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We show that consistent nonlinear Partially Massless models cannot be obtained starting from
“f -g” massive gravity, with “f” the embedding de Sitter space. The obstruction, which is also the
source of f -g acausality, is the very same fifth constraint that removes the notorious sixth ghost
excitation. Here, however, it blocks extension of the, mass to cosmological background, tuned gauge
invariance that removed the helicity zero mode at linear level. Separately, our methods allow us to
almost complete the class of acausal f -g models.

I. INTRODUCTION

The, by now well-appreciated, fact [1] that de Sit-
ter (dS) space representations allow for novel gauge in-
variances of otherwise massive free flat space higher (s ≥
2) spins has led to hopes for extensions of these partially
massless (PM) models into the nonlinear realm. The low-
est spin, and most interesting, extension is that of spin 2
PM to “PM gravity” (PMG). Unfortunately, that hope
has already been excluded in several contexts. Firstly,
a comprehensive perturbative study of higher spin ex-
tensions [2] has noted (without giving details), that an
obstruction indeed arises at quartic order (cubic exten-
sions, being simply Noether current couplings, are always
trivially allowed). A different approach, based on the ob-
servation [3] that conformal, Weyl, gravity kinematically
describes both s = 2 PM and Einstein graviton modes
about dS vacuum, led to a recent search for suitably
truncated the Weyl models [4]. Here too, an obstruction
was encountered beyond cubic order. Separately different
tacks have been taken by two groups [5, 6], based on the
currently popular massive gravity models (for a review,
see [7]). These are (ab initio nonlinear) Einstein gravities,
but with very special mass terms involving a preferred
background, “f”, metric, that preserve the five degree of
freedom (DoF) content of linear Fierz-Pauli (FP) massive
s = 2. Taking this background to be a suitably “tuned”
dS, they hope to define a PMG [19]. Our purpose here
is to show that this avenue is unfortunately also blocked.
We will find that the very dS gauge invariance required
to eliminate the massive model’s helicity-0 mode can-
not be implemented at nonlinear level: it would have to
turn that fifth constraint into a Bianchi identity, thereby
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removing helicity-0 at the tuned point. But this is ob-
structed precisely due to the same set of its terms that
lead to the massive model’s becoming acausal [8]. The
irony is again that the very special set of mass terms
that are the solution to avoiding the ancient Boulware-
Deser [9] sixth DoF ghost catastrophe, now become part
of the problem. Indeed, an important byproduct of the
present work will be to extend the set of acausal mass
terms in the massive theory, leaving only one (unlikely)
window there–and none for PMG.

II. THE MODEL

We begin with the, most general, five-parameter, fam-
ily of f -g massive GR actions known to have five (rather
than six) DoF [10]; their field equations are:

Gµν := Gµν − Λgµν −

3
∑

i=1

µiτ
(i)
µν = 0 , (1)

where [20]

τ (1)µν := fµν − gµνf ,

τ (2)µν := 2
(

fµρ − gµρf
)

fρ
ν + gµν

(

f2 − fσ
ρ f

ρ
σ

)

,

τ (3)µν := 6
(

fµρ − gµρf
)

fρ
σf

σ
ν + 3fµν

(

f2 − fσ
ρ f

ρ
σ

)

− gµν
(

f3 − 3ffσ
ρ f

ρ
σ + 2fσ

ρ f
η
σf

ρ
η

)

.

The metric gµν is the (only) dynamical field and Gµν

is its Einstein tensor. The last of the five parameters
(Λ, µ1, µ2, µ3, Λ̄) is encoded in the curvature of the non-
dynamical vierbein fµ

m:

R̄µν
mn := W̄µν

mn +
2Λ̄

3
f[µ

mfν]
n . (2)

We are primarily interested in the case where the back-
ground metric ḡµν := fµ

mfνm is constant curvature



2

(Eq. (2) with vanishing Weyl tensor W̄µν
mn) but our re-

sults also apply to the more general case of Einstein back-
grounds [21]. All indices are raised and lowered with the
dynamical metric and its vierbein eµ

m so that (perhaps
somewhat confusingly for bimetric theorists)

fµν := fµ
meνm . (3)

Moreover we require [22]

fµν = fνµ , (4)

which gives six independent relations that, along with
gµν = eµ

meνm, determine the sixteen components of the
vierbein eµ

m in terms of the ten dynamical metric com-
ponents. The equations of motion have been proven to
propagate five DoF for generic parameter values in [10].
A simple covariant proof for the (µ1, µ2) models has been
given in [11] (see also [8]). Before proceeding to a covari-
ant constraint analysis, let us review the appearance of
the PM model in the linearized theory.

III. LINEAR PM

To linearize the equation of motion (1) about a back-
ground Einstein metric ḡµν we call

hµν := gµν − ḡµν =⇒ fµν ≈ ḡµν +
1

2
hµν .

Noting that [23]

Gµν ≈ Λ̄ ḡµν +GL
µν ,

(δρµ − hρ
µ)

3
∑

i=1

µiτ
(i)
ρν ≈ − 3 (µ1 − 2µ2 + 2µ3) ḡµν

−
1

2

(

µ1 − 4µ2 + 6µ3)
[

hµν − ḡµνh
]

,

we obtain the linearized equation of motion

GL
µν − Λ̄hµν ≈

(

Λ − Λ̄− 3µ1 + 6µ2 − 6µ3) ḡµν (5)

−
1

2

(

µ1 − 4µ2 + 6µ3)
[

hµν − ḡµνh
]

.

For models obeying Λ − Λ̄ − 3µ1 + 6µ2 − 6µ3 = 0 , the
constant term vanishes and gµν = ḡµν is a solution. We
thus identify the FP mass

m2 = −µ1 + 4µ2 − 6µ3 .

The PM tuning is m2 = 2Λ̄
3 at which value the linearized

model enjoys the gauge invariance

δhµν =
(

∇̄µ∂ν +
Λ̄

3
ḡµν

)

α .

This, along with the vector constraint ∇̄.hν − ∇̄µh = 0
following from the divergence of the linearized equation

of motion GL
µν = 0 determined by (5), reduces the ten

components of the dynamical field hµν to four propagat-
ing ones. Gauge invariances are associated with Bianchi
identities; in our case, with

∇̄µ∇̄νGL
µν +

Λ̄

3
ḡµνGL

µν ≡ 0 .

Our main goal is to search for a non-linear version of this
Bianchi identity.

IV. THE FIFTH CONSTRAINT AND

PUTATIVE PM MODEL

Returning to the non-linear equation of motion (1) and
taking its divergence, we immediately uncover a vector
constraint,

0 = Cν := ∇µGµν = −

3
∑

i=1

µi∇
µτ (i)µν . (6)

The right hand side was obtained using the Bianchi iden-
tity for the Einstein tensor Gµν and contains at most one
derivative on the dynamical metric. Presently, we will
need explicit expressions for the right hand side of (6) but
first present an “index-free” sketch of how a fifth, scalar
constraint arises. In particular, we focus on whether this
constraint can morph into a Bianchi identity. Our scheme
is to organize the scalar constraint in powers of the back-
ground vierbein f and derivatives of the dynamical met-
ric.
Since the non-linear mass terms τ (i) depend alge-

braically on f and g, their covariant derivatives appearing
in the vector constraint (6), take the form f i−1∇f . Of
course ∇̄f ≡ 0, so ∇f measures the difference between
the Levi-Civita connections of e and f , or in other words
the contorsion K (see Eq. (11) below) which counts as
one metric derivative. Hence the vector constraint takes
the form

0 = µ1Kf + µ2fKf + µ3f
2Kf .

Multiplying this expression by f−1 and taking a further
divergence yields

0 = µ1∇K + µ2∇(fK) + µ3∇(f2K) . (7)

This scalar relation involves two derivatives on the dy-
namical metric so is not a constraint. However, contract-
ing the field equation Gµν on either the metric or fµν
(and powers thereof) also produces a scalar depending
on two metric derivatives. In particular, the Riemann
tensor R(g) of the metric g can be expressed in terms of
its ḡ counterpart and contorsions. Thus, using Eq. (2),
the Einstein tensor can be expanded as

G(g) = Λ̄f2 + W̄ +∇K +K2 .

Hence the contracted field equation yields
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µ1G + µ2fG + µ3f
2G = µ1Λ̄f

2 + µ1W̄ + µ1∇K + µ1K
2 + µ1Λ + µ2

1f + µ1µ2f
2 +

{

µ1µ3f
3
}

+
{

µ2Λ̄f
3
}

+ µ2fW̄ + µ2f∇K + µ2fK
2 + µ2Λf + µ2µ1f

2 +
{

µ2
2f

3
}

+ µ2µ3f
4

+ µ3Λ̄f
4 + µ3f

2W̄ + µ3f
2∇K + µ3f

2K2 + µ3Λf
2 +

{

µ3µ1f
3
}

+ µ3µ2f
4 +

[

µ2
3f

5
]

.

(8)

There are two criteria we can place on this relation:
(i) For a fifth covariant constraint to exist, the dou-
ble derivative metric terms in the third column on the
right hand side must cancel once one employs the dou-
ble divergence of the field equation given in Eq. (7). (ii)
For a Bianchi identity signaling PM, all remaining terms
must cancel. For models with non-vanishing (µ1, µ2) and
µ3 = 0, criterion (i) has been proven to hold [11]. The
case µ3 6= 0 is still an open question, but will soon turn
out to be irrelevant for our PM considerations. We thus
turn to the second, PM, criterion.
To study criterion (ii), we first examine terms algebraic

in f order by order. At order zero, there is only a single
(boxed) term forcing the parameter-constraint

µ1Λ = 0 ,

while at order one there are two (underlined) terms:
µ2
1f + µ2Λf . In the case Λ 6= 0 we are forced to set

µ1 = 0 and in turn µ2 = 0. Coupled with the fact that
there is only a single (square-bracketed) term µ2

3f
5 at

order five, which imposes

µ3 = 0

(the tensor structure f5 is generically non-vanishing [24]);
to uncover a non-trivial model we must set

Λ = 0 ,

then in turn forcing

µ1 = 0 .

The only remaining algebraic f -terms (in braces) are or-
der three: µ2

2f
3 + µ2Λ̄f

3. Since we must avoid setting
µ2 = 0 (which would return us to cosmological GR), we
are forced to impose a tuning µ2 ∼ Λ̄. From the lin-
earized considerations of the previous Section, we can
already deduce this tuning to be

µ2 =
Λ̄

6
,

in order that the FP mass obeys m2 = 2Λ̄
3 . This value

also precisely cancels the unwanted constant term in the

linearized equation of motion (5). To be definite, our
putative PM model has equation of motion

Gµν =
Λ̄

3

(

fµρ − gµρf
)

fρ
ν +

Λ̄

6
gµν

(

f2 − fσ
ρ f

ρ
σ

)

. (9)

This model strongly resembles the bimetric-motivated
PM proposal of [6] (except that there Λ̄ = Λ) but differs
sharply from the decoupling limit inspired PM conjecture
of [5]. (Possibly, heightened sensitivity of the decoupling
method to the contorsion difficulties we are about to en-
counter might explain this discrepancy.) At this juncture
we can go no further with our index-free discussion and
must perform an explicit computation of the fifth con-
straint to determine whether the model given by Eq. (9)
is PM.

V. BIANCHI IDENTITY?

To investigate explicitly the putative PM Bianchi iden-
tity, we first gather some technical tools. The equation of

motion is now Gµν := Gµν−
Λ̄
6 τ

(2)
µν . The vector constraint

is easy to compute; we find (denoting the inverse f -bein
by ℓµm)

0= ℓνµCν := ℓνµ∇
ρGρν = −

Λ̄

3

(

fνρKνρµ−fKν
ν
µ+fρ

µKν
ν
ρ

)

.

(10)
Here the contorsion K is defined by the difference of dy-
namical and background spin connections,

Kµ
m

n := ω(e)µ
m

n − ω(f)µ
m

n . (11)

It allows us to relate dynamical and background Riemann
tensors

Rµν
mn = W̄µν

mn +
2Λ̄

3
f[µ

mfν]
n

+ 2∇[µKν]
mn − 2K[µ

mrKν]r
n .

Thus, tracing the Einstein tensor with f as discussed in
the previous Section, we find



4

fµνGµν = fµσW̄µν
ν
σ −

1

2
fW̄µν

νµ +
Λ̄

6

(

2 fν
µf

ρ
ν f

µ
ρ − 3ffν

µf
µ
ν + f3

)

(12)

+ fµρ
(

∇µKν
ν
ρ −∇νKµ

ν
ρ

)

− f∇µKν
νµ − fµσKµνρK

νρ
σ + fµσKµρσKν

νρ +
1

2
f
(

KµνρK
νρµ +Kµ

µ
ρKν

νρ
)

.

Recalling that all indices are moved with the dynamical
metric and vierbein, observe that the terms involving the
background Weyl tensor do not vanish (its tracelessness
is with respect to ḡµν). As the Weyl tensor is generated
nowhere else, we proceed by retreating from Einstein to
constant curvature backgrounds by setting W̄µν

mn = 0.
This does not augur well for the putative PM model,
since linear PM fields are known to propagate in Einstein
backgrounds [4, 12].
The next task is to cancel the terms cubic in f . There

a temporary victory is won since

fµντ (2)µν = 2 fν
µf

ρ
ν f

µ
ρ − 3 ffν

µf
µ
ν + f3 ,

which implies (thanks to the PM tuning of µ2 to Λ̄) that
fµνGµν now equals the last line of (12). Those terms
involve double derivatives of the metric which can be
canceled against the divergence of the vector constraint
Eq. (10) so that

0 = C :=∇µ

(

ℓµν∇ρGρν

)

+
Λ̄

3
fµνGµν =

−
Λ̄

3

{

∇µfνρ
(

Kρνµ − gνρKσ
σ
µ + gµρKσ

σ
ν

)

+ fµσKµνρK
νρ

σ + fµνKµνρKσ
σρ

−
1

2
f
(

KµνρK
νρµ +Kµ

µ
ρKν

νρ
)

}

.

(13)

Assuming the right hand side does NOT vanish identi-
cally, it is a constraint (since there are no double deriva-
tives on the metric): Its identical vanishing is the acid
PM test. For this test, we may employ the vector con-
straint (10) since that would only amount to modifying
the form of the putative Bianchi identity. This allows us
to replace fµνKµνρ = fKρ−fν

ρKν (where Kν := Kµ
µ
ν).

Collecting terms and converting the ∇f term in (13) to
contorsions we now face the question:

0
?
≡

1

2
f KµKµ−fρ

σ Kµνρ

(

Kνµσ−Kσµν
)

−
1

2
f KµνρK

νρµ .

Here we may make use of any identities for the contorsion
that follow from symmetry of f ; see Eq. (4). A covariant
derivative of that relation yields

0 = Kρ
m

nf[µ
neν]m − (Γ(g)− Γ(ḡ))ρ

σ
[µf|σ|

meν]m .

Taking the totally antisymmetric part of the above re-
moves the difference of Christoffels term so that

0 = K[µν
σfρ]σ .

This allows one further simplification, yielding the final
query

0
?
≡

1

2
f KµKµ − fρ

σKµνρK
µνσ −

1

2
fKµνρK

νρµ . (14)

To be absolutely certain that we are not missing some
(unlikely) cancellations, we evaluate Eq. (14) using a so-
lution to the vector constraint (10) (but not of the full
field equations). For that, we consider an ansatz

ds2 = −dt2 + e2Mt
(

αdx2 + dy2 +
dz2

α

)

for the dynamical metric in the background de Sitter co-
ordinates

ds̄2 = −dt2 + e2Mt
(

dx2 + dy2 + dz2
)

,

where M2 := Λ̄
3 . The exact physical properties of the

above ansatz are irrelevant here, we are merely verifying
that no identity vanquishes the quantity in (14). It is not
difficult to verify that this ansatz obeys the vector con-

straint (10) but returns C = 2M4 (α−1)2

α
for the putative

Bianchi identity. In other words, C is a constraint, and
cannot be improved to a Bianchi identity. Despite the
slew of algebraic cancellations achieved by the PM tun-
ing, it did not suffice to find an identity. There is no new
scalar gauge invariance removing the zero helicity mode,
hence no nonlinear PMG.

VI. ACAUSALITY

Having dismissed the possibility of self-interacting non-
linear PM, we can apply our results to study causality of

models with mass terms of type τ
(2)
µν . The results of the

previous Section and [8] demonstrate that models

Gµν := Gµν − Λgµν − µ1τ
(1)
µν − µ2τ

(2)
µν = 0 , (15)

propagate five degrees of freedom for all parameter values
(Λ, µ1, µ2). Moreover the five constraints responsible for
this behavior are
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Cν := ∇µGµν = −
[

µ1K
µ + 2µ2

(

fρσKρσ
µ − fKµ + fµρKρ

)

]

fµν ,

C := ∇ρ

(

ℓρν∇µGµν)−
(1

2
µ1g

µν − 2µ2f
µν
)

Gµν

= 2µ1Λ−
(3

2
µ2
1 + 2µ2Λ

)

f + 3µ1µ2

(

f2 − fν
µf

µ
ν

)

− 2µ2
2

(

fν
µf

ρ
ν f

µ
ρ −

3

2
ffν

µf
µ
ν +

1

2
f3

)

+
[1

2
µ1 e

µ
n + 2µ2

(

fµ
n −

1

2
f eµn

)

]

eνmR̄µν
mn −

1

2
µ1

(

KµνρK
νρµ +KµK

µ
)

− 2µ2

[

fρ
σKµνρ

(

Kνσµ −Kσνµ
)

+ fµνKµKν + fµνKµνρK
ρ −

1

2
f
(

KµνρK
νρµ +KρK

ρ
)

]

.

(16)

We are now ready to study characteristics. We suppose
that the dynamical metic suffers a leading discontinuity
at two-derivative order across the characteristic surface Σ

[

∂α∂βgµν
]

Σ
= ξαξβγµν . (17)

Our task is to search for pathological characteristics with
timelike normal

ξµgµνξ
ν < 0 ,

with respect to the metric gµν . Since there is a back-
ground metric, one could also consider causal structures
with respect to ḡµν and would encounter exactly the same
acausality difficulty as the one we present here. However,
since gµν is the metric which couples to matter’s stress
tensor as well as governing the good causality properties
of the leading helicity ±2 Einstein modes, we study it. In
general acausal characteristics are ultimately associated
with a breakdown of positivity of equal time commuta-
tors [17] and thus signal inconsistency of the theory.
We lose no generality by taking ξ2 = −1. Also, the

metric discontinuity (17) implies the leading vierbein dis-
continuity

[

∂α∂βeµ
m
]

Σ
= ξαξβEµ

m ,

where the leading discontinuity in the relation eµ
meνm =

gµν implies

2 Eµν = γµν + aµν ,

with aµν = −aνµ.

Absence of acausal characteristics would hold if the
algebraic set of conditions following from the leading dis-
continuity in: (i) the equation of motion (15), (ii) the
constraints (16) and (iii) the symmetry condition (4),
forces γµν = 0 = aµν when ξ2 = −1. Any causality vio-
lations of course appear in lower helicity sectors because
the leading discontinuity of the equation of motion is that
of Einstein’s theory:

ξ2γµν − ξµ ξ.γν − ξν ξ.γµ + ξµξν γ = 0 .

This implies that the transverse part γ⊥
µν = 0. In what

follows we will decompose tensors with respect to the
(unit) timelike vector ξµ according to

Vµ := V ⊥
µ − ξµξ.V ,

Sµν := S⊥
µν− ξµS

⊥
ν − ξν S

⊥
µ + ξµξν ξ.ξ.S ,

(

Sµ := ξ.Sµ

)

,

Aµν := A⊥
µν + ξµA

⊥
ν − ξνA

⊥
µ ,

(

A⊥
µ := Aµνξ

ν
)

,

where V , S and A denote a vector, and symmetric and
antisymmetric tensors, respectively.

At this juncture, of the sixteen components of γµν ,
and aµν , the ten encoded by γ⊥

µ (three), ξ.ξ.γ (one) a⊥µν
(three) and a⊥µ (three), remain. The discontinuity in the
symmetry relation (4) gives six homogeneous conditions
on these:

f⊥
[µ

ρa⊥ν]ρ − f⊥
[µ

{

a⊥ν] + γ⊥
ν]

}

= 0 = f⊥
ρ a⊥µ

ρ + f⊥
µ

ρ
(

a⊥ρ − γ⊥
ρ

)

+ f⊥
µ ξ.ξ.γ − ξ.ξ.f

(

a⊥µ + f⊥
µ

)

.

At very best, at this point only four combinations of the
ten variables (γ⊥

µ , ξ.ξ.γ, a⊥µν , a
⊥
µ ) are left. Thus we need

four more conditions to establish the absence of acausal
characteristics. These can only come from the four con-
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straints (16) (further constraints would anyway destroy
the DoF count). The leading discontinuity in the con-
straints is given by the metric derivatives in the contor-
sions and thus proportional to [∂αKµνρ]Σ. This quantity
is easily computed

2 ξα[∂αKµνρ]Σ

= ξνEρµ − ξρEνµ − ξµEνρ + ξνEµρ + ξµEρν − ξρEµν

= −ξµa
⊥
νρ − 2 ξµξ[ν

{

a⊥ρ] + γ⊥
ρ]

}

.

Thus the discontinuity in the constraints gives four homo-
geneous linear conditions on the six quantities (a⊥µν , a

⊥
µ +

γ⊥
µ ). To summarize we have the following linear system

of ten equations in ten unknowns:

variables
homogeneous

conditions

a⊥µν , a
⊥
µ + γ⊥

µ 7

a⊥µν , a
⊥
µ + γ⊥

µ , a⊥µ − γ⊥
µ , ξ.ξ.γ 3

Evidently, from the first line of the table, seven homoge-
neous conditions on the six variables (a⊥µν , a

⊥
µ + γ⊥

µ ) will
generically force these to vanish which, by itself, bodes
well for causality (non-generic conditions that do not
kill (a⊥µν , a

⊥
µ + γ⊥

µ ) already correspond to acausal char-
acteristics). But there are only three conditions on the
four remaining variables (a⊥µ − γ⊥

µ , ξ.ξ.γ), which means
that some combination thereof does not vanish: there are

acausal characteristics.

VII. CONCLUSIONS

We have demonstrated that none of the ghost-free, f -g
massive gravity models of [10, 13] exhibits partial mass-
lessness. For one model (see Eq. (9) this failure involves
only terms in the fifth constraint mades from squares of
contorsions in constant curvature backgrounds (but also
Weyl terms in Einstein ones). The same terms are re-
sponsible for acausality of ghost-free, f -g massive grav-
ity models [25]. These results are consistent with ear-
lier order-by-order analyses of PM self-interactions [2]
that claimed no consistent self-couplings existed beyond
(as usual, safe) cubic order [26]. A conformal gravity-
inspired PM study reached the same conclusion [4]. The
old lesson (first learnt in a charged massive s = 3/2 con-
text [17]) is again at play here: healthy DoF counts alone
need not imply physical consistency.

Note added: An independent confirmation of our PM
no-go results has recently been given [18].
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