adiabatic
mode. If the effective mass of the entropy mode δφ2 is sig-
nificantly large and positive, then the entropy mode will
decay, thereby reducing the ability of the entropy mode
to source the adiabatic mode. Taking the limit where
the effective entropy mass is very large and positive, we
can neglect the entropy mode, and the evolution of the
adiabatic mode is effectively single-field. In the opposite
limit, if the effective entropy mass is large and negative,
the entropy mode will grow rapidly, resulting in much

stronger sourcing. And this later scenario is also more
likely to result in large non-Gaussianity (see [68]). Ex-
trapolating to general multifield inflation, we expect that
the size and magnitude of the effective mass M̃nn plays a
significant role in determining how much δφn influences
the evolution of δφn−1. In particular, when the effective
mass for the nth mode is very large and positive, the
scenario is likely to behave like a multifield scenario with
n− 1 effective fields. In the particular case where all but
one of the fields have a large and positive effective mass,
the scenario can effectively be treated as single-field with
a reduced potential (e.g., [74]).

E. Sourcing in the Special Case of Quadratic
Potentials with Canonical Kinetic Terms

Before we consider sourcing in the general case, we
first consider the mode interactions in the special case
of quadratic potentials with canonical kinetic terms. It
turns out that the mode interactions simplify greatly in
this scenario and that the results can be used as a refer-
ence for comparing other inflationary Lagrangians.

For quadratic potentials with canonical kinetic terms,
the effective mass matrix simplifies to

M̃ij = Mij = ∂i∂j lnV. (59)

and the potential satisfies

∂i∂j∂kV = 0 (60)

for all i, j, and k. Therefore, repeatedly taking the deriva-
tive of Eq. (59) and using Eq. (60) gives

DM

dN
= 2ε

(
M + φ′φ′†

)
− D

dN

(
φ′φ′†

)
D2M

dN2
=
(
4ε2 + 2φ′ · η

) (
M + φ′φ′†

)
− D2

dN2

(
φ′φ′†

)
... (61)

DnM

dNn
= V

(
DnV −1

dNn

)(
M + φ′φ′†

)
− Dn

dNn

(
φ′φ′†

)
.

We use the above results to show that the turn rate ma-
trix for quadratic potentials with canonical kinetic terms
can be expressed solely in terms of coefficients of the mass
matrix in the slow-roll limit. First, for all inflationary
scenarios, the slow-roll equation for the covariant accel-
eration η implies that

Z21 = −M21, (62)

which follows from projecting Eq. (38) onto the basis
vector e2. Differentiating Eq. (38) and projecting it onto
en, where n ≥ 3, gives

ξn = −Mn2η2 −
(
DM

dN

)
n1

v, (63)
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where we have used the facts that Mn1 = 0 and ηn = 0
for all n ≥ 3. But for quadratic potentials with trivial
field metrics,

(
DM
dN

)
n1

also equals 0 in virtue of Eq. (61)

and the facts that Mn1 = 0 and that χ
(m)
n = 0 for m < n.

Using this result in Eq. (66), it therefore follows that

Z32 = −M32 (64)

and

Mn2 = 0 for n ≥ 4. (65)

Similarly, differentiating Eq. (38) a second time, project-
ing it onto en where n ≥ 4, and using Eq. (65) gives

χ(4)
n = −Mn3ξ3 − 2

(
DM

DN

)
n2

η2 −
(
D2M

DN2

)
n1

v. (66)

But by Eq. (61),
(
DM
DN

)
n2

and
(
D2M
DN2

)
n1

vanish for n ≥
4, yielding

Z43 = −M43 (67)

Mn3 = 0 for n ≥ 5

Repeating this series of steps, we find that for this special
class of scenarios

Zn+1,n = −Mn+1,n (68)

and

Mmn = 0 for |m− n| ≥ 2 (69)(
DpM

DNp

)
mn

= 0 for |m− n| ≥ p+ 1,

where p ≥ 1.
Eq. (68) shows that the turn rate matrix can be ex-

pressed entirely in terms of coefficients of the mass ma-
trix. The rate at which the en basis vector turns into
the direction of the en+1 is given simply by −Mn+1,n.
Substituting this result into Eq. (54), the mode sourcing
equation for all d modes reduces to

δφ′n +Mnn δφn ≈ 2Zn+1,n δφn+1. (70)

Therefore, whenever the Lagrangian consists of a
quadratic potential and canonical kinetic terms, the δφn
mode is sourced only by the δφn+1 mode; the other d−2
do not influence δφn, so only a single interaction needs
to be considered for each mode. Moreover, the δφn mode
is sourced only when the en basis vector rotates into the
en+1 direction. This provides a very simple way to un-
derstand this special class of Lagrangians in terms of the
geometry/kinematics of inflation. It also explains why
these scenarios are the simplest to solve: every mode
obeys an equation of motion that is identical in form to
the adiabatic mode. Mathematically, the solution for the
nth mode becomes

δφn ≈ δφ∗n e
−

∫ N
N∗

MnndN1 (71)

+

∫ N

N∗

2Zn+1,nδφn+1 e
−

∫ N1
N∗ MnndN2 dN1.

In principle, one could solve the above series of integrals.
Finally, since there is no sourcing when Zn+1,n = 0, the
number of kinematical basis vectors that are changing di-
rection inversely indicates the number of conserved mode
quantities.

The results for quadratic potentials with trivial field
metrics are not just interesting in and of themselves, but
they provide a critical vantage point from which to un-
derstand the mode interactions in general multifield in-
flation, as we will show in the next section.

F. Sourcing in the General Case

Finally, we consider entropy mode sourcing in the gen-
eral case. We start by discussing the three types of terms
that can give rise to sourcing effects. Then we discuss
how general multifield inflation differs from the canonical
quadratic case and how various order covariant deriva-
tives of the potential affect the mode interactions.

According to Eq. (54), sourcing effects can arise from:

1. Off-diagonal terms in the mass matrix

2. Any nontrivial geometry of the field manifold

3. The kinematical basis vectors changing direction

We will consider each sourcing effect in turn.
The first type of sourcing effect arises from off-diagonal

terms in the mass matrix, which is defined as the covari-
ant Hessian of lnV . These off-diagonal terms are mea-
sures of the coupling between fields in the potential and
of whether this coupling results in a higher or lower po-
tential energy state. But these terms can also be viewed
as geometric effects because Mnm represents how much
the nth component of the covariant derivative of lnV
varies along the em direction. Therefore the shape of
the potential provides insight into this type of sourcing
effect. If the coupling term Mnm is positive, then δφm
will cause δφn to decay; otherwise, if it is negative, it
will increase the amplitude of δφn. Interestingly, since
the mass matrix is symmetric, a nonzero Mn,n+1 leads
to parallel sourcing effects; for example, a negative value
for Mn,n+1 will cause both the δφn and δφn+1 modes to
grow.6

The second type of sourcing effect arises from the cur-
vature matrix R. As explained earlier, the form of the
kinetic terms in the inflationary Lagrangian can be rep-
resented through a field metric, and this metric can be
viewed as inducing a field manifold. If the field mani-
fold has nontrivial geometry, then the Riemann curva-
ture tensor will be nonzero, and this will be manifested
in the form of a nonzero symmetric curvature matrix

6 Again, when working in the classical picture, our statements are
with respect to positive field fluctuations; it is straightforward
to extrapolate to other cases.
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Sourcing Terms What the Terms Represent

Mnm Covariant Hessian of Potential
(geometry of potential)

Rnm Riemann Tensor of Field Manifold, ε
(geometry of field manifold, kinematics)

Zn+1,n, Zn,n−1 Turn Rate of en (kinematics)

TABLE I. The three types of sourcing effects in the mode
sourcing equation for δφn and what each set of terms effec-
tively represents. More detailed explanation of the terms and
their impact on mode sourcing is given in the text below.

Rad ≡ 2εRabcde
b
1e
c
1. Specifically, if the em component of

the failure of e1 to be parallel transported around the
closed loop defined by e1 and en is nonzero, then the
curvature matrix will cause δφm to source δφn. Since
the curvature matrix can be factored into ε times a term
involving the Riemann tensor, this term technically com-
bines geometric and kinematical effects; so when all else
is equal, the impact of noncanonical terms on the mode
sourcing tends to be greatest at the end of inflation and
whenever else the field speed is large. Now like the mass
matrix, since the curvature matrix is symmetric, a pos-
itive value for a given curvature matrix coefficient will
cause both the δφm and δφn modes to grow. Note that in
comparison to the sourcing effects due to the mass matrix
coefficients, the curvature matrix appears in the equation
of motion with the opposite sign. Thus, we may view the
mass matrix and curvature matrix as representing sourc-
ing effects due to the geometry of the Lagrangian, with
the mass matrix primarily corresponding to the potential
and the curvature matrix to the field metric.

The third and last kind of sourcing effect is purely
a kinematical effect—a direct consequence of the kine-
matical basis vectors changing direction. Importantly,
the coefficients of the turn rate matrix allow δφn to be
sourced by only two modes: δφn−1 and δφn+1. Consider
first the term Zn+1,nδφn+1 in Eq. (54). The kinematical
term Zn+1,n represents how quickly the en basis vector is
turning into the direction of the en+1 basis vector. Since
Zn+1,n is always non-negative, this turning will always
cause δφn to grow. And the faster en is turning into
the en+1 direction, the more δφn+1 sources δφn. This
sourcing effect can be interpreted physically as follows:
the direct rotation of the kinematical basis vectors causes
what was once a δφn+1 mode to be partially converted
into a δφn mode. The other kinematical sourcing term,
−Zn,n−1δφn−1, can be understood similarly. However,
this term causes δφn to shrink in magnitude, which can
be explained by the fact that δφn is being partially con-
verted into δφn−1 by the rotation of basis vectors. The
anti-symmetry of the turn rate matrix neatly encapsu-
lates these antithetical kinematic effects.

Though we have dubbed the third type of sourcing
a kinematical effect, the question naturally arises as
to whether the kinematics can be directly related back
to the geometry of the Lagrangian. In the case of a
quadratic potential with canonical kinetic terms, we saw
that this is the case and the turn rates can be expressed
neatly in terms of the mass matrix coefficients. But in
general this is not true, and the turn rates involve more
complex combinations of the various nth-order covariant
derivatives of lnV . Hence it is often easiest to view the
effects from the turn rate matrix as kinematical effects,
rather than a complicated combination of geometric ef-
fects. What is different in the general case of multifield
inflation is that ∇nV 6= 0 for n ≥ 3 and R 6= 0, pro-
ducing additional terms in the mode sourcing equations.
This can be seen by starting with the slow-roll expansion
for the nth kinematical vector,

χ(n+2) = −
n∑

m=0

(
n

m

)[(
D

dN

)m
M

]
χ(n−m+1), (72)

which follows from differentiating Eq. (38) for η a total
of n times. For instance, the jerk is

ξ = −Mη − DM

dN
φ′ (73)

Since ξ has only three nonzero components in the kine-
matical basis, projecting the jerk onto the basis vectors
gives

ξ3 = −M32 −
(
DM

dN

)
31

v (74)(
DM

dN

)
n1

= −Mn2 Z21 for n ≥ 4.

Notice the presence of the extra term
(
DM
dN

)
n1

where
n ≥ 3 in each of the two equations above. It no longer
vanishes because ∇3V 6= 0 and instead it equals(

DM

dN

)
n1

v = en ·
φ′†φ′†∇∇∇V

V
, (75)

causing the turn rate Z32 to no longer equal −M32:

Z32 = −M32 +
1

M21
e3 ·

(
φ′†φ′†∇∇∇V

V

)
(76)

(77)

for M21 6= 0. So both
(
DM
dN

)
n1

and Mn2 no longer vanish
for large enough n but are interrelated:(

DM

dN

)
n1

= −Mn2 Z21 for n ≥ 4. (78)

Thus in comparison to quadratic potentials with canon-
ical kinetic terms, Z32 picks up extra terms that depend
on the third covariant derivative of V . Similarly, one can
show that the next highest turn rate in the series is
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Z43 = −M43 +
1

ξ3

[
M42(−ξ2 + 2εη2)− e4 ·

(
φ′†φ′†φ′†∇∇∇∇V

V

)]
(79)

for ξ3 6= 0. The result here differs from the simple
quadratic case by the presence of terms that depend on
the third and fourth covariant derivatives of V , including

the term M42. In general, one can show that

Zn+1,n ≈ −Mn+1,n + higher-order corrections (80)

where the “corrections” vanish for n = 1 but otherwise
depend on the higher-order covariant derivatives ∇pV up
to order p = n+ 1. Interestingly, plugging Eq. (80) into
the entropy mode equation (54) tells us that the sourcing
of δφn by δφn−1 is controlled by these corrections arising
from higher-order covariant derivatives:

δφ′n + M̃nnδφn ≈ − (corrections) δφn−1 + (2Zn+1,n + corrections) δφn+1 −
d∑

m=2,|n−m|≥2

Mnmδφm +
1

3

d∑
m=2,m 6=n

Rnmδφm.

(81)

Similarly, we can view the sourcing of δφn by δφn+1 to be
controlled by a term that is twice the turn rate Zn+1,n,
plus corrections from higher-order covariant derivatives
of V .

This results in a very interesting and useful way to
view the interactions among modes: the interactions can
essentially be divided into sourcing effects shared in com-
mon with canonical quadratic models (Zn+1,n terms) and
sourcing effects arising from deviations from this funda-
mental Lagrangian (the higher-order derivatives of V and
the corrections from the field metric, Rnm). Taylor ex-
pansion of the inflationary potential with an understand-
ing of the relative size of the various order terms in the
expansion can therefore indicate how much each term
Zn+1,n differs from −Mn+1,n and hence the degree to
which the scenario differs from the canonical quadratic
case, as we illustrated above. We advocate this novel
approach as a powerful prescription for exploring how
differences in inflationary Lagrangians translate into dif-
ferences in mode dynamics.

IV. SPECTRAL OBSERVABLES

Sections II and III explored how the kinematics and
geometry of the inflationary potential and the field man-
ifold determine the evolution of modes. In this sec-
tion, we connect these results to the cosmic observables.
Since most of these connections follow straightforwardly
from our discussion of mode sourcing in Sections III C
- III F, here we focus on how the inflationary geometry

and kinematics determine the effective number of infla-
tionary fields in Section IV A and how this is reflected in
the cosmic power spectra, bispectrum, and trispectrum
in Sections IV B-IV F. In the process of doing so, we in-
troduce a new cosmic multifield observable that can po-
tentially distinguish two-field models from models with
three or more fields (Section IV E), and we present a new
multifield consistency relation (Section IV F).

A. Effective Number of Fields

We define the effective number of fields or dimension of
inflation to be the minimum number of fields necessary to
adequately describe both the background and perturbed
solutions for inflation across the distance scales of inter-
est.

To represent the background solution, the minimum
number of fields is the same as the number of fields
needed to reproduce all the kinematical vectors, as de-
fined in Eq. (14). This corresponds to the number of
basis vectors needed to span the space defined by the
kinematical vectors. Because of the way we constructed
the kinematical basis vectors in Eq. (15), the dimension
also equals one plus the number of kinematical basis vec-
tors that are changing direction. If no kinematical basis
vectors are changing direction, then inflation is single-
field. If only the e1 basis vector is changing direction,
then the inflationary scenario has two effective field de-
grees of freedom; this is the single turn rate that charac-
terizes the dynamics of two-field inflation. Similarly, the
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number of unique nonzero components of the turn rate
matrix determines the dimension of multifield inflation.
In geometric terms, inflationary scenarios with canoni-
cal kinetic terms will produce trajectories lying along a
line if single-field, a plane if two-field, and so on. This is
illustrated in Figure 1. Extrapolating to noncanonical ki-
netic terms, the modification is that the geometry of the
background trajectory will be determined with respect
to parallel transport of the kinematical vectors. In either
case, the number of basis vectors that change direction
along the trajectory provides an intuitive way to under-
stand the effective dimension of the background solution.

The number of fields representing the perturbed solu-
tion is more difficult to determine. We define the mini-
mum number of fields to describe the perturbed solution
as the number needed to reproduce solutions for δφ1 (the
adiabatic mode) and δφ2 (the first entropy mode). In the
case where the e1 basis vector never turns, the adiabatic
mode is never sourced and the quantity δφ1

v is conserved
in the superhorizon limit, just like in single-field inflation.
However, the dimension of the perturbed fields can still
be more than one if there are two or more fields during
inflation and hence a power spectrum of entropy modes.

In the case where the field trajectory does change di-
rection during inflation, there are two reasons why the ef-
fective dimension of the background and perturbed fields
do not necessarily coincide. The first reason is that the
curvature matrix R can couple together the various en-
tropy modes, independently of the turning behavior of
the kinematical basis vectors. Second, in general, it is
not true that Zn+1,n ≈ −Mn+1,n, as we showed earlier.
So even if the kinematical basis vector en is not turning,
a nonzero Mn+1,n could still allow the δφn+1 mode to
source the δφn mode. Similarly, it is possible for higher-
order covariant derivatives of the potential to produce a
nonzero turn rate Zn+1,n even if Mn+1,n = 0. (Of course,
for many models, when Zn+1,n = 0, it will also be true
that Mn+1,n = 0.) Therefore, for models with at least
two fields, the effective number of field perturbations we
need to consider in order to find expressions for δφ1 and
δφ2 equals two plus the number of consecutive sourced
perturbations when starting at δφ3 and counting upwards
in the series of modes. This follows directly from the se-
ries of slow-roll sourcing equations in Eq. (54). There-
fore, the exact same geometric and kinematical quanti-
ties that determine the number and strength of sourcing
relationships can be used to determine the effective di-
mension of the perturbed fields. In particular, scenarios
with at least one large positive effective mass M̃n+1,n+1

and/or a negligible turn rate Zn+1,n over all scales of
interest are prime candidates for dimensional reduction;
such features usually indicate that δφn+1 has a negligi-
ble impact on δφn and that the series of mode sourcing
equations can be truncated after δφn.

Based on the above analysis, we take the effective di-
mension of the perturbed field system, which can be
larger than the dimension of the unperturbed system,
as the overall effective dimension of a multifield scenario.

Yet although we can assign an overall dimension to each
scenario, it is also useful to consider that an inflationary
scenario may be broken into multiple phases, with each
one defined by a different effective number of fields being
active. For example, in canonical quadratic models with
very different masses for the fields in the potential, there
are periods dominated by the dynamics of a single-field,
punctuated by periods in which two fields dominate the
dynamics. By understanding that a model with multiple
fields can be approximated by a series of scenarios with
a much smaller effective dimension—such as a series of
single-field and two-field scenarios—we can gain much
greater insight into the key features of such models, and
they become more computationally tractable.

B. Tensor Power Spectra

With these insights, we explore the main spectral ob-
servables to see how they reflect the effective dimension
of multifield scenarios.

We start with the power spectra. The tensor power
spectrum is unchanged by the presence of multiple fields
and has the form [76]

PT = 8

(
H∗
2π

)2

, (82)

under the common convention for normalization of the
spectrum. The tensor spectral index represents the scale-
dependence of the tensor spectrum and is defined as

nT ≡
d lnPT
d ln k

. (83)

Since d ln k = dN to first-order in slow-roll,

nT = −2ε∗, (84)

and nT depends only on the speed of the field vector and
not on any other kinematic or geometric properties of
inflation.

C. Transfer Matrix Formalism

The scalar power spectra are typically given in terms of
the spectra of curvature and isocurvature perturbations.
The curvature perturbation R during inflation is related
to the adiabatic density mode by [19]

R =
δφ1
v
. (85)

The isocurvature modes, S, are typically defined in the
following gauge-invariant and dimensionless manner [32,
35]:

S ≡ δp

p′
− δρ

ρ′
. (86)
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Calculating the above quantity reveals that S depends
only on the entropy mode δφ2, up to normalization fac-
tors. Here we choose the normalization factor so that the
isocurvature and curvature spectra have equal power at
horizon crossing:

S ≡ δφ2
v
. (87)

The relationship between the curvature and isocurva-
ture modes can be described in terms of the transfer ma-
trix formalism [35, 75]. In two-field inflation, the transfer
matrix formalism represents the evolution of curvature
and isocurvature modes as(

R
S

)
=

(
1 TRS
0 TSS

)(
R∗
S∗

)
, (88)

which follows from the fact that in two-field inflation,
the adiabatic mode is sourced by the entropy mode but
not vice versa. The transfer function TRS represents
the sourcing of the curvature modes by the isocurvature
modes, while the transfer function TSS represents the
intrinsic evolution of the isocurvature modes. In general
multifield inflation, a collection of entropy modes replaces
the single entropy mode represented by S, so the transfer
matrix formalism can be generalized as(

R
δφ⊥
v

)
=

(
1 TR⊥
0 T⊥⊥

)( R∗
δφ∗⊥
v∗

)
, (89)

where δφ⊥
v

is a d−1 dimensional vector and the analogous
transfer functions are the vector TR⊥ and the matrix
T⊥⊥. The expression for T⊥⊥ represents the evolution of
the entropy mode vector since horizon exit. But despite

the presence of additional entropy modes, it is still true
that only the δφ2 entropy mode sources δφ1; this follows
from Eq. (48), which can be rewritten as

DR
dN

= 2Z21S. (90)

So to find the curvature and isocurvature modes at the
end of inflation, we need to know how the d− 2 entropy
modes source the δφ2 mode and in turn how the δφ2
mode sources the δφ1 mode. This can be represented in
terms the transfer functions

TR⊥(N) ≡
∫ N

N∗

2Z21(N1) TS⊥(N1) dN1,

TS⊥(N) ≡ e2(N) ·T⊥⊥(N), (91)

where the time-dependence is indicated explicitly.
To find an expression for T⊥⊥(N), we return to the

expression for the evolution of entropy modes in Eq. (52).
From this equation, it follows that

T⊥⊥(N) ≡ 1

v(N)
e−

∫ N
N∗ [M̃⊥⊥(N1)+Z⊥⊥(N1)] dN1 (92)

to lowest order in the slow-roll limit. If no approximate
analytic solution for T⊥⊥ can be found, the solution can
be estimated using the Magnus series expansion. Ac-
cording to the Magnus series expansion (see [77] and ref-
erences therein), if

eΩ(N) ≡ e−
∫ N
N∗

A1dN1 , (93)

where A1 ≡ A(N1), then the first three terms in the
series expansion are

Ω1 =−
∫ N

N∗

A1dN1,

Ω2 =
1

2

∫ N

N∗

∫ N1

N∗

[A1,A2] dN2dN1, (94)

Ω3 =− 1

3!

∫ N

N∗

∫ N1

N∗

∫ N2

N∗

([A1, [A2,A3]] + [A3, [A2,A2] ) dN3 dN2 dN1,

where [A,B] ≡ AB −BA is the matrix commutator of
matrices A and B and here

A(N) ≡ M̃⊥⊥(N) + Z⊥⊥(N). (95)

Fortunately, the Magnus expansion for Eq. (96) simpli-

fies because M̃ and Z are symmetric and anti-symmetric,
respectively, so their commutator vanishes. It follows
that only the commutators of each matrix with itself at
different time points remain and Eq. (96) can be decom-

posed as

T⊥⊥(N) ≡ 1

v(N)
e−

∫ N
N∗

M̃⊥⊥(N1) dN1 e−
∫ N
N∗

Z⊥⊥(N1) dN1 ,

(96)

with the Magnus expansion applied to each matrix expo-
nential separately. Additional gains in reducing the com-
putational complexity of T⊥⊥(N) are possible whenever
the space of entropy modes can be dimensionally reduced.
This can be done whenever the series of kinematical mode
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sourcing relations can be truncated, as discussed in detail
in Sections III C-III F and IV A.

The dependence of the transfer functions on the ge-
ometry and kinematics of inflation follow from our dis-
cussions of the mode sourcing relations in Sections III C-
III F; however, we provide a few examples here for illus-
tration. The transfer function TR⊥ depends on the turn
rate of the background trajectory times the transfer func-
tion TS⊥, a vector function representing how much the
δφ2 mode is sourced by the other d − 2 entropy modes
modulo a factor of v. For example, if the e2 basis vec-
tor is rapidly turning into the e3 direction while e1 also
turns signficantly, then δφ2 will be strongly sourced by
δφ3, causing a boost in the amplitude of both transfer
functions. As a second example, if the field trajectory
rolls along a ridge in the potential while negligibly turn-
ing, then the δφ2 mode will dramatically grow in ampli-
tude, causing a boost in TS⊥ but only a small increase
in TR⊥. As a third example, if a strong negative curva-
ture R32 arises from the kinetic terms in the Lagrangian
and dominates the dynamics of the δφ2 and δφ3 modes,
both modes will decay, thereby reducing TS⊥ and blunt-
ing the sourcing function TR⊥. Thus, we emphasize that
one can understand how the Lagrangian translates into
the spectral observables by studying the mode sourcing
in detail.

D. Curvature Spectrum

Now we find the scalar spectra in terms of the transfer
matrix formalism. The beauty of the transfer matrix
formalism is that the multifield spectra follow from the
single-field results but with the promotion of the transfer
functions from scalars to vectors.

For the curvature spectrum, we make the canonical
assumption that following inflation, curvature modes are
conserved on superhorizon scales, and so the density and
curvature spectra are equivalent up to factors of O(1).
Employing the transfer matrix formalism, the curvature
power spectrum at the end of inflation [23, 35, 75] can be
written as

PR =

(
H∗
2π

)2
1

2ε∗

(
1 + |TR⊥|2

)
, (97)

where it is understood that the function TR⊥ is evalu-
ated at the end of inflation.7 Eq. (97) shows that the
curvature spectrum at the end of inflation equals the cur-
vature spectrum at horizon exit plus an enhancement due
to sourcing of the density mode, TR⊥.

To determine how the effective number of fields is re-

7 We take the end of inflation to correspond to ε = 1, but in
principle, another endpoint may be chosen instead.

flected in the spectra, we define a new unit vector

eR ≡
TR⊥
|TR⊥|

(98)

and the scalar quantity

TR⊥ ≡ |TR⊥|. (99)

The unit vector eR necessarily lies in the (d − 1)-
dimensional subspace spanned by the kinematical ba-
sis vectors e∗2, e

∗
3, ..., e

∗
d, where again ∗ represents that a

quantity is evaluated at horizon exit. If inflation has two
effective fields, then eR = e∗2; however, if inflation has
more than two effective fields, then eR 6= e∗2. Moreover,
one plus the number of nonzero components of eR in
the kinematical basis gives the effective number of fields.
Therefore to probe the number of effective fields during
inflation, we need to obtain information on the number of
nonzero components of eR. But by Eq. (99), the curva-
ture power spectrum for general multifield inflation can
be rewritten as

PR =

(
H∗
2π

)2
1

2ε∗

(
1 + T 2

R⊥
)
, (100)

which eliminates eR from the expression and renders Eq.
(100) identical in form to the corresponding expression
for two-field inflation [13]. This means that the curvature
spectrum provides no insight into the number of fields
during inflation.

However, combining the curvature and tensor spectra
together does reveal whether inflation is single-field or
multifield, as is well-known. For single-field inflation, we
necessarily have TR⊥ = 0 and therefore the tensor-to-
scalar ratio rT , defined by

rT ≡
PR
PT

, (101)

produces the single-field consistency relation

rT = −8nT . (102)

In multifield inflation, however, the ratio satisfies the up-
per bound [13, 35]:

rT = −8nT cos2 ∆N ≤ −8nT , (103)

where

tan ∆N = TR⊥. (104)

Therefore, if the upper bound in Eq. (103) is not satu-
rated, then inflation is multifield.

As an aside, the multifield curvature power spectrum
can also be given in terms of the δN formalism. Un-
der the δN formalism, correlators of R can be written
in terms of covariant derivatives of N , so the curvature
power spectrum can be written as [17]

PR =

(
H∗
2π

)2

|∇N |2 , (105)
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where ∇N is the covariant derivative of the number of
e-folds of inflation. By comparing Eqs. (97) and (105)
and using that e∗1 · eR = 0, it follows that

∇†N =
1√
2ε∗

(e∗1 + TR⊥eR) , (106)

and therefore, the unit vector in the direction of ∇†N is

eN = cos ∆Ne∗1 + sin ∆NeR. (107)

These results generalize those found for two-field inflation
in [68] and will be useful later ing calculating the non-
Gaussianity arising from multifield inflation.

E. Isocurvature and Cross Spectra

If there is more than one field present, there will also
be a relic spectrum of isocurvatures modes and a cross
spectrum between the density and isocurvatures modes.
Therefore, the detection of an isocurvature mode spec-
trum arising from inflation would indicate that at least
two fields were present during inflation.

Note, however, that unlike for the curvature modes, de-
termining the isocurvature spectrum after inflation ends
is more complicated because the isocurvature modes may
decay further, or in the case of preheating, can even be
amplified. Such post-inflationary processing is highly
model dependent and depends on the dynamics of re-
heating. To make our discussion as broadly applicable as
possible, we focus on the amplitudes of the isocurvature
modes at the end of inflation. In the absence of preheat-
ing, these results can be construed as upper limits on
the mode amplitudes. Otherwise, the post-inflationary
model-dependent processing of the isocurvature modes is
to be added onto our base model here by extending the
transfer functions to encompass the additional evolution
of the modes from the end of inflation to the present era.
This can be represented by introducing a prefactor in
the spectra in Eq. (108) and additional scale-dependent
terms in the spectral indices for the isocurvature and
cross spectra.

Using some prior results from [13, 23], the isocurvature
spectrum at the end of inflation can be written as

PS =

(
H∗
2π

)2
1

2ε∗
|TS⊥|2 , (108)

where TS⊥ is given by Eq. (91) and is calculated at the
end of inflation.

How the geometry and kinematics of inflation affects
the isocurvature spectrum follows from our detailed dis-
cussion of the mode sourcing in Sections III C-III F and
IV C. So we focus on how the number of fields is reflected
in the isocurvature spectrum. Like for the other transfer
function, we can break TS⊥ into two parts:

eS ≡
TS⊥
|TS⊥|

,

TS⊥ ≡ |TS⊥| . (109)

In the case of two-field inflation, eS = e∗2, whereas for
inflation with three or more effective fields, eS 6= e∗2.
Using these two quantities, the multifield isocurvature
spectrum becomes

PS =

(
H∗
2π

)2
1

2ε∗
T 2
S⊥. (110)

Like for the curvature spectrum, the expression for the
multifield isocurvature spectrum has the same form as in
the two-field case and therefore does not provide us any
insight into the number of fields present during multifield
inflation, at least not to lowest-order in the slow-roll ex-
pansion.

Also if inflation is multifield, there will be a cross spec-
trum between the curvature and isocurvature modes, rep-
resenting the mode correlations. Combining results from
[13, 23], we can write the cross spectrum as

CRS =

(
H∗
2π

)2
1

2ε∗
(TR⊥ ·TS⊥) . (111)

Using Eqs. (98) and (109), this becomes

CRS =

(
H∗
2π

)2
1

2ε∗
TR⊥TS⊥ (eR · eS) . (112)

Comparing the above result to the two-field result in [13],
we see that the results are identical with the exception of
the term eR · eS . This is the first instance of a spectral
quantity whose expression differs from the two-field case.

We can therefore use the cross spectrum to devise a
test that will distinguish two-field inflation from inflation
with three or more effective fields. In analogy to the
tensor-to-scalar ratio, the cross-correlation ratio [34] is

rC ≡
CRS√
PRPS

. (113)

Substituting Eqs. (100), (110), and (112) yields

rC = sin ∆NeR · eS . (114)

If inflation is effectively two-field, then eR = eS = e2

and rC = sin ∆N . But if eR 6= eS , then rC < sin ∆N ,
signaling the presence of three or more effective fields.

Eq. (114) can also be cast solely in terms of spectral
observables. Substituting Eq. (103) into Eq. (114) yields

rC ≤
√

1 +
rT

8nT
, (115)

where the equality is satisfied when inflation can be de-
scribed by two effective fields. We can therefore define
the following duo of multifield parameters

β1 ≡ −
rT

8nT
,

β2 ≡
rC√

1 + rT
8nT

. (116)
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Multifield Observables

β1 ≡ − rT
8nT

β2 ≡ rC√
1−β1

Inflation 

β1 = 1 0 < β1 < 1 

Single-Field Multi-Field 

β2 = 1 0 < β2 < 1 

Two-Field Three- or 
More-Field 

β1 : 

β2 : 

FIG. 3. Multifield observables β1 and β2 indicate the effective
number of fields during inflation.

The first multifield parameter, β1, distinguishes multi-
field inflation from single-field inflation; it is derived from
the well-known single-field consistency relation in Eq.
(102). When β1 = 1, inflation is single-field, whereas
if 0 < β1 < 1, inflation is multifield. The second multi-
field parameter, β2, differentiates two-field models from
models with three or more fields. When β2 = 1, infla-
tion is driven by two effective fields, whereas for models
with three or more effective fields, 0 < β2 < 1. More-
over, these results remain valid even if the isocurvature
modes amplitudes change after inflation, provided that
the isocurvature and cross spectra are still detectable.8

The reason why is because the result in Eq. (116) de-
pends only on the structure of the transfer matrix for-
malism, not on the precise dynamics of the modes; these
results apply in general to any scenario that can be de-
scribed by the transfer matrix formalism. This includes
the curvaton model and inhomogeneous reheating, which
both involve a very light field present during inflation
that hugely sources and thus is said to generate the cur-
vature perturbation following inflation. However, if all
of the isocurvature modes decay away completely or are

8 The one technical exception to the rule is if the decay of isocur-
vature modes takes eS from being not parallel to eR at the end
of inflation to being parallel to eR at recombination, in which
case there would appear to be only two effective fields, instead
of at least three. But this is a highly unlikely decay scenario.

undetectable—as in the case of complete thermalization
after inflation—then both the isocurvature and cross-
spectra will be unmeasurable and β2 will be undefined.
In this case, the power spectra can only be used to distin-
guish single-field models from multifield models. These
results are summarized in Fig. 3.

F. Higher-Order Spectra

Finally, we consider whether higher-order spectra aris-
ing from Fourier transforms of higher-order mode cor-
relation functions provide any clues about the number
of fields present during inflation. These higher-order
spectra represent the non-Gaussian behavior of the cur-
vature perturbations. The two lowest-order correlation
functions are known as the bispectrum and trispectrum,
respectively. For standard multifield inflation, the lo-
cal forms of these spectra predominate,9 with the local
bispectrum represented by the parameter fNL and the
trispectrum by the parameters τNL and gNL. For mul-
tifield inflation with canonical kinetic terms, the δN for-
malism has been used to recast correlators of R in terms
of partial derivatives of N [82–84]. We contend that
with the substitution of covariant derivatives for partial
derivatives, the same expressions apply in general multi-
field inflation with a curved field metric, giving

−6

5
f
(4)
NL =

e†N ∇†∇NeN
|∇N |2

,

τNL =
e†N ∇†∇N∇†∇N eN

|∇N |4
, (117)

54

25
gNL =

e†N ∇†∇∇N eN eN
|∇N |3

.

Our contention has recently been confirmed and proved
in much more detail by [78], which we refer the in-
terested reader to. We also note that although the
linear-order contribution to ∇N is non-zero, whenever
non-Gaussianity is expected to be detectably large, one
should ideally calculate the covariant derivatives of N
and the transfer functions to second-order in the slow-
roll parameters. Similarly, the power and cross spectra
should be calculated to the same order. (Some numeri-
cal examples showing the significance of the second-order
contributions to ∇N and the level of non-Gaussianity are
given in [68] and [79].)

We start first with fNL. Our equation for fNL in-

cludes only the k-independent part, f
(4)
NL, which is the

part of the local bispectrum that arises from the super-
horizon evolution of nonlinearities [59]; we ignore the un-
detectably small contribution from the k-dependent part,

9 However, when R 6= 0, other forms of the bispectra and trispec-
tra may also be important. We only give the local form here.
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f
(3)
NL, which satisfies the bound |− 6

5f
(3)
NL| ≤

11
96rT [59, 80].

For f
(4)
NL, we calculated an expression for it in two-field

inflation [68] using the spectral observables and by oper-

ating ∇ on the transfer function expression for ∇†N in
Eq. (106). The calculation is similar for the case of gen-
eral multifield inflation, so repeating the steps outlined
in [68], the bispectrum parameter can be written as:

−6

5
f
(4)
NL =

1

2
cos2 ∆N (nR − nT ) + sin ∆N cos ∆N

[
(e†RMe1)∗ + sin ∆N cos ∆N

√
−nT eR ·∇TR⊥

]
. (118)

Eq. (118) is largely a formal equation, but nonetheless
it can be used to determine whether the bispectrum pa-
rameter reveals the number of fields active during in-
flation. In single-field inflation, eR vanishes because
TR⊥ = 0, yielding the single-field consistency relation

− 6
5f

(4)
NL = 1

2 (nR − nT ),[81]10 which is below the detec-
tion threshold. In multifield inflation, all terms except
for eR ·∇TR⊥ will be undetectably small, and the only
difference between the above result and the result for
two-field inflation is that e∗2 has been replaced by eR.
So unless TR⊥ is known, fNL cannot be used to distin-
guish two-field inflation from inflation with three or more
fields.

As an aside, the formal expression in Eq. (118) can
be used semianalytically if the transfer function TR⊥ is
computed in a small neighborhood about the field trajec-
tory. Also, it can be used to gain intuition into the ex-
pected magnitude of non-Gaussianity. We demonstrated
this for the case of two-field inflation in [68]. For ex-
ample, if the sourcing of curvature modes is small (i.e.,
TR⊥ � 1), but ∇TR⊥ varies dramatically in a direction
orthogonal to the field trajectory, then from these equa-
tions, one can conclude that fNL will be large and that
τNL � f2NL. Such a scenario arises when the field trajec-
tory rolls along a ridge in the inflationary potential. Eq.
(118) is therefore useful because it tells us that similar
conditions of instability in the inflationary trajectory are
needed for large non-Gaussianity.

Next, we find the trispectrum parameters. First, in

the single-field limit, τNL =
(

6
5f

(4)
NL

)2
and hence is unde-

tectably small. This expression represents a consistency
relation for single-field inflation [85]. For the multifield
case, following the steps outlined in [68], we obtain

τNL =
1

sin2 ∆N

[
6

5
f
(4)
NL +

1

2
cos2 ∆N (nR − nT )

]2
+

1

4
cos2 ∆N (nR − nT )

2
. (119)

10 The standard single-field consistency relation for fNL includes

contributions from both f
(3)
NL and f

(4)
NL. When both contributions

are included, the single-field result for the local bispectrum is
− 6

5
fNL = 1

2
nR [81].

This expression for general multifield inflation is iden-
tical to the corresponding expression for two-field infla-
tion. Thus the trispectrum parameter τNL cannot dis-
tinguish two-field inflation from multifield inflation with
more fields. But τNL can be written completely in terms
of other spectral observables. Using Eq. (119) and that

− rT
8nT

= cos2 ∆N , (120)

τNL can be written as

τNL =
1

1 + rT
8nT

[
6

5
f
(4)
NL −

1

2

rT
8nT

(nR − nT )

]2
− 1

4

rT
8nT

(nR − nT )
2
, (121)

which we note is only valid when inflation contains mul-
tiple fields. Eq. (121) represents a new consistency con-
dition for general multifield inflation. In the limit where
fNL is detectably large (i.e., |fNL| & 3), the above mul-
tifield consistency condition reduces to

τNL =
1

1 + rT
8nT

(
6

5
fNL

)2

. (122)

In this limit, the value of τNL relative to f2NL is controlled
solely by the ratio of rT to nT ; the larger the sourcing of
the curvature modes by the isocurvature modes, the more

τNL approaches
(
6
5fNL

)2
. In other words, only multifield

inflationary scenarios where the multifield effects are very
weak can produce τNL � f2NL. This observation and
Eqs. (121) and (122) represent new findings applicable
to general multifield inflation. And the size of τNL rel-
ative to f2NL in Eq. (122) follows from the kinematics
of the background trajectory and an analysis of the ef-
fective mass matrix over the trajectory, again reflecting
how the geometry of the inflationary Lagrangian affects
the spectra.

Lastly, for the trispectrum parameter gNL, we follow
the steps in [68] to obtain:

54

25
gNL =− 2τNL + 4

(
6

5
f
(4)
NL

)2

+

√
rT
8

eN ·∇
(
−6

5
f
(4)
NL

)
. (123)
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As written, the above result for multifield inflation is very
formal, but since it is identical in form to that in two-
field inflation, it tells us that gNL can only be used to
distinguish single-field inflation from multifield inflation.
In the case of single-field inflation, the above expression
reduces to

54
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gNL = 2

(
6

5
f
(4)
NL

)2

+

(
−6

5
f
(4)
NL

)′
, (124)

where dfNL

d ln k ≈ f ′NL represents the scale dependence of
fNL and where we used the single-field limit of Eq. (119)
to obtain the last relation.

In sum, detection of non-Gaussianity arising from the
curvature modes would indicate that inflation is multi-
field, but cannot otherwise provide insight into the ef-
fective number of fields present during inflation. The
reason why is because the multifield inflation expressions
for the non-Gaussian parameters are identical to those in
two-field inflation after the replacement e∗2 → eR, and
hence they cannot differentiate models with two fields
from those with three or more fields. But fortunately,
combining observables from the tensor, curvature, isocur-
vature, and cross spectra can in principle be used to dis-
tinguish among inflationary models driven by one, two,
and three or more fields, as summarized in Fig. 3.

V. CONCLUSIONS

The interactions among the field perturbations in mul-
tifield inflation are determined by the geometric proper-
ties of the inflationary potential and the field manifold.
Because the mode interactions serve as the critical bridge
between the inflationary Lagrangian and the cosmic ob-
servables, they can be used to compare inflationary mod-
els based on common geometric features that cut across
several types of Lagrangians. For example, Lagrangians
that give rise to a field trajectory that turns sharply in
field space tend to have highly scale-dependent curvature
spectra [13], while those that produce a field trajectory
that rolls along a ridge in the potential are more likely to
produce large non-Gaussianity, all else being equal [68].

It is therefore critical to develop tools to understand
how the mode interactions reflect the geometric proper-
ties of the inflationary Lagrangian. While the mode in-
teractions are well understood in the case of general two-
field inflation and in some cases of multifield potentials,
they are not well understood for an arbitrary multifield
Lagrangian. Instead the δN formalism has been heavily
relied on to calculate the spectra, which although pow-
erful, does not provide much insight into the evolution
of modes. In this manuscript, we attempted to extend
previous work to uncover how the geometric and kine-
matical features of the Lagrangian affect the interactions
among modes, how this determines the effective number
of active fields during inflation, and how this is reflected
in the spectral observables.

We started in Section II by presenting the covariant
equation of motion for the fields and by delineating a
framework to parse the field vector kinematics. The kine-
matics of the background fields induce a basis called the
kinematical basis and a matrix of turn rates, Z, which
characterizes how quickly these basis vectors are rotat-
ing. We concluded our treatment of the background fields
by discussing underappreciated subtleties of the slow-roll
limit when multiple scalar fields are present.

In Section III, we explored the equations of motion
for the field perturbations in both the given and kine-
matical bases and showed how the evolution of modes
reflects the geometry of the Lagrangian. In the com-
bined superhorizon and slow-roll limits, the equation of
motion for the field perturbations depends only on the
effective mass matrix M̃—which represents the covari-
ant Hessian of the potential and the Riemann tensor of
the field manifold—and the turn rate matrix Z. We then
studied the mode interactions one by one in the kinemat-
ical basis. We started by considering the evolution of the
δφn mode in the absence of sourcing, and we discussed
how the concavity of the potential and the curvature of
the field manifold determine that mode’s instrinic evo-
lution. In analogy to the adiabatic conservation law in
single-field inflation, we showed that there are up to d
mode-related quantities in d-field inflation that may be
conserved.

Next, we looked at sourcing. For quadratic potentials
with canonical kinetic terms, the mode equations sim-
plify radically, in a way such that each mode δφn can be
sourced only by δφn+1 but only when the basis vector
en is turning into the direction of en+1. For this spe-
cial class of models, all turn rate matrix coefficients can
be expressed in terms of the mass matrix, and all mode
sourcing equations assume the same form as for the adia-
batic mode. We then used this special case as a reference
point for the discussion of mode sourcing in the case of
an arbitrary Lagrangian. We argued that the mode in-
teractions in a general inflation model can be divided
into features shared in common with canonical quadratic
models and features that arise from higher-order covari-
ant derivations of the potential and corrections from the
field metric, and we advocated this approach as way to
gain greater insight into how differences in Lagrangians
translate into differences in the cosmic observables. In
parallel, we discussed the three types of sourcing terms:
two are geometrical terms and one is kinematical. The
geometrical terms involve off-diagonal terms in both the
covariant Hessian of the potential and in the Riemann
tensor of the field metric contracted with two instances
of e1 and modulated by ε, and we interpreted these terms
geometrically. The kinematical terms are simply the turn
rates of en into the en+1 and en−1 directions and can in-
tuitively understand as gains and losses in the amplitude
of δφn due to the rotation of basis. We also gave several
examples of how inferences about the mode sourcing can
be made by determining the geometric and kinematical
features of a Lagrangian.
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With this in mind, we focused in Section IV on how the
Lagrangian geometry and kinematics determines the ef-
fective number of fields and how this number is reflected
in the power spectra, bispectrum, and trispectrum. We
pointed out that the effective number of fields needed to
describe the background and perturbed solutions do not
necessarily coincide, and we gave a method to determine
the effective dimension of a multifield system in the slow-
roll limit. Next, we presented known formulas for the
power spectra and generalized the two-field expressions
for the local non-Gaussianity parameters to multifield in-
flation. We found a new multifield consistency relation
among τNL, fNL, rT , and nT for detectably large non-
Gaussianity to multifield inflation, and we discovered a
multifield observable involving the cross spectrum that
can potentially distinguish two-field models from mod-
els with three or more effective fields. This result ex-
pressed is independent of post-inflationary processing of
the modes. However, the caveat is that all four spectra
must be detectably large and hence they do not apply
in the case of scenarios such as complete thermalization
after inflation.

Stepping back and looking at the big picture, since

more sensitive measurements of the spectral observables,
along with new spectral observables, will reveal further
clues into the nature of inflation, we must be posed to ex-
tract phenomenological information from these measure-
ments. Since it is impractical to test the myriad inflation-
ary scenarios one by one against these measurements, it
is important that we study types of geometric and kine-
matical features that arise from inflationary Lagrangians
and determine how these features affect the cosmic ob-
servables. This will allow us to work backwards from
constraints on the cosmic observables to identify the key
features of the inflationary Lagrangian that described our
early Universe. The work presented in this paper repre-
sents a step forward towards this goal.
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