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Abstract

A complete numerical calculation of the temperature anisotropies and the polarization of the cosmic
microwave background (CMB) is presented for a non zero cross correlation of a stochastic magnetic
field with the primordial curvature perturbation. Such a cross correlation results, for example, if
the magnetic field is generated during inflation by coupling electrodynamics to a scalar field which
is identified with the curvaton. For a nearly scale invariant magnetic field of 1 nG it is found that
the contribution due to the cross correlation dominates over that of the pure magnetic mode. A
similar behaviour on large scales is found for the linear matter power spectrum.

1 Introduction

The presence of magnetic fields on very different scales has been confirmed by observations [1]. On
galactic scales there is an abundance of magnetic field detections with typical field strengths in the
µG range at present time. Over recent years there have been claims of truly cosmological magnetic
fields, that are not associated with any virialized structures such as galaxies or clusters of galaxies
[2]. However, this has been challenged in [3].

There are many models to explain the origin of large scale magnetic fields, for reviews see,
e.g., [4]. In particular, in the early universe conditions could have been such as to naturally
generate magnetic fields strong enough to seed a galactic dynamo. The subsequent amplification
since galaxy formation then results in µG magnetic fields today. Inflationary models seem to be
especially attractive to generate the initial seed magnetic field since the correlation lengths can be
very large. The problem usually is with the magnetic field strength which in spatially flat models
is too small to account for the initial magnetic seed field due to the global conformal invariance of
standard electrodynamics in these backgrounds. However, in spatially curved models this is not
the case and thus not a problem [5] (see however, [6]).

Therefore, when considering the standard flat ΛCDM model conformal invariance of electro-
dynamics has to be broken which in the simplest case is realized by coupling to a scalar field [7].
However, there are possible problems with back reaction effects onto inflation [8, 9]. Other possibil-
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ities include coupling electrodynamics to curvature [10] of which some models also have problems
due to ghost instabilities [11]. There are models in which magnetic fields of cosmologically rele-
vant strengths can be generated during inflation [10, 12]. However, since in this case inflation is of
power-law type there is yet another constraint coming from the fact that the curvature perturbation
for the relevant parameters cannot be created during inflation. It is possible to use the simplest
curvaton scenario to generate the curvature perturbation after inflation [13]. This, however, results
in a further restriction of the parameter space but still allows to generate magnetic fields strong
enough to act as seed fields for the galactic dynamo [14].

In [15] a particular model has been studied in which magnetic fields are generated during
inflation by coupling electrodynamics to a scalar field which is not the inflaton. In this case it has
been shown that there is a non trivial correlation between the scalar field perturbation and the
magnetic field [15]. Moreover, it was pointed out that identifying the (spectator) scalar field with
the curvaton determines the cross correlation of the magnetic field with the curvature perturbation.
This is the case to be considered here. The aim is to calculate the anisotropies of the temperature
and polarization of the cosmic microwave background (CMB) due to the cross correlation between
the magnetic field and the primordial curvature perturbation. Upto now, in general, the effect
of magnetic fields present before decoupling on the CMB have been calculated assuming either
complete correlation [16]-[19] or no correlation at all [20, 19] between the primordial curvature
perturbation and the magnetic field. In most works the magnetic field is assumed to be non helical.
However, the helical case has also been studied which is particularly interesting since it induces odd
parity correlations of the CMB modes [21]. In [22] the effect of a non vanishing cross correlation
between the curvature and the magnetic field due the evolution of the magnetic field has been
studied. In that case the effect on the CMB temperature anisotropies and polarization has been
found to be much below that of the compensated mode for a magnetic field which only redshifts
with the expansion of the universe.

The magnetic field does not enter linearly in the perturbation equations but rather in form of
its energy density and anisotropic stress which are quadratic in the magnetic field implying that
non gaussianity is induced even at linear order. The resulting bispectra have been calculated [23].
Thereby the cross correlations between the curvature mode and the magnetic field contributions
are determined by the bispectra of the magnetic field and the curvature mode. In [24] the bispectra
induced by coupling of the inflaton to electromagnetism have been calculated. This model has been
also considered in [25] where the corresponding CMB anisotropies have been calculated.

2 The model

The background metric is assumed to be of the form

ds2 = a2(η)
(

−dη2 + δijdx
idxj

)

, (2.1)

where a(η) is the corresponding scale factor.
The model of magnetic field generation during de Sitter inflation used in [15] which is based on

[8, 26] is described by the action

S =

∫

d4x
√−g

(

−1

4
W (φ)FµνF

µν − 1

2
(∂φ)2 − V (φ)

)

(2.2)

where the scalar field φ takes the role of a spectator field during inflation. Its potential is assumed to
be of the form V (φ) = −3nMH2

Iφ and the coupling to the Maxwell tensor field, Fµν , is chosen to be
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W (φ) = e2φ/M . Moreover, HI = const. is the Hubble parameter and the scale factor is determined
by a(η) = −1/(ηHI) for −∞ < η ≤ ηI < 0 upto the end of inflation at ηI . The resulting magnetic
field is non helical and its power spectrum at the end of inflation on superhorizon scales is given
by [15]

PB(k, ηI) ≃
Γ
(

5−nB

2

)2

π

(−kηI
2

)nB−4

k (HIηI)
4 , (2.3)

where

nB =

{

4 + 2(n + 1) n < −1,

4− 2n n ≥ 0,
(2.4)

where n is one of the parameters specifying the potential V (φ) as given just after equation (2.2).
In the numerical solutions the magnetic field values are taken at present time. Thus assuming that
the magnetic field only redshifts with expansion, so that Bi ∼ 1/a2. Then the two point function
of the magnetic field,

〈B∗
i (
~k, η)Bj(~k

′, η′)〉 = PB(k, η)δ~k,~k′δη,η′

(

δij −
kikj
k2

)

(2.5)

determines that the power spectrum scales as a−4, so that at present time
a40PB(k, η0) = (HIηI)

−4PB(k, ηI). Then together with the parameters chosen as in [15], −ηI =
10−24 Mpc for the end of inflation, a0 = 1, and introducing a pivot scale kL = 1 Mpc−1 for
the magnetic field spectrum and a gaussian window function W (k, km) to model damping of the
magnetic field on small scales thereby imposing an upper cut-off of the wave numbers, km, the
spectral function at present time is given by

PB(k, η0) = 1097.2−24.3nB
Γ
(

5−nB

2

)2

π

(

kL

1Mpc−1

)nB−3 ( k

kL

)nB−3

W (k, km)Mpc−1 (2.6)

where W (k, km) = π−3/2e
−
(

k
km

)2

, so that
∫

d3kW (k, km) = k3m. The maximal wave number is
given by [27]

km ≃ 198.454

(

B

nG

)−1

Mpc−1, (2.7)

for the values of the bestfit ΛCDM model of WMAP9, Ωb = 0.02264h−2 and h = 0.7 [28]. Compar-
ing the spectrum (2.6) with the form of the magnetic field spectra used in, e.g., in [19] the spectral
index there becomes nB → nB +3, so that the scale invariant cases correspond here to nB = 0 and
in [19] to nB∗ = −3. Thus the magnetic field strength today smoothed over the diffusion scale is
determined by

〈 ~B2(~x, η0)〉 = 10−19.8−24.3nBΓ2

(

5− nB

2

)

Γ
(nB

2

)

(

km

1Mpc−1

)nB

G2. (2.8)

Defining the magnetic field strength B ≡
√

〈 ~B2(~x, η0)〉 and using equation (2.7) yields to

(

B

nG

)

nB
2

+1

= 10−0.9−11nBΓ

(

5− nB

2

)

Γ
1

2

(nB

2

)

, (2.9)
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Figure 1: The root mean square magnetic field strength smoothed over the diffusion scale as a
function of the spectral index nB.

which is shown in figure 1. Therefore for nB = 0.02 corresponding to nB∗ = −2.98 the smoothed
magnetic field strength is of the order of 1 nG. The scale invariant case nB = 0 corresponds to
n = 2 or n = −3. As shown in [15] only the case n = 2 is allowed since in the other case strong
back reactions would develop since the electromagnetic energy density dominates over the inflaton
energy density.

3 Cross correlation functions of primordial curvature and mag-

netic fields

In [15] the 3-point cross correlation between the magnetic field energy density proportional to B2and
the fluctuations of the spectator field δφ has been calculated. However, since the anisotropies of the
CMB are determined by the magnetic energy density contrast ∆B and the magnetic anisotropic
stress πB it is necessary to obtain the 3-point cross correlation functions allowing for arbitrary
components of the magnetic field. Starting with the expression found for the cross correlation of
the gauge potential Ai of the electromagnetic field and δφ [15] the 3-point cross correlation involving
arbitrary components of the magnetic field is determined to be, in Fourier space,

〈δφ(
~k1, ηI)

M
Bi(~k2, η0)Bj(~k3, η0)〉 = −(2π)3δ(3)(~k1 + ~k2 + ~k3)ǫilmk2lǫjnqk3nUmq, (3.1)

where [15]

Umq = −π2

8

(

HI

M

)2 1

k41

[

δmqI1 +
(

k̂2 · k̂3δmq − k̂2q k̂3m

)

I2

]

, (3.2)

where I1 and I2 are integrals depending, in particular, on the parameter n which can be found in
[15]. The special case of n = 2 will be presented in the notation used here below. This corresponds
to a scale invariant magnetic field spectrum which is the cosmologically relevant case [15].

In order to relate the perturbations in the scalar field to the curvature perturbation the spectator
field is identified with a curvaton field as suggested in [15]. In particular, we assume the simplest
curvaton model [13] so that the total curvature perturbation ζ is generated by the curvaton after
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inflation and that any other contributions to the curvature perturbation are negligible. Moreover,
it is assumed that the curvaton dominates the energy density before its decay. Then following [13]

δφ(~k)

M
=

3

2

(

φ∗

M

)

ζ(~k), (3.3)

where the asterisk denotes the epoch when the mode k leaves the horizon during inflation assuming
no nonlinear evolution on large scales [29]. Therefore calculating 〈ζ∗~kζ~k′〉 at the pivot scale of

WMAP9 kp = 0.002 Mpc−1 yields to
(

HI

φ∗

)

= 3πP
1

2

ζ (kp) (3.4)

where the dimensionless power spectrum of two random variables X and Y , P〈XY 〉, defined by

〈X∗
~k
Y~k′〉 =

2π2

k3
P〈XY 〉(k)δ~k,~k′. (3.5)

has been used.
The magnetic energy density contrast and anisotropic stress are defined in terms of the photon

energy density ργ and pressure pγ = 1
3ργ . This is due to the weakness of the magnetic field which

does not contribute to the background quantities (for a different approach see [30]). The energy
density contrast ∆B in k-space is defined by (for details, e.g., cf. [19])

∆B(~k) =
1

2ργ0

∑

~q

Bi(~q)B
i(~k − ~q). (3.6)

So that one of the contributions to the cross correlation between the primordial curvature mode
and the magnetic mode is determined by the two-point correlation function 〈ζ(~k′)∆B(~k)〉. Taking
the continuum limit

∑

~k →
∫

d3k
(2π)3 and using the expressions for the integrals I1 and I2 for n = 2

on superhorizon scales as given in [15] yields to

P〈ζ∆B〉(k) =
9

16π
9

2

P
1

2

ζ (kp)

ργ0η
4
I

(

HI

M

)

e
− 1

2

(

k
km

)

2

×
∫ ∞

0
dzz3e

−
(

k
km

)

2

z2
∫ 1

−1
dxe

(

k
km

)

2

zx
ϑ

[

2
x− z

ϑ
J1 +

[

1 +

(

x− z

ϑ

)2
]

J2

]

, (3.7)

where

J1 ≡ (1 + ϑ)(1 + ϑ+ ϑ2) + 2(1 + ϑ+ ϑ2)z + 2(1 + ϑ)z2 + z3

z3ϑ3(1 + z + ϑ)2
,

J2 ≡
[

−3(1 + z + ϑ)2(γ + ln(1 + z + ϑ)) + (1 + ϑ)2(3 + 3ϑ+ ϑ3)

+(1 + ϑ)(9 + 6ϑ+ 2ϑ3)z + (9 + 6ϑ+ 2ϑ2 + 2ϑ3)z2

+2(2 + ϑ+ ϑ2)z3 + 2(1 + ϑ)z4 + z5
]

z−4ϑ−4(1 + z + ϑ)−2. (3.8)

Moreover,

x ≡
~k · ~q
kq

, z ≡ q

k
, ϑ ≡ ϑ(x, z) ≡ (1− 2zx+ z2)

1

2 (3.9)
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The two-point correlation function 〈ζ(~k)πB(~k′)〉 is calculated using the expression for the
anisotropic stress of the scalar mode (e.g., [19])

πB(~k) =
3

2ργ0





∑

~q

3

k2
Bi(~q)(k

i − qi)Bj(~k − ~q)qj −
∑

~q

Bm(~q)Bm(~k − ~q)



 . (3.10)

For the cosmologically interesting case n = 2 this yields to

P〈ζπB〉(k) = − 27

16π
9

2

P
1

2

ζ

ργ0η
4
I

(

HI

M

)

e
− 1

2

(

k
km

)

2

×
∫ ∞

0
dzz3e

−
(

k
km

)

2

z2
∫ 1

−1
dxe

(

k
km

)

2

zx [(
2x+ (1− 3x2)z

)

J1

+

(

ϑ+
x− z

ϑ

[

x+ (2− 3x2)z
]

)

J2

]

. (3.11)

The dimensionless power spectra determining the cross correlation between the curvature mode and
the magnetic modes are shown in figure 2 (Upper Panel (left)) for HI

M = 5×10−4 corresponding to the
upper bound on this parameter inferred in [15]. As can be appreciated from figure 2 (Upper Panel
(left)) whereas the curvature perturbation is correlated with the magnetic energy density contrast,
it is anticorrelated with the magnetic anisotropic stress. For comparison, in figure 2 (Upper Panel
(right)) the auto- and cross correlations of the magnetic modes are shown for magnetic field strength
B = 1 nG and spectral index nB∗ = −2.98. The expressions for the correlation functions of the
magnetic modes, P〈∆B∆B〉(k), P〈πBπB〉(k) and P〈∆BπB〉(k) can be found, e.g., in [19]. Comparing
the figures of the (Upper Panel) of figure 2 shows that the amplitudes of the spectral functions of
the cross correlations between curvature and the magnetic modes are larger than the auto- and
cross correlation functions of the magnetic modes. In figure 2 (Lower Panel) the ratio

XΞ =
|P〈ζΞ〉|

√

|Pζζ ||P〈ΞΞ〉|
, Ξ = ∆B, πB (3.12)

is reported which determines the generalized Schwarz inequality and as can be appreciated is well
below the unity bound.

4 Results

The CMB angular power spectra are determined by the brightness function which in the line-of-sight
approach [31] is written for each component, for the scalar mode, [32]

ΘX
ℓ (η0, k)

2ℓ+ 1
=

∫ η0

0
dηSX

Θ (k, η)jℓ [k(η0 − η)] (4.1)

where SX
Θ is the source function and X denotes ζ, ∆B and πB . This determines the temperature

auto correlation function

(2ℓ+ 1)2C
TT,〈XY 〉
ℓ =

1

2π2

∫ ∞

0

dk

k
P〈XY 〉(k)Θ

X
ℓ (η0, k)Θ

Y
ℓ (η0, k) (4.2)
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Figure 2: Upper Panel: (Left): The dimensionless spectra determining the cross correlation function
of the primordial curvature perturbation and the magnetic energy density contrast as well as the
magnetic anisotropic stress. (Right): The dimensionless spectra determining the auto- and cross
correlations of the pure magnetic mode for B = 1 nG for a nearly scale invariant magnetic field,
which corresponds to nB = 0.02 or nB∗ = −2.98 in the conventions used, e.g., in [19]. Lower Panel:
The ratios determining the generalized Schwarz inequality for 〈ζ∆B〉 and 〈ζπB〉. The numerical
solutions are calculated for the parameters HI

M = 5× 10−4, ηI = −10−24 Mpc [15].

and similarly for the auto correlation function of the E-mode and the temperature polarization
cross correlation. The resulting angular power spectra are calculated using a modified version
of CMBEASY [33]. It is based on the modified version of [19] where the initial conditions and
evolution equations including the magnetic field contributions can be found. In all solutions the
best fit values of the 6-parameter ΛCDM model of WMAP9 [28] have been used, in particular,
Ωb = 0.0463, ΩΛ = 0.721, Pζ(kp) = 2.41 × 10−9, ns = 0.972 and the reionization optical depth
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τ = 0.089. Moreover, the nearly scale invariant magnetic field has field strength B = 1 nG
and spectral index nB∗ = −2.98. The factor HI

M determining the cross correlation functions is
HI

M = 5×10−4. There are two types of magnetic modes. On the one hand there is the compensated
magnetic mode for which the initial conditions are such that the contributions from the neutrino
anisotropic stress and the magnetic anisotropic stress cancel each other. On the other hand there
is the so called passive mode [20]. This is due to the presence of a magnetic field before neutrino
decoupling at some conformal time ην which causes an additional contribution to the curvature
perturbation amplitude ζ proportional to the magnetic anisotropic stress given by [20]

ζ ≃ −1

3
RγπBβ, β = ln

ην
ηB

(4.3)

where Rγ ≡ Ων

Ωγ+Ων
and ηB is the conformal time corresponding to the instant of generation of the

magnetic field which would correspond to the time of phase transition or to reheating if generated
during inflation. As way of example, in the numerical solutions it is assumed that the magnetic
field is generated during inflation and that the reheat temperature is TRH = 1010 GeV. So that
β = ln TRH

Tν
with Tν = 1 MeV is determined to be β = 30. The compensated mode corresponds to

β = 0 in figures 3 to 6. In figure 3 the angular power spectra determining the temperature auto
correlation of the CMB are shown. For β = 30 the contribution due to the cross correlation between
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Figure 3: Angular power spectra determining the temperature autocorrelation of the CMB due
to the cross correlation between the curvature mode ζ and the ∆B mode and due to the cross
correlation between the curvature mode and the πB mode and abs. indicates that the absolute value
is shown (left). The contributions to the total angular power spectrum include the adiabatic mode
(Adiab.), the pure magnetic mode (PMM) and the total cross-correlated magnetic-curvature mode
(CC) (right). Numerical solutions have been calculated for WMAP9 ΛCDM best fit parameters.

the curvature mode and the magnetic mode dominates on all scales over the one due to the pure
magnetic mode. Moreover, the shapes of the curves are very similar. This is to be expected since for
β = 30 the magnetic mode is adiabatic-like. On the contrary, due to the very different shapes of the
compensated magnetic mode and the curvature mode the final cross-correlated curvature-magnetic
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mode is quite distinct in the case β = 0. Though, again its amplitude is dominant over that of the
pure magnetic mode for almost all scales. A similar behaviour is also found for the contribution
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Figure 4: Angular power spectra determining the autocorrelation of the polarization E-mode of the
CMB due to the cross correlation between the curvature mode ζ and the ∆B mode and due to the
cross correlation between the curvature mode and the πB mode and abs. indicates that the absolute
value is shown (left). The contributions to the total angular power spectrum include the adiabatic
mode (Adiab.), the pure magnetic mode (PMM) and the total cross-correlated magnetic-curvature
mode (CC) (right). These have been calculated for WMAP9 ΛCDM best fit parameters.

due to the curvature-magnetic mode cross correlation to the polarization autocorrelation (cf. figure
4) as well as the temperature polarization cross correlation (cf. figure 5). In figure 6 the linear
matter power spectrum is reported. On large scales the contribution due to the curvature-magnetic
cross correlation dominates over that of the pure magnetic mode, in both cases, β = 0 as well as
β = 30. This behaviour is reversed on small scales, where the pure magnetic modes show the
characteristic rise of the linear matter power spectrum in the presence of a magnetic field. This
is due to the presence of the Lorentz term in the baryon velocity equation which on small scales
dominates [20, 19]. Thereby leading to a local maximum on small scales in the total linear matter
power spectrum taking into account all contributions, that is the adiabatic and magnetic modes
and their cross correlations. For wave numbers much larger than the maximal wave number km
determined by the damping of the magnetic field the linear matter power spectrum rapidly decays.
In the case under consideration here km = 198 Mpc−1 (cf. equation (2.7)).

5 Conclusions

Observations of the CMB of unprecedented precision allow to test physics upto very early times.
Observational evidence of large scale magnetic fields is abundant. There is however the open
question of their origin. Assuming magnetic fields have been created in the very early universe,
long before decoupling, they influence the spectra of the anisotropies and polarization of the CMB
as well the linear matter power spectrum. There is clear observational evidence in the CMB pointing
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Figure 5: Absolute values of the angular power spectra determining the cross correlation of tem-
perature and polarization E-mode of the CMB due to the cross correlation between the curvature
mode ζ and the ∆B mode and due to the cross correlation between the curvature mode and the
πB mode (left). The contributions to the total angular power spectrum include the adiabatic mode
(Adiab.), the pure magnetic mode (PMM) and the total cross-correlated magnetic-curvature mode
(CC) (right). These have been calculated for WMAP9 ΛCDM best fit parameters.
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Figure 6: The total linear matter power spectrum due to the pure magnetic modes (PMM), the
cross correlation between the curvature mode and the magnetic modes (CC) and the pure adiabatic
mode (B = 0) (Adiab.) for the best-fit ΛCDM model of WMAP9.

to the presence of an adiabatic mode which could be a primordial curvature mode generated during
inflation (cf. e.g. [28]). In general it has been assumed that the curvature mode and the magnetic
field modes are uncorrelated. However, even at lowest order, that is not taking into account

10



nonlinear effects due to the evolution of the magnetic field [22], it seems natural to assume that
non vanishing correlations exist depending on the particular model of magnetic field generation
during inflation, such as the coupling of electrodynamics to the inflaton [24, 25] or, as the case
considered here, to a spectator field which is identified with the curvaton [15]. In [15] the bispectrum
determining the cross correlation between the magnetic field and a scalar field was calculated.
Identifying the scalar field with the curvaton here the cross correlations between the curvature and
the magnetic modes is determined. Taking into account that the magnetic modes in the CMB are
proportional to the magnetic field energy density and the magnetic anisotropic stress, respectively,
both of which are quadratic in the magnetic field, the bispectrum or three-point function calculated
in [15] induces a spectrum or two-point function relevant for the calculation of the CMB and matter
power spectrum. The angular power spectra of the temperature anisotropies and polarization of
the CMB have been calculated for a nearly scale invariant field with field strength of 1 nG. It has
been found that the contribution due to the cross correlation between the curvature mode and
the magnetic modes dominates over the contribution due to the pure magnetic mode. Similarly,
the curvature magnetic mode cross correlated contribution dominates on large scales over the pure
magnetic mode in the linear matter power spectrum. While on the contrary, on small scales the pure
magnetic mode dominates, not only over the cross correlated contribution but also the adiabatic
contribution which is due to the presence of the Lorentz term in the baryon velocity equation.
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