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Stability analysis of chromo-natural inflation and possible evasion of Lyth’s bound

Emanuela Dimastrogiovanni1, Marco Peloso1
1School of Physics and Astronomy, University of Minnesota, Minneapolis, 55455, USA

We perform the complete stability study of the model of chromo-natural inflation (Adshead and
Wyman ’12), where, due to its coupling to a SU(2) vector, a pseudo-scalar inflaton χ slowly rolls
on a steep potential. As a typical example, one can consider an axion with a sub-Planckian decay
constant f . The model was recently studied (Dimastrogiovanni, Fasiello, and Tolley ’12) in the
mg >> H limit, where mg is the mass of the fluctuations of the vector field, and H the Hubble
rate. We show that the inflationary solution is stable for mg > 2H , while it otherwise experiences a
strong instability due to scalar perturbations in the sub-horizon regime. The tensor perturbations
are instead enhanced at large mg, while the vector ones remain perturbatively small. Depending
on the parameters, this model can give a chiral gravity wave signal that can be detected in ongoing
or forthcoming CMB experiments. This detection can occur even if, during inflation, the inflaton
spans an interval of size ∆χ = O(f) which is some orders of magnitude below the Planck scale,
evading a well known bound that holds for a free inflaton (Lyth ’97). The spectral tilt of the scalar
perturbations typically decreases with decreasing mg. Therefore the simultaneous requirements
of stability, sufficiently small tensor-to-scalar ratio, and sufficiently flat scalar spectrum can pose
nontrivial bounds on the parameters of the model.

I. INTRODUCTION

Inflation is a successful paradigm for the physics of
the early Universe [1]. Besides solving the classical prob-
lems of modern cosmology (e.g. the flatness, entropy,
and horizon problems), it provides primordial perturba-
tions in perfect agreement with the observations [2, 3].
A challenge for inflationary models is to protect the re-
quired flatness of the inflaton potential against radiative
corrections. This protection can be provided by an ap-
proximate shift symmetry as in models of natural infla-
tion [4, 5]. The symmetry can be broken by a controllably
small amount, the most known example of this is the case
of an axion field acquiring a potential from instantons.
The application of this to inflation, however, requires a
greater than Planckian axion decay constant f [6], which
may not be stable against gravitational corrections [7]
and which may be impossible to realize in string theory
[8]. Proposed solutions to this problem include using two
[9] or more [10] axions, which provide an effective large
scale evolution even if the decay constants of the original
axions are sub-Planckian, requiring nontrivial compacti-
fications in string theory [11], suitably coupling the axion
to a 4-form [12], modifying the axion kinetic term [13],
and slowing down the axion evolution through particle
production [14, 15] as in warm inflation [16].

In particular, in the mechanism of [14] the dissipation
occurs through the production of a U(1) field coupled to

the inflaton χ through the interaction χFF̃ (where F is

the U(1) field strength, and F̃ its dual). Ref. [17] showed
that this coupling can also affect the background evolu-

tion if the U(1) field is replaced by a SU(2) field with
a nonvanishing vacuum expectation value (vev). Specif-
ically, due to the interaction with the vev of the vector
multiplet, the inflaton can be in slow roll even if its poten-
tial would otherwise (i.e., in absence of this interaction)
be too steep to give inflation. 1 Such a model has been
dubbed chromo-natural inflation in [17]. 2

The model is characterized by the action

S =

∫

d4x
√
−g
[MP

2
R− 1

4
F a
µνF

aµν − 1

2
(∂χ)

2

− V (χ) +
λ

8f
√−gχǫ

µνρσF a
µνF

a
ρσ

]

, (1)

where χ is the axion inflaton, with the potential

V = µ4

[

1 + cos
χ

f

]

(2)

and F a
µν = ∂µA

a
ν − ∂νA

a
µ − gǫabcAb

µA
c
ν . We use the con-

vention ǫ0123 = 1 for the Levi-Civita tensor. The vector

1 This mechanism has been extended to a Chern-Simons interac-
tion in [18]. For recent reviews of vector fields in inflation, see
[19].

2 Chromo-natural inflation has trajectories in common with the so
called gauge-flation model [20, 21] - a model characterized by a
SU(2) field with a (Fµν F̃

µν)2 term besides the usual FµνF
µν

Yang-Mills term - in the limit in which the axion is close to the
bottom of its potential [22, 23]. Perturbations of gauge-flation
were studied in the last of [19].
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field has the vev 3

Aa
0 = 0, Aa

i = δai a(t)Q(t). (3)

which is chosen to give isotropic expansion. We note that,
for a generic theory with vector fields, an isotropic solu-
tion may be unstable against anisotropic perturbations.
For instance, this can be the case when a dilaton-like cou-
pling f (ϕ)F 2 of a scalar inflaton ϕ to a SU(2) field with
the vev (3) or to an orthogonal U(1) triplet is arranged so
to produce a scale invariant spectrum for the vectors. 4

Isotropy is instead preserved if the vector fields are mas-
sive [27], as in the current model (if the mass arises from
an explicit breaking, one should also check that the the-
ory has no ghosts [28]).
Ref. [17] performs a thorough analysis of the back-

ground evolution of the model. The study of the chromo-
natural inflation theory at the perturbative level was re-
cently performed in [29], for

m2
g ≡ 2g2Q2 ≫ H2 , (4)

where mg is the mass of the vector field fluctuations
in this limit [29] (as we also discuss below). When
this condition is realized, the vector field can be inte-
grated out while, at the same time, leaving its mark
on the inflationary dynamics (this is an explicit realiza-
tion of the so called gelaton [30] mechanism). In this
limit, chromo-natural inflation is equivalent to a single
scalar field P (X,χ) = X +X2/Λ4 − V (χ) theory (where

X ≡ − (∂χ)
2
/2 and Λ4 ≡ 8f4g2/λ4). The non-canonical

kinetic term precisely encodes the effect of the gauge
fields.
In [29] it is also shown that an effective field the-

ory equivalence of chromo-natural inflation to a non-
canonical P (X,χ) Lagrangian holds as long as m2

g >

8H2. Beyond this limit, a general perturbative study
of the dynamics of the gauge field and the axion becomes
necessary in order to test the stability of the theory and
formulate its predictions. This is precisely the scope of
the present work. We perform a full linear order study
of scalar, tensor and vector perturbations and we show
that the inflationary background solution of the model is
stable for mg > 2H , and it is otherwise unstable.
A full phenomenological study of the model is beyond

our purposes. Nonetheless, we explore the scalar and

3 We follow the standard convention of using greek letters for
space-time indices, i, j, k . . . for space indices, and a, b, c, . . . for
internal SU(2) indices. The index a should not be confused
with the scale factor a (t), that enters in the line element as
ds2 = −dt2 + a2(t)δijdxidxj = a2 (τ)

[

−dτ2 + δijdx
idxj

]

. We
denote by dot a derivative with respect to physical time t, and
by prime a derivative with respect to conformal time τ .

4 This effect originates from the sum of the IR modes that, in
general, strongly breaks isotropy [24]. It is however possible that
we live in a realization of inflation where this effect is small, as
we believe that must be assumed in the computations of [25].
Analogous considerations may apply to the model of [26].

tensor modes production for a given choice of f ≪ Mp

and λ ≫ 1 for which the coupling with the vector fields
is crucial to ensure slow-roll. Specifically, we choose
f = 10−2Mp, and λ = 500, while mg/H is a free param-
eter controlled by the value of g. The stability condition
mg/H > 2 provides a lower bound for this ratio. Too
small values are also excluded because they lead to a too
red spectrum of the scalar modes (we obtained this nu-
merically; this behavior is also seen in the analytic study
of [29] in the regime of validity of their analysis). On
the other hand, the amount of gravity wave signal in-
creases with mg/H , and a level which can be observed
in the current or forthcoming experiments [31] can be
obtained even if the inflaton in the model spans a range
of some orders of magnitude below Mp, evading the so
called Lyth bound [32] (in contrast to what was expected
in [17]). Therefore, requiring a stable solution, with a
sufficiently flat scalar power spectrum, and sufficiently
small tensor modes provides constraints on the parame-
ters of the model that go in opposite directions. For our
choice f = 10−2Mp, and λ = 500 we could not find any
acceptable solution. We expect that the situation should
improve at larger f , where the inflaton potential becomes
flatter (and the model approaches conventional slow roll
inflation).

The paper is organized as follows: in Sec. II we review
the background evolution of the model for different (sta-
ble or unstable) ranges of the theory; in Sec. III we start
the perturbation analysis by introducing the most gen-
eral decomposition of the metric, the inflaton, and the
gauge field fluctuations, identifying the physical degrees
of freedom and verifying that scalar, vector and tensor
perturbations decouple at linear order; we also quantize
the system and define the cosmological correlators; in
Secs. IV, V and VI we study the fluctuations for, respec-
tively, tensor, vector and scalar modes; finally in Sec. VII
we draw our conclusions.
We supplement our perturbation analysis with three Ap-
pendices. In Appendix A we outline in details the method
that we use to compute the perturbations. We explicitly
show that the presence of vector fields does not give rise
to any additional conceptual difficulty with respect to
the case of scalar field inflation. In Appendix B we write
the quadratic action for the scalar perturbations of the
model, disregarding the terms that involve metric pertur-
bations. These terms are given in Appendix C, where we
explicitly show that neglecting scalar metric fluctuations
does not affect the stability analysis of the model (while
it considerably simplifies the computations).

II. THE MODEL AND THE BACKGROUND

SOLUTION

Chromo-natural inflation is described by the action (1)
of a pseudo-scalar field χ coupled to an SU(2) gauge
multiplet. The vector multiplet has the vev (3). The 00
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component of Einstein equations reads

3M2
PH

2 =
3

2

(

Q̇+HQ
)2

+
3

2
g2Q4 +

χ̇2

2
+ V (χ) .(5)

Inflation can only occur if the potential V (χ)
is the major contribution to the total energy
density, i.e. 3H2M2

P ≃ V ; the parameters

ǫ1 ≡ Q2/M2
P , ǫ2 ≡ g2Q4/H2M2

P , ǫQ ≡ Q̇2/H2M2
P

and ǫχ ≡ χ̇2/2H2M2
P are all much smaller than unity.

The equations of motion for the inflaton and the gauge
field are:

χ̈+ 3Hχ̇− µ4

f
sin

(

χ

f

)

= −3gλ

f
Q2
(

Q̇+HQ
)

, (6)

Q̈+ 3HQ̇+
(

Ḣ + 2H2
)

Q + 2g2Q3 =
gλ

f
Q2χ̇. (7)

If we neglect χ̈, Q̈ and Ḣ , one can solve Eqs. (6-7) for χ̇

and Q̇ [17]

χ̇ ≃
gλfQ2H

(

2g2Q3

H −HQ− fV,χ

gλQ2

)

3f2H2 + g2λ2Q4
, (8)

Q̇ ≃ −HQ
(

2f2H2 + 2g2f2Q2 + g2λ2Q4
)

+
gλQ2fV,χ

3

3f2H2 + g2λ2Q4
.

(9)

In these equations we then assume

3f2H2 ≪ g2λ2Q4, λ2Q2 ≫ 2f2 , (10)

and we obtain

χ̇ ≃ fH

gλQ2

(

2g2Q3

H
−HQ− fV,χ

gλQ2

)

, (11)

Q̇ ≃ −HQ− fV,χ
3gλQ2

. (12)

Eq. (12) can be rewritten as an equation of motion for
the gauge field in terms of an effective potential

HQ̇+
∂Veff (Q)

∂Q
= 0, Veff ≡ H2Q2

2
− fHVχ

3gλQ
(13)

where Veff is minimized by

Qmin =

(

µ4 sin(χ/f)

3gλH

)1/3

. (14)

In the minimum, the two terms of Veff are parametri-
cally equal to each other. Therefore, the same is true for
the last two terms in (11). As a consequence, the first
term on the right hand side of (11) dominates over the
other two in the regime m2

g ≫ H2 studied in [29]. This
implies that [29]

m2
g = 2 g2Q2 ≫ H2 ⇒ m2

g ≃ gλQ
χ̇

f
(15)

For general values of the parameters, inserting Qmin,
Eq. (11) becomes

χ̇ ≃ 2

32/3
f4/3

λ4/3

3λ2/3

f2/3H
8/3 + 31/3g4/3 (−V,χ)2/3

g2/3H1/3 (−V,χ)1/3
. (16)

By looking at Eq. (6), one realizes that, when the gauge
field settles in its minimum, it originates an actual damp-
ing term for the motion of the axion. Notice also that,
when Q = Qmin, the kinetic energy of the fields can be
disregarded (see e.g. Eq. (12)); therefore the slow-roll
parameter (which would normally receive contributions
also from ǫQ and ǫχ) will be, instead, mostly due to ǫ1
and ǫ2

ǫ ≡ − Ḣ

H2
≃ Q2

M2
P

+
g2Q4

H2M2
P

. (17)

Finally we have

η ≡ ǫ̇

Hǫ
≃ 2g2Q4

H2M2
P

+
Q̇

HM2
P ǫ

(

2Q+
4g2Q3

H2

)

. (18)

From Eq. (16) we can compute the number of e-foldings

N ≃
∫

dx

31/3

2

(

µ
MP

)4/3

g2/3λ4/3 (sinx)
1/3

(1 + cosx)
2/3

(

µ
MP

)8/3

λ2/3 (1 + cosx)4/3 + 32/3g4/3 (sinx)2/3
,

(19)

where we defined x ≡ χ/f .
Let us introduce the parameter y

y ≡
(

λµ4

3g2M4
p

)2/3

; (20)

in terms of which the expression (19) rewrites

N ≃ 3
√
yλ

2

∫

dz z

2y + z − yz3
, z ≡

(

1− cos
χ

f

)1/3

(21)
An upper bound on N can be obtained by “pretending”
that the slow roll approximation holds at all values of χ,
corresponding to 0 ≤ z ≤ 21/3. The resulting upper limit
is maximized for y ≃ 1, where it evaluates to N <∼ 0.6λ.
In the y ≪ 1 limit, the upper limit acquires the simple

form N <
3
√
y λ

22/3
.

In terms of y, the slow roll solutions read

H ≃ µ2

√
3Mp

√
1 + cosx ≡ µ2

√
3Mp

fH (x) ,

Q ≃Mp
y1/4

λ1/2

(

sinx√
1 + cosx

)1/3

≡ Mp

λ1/2
fH (x) fA (x) ,

χ̇ ≃ 2fµ2

√
3Mpλ

y (1 + cosx)
4/3

+ (sinx)
2/3

√
y (1 + cosx)

1/6
(sinx)

1/3
≃ Hf

λ
fχ̇ (x) ,

(22)
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where we have defined

fH ≡
√
1 + cosx , fA ≡ y1/4 (sinx)

1/3

(1 + cosx)2/3
,

fχ̇ ≡ 2
y (1 + cosx)

4/3
+ (sinx)

2/3

√
y (1 + cosx)

2/3
(sinx)

1/3
. (23)
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FIG. 1. Evolution of χ̇ during inflation for four different values
of y. The other parameters are λ = 500 and f = 10−2Mp.
The evolutions shown correspond to 60 e-folds of inflation.

Figure 1 allows to appreciate the accuracy of these slow
roll approximations. In the figure we show the evolution
of χ̇ for four choices of y, comparing the exact evolution
with the slow roll approximation (22). 5 In all cases, we
take f = 0.01Mp, as the main purpose of this model is
to allow slow roll for f ≪ Mp. This is “compensated”
by λ ≫ 1, and in all cases we fixed for definiteness λ =
500. We note that fixing the value of y does specify a
relation between µ and g, but does not fix these two
values. As typical in inflationary models, the parameters
can be specified only from fixing the normalization of the
power spectrum of the scalar modes to the observed value
Pζ ≃ 2.5 · 10−9 [2]. The evolutions shown in the figure
cover 60 e-folds of inflation.

5 The initial conditions for the numerical evolution shown in the
Figure are chosen as follows: we fix an initial value for χ; we
then employ (22) to have the initial value for χ̇ and Q. We set
Q̇ = 0, and we then obtain the initial value for ȧ by solving the 00
Einstein equations exactly at the initial time. We make sure that
the initial value of χ leads to more than 60 e-folds of inflation
(so that the slow-roll solution can be achieved; we note that the
system starts slightly displaced from the slow roll solution, since
we set Q̇ = 0; the displacement is however very small, since
Q̇ ≪ HQ in the slow roll solution, and the background evolution
quickly approaches the slow roll solution). The evolutions shown
in Figure 1 are restricted to the final 60 e-folds of inflation.

We note from the figure that χ̇ performs very small os-
cillations around the slow roll solution. We believe that
they are due to the fact that Q (t) is tracking a time de-
pendent minimum (14) (we do not show this here, but
also this tracking is extremely accurate during the slow
roll phase). The oscillations appear somewhat large in
the logarithmic scale chosen, but we see that they do
not lead to any net departure from the slow roll solu-
tion. Moreover, in Section VI we compare full numerical
solutions of the scalar perturbations, obtained using the
full numerical background solutions, with analytical so-
lutions, for which the slow roll approximations are used,
and we also find excellent agreement. As we discussed
after eq. (21), decreasing y in the y < 1 region, while
keeping the other parameters (including the initial value
of χ) fixed, decreases the amount of inflation. As a con-
sequence, y ≪ 1 can result in sufficient inflation only if
the inflaton is initially close to the top of the potential.
Another way to express this is to note that the inflaton
rolls faster as y decreases (with the other parameters kept
fixed), as it is clear both from the slow roll expression (22)
and from the figure.

Perhaps the most surprising feature of the model is
that, although all the solutions shown in Figure 1 ap-
pear to be acceptable inflationary solutions (in all cases
the slow roll solution appears to be an attractor; we note
however that the background dynamics only probes ho-
mogeneous departures from the slow roll solution), and
although they only differ from each other by the value of
y, the background solution with y = 5 is unstable, while
the other ones are stable. This emerges from the study
of the scalar perturbations around these solutions that
we perform below.

III. LINEARIZED EQUATIONS FOR THE

PERTURBATIONS

In this Section we discuss at the formal level how we
compute, we quantize, and we solve the linearized the-
ory for the perturbations of the model around the back-
ground solution discussed in the previous Section. The
discussion is divided in two Subsections. In the first Sub-
section we discuss how the perturbations can be divided
into three groups, decoupled from each other at the lin-
earized level. In the second Subsection we give the form
of the quadratic action and we discuss how we compute
the corresponding linearized theory for the perturbations.

A. Decomposition

There are 23 perturbations in the system, one of the
inflaton, 12 of the SU(2) vector field, and 10 of the metric,
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that we decompose as:

χ = χ+ δχ

Aa
0 = a (Ya + ∂aY )

Aa
i = a

[

(Q+ δQ) δai + ∂i (Ma + ∂aM)

+ǫiac (Uc + ∂cU) + tia

]

g00 = −a2 (1− 2φ)

g0i = a2 (Bi + ∂iB)

gij = a2 [(1 + 2ψ) δij + 2∂i∂jE + ∂iEj + ∂jEi + hij ]

(24)

In this expression, a = 1, 2, 3 is the SU(2) index (we
also denote by a the scale factor, as there is no ambi-
guity between it and an SU(2) index), while i = 1, 2, 3
ranges over the spatial coordinates. We denote as “tensor
modes” the perturbations tia and hij , which we impose
to be transverse (∂ihij = ∂itia = ∂atia = 0) and traceless
(tii = hii = 0); due to these properties, the tensor sector
contains 4 perturbations. We denote as “vector modes”
the perturbations Ya,Ma, Uc, Bi, Ei, which we impose to
be transverse (∂iYi = · · · = ∂iEi = 0); due to this, the
vector sector contains 10 perturbations. We denote as
“scalar modes” the remaining 9 perturbations.
We point out that the terms “tensor/vector/scalar” are

appropriate for the perturbations of the metric and of
the inflaton, as they indicate how these modes transform
under a spatial rotation. We extend this terminology
also to the perturbations of the vector field, following the
notation of [21], even if, strictly speaking, these terms are
inappropriate (given that the SU(2) index has been used
in the decomposition). We nonetheless adopt it since the
fact that the vector vev is diagonal (〈Aa

i 〉 ∝ δai ) plus the
transversality properties that we have imposed guarantee
that the tensor / vector / sectors that we have defined
above remain decoupled from each other at the linearized
level [21].
We Fourier transform these modes

δ (t, x) =

∫

d3k

(2π)3/2
eik·x δ (t,k) (25)

where δ denotes any of the perturbations, and we study
the theory in Fourier space. In our stability study, we
solve for the perturbations at the linearized level, and
therefore we study a mode with a given momentum k

(modes of different momenta are coupled to each other at
the nonlinear level). We can actually fix the orientation
of k along the z−axis without loss of generality. Starting
from a general direction for k, we rotate the coordinates

so that k = k k̂, where k̂ is the unit vector along the
z−axis, and k > 0. After a general rotation, 〈Aa

i 〉 is
no longer proportional to δai ; however we can re-obtain
〈Aa

i 〉 = Qδia through a global SU(2) rotation. Therefore,
we can set kx = ky = 0 without loss of generality. This
choice simplifies our algebra.
We need to remove the redundancy associated to gen-

eral coordinate and SU(2) transformations. Under an

infinitesimal coordinate transformation with parameter
ξµ =

(

ξ0, ξi + ∂iξ
)

,

ψ → ψ −Hξ0 , E → E − ξ , Ei → Ei − ξi (26)

and we remove the freedom of infinitesimal coordinate
transformations by setting ψ = E = Ei = 0, which cor-
responds to the so called spatially flat gauge. Consider
instead an SU(2) transformation with infinitesimal pa-
rameter αa = ǫa + ∂aǫ (with ǫa transverse). Under this
transformation,

U → U + gQǫ , Ui → Ui + gQ (27)

and we can fix the SU(2) freedom by setting U = Ui = 0.
Clearly, also other modes of the metric and of the gauge
field change under these transformations, and different
gauge choices can be made. Our choices are motivated by
the fact that (i) they completely fix the freedom, and (ii)
they preserve all the δg0µ and δAa

0 modes. These pertur-
bations are nondynamical, as they enter in the quadratic
action of the perturbations without time derivative, and
can be immediately integrated out. We describe this pro-
cedure in details in Appendix A.
With our gauge choices, and with k = kz , the decom-

position (24) acquires the explicit form

χ = χ+ δχ

A1
µ = a (Y1, Q+ δQ+ t+, +t×, ∂zM1)

A2
µ = a (Y2, t×, Q+ δQ− t+, ∂zM2)

A3
µ = a (∂zY, 0, 0, Q+ δQ+ ∂z∂zM) (28)

and

gµν = a2







−1 + 2φ B1 B2 ∂zB
1 + h+ h× 0

1− h+ 0
1






(29)

We verified explicitly that the scalar modes
(δχ, Y, δQ, M, φ, B), the vector modes
(Y1,2, M1,2, B1,2) and the tensor modes (t+, t×, h+, h×)
are decoupled from each other at the linearized level.
Namely, the quadratic action for the perturbations splits
into three decoupled parts

S2 = S2,scalar + S2,vector + S2,tensor. (30)

B. Quantization of coupled systems and correlators

We have seen that the total action for the perturba-
tions splits in a sum of three decoupled quadratic actions.
Let us denote by Y the vector formed by the perturba-
tions in one of these three systems. We can perform a
transformation

Yi = Mij ∆j (31)
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so that the action for the array ∆ is of the type

S =
1

2

∫

dτd3k
[

∆
′†∆′ +∆

′†K∆−∆†K∆′ −∆†Ω2∆
]

(32)
Hermitianity of the action implies that K is an anti-
Hermitian matrix, and Ω2 a Hermitian matrix; the ma-
trices obtained in the current model are actually real.
In the following we quantize the system (32), so to ob-
tain the initial conditions for the modes, and we give an
expression for the correlators between the modes. This
discussion summarizes the one of [33]. We first “rotate”

ψ ≡ R∆, (33)

where R is a unitary matrix (so that the kinetic term in
(32) remains canonical), satisfying

R′ = RK. (34)

As K is real, R can also be taken real, and, therefore,
orthogonal. We note that R is not uniquely determined
by this condition, and we fix it by setting R = 1 at the
initial time τin; the goal of the present discussion is also
to understand when this initial time can be set. As we
will see, the explicit solution for R is not needed. In
terms of the vector ψ, the action becomes

S =
1

2

∫

dτd3k
[

ψ′†ψ′ − ψ† Ω̃2 ψ
]

,

Ω̃2 ≡ R
(

Ω2 +KT K
)

RT . (35)

We then introduce the orthogonal matrix C satisfying

CT Ω̃2C = diag
(

ω2
1 , ω

2
2 , ω

2
3

)

≡ ω2 (36)

and we decompose

ψi = Cij

[

hjlal + h∗jla
†
l

]

, (37)

where ai/a
†
i destroys / creates a quantum with the fre-

quency ωi. These operators satisfy the algebra

[

ai

(

~k
)

, a†j (~p)
]

= δ(3)
(

~k − ~p
)

δij . (38)

For the systems that we study, in the deep sub-horizon
regime (aH)in ≪ k

Ω̃2
in =

(

Ω2 +KT K
)

in
≡ k2 1 + a2H2C (39)

with C constant at leading order in slow roll. Therefore,
provided that Ω̃2

in ≃ k2 1, we can set the initial conditions
in the adiabatic vacuum

h ≃ e−i
∫ τ dτω

√
2ω

U =
e
−i

∫
τ
τin

dτω

√
2ω

(40)

where U is a constant arbitrary orthogonal matrix (at
the practical level, Eq. (40) is an approximate solution

of the equations of motion at early times; the closer Ω̃2
in

is to k21, the better this approximation is. This deter-
mines how early τin needs to be taken). The matrix U
is unphysical, as it drops from the equations of motion
for the modes, and from the physical correlators (which,
as we will see, are given in terms of hh†). The freedom
associated to U is the generalization to N fields of the
freedom of changing by a constant phase the wave func-
tion in the single field case. In the final expression in
(40) we have used the freedom associated to U to set the
wave functions to be real at the initial time.
Combining (33) and (37), we have

∆i = Dijaj +D∗
ija

†
j , D = RTCh. (41)

Using the fact that Ω̃2
in ≃ k21 at τin, so that initially

C ≃ 1, we arrive at

Din =
1√
2k

, D′
in = −i

√

k

2
. (42)

We start from these initial condition and evolve the equa-
tions of motion for the modes following from (32)

D′′ + 2KD′ +
(

Ω2 +K ′)D = 0. (43)

In this discussion, all the expressions are given in
Fourier space. Let us denote by Yi the original fields
in real space,

Yi =

∫

d3k

(2π)
3/2

eik·xYi (44)

We have the two point correlation functions

Cij (~x, ~y) =
1

2
〈Yi (τ, ~x) Yj (τ, ~y) + Yj (τ, ~y) Yi (τ, ~x) 〉

≡
∫

dk

k

sin (kr)

kr
Pij , r ≡ |~x− ~y| (45)

where the power spectra are given by

Pij (k) =
k3

2π2
Re
[

〈Y Y†〉ij
]

=
k3

2π2
Re
[

(

MDD†MT
)

ij

]

. (46)

These correlators are the theoretical prediction, to be
confronted with the statistical average of the correspond-
ing quantities. The power spectra (46) are the general-
ization to a system of N fields Yi of the standard power
spectrum of single field inflation.
To summarize, starting from the original fields Yi in

momentum space, we perform (31) to have a canonical
kinetic term for ∆i. We then decompose this field in
terms of annihilation / creation operators of the phys-
ical quanta in the system (the particles of frequencies
ωi). We work in terms of the coefficients Dij of this de-
composition. We can set the initial conditions (42) for
these coefficients, provided that the initial time is chosen
sufficiently early such that Ω2 + KTK ≃ k2. Starting
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from these initial conditions, the coefficients Dij evolve
according to (43). We will see that for some choice of pa-
rameters some of the perturbations become exponentially
large on a timescale ≪ H−1, signaling an instability of
the linearized theory. For values of parameters leading
to stable solutions, the coefficients enter in observable
quantities through the power spectra (46).

IV. TENSOR MODES

We introduce the two doublets

∆L ≡ ∆+ + i∆×√
2

, ∆R ≡ ∆+ − i∆×√
2

(47)

for the left and right helicities, where

∆+ ≡
(

aMp√
2
h+√

2at+

)

, ∆× ≡
(

aMp√
2
h×√

2at×

)

. (48)

The action for the tensor modes splits into two separate
actions, one for the left and one for the right helicity
doublet, which are formally of the type (32). The action
for the left-helicity doublet is characterized by

K12 =
1

Mp
(Q′ +HQ) ≃ aH O

(

1√
λ

)

(49)

and

Ω2
11 = k2 − 2H2 − 1

M2
p

(Q′ +HQ)
2
+

3g2a2Q4

M2
p

+
χ

′2

2M2
p

≃ k2 + a2H2

[

−2 + O

(

1

λ

)]

Ω2
12 = ak

2gQ2

Mp
+

H
Mp

(Q′ +HQ)− gλQ2aχ′

fMp

≃ akHO

(

1√
λ

)

+ a2H2O

(

1√
λ

)

Ω2
22 = k2 − ak

(

2gQ+
λ

f
aχ′
)

+ g
λ

f
Qaχ′

≃ k2 − akH A+ a2H2B (50)

where the first expression for each coefficient is exact,
while the second one is obtained from the slow roll ap-
proximation (22) (we note that Q̇ ≪ H Q). The quan-
tities A and B are both of O

(

λ0
)

. Using the slow roll
result (12) with Q given by (14), they evaluate to

A ≃ 4gQ

H

(

1 +
H2

2g2Q2

)

, B ≃ 2g2Q2

H2

(

1 +
H2

g2Q2

)

(51)
The action for the right-helicity doublet is related to (50)
by k → −k, signaling the breaking of parity invariance
induced by the evolution of the pseudo-scalar inflaton.

The interactions between the gravity wave and vector
field tensor perturbations are slow-roll suppressed. How-
ever, the effective frequency squared Ω2

22 of tL turns neg-
ative for an intermediate interval of time next to horizon
crossing. 6 This leads to a tachyonic growth of tL in
this interval of time, and, correspondingly, to a growth
of hL. The same growth does not occur in the right-
helicity sector due to the opposite sign of the linear term
in k. The situation is analogous to that first studied in
[14], where the interaction χFF between a vector field
and a pseudo-scalar rolling inflaton results in a tachyonic
growth of the vector modes of a given helicity.
We note from (51) that the length of the tachyonic

region increases with increasing

mg

H
=

√
2gQ

H
≃
√

2

y

sin1/3 x

(1 + cosx)2/3
(52)

(the last expression is the slow roll approximation). This
corresponds to a larger tensor mode production with
growing

mg

H . This corresponds to decreasing y in the
numerical examples that we show below.

V. VECTOR MODES

The vector modes Y1, Y2, B1, B2 are non-dynamical,
and can be integrated out. Namely, they enter in
the quadratic action of the perturbations without time
derivatives, and therefore their equations of motion are
algebraic equations in these variables (recall that we are
in momentum space). When we solve these equations,
we obtain an expression for the non-dynamical modes in
terms of the two dynamical modes M1 and M2. We then
insert this expression back in to the quadratic action for
the vector modes, and obtain an action for M1,2 only. In
other words, the non-dynamical modes do not introduce
additional degrees of freedom, but are completely deter-
mined by the dynamical ones. After integrating out the
non dynamical modes, we define

M1 = F1V1 + iF2V2 , M2 = iF1V1 + F2V2 (53)

where

F1,2 ≡

√

M2
p (±k + gaQ)

2
+ g2a2Q2 (M2

P + 2Q2)
√
2gkMpa2Q

(54)

(with the upper + sign corresponding to F1 and the lower
− sign corresponding to F2). The modes V1,2 are the
canonical modes of the system, and are decoupled from

6 At late times, the k−dependence becomes negligible, and the
mass term for the two vector perturbations tL/R reproduces the
value mg given in [29].
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each other at the linearized level:

S2,vector =
1

2

∫

dτd3k

[

|V ′
+|2 − Ω2

v+|V+|2

+|V ′
−|2 − Ω2

v−|V−|2
]

. (55)

An explicit computation gives

Ω2
v±
a2

= p2±λ
f
χ̇p+

M4
p

[

c4p
4 ± c3p

3 + c2p
2 ± c1p+ c0

]

[

M2
pp

2 ± 2gM2
pQp+ 2g2Q2

(

M2
p +Q2

)]2

(56)
where p = k

a is the physical momentum, and the coeffi-
cients ci are functions of background quantities. We note
that

Ω2
v+ (p) = Ω2

v− (−p) . (57)

We also note that the denominator in (56) is always pos-
itive, as it can be written as a sum of squares. The exact
expressions for ci are readily obtained, but they are not
illuminating. We report here the leading expressions in
the slow roll λ≫ 1 expansion:

c4 = H2

[

2g2Q2

H2
+O

(

1

λ

)]

c3 = H3

[

g2Q2

H2

(

6g
Q

H
+
λ

f

χ̇

H

)

+O

(

1

λ

)]

c2 = H4

[

g2Q2

H2

(

3 + 4g
Q

H

λ

f

χ̇

H
+ 8g2

Q2

H2

)

+O

(

1

λ

)]

c1 = H5

[

g4Q4

H4

(

4g
Q

H
+ 6

λ

f

χ̇

H

)

+O

(

1

λ

)]

c0 = H6

[

4g5
Q5

H5

λ

f

χ̇

H
+O

(

1

λ

)]

(58)

Using (22), it is immediate to see that, in each of the
above expression, the dominant term in the square paren-
thesis that we have written explicitly is a O (1) coefficient.
Moreover, the second term on the right hand side of (56)
evaluates to ±pH O(1). Therefore, at leading order in
slow roll,

Ω2
v± ≃ k2 , p≫ H

Ω2
v± ≃ fAfχ̇

y3/4
a2H2 , p≪ H (59)

in the deep sub-horizon and super-horizon regime, re-
spectively. We conclude that the vector sector is stable.
We note that the super horizon limit of (59) is pre-

cisely the slow roll expression of a2m2
g in the mg ≫ H

limit. The two dynamical vector modes originate from
the perturbations of the vector field, and the expression
for the mass in this limit coincides with what found in
[29].

VI. SCALAR MODES

After gauge fixing, the system of scalar perturbations
comprises of 1 mode from the inflaton, δχ, 3 from the
SU(2) field, Y, δQ,M , and 2 from the metric, φ and B.
Among, these 6 modes, δχ, δQ and M are dynamical,
while the other three modes are nondynamical; namely
they enter in the quadratic action without time deriva-
tives, and they can be integrated out (see the discussion
at the start of the previous section). The full quadratic
action for the scalar modes is given in eq. (C1).
Integrating out the metric perturbations makes the al-

gebra extremely involved; for this reason, in the study
presented in the main text we make the approximation
of setting φ = B = 0 from the start. We then integrate
out Y , and we denote the resulting quadratic action by
S2,scalar. We also performed the full computation, which
we present in Appendix C. We denote by S2,scalar−full

the quadratic action obtained by including all the modes
and by integrating out the 3 nondynamical ones. Both
S2,scalar and S2,scalar−full are functionals of the 3 dynam-
ical modes.
We expand all entries in these actions in slow roll. As

we show in Appendix C, all entries of the matrices of the
two actions agree at the leading order in this expansion
at all scales (namely, for all values of H/p), with a single
exception. The exception is the the 11 coefficient of the
frequency matrix Ω2, for which the agreement is excellent
only up to H <∼ 10p. The discrepancy that takes place
afterwards is surely completely irrelevant for the stability
study that we perform here (as we will see, the instabil-
ity, if present, manifests itself deeply inside the horizon).
Not surprisingly, the metric perturbations do not affect
the stability of the background solution. Very likely, this
disagreement has also no significant consequence for the
power spectra that we show below, since it manifests it-
self only after the power has frozen (see the appendix for
a detailed study).
A closed equation for the scalar field perturbations (in

the spatially flat gauge) in models of slow roll scalar field
inflation can be found for example in eq. (8.60) of [34]. In
that equation it is manifest that the metric perturbations
modify the evolution equation for the dynamical variables
only in a slow roll suppressed way. The reason for this
is that the field fluctuations are coupled to the perturba-
tions of the metric only through the way that they locally
affect the energy-momentum. However, local change in
the potential energy is proportional to derivatives of the
potential, which is suppressed for slow-roll inflation, or to
the kinetic energy of the field, which is also slow roll sup-
pressed (this second suppression is even true at the back-
ground level). 7 The computations of Appendix C shows
that this suppression (with one exception) is present also
in the current model. This can be more directly under-
stood by inspection of the action (1). We are interested

7 We thank Toni Riotto and David Wands for discussions.
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in δg − δA and δg − δχ couplings. Metric perturbations
do not enter in the last term. Therefore, the δg − δA
coupling only arises from the

√−gF 2 term. As this term
is quadratic or higher in the vector field, such coupling
are suppressed by at least one power of the vector field
vev, which is a slow roll suppressed quantity (see eq.
(22)). The δg − δχ coupling arises instead only from the
√−g

[

− 1
2 (∂χ)

2 − V (χ)
]

term in (1), and it is therefore

suppressed as shown in [34]. This can be verified explic-
itly from the interactions given in eq. (C2). More ac-
curately, performing this explicit check, one notices that

one interaction term in (C2), namely a4

2 V,χ (φ
∗δχ+ h.c.),

is actually not slow roll suppressed. In standard models
of slow roll inflation this term is proportional to the slow
roll parameter

√
ǫ. In the current model instead the in-

flaton potential is no longer flat. This term does not
present spatial derivatives, and it is therefore relevant
only outside the horizon. This precisely explains the dis-
crepancy in Ω2

11 that we have mentioned in the previous
paragraph.

We therefore set φ = B = 0, and we obtain the action
(B1) that we explicitly write in Appendix B. We inte-
grate Y out of this action. The expression for Y in terms
of the dynamical variables is

Y =
1

k2 + 2g2a2Q2

(

− δQ′ + k2M ′ +
gλaQ2

f
δχ

−HδQ+ k2HM
)

(60)

which is of the type (A4). Inserting back this solution
into the action (B1) we readily obtain the action for the
dynamical modes of the system. This action is formally
of the type (A6), and we can employ it to set the initial
conditions and derive the equations of motion for the
dynamical modes, as in the standard computations of
scalar field inflation.

We define

δχ ≡ ∆1

a

δQ ≡ ∆2√
2a

δM ≡ gaQ∆2 +
√

k2 + 2g2a2Q2∆3√
2gk2a2Q

(61)

In terms of the multiplet ∆ = (∆1,∆2,∆3)
T
, the

quadratic action for the scalar modes acquires, up to a
total derivative, the form (32). We denote as Ks and Ω2

s

the 3×3 matrices entering in this action. These matrices

have the following entries

Ks,12

a
=
gλQ2

√
2f

Ks,13

a
= − g2λQ3

√
2f
√

p2 + 2g2Q2

Ks,23

a
= 0 (62)

and

Ω2
s,11

a2
= p2 +

g2λ2p2Q4

f2 (p2 + 2g2Q2)
+
g2Q4

M2
p

+ V,χχ

−2H2 +
χ̇2

2M2
p

+

(

Q̇+HQ
)2

M2
p

Ω2
s,12

a2
=

3gλHQ2

√
2f

+

√
2gλQQ̇

f

Ω2
s,13

a2
= −

√
2λ

f

[

g2HQ3

2
√

p2 + 2g2Q2

+
2p4 + 3g2p2Q2 + 4g4Q4

2 (p2 + 2g2Q2)
3/2

(

Q̇+HQ
)

]

Ω2
s,22

a2
= p2 + 4g2Q2 − gλQχ̇

f

Ω2
s,23

a2
= −

√

p2 + 2g2Q2

(

2gQ− λ

f
χ̇

)

Ω2
s,33

a2
= p2 +

4g2Q2
(

p2 + g2Q2
)

p2 + 2g2Q2
− gλp2Qχ̇

f (p2 + 2g2Q2)

+
6g2p2

(

Q̇+HQ
)2

(p2 + 2g2Q2)2
(63)

We stress that these expressions are obtained by disre-
garding the scalar metric perturbations, but that they
are otherwise exact. We can also verify that the eigen-
values of the {i, k} = {1, 2} part of Ω2

ij are ≃ a2m2
g in

the super horizon regime and for mg ≫ H , in agreement
with [29].
We solve the theory specified by this action following

the steps outlined in Subsection III B. We assume that,
after inflation, only the inflaton field provides a sizable
contribution to reheating (we note that the energy in Aµ

is much smaller than the inflaton energy during infla-
tion). In this limit, we have the curvature perturbation
ζ ≃ −H

χ̇ δχ, with the power spectrum

Pζ =
H2P11

χ̇2
(64)

where P is given in (46), with Yi being the three fields
on the left hand side of (61).
In Figure 2, we then present the time evolution of P11

for a single mode (a given k) and for the same choices
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of background parameters that we used in Figure 1 for
the background evolution. For definiteness, we consid-
ered in all cases the mode that leaves the horizon 60
e-folds before the end of inflation, and we denoted the
corresponding comoving momentum by k60. We choose
the initial time of the evolution such that the mode is
deeply inside the horizon at the start, and the last term
in (39) is negligible. We observe that the choice y = 5
leads to an instability of the linearized theory, while the
other three cases are stable, and are characterized by a
power that freezes outside the horizon, as in the standard
inflationary models.
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FIG. 2. Time evolution of the power (normalized to one at the
initial time shown), for a mode that leaves the horizon 60 e-
folds before the end of inflation, and for the same background
evolutions shown in Figure 1.

The instability of the y = 5 choice manifests itself
at some scale inside the horizon, namely punstable =
k/aunstable ≫ H . Even the stable solutions show a differ-
ent evolution at this scale (note in the Figure the small
change in the slope of P (t) for the stable cases at the
same scale at which the y = 5 solution becomes unsta-
ble). We can see this analytically, by considering the
approximated expressions of the scalar system inside the
horizon. We will obtain the scale ΛH times a numerical
factor, where

Λ ≡
√
λ

y1/4
Mp

f
, Λ ≫ 1 (65)

(in the numerical examples that we have shown, Λ =√
2 103 y−1/4). Let us discuss the approximation in more

details. First of all, using the slow roll conditions (22),
we find g2Q2 ≃ y−3/2f2

AH
2 ≪ Λ2H2 in all cases that

we have studied. Therefore, we can disregard g2Q2 in
comparison to p2 inside eqs. (62) and (63). From this,
and from the slow roll approximations (22), we obtain,

in the sub-horizon regime

Ks,12

a
=
gλQ2

√
2f

= O(ΛH)

Ks,13

a
= O

(

ΛH
H

p

)

≪ K12,s (66)

and

Ω2
s,11

a2
≃ p2 +

g2λ2Q4

f2
= O

(

Λ2H2
)

Ω2
s,12

a2
= O

(

ΛH2
)

Ω2
s,13

a2
≃ −

√
2λp

f
HQ = O(ΛHp)

Ω2
s,22

a2
,
Ω2

s,33

a2
= p2 +O

(

H2
)

Ω2
s,23

a2
= O(H p)

(67)

We want to solve the evolution equations (43) until
p ∼ ΛH . We can do so by rewriting them as

D̈ij +
Ks,ik

a
Ḋkj +

Ω2
s,ik

a2
Dkj ≃ 0 (68)

by inserting only the terms written explicitly in (66) and
(67), and by treating these terms as constant. All these
approximations amount in considering only terms that
contribute to the dynamics at O

(

p2, ΛHp, Λ2H2
)

. We

note for instance that Ḋ = O(pD) in this regime, so
that it is consistent to set Ω2

s,12 = 0 in the approximated
equation, while retainingKs,12 and the dominant term of
Ω2

s,13. We also note that the fastest evolving coefficient

in the matrices is p that evolves on a O
(

H−1
)

timescale;
therefore time derivatives of the terms in (66) and (67)
introduce at most terms with an additional factor H ,
which are therefore suppressed in the p > ΛH and p ≃
ΛH regimes.
Performing these approximations, the system (68) re-

duces to a set of linear second order equations with con-
stant coefficients. The equations split in three sepa-
rate groups, one for the complex unknowns Di1 (with
i = 1, 2, 3), one for the the complex unknowns Di2, and
one for the three complex unknowns Di3. In each group
we need to solve three second order differential equations,
and therefore we have 6 possible solutions; we note that
the three groups have the identical set of equations, and
they differ only in the initial conditions. Therefore the
solutions are of the type

D ≃
6
∑

a=1

Ca e
ξat (69)

where the matrices Ca are integration constants (so to
match the initial conditions) and ξa are constant num-
bers. The system is unstable if any of the ξa has a real
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and positive part. By solving the system, one can see
that the only coefficient that can possibly be real is

ξ =

[

− p2 − 3g2λ2Q4

2f2

+
λQ

f

√

2p2 (H2 + g2Q2) +
9

4

λ2g4Q6

f2

]1/2

(70)

and therefore

stability ⇔ p2 > p̄2 ≡ λ2Q2

f2

(

2H2 − g2Q2
)

(71)

where, using the slow roll condition,

p̄2

H2
= Λ2 y1/2 f2

Af
2
H

(

2− f2
A

y3/2

)

(72)

If the expression in parenthesis is negative the back-
ground solution is stable. Otherwise, there is an insta-
bility at sufficiently large wavelengths. Therefore

stability ⇔ y <
sin2/3 x

2 (1 + cosx)
4/3

. (73)

For any fixed y, this condition is violated at sufficiently
small x. This provides an upper bound to the amount of
inflation in the model (for any given choice of parame-
ters). One needs to verify that this upper bound is com-
parable with the required amount of inflation. For the
evolutions shown in Figure 1, the inflaton field, at 60 e-
folds before the end of inflation, evaluates to χ ≃ 2.45f
for y = 5, to χ ≃ 2.20f for y = 1, to χ ≃ 2.00f for
y = 0.4, and to χ ≃ 1.56f for y = 0.1. Correspond-
ingly, the rhs of the condition (73) evaluates to ≃ 2.62
for y = 5, to ≃ 1.43 for y = 1, to ∼ 0.95 for y = 0.4,
and to ≃ 0.49 for y = 0.1. The criterion (73) therefore
indicates that the choice y = 5 does not lead to a sta-
ble inflationary solution of 60 e-folds (recall that f and
λ are fixed to 10−2Mp and to 500, respectively, in this
example), while the other choices do. This is in perfect
agreement with Figure 2.
Eq. (71) confirms that the instability, if it exists, takes

place at p < p̄ = ΛH times an order one factor. For ex-
ample, for the unstable y = 5 choice, the criterion (71)
gives an instability starting at p̄ ≃ 2.67ΛH , correspond-
ing to aH/p̄ ≃ 0.00025, in excellent agreement with the
evolution seen in the Figure.
Moreover, let us verify that the instability is extremely

fast. Let us assume that we have a background solution
with 2H2 > g2Q2. At any given moment, modes with
p ≥ p̄ have Reξ = 0, and are therefore stable. Moreover,
the instability is also negligible at very large scales, given
that ξ → 0 for p→ 0. However, for p <∼ p̄, a quick study
of eq. (70) shows that ξ = O(ΛH) for p smaller than, but
parametrically equal to p̄. (for 2H2 ≫ g2Q2, the maxi-
mum of ξ is obtained for p = p̄/2). This corresponds to
a very short instability time ∼ 1

HΛ ≪ H−1. Therefore,

each mode experiences a strong instability while still in-
side the horizon.

The model (1) is a perfectly healthy model, as it simply
describes an axion with a potential coupled to a SU(2)
field. This model admits a stable Minkowski solution,
with vanishing background fields. The instability that
we have found is therefore an instability of the inflation-
ary background solution. The starting assumption of the
model is that the potential (2) is too steep to drive in-
flation, and that slow roll is obtained through the cou-
pling with a SU(2) multiplet with a nonvanishing vev.
Contrary to the mechanism of [14] (where the inflaton
was coupled to a U(1) field with no vev), the additional
friction provided by this coupling is not due to particle
production, but it takes place at the background level.
This requires that the gauge field is non-abelian (g 6= 0),
and it has a vev (Q 6= 0). Therefore, it is to be expected
that, for any given value of H , one cannot achieve a sta-
ble inflationary background for arbitrary small gQ. As
we discussed after eq. (4), ref. [29] showed that, in the
gQ > 2H regime, the model (1) can be effectively de-
scribed by a stable model with a single field. However,
the single field description is no longer possible at smaller
values of gQ [29], and therefore the instability can only
be obtained and understood in a multi-field description.

A background instability typically manifests itself
through the presence of tachyonic modes, and our result
shows that the model (1) is not an exception to this. The
λ
f χFF̃ interaction needed for slow-roll at the background

level unavoidably leads to couplings between the per-
turbations, and possible vacuum amplification (i.e., the
tachyonic instability). The vacuum amplification that we
have obtained has the typical properties of the vacuum
amplification of gauge modes due to the their coupling
to axions that was found in [14] and to the amplification
of gravity waves studied in Section IV. 8 As in these
cases, it is due to a liner term in the momentum p, which
is induced by the λ

f χFF̃ interaction. This is the Ω2
13,s

term in (67), which indeed vanishes for λ
f → 0. When

compared with the other terms in (68), this term is sub-
dominant to the standard p2 term at very large p, and
to the p−independent mass term at very small p. If the
mass term is sufficiently large, the interaction encoded by
Ω2

13,s never dominates the frequency of the modes, and
the background solution is never tachyonic. This occurs
for sufficiently large mg ∝ gQ, and indeed, the quantita-
tive study of the eigenfrequency results precisely in the
stability condition that we have found.

We conclude this Section by showing in Figure 3 the
power spectrum Pζ for the stable y = 0.1, 0.4, 1 configu-
rations, which we discuss in the next Section.

8 We thank Lorenzo Sorbo for discussions.
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FIG. 3. Power spectra for λ = 500 and three different values
of y. The spectral index (defined as Pζ ∝ kns−1) is ns ≃ 0.81
for y = 1, ns ≃ 0.92 for y = 0.4 and ns ≃ 0.96 for y = 0.1.

VII. CONCLUSIONS

We performed a complete study of the linear order
quantum fluctuations for the chromo-natural inflation
model. We separated the metric, gauge and axion fluc-
tuations into scalar, vector and tensor modes, verifying
explicitly that they decouple at the linearized level. We
computed their equations of motion and worked out the
quantization of the system. The tensor sector consists
of the two gravity wave polarizations plus two modes
from the gauge field. The gauge mode of one helicity
becomes tachyonic for some finite interval of time next
to horizon crossing, sourcing one gravity wave helicity.
The vector sector consists of two dynamical modes that
originate from the vector field, and that remain perturba-
tively small. The scalar sector contains three dynamical
modes, one originating from the inflation and two from
the gauge field.
We showed that, for some parameter choice, one of the

eigenfrequencies of this system, that we denoted by ξ, can
become imaginary inside the Hubble horizon, leading to
a fast instability. Let us compare this with a standard
result in inflation. Specifically, let us consider the grav-
ity wave amplitude δgij = a2hTT

ij . The canonical variable

hc ∝ ahTT obeys h′′c +Ω2hc = 0 with the dispersion rela-
tion Ω2 = a2

(

p2 − 2H2
)

. As a consequence hc ∝ a out-
side the horizon, corresponding to a frozen amplitude of
hTT . Therefore, although the frequency of the canonical
mode becomes tachyonic outside the horizon, its magni-
tude is not large enough to lead to a physical instability.
The situation is analogous for a test scalar field or for the
scalar perturbations in the standard case.
For the case at hand, the eigenfrequency ξ is given in

eq. (70). In this discussion, for illustrative purposes, let
us approximate the full expression obtained in eq. (70)
with ξ2 ∼ p2 − cΛ2H2, where Λ ≫ 1 is defined in (65),
and c an order one factor. No instability appears if c is

negative. Otherwise, an instability takes place for modes
of physical momentum p = O(ΛH). The timescale of the
instability is |ξ|−1 = O

(

1
ΛH

)

≪ H−1, (or, equivalently,
the amplitude of the scalar modes grows proportionally
to a large power of the scale factor) which indeed cor-
responds to a fast instability. This heuristic discussion
reproduces the results obtained from the precise form of
ξ (see Section VI for the precise computation). Moreover,
we also performed a fully numerical and exact study of
the scalar perturbations that confirms these analytical
results.

The parameters of the model can be chosen so that
ξ remains real inside the horizon (equivalently, c < 0 in
the heuristic expression) so that the instability is avoided.

This corresponds to choosing mg ≡
√
2gQ > 2H , where

Q is the vev of the vector field, and g the SU(2) cou-
pling. In the opposite case, the inflationary background
solution is unstable. This instability reflects the fact that
the inflationary mechanism of [17] requires that both the
vector field is nonabelian (g 6= 0) and that it has a nonva-
nishing vev (Q 6= 0), so that one cannot expect a stable
inflationary solution for arbitrarily small gQ. The strong
tachyonic instability in the unstable regime is triggered
by the χFF̃ coupling, precisely as the gauge field ampli-
fication that takes place in the mechanism of [14]. Con-
trary to the U(1) case of [14], the vector field is now
massive, mg ∝ gQ, and a sufficiently high mass can shut
off the tachyonic instability. This explains why the infla-
tionary solution is stable if and only if the vector field is
sufficiently heavy.

We have obtained the boundary of the stable region
mg ≫ H analyzed in [29] and our formalism can be read-
ily employed to study the phenomenology of the bound-
ary region. This study is beyond the purposes of the
present work. For illustrative purposes, we have how-
ever computed the power spectrum of ζ for some sample
choices of parameters. Specifically, Figure 3 shows the
power spectrum for an axion decay constant f = 0.01Mp,
for λ = 500 (we stress that the main motivation for the
model is to provide inflation for a sub-Planckian axion
decay constant, and that this can be obtained for suf-
ficiently large λ), and for three choices of y. We note
that, among those shown in Figure 3, only the power
spectrum obtained for y = 0.1 is sufficiently flat to meet
the observational bounds [2, 3]. We numerically found
that the spectral tilt is a decreasing function of y in the
0.1 < y < 1 interval (equivalently, it is an increasing
function of mg/H in this interval). This behavior can
also be seen in the analytic relation given in [29] in the
large mg regime. Therefore, both the requirement of sta-
bility and of flatness of the power spectrum pose a lower
bound on mg/H .

On the other hand, the discussion around eq. (52)
leads to the conclusion that a large mg/H leads to a de-
tectable or ruled out gravity wave signal. The enhanced
signal is parity violating, which results in nonvanishing
TB and EB correlations. A measure of the net handed-
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ness of the tensor modes is

|∆χ| ≡
∣

∣

∣

PL − PR

PL + PR

∣

∣

∣
(74)

where PL/R is the power spectrum of the left/right-
helicity gravity wave modes. The corresponding observa-
tional bounds have been studied in [35, 36]. In Figure 4
we compare the bounds presented in [36] with the value
of r and ∆χ obtained in this model, for our choice of
f = 0.01Mp and λ = 500, and for different values of y in
the 0.35 < y < 0.7 range (the tensor power spectra are
obtained from the 11 element of (46) for the left and right
helicity tensor sectors, following the procedure outlined
in Subsection III B). Greater values of y do not lead to
a visible gravity wave signal even in a cosmic variance
limited experiment, while lower values are ruled out by
the current limit r < 0.13 [3, 37].
We point out that all values of y considered in this

plot are actually ruled out because they lead to a too
small value of ns (the largest value ns ≃ 0.93 is obtained
for y = 0.35, and ns then further decreases at larger y).
We stress that our choice of f = 0.01Mp and λ = 500
is only dictated by the requirement of f ≪ Mp, λ ≫ 1,
so that the coupling to the gauge field plays a relevant
role for the inflation dynamics (which, in turns, is the
initial purpose of the model [17]). Obviously, these values
can be changed, and our phenomenology discussion has
the only purpose of understanding what kind of limits
can be imposed on the model. We expect that a viable
region will exist at larger f (and smaller λ), as the model
becomes closer to a free inflaton model slowly rolling on
a flat potential.
At the theoretical level, it is interesting to note that the

model can result in an observable gravity wave signal in
the near future, even if the inflaton spans a range which
is some order of magnitudes smaller than the Planck
scale. This evades the Lyth bound [32], that states that
r >∼ 0.01 is possible only for an excursion of the inflaton
of O (Mp) during the last ∼ 60 e-folds of inflation. We
note that the model we have studied evades the bound
because of the χFF̃ interaction. Quite interestingly, the
only other examples that we are aware of where r > 0.01
can be achieved even if the inflation evolution is orders
of magnitude below the Planck scale 9 are those studied
in refs. [14, 40], which are characterized by the same
pseudo-scalar interaction. As we already mentioned, ref.
[14] is also characterized by a ∼ f ≪ Mp evolution due
to the damping from gauge field production. In this case,
an interesting parity-violating gravity wave signal can be
generated [41] from the produced gauge quanta, but one
needs to evade the simultaneous generation of too many
non-gaussian scalar density perturbations [42]. Ref. [41]

9 We note that inflationary potentials leading to r >
∼ 0.01 have

been constructed where the inflationary range is smaller than,
but still of O (Mp) [38, 39].
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FIG. 4. Red/solid curve: Value of ∆χ and r obtained for
f = 0.01Mp and λ = 500, and for different choices of y in
the 0.35 < y < 0.7 interval (successive points along the curve
denote 0.05 increments in y); black/dotted vertical line: r <

0.13 bound from [3]; the other black/dotted curves are the
1σ detection lines for the Planck (P), SPIDER (S), CMB-Pol
(C), and a cosmic-variance limited (CV) experiment. The
signal needs to be above a line to be detectable at 1σ by that
experiment. These experimental forecasts are an approximate
copy of the lines shown in Figure 2 of [36].

achieves this by considering a large number of gauge fields
(this reduces non-gaussianity by the central limit theo-
rem) or by introducing a curvaton field. Ref. [40] shows
that r >∼ 0.01 can be obtained, and the non-gaussianity
limit can be respected, if the rolling-scalar is not the in-
flaton.

An important difference is that, however, in the mecha-
nism of [14, 40] the tensor modes are produced at the non-
linear level by the vector fields produced by the rolling
inflaton. For the model [17], the production occurs al-
ready at the linear level, due to its mixing with the vec-
tor mode induced by the vector vev and the non-abelian
structure (g,Q 6= 0). Quite likely, also in this model
the vector modes tL can source a significant amount of
scalar density perturbations at the non-linear level. This
may reduce r from the level studied here, although a too
large mg will still likely be ruled out by the significant
gravity wave production. It is possible that, for regimes
resulting in acceptable r, the sourced scalar modes will
lead to interesting levels of non-gaussianity and primor-
dial black holes as those obtained in [42–45]. It is also
possible that, for some choice of parameters, the vector
field production will ”self-regulate” (with a consequent
decrease of r) due to its backreaction on the inflationary
dynamics, as visible in the background evolutions stud-
ied in [14, 46] (a too large production may slow down
the inflaton, and this may in turns decrease the vector
production). All these interesting possibilities remain to
be studied.
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Note added: In the first version of this manuscript,
we pointed out that (i) the inflationary solution of [17]
is stable if and only if mg > 2H , and that (ii) the
tensor-to-scalar ratio r in this model is enhanced with
respect to the case of a free inflaton, leading to violation
of the Lyth’s bound [32] for some choice of parameters.
Both these claims are confirmed by the present analy-
sis. The stability study is unchanged with respect to the
first version. The study of the tensor modes, and the
phenomenology considerations that follow from it, have
instead been updated, to include the helicity violating
terms in the tensor action that were erroneously miss-
ing in the first version. Such terms result in a further
increase of r and in a helicity violating gravity wave sig-
nal. The relevance of these terms was pointed out in [47],
that appeared on the archive between the first and the
current version of this manuscript. Ref. [47] agrees with
our limit mg > 2H for the stability of the inflationary
solution, and our revised analysis agrees with the effect
of the helicity violating effects found in [47].
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Appendix A: General formalism for cosmological

perturbations and one example

Our computation for the cosmological perturbations
is algebraically more involved than those present in the
literature for scalar field inflation. However, at the formal
level, it does not differ from such computations. In this
Appendix we rigorously prove this claim by spelling out
in details the formal procedure that we follow, by showing
how this procedure reproduces the standard computation
of the perturbations of single scalar field inflation, and
by showing that we follow the precise same steps for the
computation of the perturbations for the model (1). The
procedure is

1. Perform a gauge choice that completely fixes the
gauge freedom and preserves the manifestly non-
dynamical modes in the system.

2. Orient the coordinates such that the momentum of
the mode studied in the linearized theory is along
the z−axis

3. Obtain the quadratic action for the perturbations
with the above choices

4. Integrate out the nondynamical modes, so to obtain
the quadratic action for the dynamical modes

5. Obtain from this action the initial conditions in the
sub-horizon regime, and the linearized equations
for the dynamical modes.

6. Solve these equations, with these initial conditions.

The steps 1−2−3 are described in details in Subsection
IIIA. The gauge we choose preserves the modes δg0µ and
δAa

0 , which are nondynamical. 10 Such variables enter
without time derivatives in the quadratic action for the
perturbations. These modes are nondynamical due to
the structure of R and of F 2. 11

In all generality, a hermitian quadratic action for a
set {Xi} of dynamical modes, and a set {Ni} of nondy-
namical modes, must be formally of the type (in Fourier
space)

S =

∫

dτd3k

[

aijX
′†
i X

′
j +

(

bijX
′†
i Xj + h.c.

)

+ cijX
†
iXj

+
(

dijN
†
iX

′
j + h.c.

)

+
(

eijN
†
iXj + h.c.

)

+ fijN
†
iNj

]

(A1)

where the matrices formed by aij , cij , fij are hermitian.
Moreover, through an integration by parts, we can im-
pose that the matrix formed by bij is anti-hermitian. The
coefficients aij , . . . , fij are function of background quan-
tities, and therefore are time dependent. The action (C1)
is indeed of this type.
Once the explicit form of (A1) is obtained, it does no

longer matter that some of the modes originated from
an SU(2) multiplet. Therefore we do not expect any ad-
ditional conceptual difficulty with respect to scalar field
inflation. We now explicitly prove that this is indeed the
case.
The linearized equations of motion following from (A1)

are formally

δS

δN †
i

= 0 ⇒ dijX
′
j + eijXj + fijNj = 0 (A2)

δS

δX†
i

= 0 ⇒
(

aijX
′
j + bijXj + d∗jiNj

)′

−b∗jiX ′
j − cijXj − e∗jiNj = 0 (A3)

10 We remark that choosing a different gauge that completely fixes
the gauge freedom does not change the number of the dynamical
nor of the nondynamical modes, but that, in this other gauge,
the nondynamical modes may appear as linear combinations of
the modes preserved. The gauge that we have chosen has simply
the advantage of keeping manifest which modes are the nondy-
namical ones.

11 The fact that the δg0µ modes are nondynamical is the basis of
the ADM formalism [49].
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which are the linearized equations for the perturbations.
We note that we can also obtain these equations by per-
turbing to linear order the equations of motion of the
model, without computing the quadratic action of the
perturbations. The quadratic action is only needed to
set the initial conditions of the perturbations (typically,
in the adiabatic vacuum).

Eqs. (A2) are the constraint equations of the system.
In these equations, no second order time derivatives of
the dynamical variables, and no time derivatives of the
nondynamical variables appear. We solve these equa-
tions by providing the nondynamical modes in terms of
the dynamical modes and their first time derivative. In
matrix form:

N = −f−1 (dX ′ + eX) (A4)

where we note that the matrix f needs to be invert-
ible (otherwise we would have a system of perturbations
which cannot be solved; we verified that f is indeed in-
vertible for for the action (C1)). We stress that both the
dynamical fields and their first derivatives enter in this
expression, but not the derivatives of the nondynamical
modes. In other words, the constraint equations (A2)
are algebraic in the nondynamical modes; therefore, the
nondynamical modes are completely determined from the
dynamical ones, without introducing additional physical
degrees of freedom.

The action for the scalar field perturbations for the
model (1) is given in eq. (C1). In the main text we
studied the problem disregarding metric perturbations.
There is therefore only one nondynamical mode in the
system, denoted by Y . The constraint equation for this

mode is
δS2,scalar

δY ∗
= 0 (which is nothing but the scalar

projection of the equation of motion for Aa
0 , linearized to

first order in the perturbations). This equation is solved
by (60). We note that the solution (60) is precisely of the
form (A4). It is straightforward to compute the equa-
tions for the three nondynamical modes Y, φ,B present
in the full action (C1), and explicitly verify that these
equations are also of the type (A4). Formally, this is not
any different from the computation of standard scalar
field inflation, where the constraint equations are solved
by (A11). The fact that the solutions of the constraint
equations of our model, and of standard scalar field infla-
tion, are both of the form (A4), mathematically proves
that no additional conceptual difficulty is present in the
case at hand.

Inserting the solution (A4) into (A3), we obtain the lin-
earized equations in terms of the dynamical modes only:

(

a− d†f−1d
)

X ′′+
[

(

a− d†f−1d
)′
+
(

b− d†f−1e− h.c.
)

]

X ′

+
[

(

b− d†f−1e
)′ − c+ e†f−1e

]

X = 0 (A5)

We can also insert the solution (A4) into the action
(A1). This is the sense in which we integrate out the

nondynamical modes from the action. We obtain

S =

∫

dτd3k

[

X
′† (a− d†f−1d

)

X ′ +X† (c− e†f−1e
)

X

+
(

X
′† (b − d†f−1e

)

X + h.c.
)

]

(A6)

This is the action of the dynamical modes of the system.
Extremization of this action also leads precisely to eqs.
(A5). By inverting the kinetic term, we can write canon-
ical variables ∆, in terms of which the action (A6) can
be cast in the form (32).
At the linearized level, the dynamical perturbations

are determined by (A6), and solely by that. The initial
conditions and the equations of motion (A5) that follow
from this action are studied and solved in the main text.
Once the solution for the dynamical modes has been

obtained, it can be inserted into eq. (A4) to provide the
explicit solution also for the nondynamical variables.

1. One example

We now show how the steps outlined above lead to
the standard result for single scalar field inflation. We
decompose the metric as given in eq. (29). In this illus-
trative example we only focus on the scalar modes of the
system. So, we have the line element

ds2 = a2 (τ)
[

− (1− 2φ) dτ2 + 2∂zBdτdz + δijdx
idxj

]

(A7)
We consider single scalar field inflation with the la-

grangian

L = −1

2
(∂ϕ)

2 − V (ϕ) , ϕ = ϕ(0) + δϕ (A8)

and arbitrary potential V . Therefore, we have the sin-
gle dynamical mode X = {δϕ}, and the two nondy-
namical modes N = {φ,B}. In a theory with n scalar
fields we would end up with the n dynamical modes
X = {δϕ1, . . . , δϕn}. We insert the above line element
and lagrangian into the action

S =

∫

d4x
√−g

[

M2
p

2
R+ L

]

(A9)

we expand this action at quadratic order in the pertur-
bations, and we Fourier transform. We obtain

S=

∫

dτd3k a2

2

[

|δϕ′|2−
(

k2+a2V,ϕϕ

)

|δϕ|2+ϕ(0)′(φ∗δϕ′+h.c.)

+a2V,ϕ (φ∗δϕ+ h.c.)− k2ϕ(0)′ (B∗δϕ+ h.c.)

+
(

ϕ(0)′2 − 6M2
pH2

)

|φ|2 − 2k2M2
pH (φ∗B + h.c.)

]

(A10)



16

where we recall that H = a′

a . As it must be, this action is
indeed of the form (A1). In particular, the nondynamical
fields enter in the action without time derivatives.

The constraint equations are obtained by extremiza-
tion of (A10). These equations are solved by

φ = − ϕ(0)′

2M2
pH

δϕ

B =
1

2k2M2
p

[

ϕ(0)′

H δϕ′ +

(

3ϕ(0)′ +
a2V,ϕ
H − ϕ(0)′3

2M2
pH2

)

δϕ

]

(A11)

which are indeed of the type (A4). Namely, the non-
dynamical quantities are given by linear combinations
of dynamical variables and their first time derivatives.
The constraint equations solved by (A11) are nothing but
the linearized 00 and the 0i components of the Einstein
equations of the system [48]. We could have equivalently
obtained them without computation of the quadratic ac-
tion.

Inserting the solutions (A11) back into the quadratic
action leads to

S =

∫

dτd3k
a2

2

[

|δϕ′|2 −
(

k2 + a2V,ϕϕ + 2
a2V,ϕϕ

(0)′

M2
pH

+
3ϕ(0)′2

M2
p

− ϕ(0)′4

2M4
pH2

)

|δϕ|2
]

(A12)

which is indeed of the form (A6). Finally, the Mukhanov-
Sasaki variable [50, 51] in the spatially flat gauge reads
v = aδϕ. In terms of v, this action reduces to the stan-
dard well known result [48]

S =
1

2

∫

dτd3k

[

|v′|2 −
(

k2 − z′′

z

)

|v|2
]

, z ≡ aϕ(0)′

H
(A13)

The computation of the cosmological perturbations
performed in this work exactly follows the steps outlined
with this example. Most of the procedure that we have
employed is standard in cosmological perturbations the-
ory (see for instance [52], which also uses the spatially
flat gauge, and integrates out the δg0µ modes as we do).
The only differences of our computation with respect to
single scalar field inflation are the presence of (i) vector
fields in the original action, and of (ii) more than one
dynamical field. Concerning (i), Eq. (28) shows how
the vector multiplet is decomposed. This decomposition
leads to a quadratic action for the perturbations which
is precisely of the type (A1), after which the next steps
in the method can be followed. Concerning (ii), the pres-
ence of more than one dynamical field is also something
commonly encountered in scalar field inflation. Indeed,
it is straightforward to generalize the discussion leading
from eq. (A8) to eq. (A13) to the presence of more scalar
fields [34].

Appendix B: Explicit form of the quadratic action

for the scalar modes without metric perturbations

In this Appendix we write the explicit expression for
the quadratic action of the scalar perturbations without
metric perturbations. We start from the scalar perturba-
tions δχ,Q,M, Y entering in the decomposition (28), and
we insert these fields into the action (1). We expand the
action to second order in the perturbations, and obtain

Sno δg =

∫

dτd3k
a2

2

{

k2
(

k2 + 2g2a2Q2
)

|Y |2 +
[

k2Y ∗
(

δQ′

−k2M ′ − gλ

f
aQ2δχ+HδQ− k2HM

)

+ h.c.
]

+|δχ′|2 + 3|δQ′|2 + k4|M ′|2 − k2
(

δQ∗′

M ′ + h.c.
)

+
3gλaQ2

2f

[

δQ∗δχ′ − δχδQ∗′

+
k2

3

(

δχ∗M ′ −Mδχ∗′

)

+h.c.
]

−
(

k2 + a2V,χχ
)

|δχ|2−
[

2k2 + 3g2a2Q2

(

6− Q2

M2
p

)

+6H2 − 3

M2
p

(Q′ +HQ)
2 − 6gλaQχ′

f
− 3χ

′2

2M2
p

]

|δQ|2

−k4
[

g2a2Q2

(

2− Q2

M2
p

)

+ 2H2−(Q′ +HQ)
2

M2
p

− χ
′2

2M2
p

]

|M |2

−3gλaQ

2f
(2Q′ + 3HQ)

(

δχ∗δQ− k2

3
δχ∗M + h.c.

)

−k2
[

− g2a2Q2

(

6− Q2

M2
p

)

− 2H2 +
(Q′ +HQ)

2

M2
p

+
2gλaQχ′

f
+

χ
′2

2M2
p

]

(δQ∗M + h.c.)

}

(B1)

We note that this action is of the type (A1), and there-
fore we can proceed with the computation of the pertur-
bations following the steps outlined in Appendix A. The
results of the computation are presented in Section VI.

Appendix C: Including scalar metric perturbations

In Section VI we studied the system of linear perturba-
tions for the model, disregarding the perturbations of the
metric. Here we summarize the results for the full sys-
tem, and we confirm the accuracy of the approximation
made in the main text.

We start from the full set of 6 scalar perturbations (af-
ter gauge fixing), including the 2 modes from the metric
perturbations (φ and B) that we have (artificially) set to
zero in the main text. The full action is

S2,scalar−full = Sno δg + Sδg (C1)

where the first term is explicitly given in (B1), while the
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explicit expression for the second term is

Sδg =

∫

dτd3k
a2

2

{

(

−6M2
pH2 + 3 (Q′ +HQ)

2
+ χ

′2
)

|φ|2

+2k2g2a2Q4|B|2 − 2k2M2
pH (φ∗B + h.c.)

+

[

φ∗
(

χ′δχ′ + (Q′ +HQ)
(

3δQ′ − k2M ′ + k2Y
)

+a2V,χδχ+
(

H (Q′ +HQ) + 2g2a2Q3
) (

3δQ− k2M
)

)

+ h.c.

]

−
[

2k2B∗
(

g2a2Q3Y + (Q′ +HQ) δQ+
χ′δχ

2

)

+ h.c.

]

}

(C2)

The new term (C2) collects all the dependence of the
full action on the metric perturbations φ and B. Both
these modes are non-dynamical, and we integrate them
out, together with the other non-dynamical perturbation
Y . We are left with three dynamical modes, and we
“rotate” them as in eq. (61) of the main text. In this way,
we obtain the full quadratic action for the perturbations.
It is formally of the type

S2,scalar−full =
1

2

∫

dτd3k

[

∆
′†Cs,f∆

′

+∆
′†Ks,f∆−∆†Ks,f∆

′ −∆†Ω2
s,f∆

]

(C3)

Namely, the modes (61) are not the exact canonical
scalar variables. However, as we now show, they provide
a very good approximation to the canonical modes in the
slow roll regime. More in general, the matrices of the full
action (C3) are extremely involved. We studied them in
slow roll approximation. Specifically, using the slow roll
approximation (22), we can cast all the elements of these
matrices in the form

∑

i cik
pαiHβi

∑

j djk
pαjHβj

(C4)

where the coefficients ci and dj only depend on the pa-
rameters of the model, and on slowly evolving back-
ground quantities. We computed the leading order ex-
pression for these coefficients in the slow roll approxima-
tion. For example, we obtain

(Cs,f)11 = 1 +
g2Q4χ̇2/M4

p

2H2p2 + 4g2H2Q2
[

1 + O
(

1
λ

)]

= 1 +
O
(

f2

M2
py

3/2λ3

)

H4

2H2p2 +O
(

1
y3/2

)

[

1 + O
(

1
λ

)]

H4

(C5)

This expression is extremely close to one, since, paramet-
rically, the second term is λ−3 ≪ 1 outside the horizon,

and even more suppressed inside the horizon. In fact, the
kinetic matrix differs from the identity only up to slow
roll suppressed quantities:

(Cs,f)12 =
O
(

λ1/2
)

H2

O
(

y3/2λ3
)

p2 +O(λ3)H2

(Cs,f)13 =
O
(

λ3/2
)

H
√

H2 +O
(

y3/2
)

p2

O
(

y3/2λ3
)

p2 +O(λ3)H2

(Cs,f)22 = 1 +
O (λ)H2

O
(

y3/2λ3
)

p2 +O(λ3)H2

(Cs,f)23 =
O
(

λ2
)

H
√

H2 + O
(

y3/2
)

p2

O
(

y3/2λ3
)

p2 +O(λ3)H2

(Cs,f)33 = 1 +
O
(

λ2
)

H2

O
(

y3/2λ3
)

p2 +O(λ3)H2

(C6)

Therefore, up to very small slow roll corrections, the
modes (61) are also the canonical variable of the full
scalar system.

Performing the same procedure on Ks,f , we obtain

(

Ks,f

a

)

12

=
gλQ2

√
2f

p2 +m2
g

[

1 + O
(

1
λ

)]

p2 +m2
g

[

1 + O
(

1
λ

)]

=

(

Ks

a

)

12

[

1 + O

(

λ−1

1 + y3/2 p2/H2

)]

(

Ks,f

a

)

13

= − g2λQ3

√
2f
√

p2 +m2
g

(

p2 +m2
g

) [

1 + O
(

1
λ

)]

p2 +m2
g

[

1 + O
(

1
λ

)]

=

(

Ks

a

)

13

[

1 + O
(

λ−1
)]

(

Ks,f

a

)

23

=
H4

(

p2 +m2
g

)3/2

[

O

(

1

y9/4λ

)

p2

H2
+O

(

1

y15/4λ

)]

∼ O

(

H
√

p2 +H2

f

Mp

1

λ3/2

)

×
(

Ks,f

a

)

12

(C7)

where we recall that m2
g ≡ 2g2Q2. The 12 and 13 entries

are in excellent agreement with those given in the main
text. We recall that the 13 entry is much smaller than
the 12 entry inside the horizon, and it is negligible in the
stability study. We note that, for the full system, the 23
element is nonvanishing, while (Ks)23 = 0. However, this
element is strongly slow roll suppressed with respect to
the other two, and completely negligible.

Proceeding in the same way (for brevity, we omit here
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the powers of y), we obtain
(

Ω2
s,f

)

12

(Ω2
s )12

= 1 +

∑2
i=0 O

(

H2ip4−2i
)

(

p2 +m2
g

)2
λ

(

Ω2
s,f

)

13

(Ω2
s )13

= 1 +
1

λ

H2

p2 +m2
g

∑2
i=0 O

(

H2ip4−2i
)

∑2
i=0 O(H2ip4−2i)

(

Ω2
s,f

)

22
− k2

(Ω2
s )22 − k2

= 1 + O

(

1

λ

)

(

Ω2
s,f

)

23

(Ω2
s )23

= 1 +

∑3
i=0 O

(

H2ip6−2i
)

(

p2 +m2
g

)3
λ

(

Ω2
s,f

)

33
− k2

(Ω2
s )33 − k2

= 1 +

∑3
i=0 O

(

H2ip6−2i
)

(

p2 +m2
g

)

λ
∑2

i=0 O(H2ip4−2i)

(C8)

and we see that, for all these entries, the expressions of
Ω2

s,f and of Ω2
s agree at all scales (namely, for any value

of H/p) up to subdominant O
(

λ−1
)

corrections. For the
11 entry, we obtain

(

Ω2
s,f

)

11
− k2

(Ω2
s )11 − k2

= 1 +
H2

p2λ

O
(

p2
)

+O
(

H2
)

p2 +m2
g

(C9)

Also on this entry, the two matrices are in perfect agree-
ment during the full sub-horizon regime. However, while
for the other entries the agreement continues also in
the super-horizon regime, the 11 entries differ from each
other for H2 > O

(

λp2
)

. By evaluating the coefficients
in (C9), we found that the disagreement starts only at
H >∼ 10p for all the evolutions studied in the main text.

To conclude, all the matrix elements, up to one ex-
ception, of the system of scalar perturbations studied in
the main text (in which we made the approximation of
disregarding the scalar metric perturbations) agree at all
scales (namely, for any value of H/p) with the corre-
sponding entries of the full system up to subdominant
terms in a slow-roll expansion. The single exception is
the 11 entry of Ω2, for which the agreement persists dur-
ing the entire sub-horizon regime, at horizon crossing,
and also up to H <∼ 10p, but not further. This proves
that the stability study performed in the main text is
valid also when the metric perturbations are included,
given that the instability, when present, manifests itself
deeply inside the horizon. Most likely, this guarantees
that also the power spectra shown in the main text are
accurate, since the disagreement manifests itself only af-
ter the powers have frozen (see Figure 2).
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