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We discuss building models for nucleon generalized parton distributions (GPDs) H and E that
are based on the formalism of double distributions (DDs). We found that the usual “DD+D-term”
construction should be amended by an extra term, ξE1

+(x, ξ) built from the α/β moment of the
DD e(β, α) that generates GPD E(x, ξ). Unlike the D-term, this function has support in the whole
−1 ≤ x ≤ 1 region, and in general does not vanish at the border points |x| = ξ.
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I. INTRODUCTION

The studies of Generalized Parton Distributions
(GPDs) [1–4] require building theoretical models for
GPDs which satisfy several nontrivial requirements such
as polynomiality [5], positivity [6–8], hermiticity [1], time
reversal invariance [5], etc. The constraints follow from
the most general principles of quantum field theory. Poly-
nomiality (that may be traced back to Lorentz invari-
ance) imposes the restriction that xn moment of a GPD
H(x, ξ; t) must be a polynomial in ξ of the order not
higher than n+1. This property is automatically obeyed
by GPDs constructed from Double Distributions (DDs)
[1, 3, 8, 9]. (Another way to impose the polynomiality
condition onto model GPDs is “dual parameterization”
[10–14]). Thus, within the DD approach, the problem of
constructing a model for a GPD converts into a problem
of building a model for the relevant DD.

Double distributions F (β, α; t) behave like usual par-
ton distribution functions (PDFs) with respect to its vari-
able β, as a meson distribution amplitude (DA) with re-
spect to α, and as a form factor with respect to the in-
variant momentum transfer t. The factorized DD ansatz
(FDDA) [8, 15] proposes to build a model DD F (β, α)
(in the simplified formal t = 0 limit) as a product of the
usual parton density f(β) and a profile function h(β, α)
that has an α-shape of a meson DA. However, it was no-
ticed [16] that in the case of isosinglet pion GPDs, FDDA
does not produce the highest, (n+ 1)st power of ξ in the
xn moment of H(x, ξ). To cure this problem, a “two-DD”
parameterization for pion GPDs was proposed [16], with
the second DD G(β, α) capable of generating, among oth-
ers, the required ξn+1 power. It was also proposed [16] to
use a “DD plus D” parameterization in which the second
DD G(β, α) is reduced to a function D(α) of one vari-
able, the D-term , that is solely responsible for the ξn+1

contribution. As emphasized in Ref. [16], one should
also add D-term in case of nucleon distributions. The
importance of the D-term and its physical interpretation
were studied in further works (see Ref. [17] and references
therein).

In the pion case, it was shown [18] that one can reshuf-
fle terms between F and G functions of the F + G de-

composition without changing the sum (“gauge invari-
ance”). Furthermore, it was found in Ref. [19], that one
can write a parameterization that incorporates just one
function f(β, α), but still produces all the required pow-
ers up to ξn+1. A model for the pion GPD based on this
representation was built in our paper [20]. An impor-
tant ingredient of our construction was separation of DD
f(β, α) in its “plus” part [f(β, α)]+ that gives zero after
integration over β, and D-term part δ(β)D(α)/α. For
DDs singular in small-β region, such a separation serves
also as a renormalization prescription substituting a for-
mally divergent integral over β by “observable” D-term.

In the present paper, we apply the technique of Ref.
[20] (see also [21]) for building models of nucleon GPDs
H(x, ξ) and E(x, ξ). The paper is organized as follows.
To make it self-contained, we start, in Sect. II, with a
short review of the basic facts about DDs, GPDs and D-
term, using a toy model with scalar quarks, that allows
to illustrate essential features of GPD theory avoiding
complications related to spin. In Sect. III, we describe
the theory of pion GPD H(x, ξ), presenting the results
of Ref. [20] in a form suitable for generalization onto the
nucleon case. In Sect. IV, we recall the basic ideas of the
factorized DD Ansatz of Refs. [8, 15]. In Sect. V, we use
the formalism described in previous sections for building
DD models for nucleon GPDs H(x, ξ) and E(x, ξ).

An essential point is that two functions A and B as-
sociated with two basic Dirac structures present in the
twist decomposition of the nucleon matrix element do not
coincide with H and E. In fact, A = H+E and B = −E.
What is most important, A and B have different types
of DD representation: A is given by the simplest (scalar-
type) DD representation, while B is given by a more
complicated representation coinciding with the one-DD
parametrization of the pion case. Thus, building a model
for H one should deal with a sum A + B, the terms of
which have different-type DD representations. The re-
sult of this mismatch is a term, which we call ξE1

+(x, ξ)
that is given by the “plus” part of the α/β moment of
DD e(β, α) used in parametrization for E(x, ξ) GPD. The
term ξE1

+(x, ξ) should be included in the model for GPD
H(x, ξ). However, unlike the D-term contribution, the
function ξE1

+(x, ξ) in general does not vanish both at
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the border points |x| = ξ and also outside the central
region |x| ≤ ξ.

In final section, we summarize the results of the paper.

II. BASICS OF THEORY FOR DDS AND GPDS

A. Matrix elements and DDs

Parton distributions provide a convenient way to
parametrize matrix elements of local operators that ac-
cumulate information about hadronic structure. Vari-
ous types of distributions differ by the nature of the
matrix elements involved. In particular, to define
GPDs, one starts with non-forward matrix elements
〈P + r/2| . . . |P − r/2〉, with P being the average of the
initial and final hadron momenta, and r being their dif-
ference. In scalar case (which illustrates many essential
features without irrelevant complications) we have

〈P + r/2|ψ(0){
↔
∂ µ1 . . .

↔
∂ µn}ψ(0)|P − r/2〉

=

∞∑
n=0

[n−1∑
l=0

Anl{Pµ1
. . . Pµn−l

rµn−l+1
. . . rµn

}

+Ann{rµ1
. . . rµn

}
]
. (1)

The notation {. . .} indicates the symmetric-traceless part
of the enclosed tensor. Since two vectors are involved,
we have n + 1 distinct tensor structures differing in the
number l of r factors involved. In the forward r = 0 limit,
only the An0

coefficients are visible. Another extreme
case is l = n, corresponding to the tensor {rµ1

. . . rµn
}

built solely from the r momentum.
The forward r = 0 limit corresponds to matrix ele-

ments defining usual parton distributions f(x) as a func-
tion whose moments produce An0:∫ 1

−1

f(x)xn dx = An0
. (2)

The parton interpretation of f(x) is that it describes a
parton with momentum xP . This definition of f(x) may
be rewritten in terms of matrix elements of operators on
the light cone:

〈P |ψ(−z/2)ψ(z/2)|P 〉

=

∫ 1

−1

f(x) e−ix(Pz) dx +O(z2) . (3)

In a general non-forward case, the parton carries the
fractions of both P and r momenta. Note, that in the

momentum representation, the derivative
↔
∂ µ converts

into the average k̄µ = (kµ+k′µ)/2 of the initial k and final

k′ quark momenta. After integration over k, (k̄)n should
produce the P and r factors in the r.h.s. of Eq. (1). In

this sense, one may treat (k̄)n as (βP+αr/2)n and define
the double distribution (DD) [1, 3, 8, 9]

n!

(n− l)! l! 2l

∫
Ω

F (β, α)βn−lαl dβ dα = Anl (4)

as a function whose βn−lαl moments are proportional to
the coefficients Anl. It can be shown [1, 3, 15] that the
support region Ω is given by the rhombus |α| + |β| ≤ 1.
These definitions result in the “DD parameterization”

〈P − r/2|ψ(−z/2)ψ(z/2)|P + r/2〉

=

∫
Ω

F (β, α) e−iβ(Pz)−iα(rz)/2 dβ dα+O(z2) . (5)

of the matrix element.

B. Introducing GPDs and D-term

Another parametrization of the non-forward matrix el-
ement is in terms of generalized parton distributions. In
scalar case GPDs are defined by

〈P − r/2|ψ(−z/2)ψ(z/2)|P + r/2〉

=

∫ 1

−1

e−ix(Pz)H(x, ξ) dx+O(z2) , (6)

and relation between GPD and DD functions is given by

H(x, ξ) =

∫
Ω

F (β, α) δ(x− β − ξα) dβ dα . (7)

The skewness parameter ξ in this definition corresponds
to the ratio (rz)/2(Pz).

In the forward limit ξ = 0, GPD H(x, ξ) converts into
the usual parton distribution f(x). Using DDs, we may
write

f(x) =

∫ 1−|x|

−1+|x|
F (x, α) dα . (8)

Thus, the forward distributions f(x) are obtained by in-
tegrating DDs over vertical lines β = x in the (β, α)
plane. As discussed above, f(x) is defined through the
coefficients An0 corresponding to tensors without r fac-
tors. Similarly, one can treat the Ann coefficients, corre-
sponding to tensors without P factors, as the moments
of another function D(α)∫ 1

−1

D(α) (α/2)n dα = Ann , (9)

the D-term [16]. From the definition of DD (4), it follows
that

D(α) =

∫ 1−|α|

−1+|α|
F (β, α) dβ , (10)
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i.e., D-term D(α) is obtained from DD F (β, α) by inte-
gration over horizontal lines in the {β, α} plane. In this
sense, one can think of “vertical” projection of DD that
produces the forward distribution f(β), and “horizontal”
projection that produces D-term D(α).

Taking the xn moment of GPD H(x, ξ)∫ 1

−1

H(x, ξ)xn dx =

n∑
l=0

Anl(2ξ)
l , (11)

we see that the coefficients Ann are responsible for the
highest power of skewness ξ in this expansion.

C. DD plus D parametrization

Parameterizing the matrix element (1), one may wish
to separate the Ann terms that are accompanied by ten-
sors built from the momentum transfer vector r only,
and, thus, are invisible in the forward r = 0 limit, i.e., to
separate the D-term contribution. This can be made by
simply using

e−iβ(Pz) = [e−iβ(Pz) − 1] + 1 (12)

which converts the DD-parameterization into a
“DD+ plus D” parameterization

〈P − r/2|ψ(−z/2)ψ(z/2)|P + r/2〉

=

∫
Ω

[F (β, α)]+ e
−iβ(Pz)−iα(rz)/2 dβ dα

+

∫ 1

−1

D(α) e−iα(rz)/2 dα+O(z2) , (13)

where

[F (β, α)]+ = F (β, α)− δ(β)

∫ 1−|α|

−1+|α|
F (γ, α) dγ (14)

is the DD with subtracted D-term given by Eq.(10).
Then

F (β, α) = [F (β, α)]+ + δ(β)D(α) (15)

and

H(x, ξ) = H+(x, ξ) +
D(x/ξ)

|ξ| , (16)

where

H+(x, ξ) =

∫
Ω

[F (β, α)]+ δ(x− β − ξα) dβ dα

=

∫
Ω

F (β, α)
[
δ(x− β − ξα)

− δ(x− ξα)
]
dβ dα (17)

is the “plus” part of GPD H(x, ξ).

A straightforward observation is that the xn moment
of H+(x, ξ) does not contain the highest, namely the nth

power of ξ, since the relevant integral∫
Ω

αn [F (β, α)]+ dβ dα (18)

vanishes because the integrand is a “plus” distribution
with respect to β.

For n = 0, the highest power is ξ0, and since the
n = 0 moment ofH+(x, ξ) should not contain this highest
power, it contains no powers of ξ at all, i.e. it vanishes:∫ 1

−1

H+(x, ξ) dx =

∫
Ω

[F (β, α)]+ dβ dα = 0 . (19)

Thus, H+(x, ξ) has the same property with respect to
integration over x as a “plus” distribution

[h(x)]+ = h(x)− δ(x)

∫ 1

−1

h(z)dz . (20)

However, H+(x, ξ) may be a pretty smooth function,
without any δ(x) terms. It should just possess regions
of positive and negative values of H+(x, ξ) averaging to
zero after x-integration.

D. D-term as a separate entity

In the simple model with scalar quarks, one may just
use the original DD F (β, α) without splitting it into
the “plus” part and the D-term. One may imagine
that the DD F (β, α) is some smooth function on the
rhombus, with nothing spectacular happening on the
β = 0 line. In such a case, one may, of course, write
F (β, α) = [F (β, α)]+ + δ(β)D(α), with the D-term ac-
companied by the δ(β) function, but this term is precisely
canceled by the ∼ δ(β) term contained in [F (β, α)]+.

However, if the theory allows purely t-channel ex-
changes, then the relevant diagrams generate ∼ δ(β)
terms not necessarily connected to other contributions.
E.g., our scalar quarks may have a quartic interaction,
and the t-channel loop would generate a δ(β)ϕ(α) type
contribution into F (β, α).

Furthermore, D term is formally given by the integral
of F (β, α). An implicit assumption is that this integral
converges, which is the case if F (β, α) is not too singular.
Note, however, that the integral of F (β, α) over α gives
f(β), a usual parton distribution which are known to
have a singular ∼ β−a behavior for small β. This means
that the β-profile of DD F (β, α) should be similar to
that of f(β), and also be singular in the β → 0 region,
F (β, α) ∼ β−a. The integral over β converges if a < 1.
However, as we will see in Sec. III B, one may need
the integrals involving F (β, α)/β which diverge for any
positive a. The integral for [F (β, α)]+ still converges for
a < 1, and the role of the D term in this case is to
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substitute the divergent integral∫ 1−|α|

−1+|α|
F (β, α) dβ (21)

by a finite function D(α) whose αn moments then give
finite coefficients Ann. In this case, the “DD+ plus D”
separation serves as a renormalization prescription defin-
ing the moments of DD.

An attempt to consistently “implant” the Regge be-
havior into a quantum field theory construction was made
in Ref. [22], where a dispersion relation was used for an
amplitude that has sa Regge behavior at large energies.
For any positive a, such a relation requires a subtraction,
which (as shown in Refs.[20, 22]) results in a δ(β)ϕ(α)
term contributing to D(α).

III. PION DDS AND GPDS

A. Two-DD representation

In fact, D-term was introduced first [16] in the context
of pion GPDs, with pion made of spinor quarks. In that
case, it is more difficult to avoid an explicit introduction
of the D-term as an extra function. The basic reason is
that the matrix element of the bilocal operator in pion
case has two parts

〈P − r/2|ψ̄(−z/2)γµψ(z/2)|P + r/2〉|twist−2

= 2Pµf
(
(Pz), (rz), z2

)
+ rµg

(
(Pz), (rz), z2

)
. (22)

This suggests a parametrization with two DDs corre-
sponding to f and g functions [16]. For the matrix ele-
ment (22) multiplied by zµ (the object one obtains doing
the leading-twist factorization for the Compton ampli-
tude [23] ) this gives

zµ〈P − r/2|ψ̄(−z/2)γµψ(z/2)|P + r/2〉

=

∫
Ω

e−iβ(Pz)−iα(rz)/2

[
2(Pz)F (β, α)

+ (rz)G(β, α)

]
dβ dα +O(z2). (23)

Then GPDs are given by a DD representation

H(x, ξ) =

∫
Ω

[
F (β, α) + ξG(β, α)

]
δ(x− β − ξα) dβ dα ,

(24)

that involves two DDs: F (β, α) and G(β, α). The highest
power ξn+1 for the xn moment of H(x, ξ) is given now
by the G term, which one can separate

G(β, α) = [G(β, α)]+ + δ(β)D(α) (25)

into a “plus” part and D-term

D(α) =

∫ 1−|α|

−1+|α|
G(β, α) dβ . (26)

As a result,

H(x, ξ) = F (x, ξ) + ξG+(x, ξ) + sgn(ξ)D(x/ξ) , (27)

where

F (x, ξ) =

∫
Ω

F (β, α) δ(x− β − ξα) dβ dα (28)

and

G+(x, ξ) =

∫
Ω

G(β, α)
[
δ(x− β − ξα)

− δ(x− ξα)
]
dβ dα . (29)

The forward distribution f(x) in two-DD formulation is
obtained from the DD F only:

f(β) =

∫ 1−|β|

−1+|β|
F (β, α) dα . (30)

Thus, D-term and f(x) are obtained from different func-
tions, so the D-term is indeed looking like an independent
entity.

B. One-DD representation

Note that the Dirac index µ is symmetrized in the lo-

cal twist-two operators ψ̄{γµ
↔
∂ µ1 . . .

↔
∂ µn}ψ with the µi

indices related to the derivatives. Thus, one may ex-
pect that it also produces the factor βPµ + αrµ/2. In
Ref. [24], it was shown that this is really the case. In
other words, not only the exponential produces the z-
dependence in the combination β(Pz)+α(rz)/2, but also
the pre-exponential terms come in the β(Pz) + α(rz)/2
combination. The result is a representation in which

2(Pz)F (β, α) + (rz)G(β, α)

= [2β(Pz) + α(rz)]f(β, α) , (31)

that corresponds to

F (β, α) = βf(β, α)

and

G(β, α) = αf(β, α) .

Thus, one deals formally with just one DD f(β, α). The
two-DD representation for GPDs (24) converts into

H(x, ξ) =

∫
Ω

(β + ξα)f(β, α) δ(x− β − ξα) dβ dα

= x

∫
Ω

f(β, α) δ(x− β − ξα) dβ dα (32)

in the “one-DD” formulation.
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The D-term in the one-DD case is given by

D(α) = α

∫ 1−|α|

−1+|α|
f(β, α) dβ , (33)

and one may write f(β, α) as a sum

f(β, α) = [f(β, α)]+ + δ(β)
D(α)

α
(34)

of its “plus” part

[f(β, α)]+ = f(β, α)− δ(β)

∫ 1−|α|

−1+|α|
f(γ, α) dγ (35)

and D-term part δ(β)D(α)/α.

For the GPD H(x, ξ), the “DD++ D” separation cor-
responds to the representation

H(x, ξ) ≡ H+(x, ξ) + sgn(ξ)D(x/ξ) , (36)

where

H+(x, ξ)

x
≡
∫

Ω

f(β, α)
[
δ(x− β − ξα)

− δ(x− ξα)
]
dβ dα . (37)

Using f(β, α) = F (β, α)/β we may rewrite

H(x, ξ) =

∫
Ω

(β + ξα)f(β, α) δ(x− β − ξα) dβ dα

=

∫
Ω

F (β, α) δ(x− β − ξα) dβ dα

+ ξ

∫
Ω

αF (β, α)

β

[
δ(x− β − ξα)− δ(x− ξα)

]
dβ dα

+ sgn(ξ)D(x/ξ)

≡ FDD(x, ξ) + ξF 1
+(x, ξ) + sgn(ξ)D(x/ξ) , (38)

where

FDD(x, ξ) =

∫
Ω

F (β, α) δ(x− β − ξα) dβ dα (39)

is GPD constructed from DD F (β, α) by the same for-
mula as in scalar case. Another term

F 1
+(x, ξ) ≡

∫
Ω

(
α

β
F (β, α)

)
+

δ(x− β − ξα) dβ dα (40)

is a GPD built from the “plus” part of the DD
αF (β, α)/β. The latter, of course, may be written as
G(β, α), but in the spirit of the one-DD formulation, one
may wish to express the results in terms of just one func-
tion F (β, α).

IV. FACTORIZED DD ANSATZ

In the forward limit ξ = 0, GPD H(x, ξ) converts into
the usual parton distribution f(x). In the one- DD for-
mulation, we may write

f(x) = x

∫ 1−|x|

−1+|x|
f(x, α) dα . (41)

Thus, the forward distributions f(x) are obtained by in-
tegrating over vertical lines β = x in the (β, α) plane.
For nonzero ξ, GPDs are obtained from DDs through
integrating them along the lines β = x − ξα having 1/ξ
slope. The reduction formula (41) suggests the factorized
DD Ansatz

f(β, α) = h(β, α) f(β)/β , (42)

where f(β) is the forward distribution, while h(β, α) de-
termines DD profile in the α direction and satisfies the
normalization condition∫ 1−|β|

−1+|β|
h(β, α) dα = 1 . (43)

The profile function should be symmetric with respect
to α → −α because DDs f(β, α) are even in α [15, 25].
For a fixed β, the function h(β, α) describes how the
longitudinal momentum transfer r+ is shared between
the two partons. Hence, it is natural to expect that
the shape of h(β, α) should look like a symmetric me-
son distribution amplitude (DA) ϕ(α). Since DDs have
the support restricted by |α| ≤ 1 − |β|, to get a more
complete analogy with DAs, it makes sense to rescale
α as α = (1 − |β|)γ introducing the variable γ with β-
independent limits: −1 ≤ γ ≤ 1. The simplest model
is to assume that the γ–profile is a universal function
g(γ) for all β. Possible simple choices for g(γ) may be
δ(γ) (no spread in γ-direction), 3

4 (1− γ2) (characteristic
shape for asymptotic limit of nonsinglet quark distribu-
tion amplitudes), 15

16 (1−γ2)2 (asymptotic shape of gluon
distribution amplitudes), etc. In the variables β, α, these
models can be treated as specific cases of the general
profile function

h(N)(β, α) =
Γ(2N + 2)

22N+1Γ2(N + 1)

[(1− |β|)2 − α2]N

(1− |β|)2N+1
, (44)

whose width is governed by the parameter N .
To give a graphical example, we show in Fig.1 the sim-

plest GPD FDD(x, ξ) (39) built from the model

F (β, α) = f(β)h(1)(β, α) (45)

with forward distribution

fmod(x) = (1− x)3/
√
x (46)

and N = 1 profile function (analytic results for
fmod(x) = (1− x)3x−a and N = 1 profile may be found
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FIG. 1. GPD FDD(x, ξ) for ξ = 0.3.

in Refs. [26–28]). The model forward function was cho-
sen in the form reproducing the x → 1 behavior of the
nucleon parton distributions and the ∼ x−0.5 Regge be-
havior of valence part of quark distributions for small x,
which was taken for simplicity, though the GPD shown
corresponds to the C-even component (the full function
is antisymmetric in x, and only the x ≥ 0 part is shown).

V. NUCLEON GPDS

A. Definitions of DDs and GPDs

In the nucleon case, for unpolarized target, one can
parametrize

〈p′|ψ̄(−z/2)/z ψ(z/2)|p〉|twist−2 (47)

=

∫
Ω

e−iβ(Pz)−iα(rz)/2
[
ū(p′)/z u(p) a(β, α)

+
ū(p′)u(p)

2MN

[
2β(Pz) + α(rz)

]
b(β, α)

]
dβ dα +O(z2) .

Here, the functions a, b are DDs corresponding to the
combinations A = H + E and B = −E of usual GPDs
H and E (see Ref. [28]). These GPDs may be expressed
in terms of relevant DDs as

A(x, ξ) =

∫
Ω

a(β, α) δ(x− β − ξα) dβ dα (48)

and

B(x, ξ) = x

∫
Ω

b(β, α) δ(x− β − ξα) dβ dα . (49)

Notice that we have two different types of relations
between GPDs and DDs: A(x, ξ) is obtained from its
DD a(β, α) just like in the simplest scalar case, while
B(x, ξ) is calculated from b(β, α) using the formula with
the one-DD representation structure. The difference, of
course, is due to the factor [2β(Pz)+α(rz)] in the b-part.

In the forward limit, we have

A(x, 0) = H(x, 0) + E(x, 0) = f(x) + e(x) (50)

and

B(x, 0) = −E(x, 0) = −e(x) . (51)

These reduction formulas suggest the model representa-
tion

a(β, α) = f(β, α) + e(β, α) (52)

and

b(β, α) = −e(β, α)

β
. (53)

Because of possible singularity of e(β, α)/β at β = 0, we
write it in the “DD+ +D” representation:

b(β, α) = −
(
e(β, α)

β

)
+

+ δ(β)
D(α)

α
, (54)

where D(α) is the D-term.

B. General results for GPDs

As a result, we have

H(x, ξ) = A(x, ξ) +B(x, ξ) (55)

=

∫
Ω

[f(β, α) + e(β, α)] δ(x− β − ξα) dβ dα

− x
∫

Ω

[(
e(β, α)

β

)
+

− δ(β)
D(α)

α

]
δ(x− β − ξα) dβ dα

= FDD(x, ξ) + EDD(x, ξ)− E+(x, ξ) + sgn(ξ)D(x/ξ) ,

where

FDD(x, ξ) =

∫
Ω

f(β, α) δ(x− β − ξα) dβ dα (56)

and

EDD(x, ξ) =

∫
Ω

e(β, α) δ(x− β − ξα) dβ dα (57)

are build from DDs by simplest formulas not involving a
division by β factors, while

E+(x, ξ)

x
=

∫
Ω

e(β, α)

β

[
δ(x− β − ξα)− δ(x− ξα)

]
dβ dα

=

∫
Ω

(
e(β, α)

β

)
+

δ(x− β − ξα) dβ dα (58)

has the structure of a one-DD representation. Since
E+(x, ξ)/x is built from the “plus” part of a DD it should
satisfy∫ 1

−1

E+(x, ξ) dx =

∫
Ω

[
e(β, α)

β

]
+

dβ dα = 0 . (59)
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FIG. 2. GPD E+(x, ξ) for ξ = 0.3.

Being (for C-even combination) an even function of x,
the function E+(x, ξ)/x obeys

∫ 1

0

E+(x, ξ)

x
dx = 0 . (60)

C. Modeling GPDs

To illustrate the structure of E+(x, ξ), we show it in
Fig.2 using the model based on

e(β, α) = e(β)h(1)(β, α) (61)

with N = 1 profile function and the same forward dis-
tribution e(x) = (1 − x)3/

√
x that was used to model

FDD above. Again, we have in mind the C-even,
quark+antiquark part of the distribution, and valence-
type functional form is used to simplify the illustration.
One can see that E+(x, ξ) is a regular function, and van-
ishing of E+(x, ξ)/x integral is due to compensation over
positive and negative parts (see Fig.3) rather than be-
cause of subtraction of a δ(x) term.

In a more realistic modeling, one should adjust nor-
malization of e(x) to reflect its relation to the anomalous
magnetic moment. Also, the fits of the nucleon elas-
tic form factors [29] suggest for e(x) a higher power of
(1 − x). However, our aim while showing the curves in
the present paper is just to illustrate the qualitative fea-
tures of various GPD models, so we will stick to the same
generic forward function both for f(x) and e(x).

The function E+(x, ξ) may be displayed as

E+(x, ξ) = x

∫
Ω

e(β, α)

β
[ δ(x− β − ξα)− δ(x− ξα)] dβ dα

=

∫
Ω

e(β, α) δ(x− β − ξα) dβ dα

+ ξ

∫
Ω

α

β
e(β, α) [δ(x− β − ξα)− δ(x− ξα)] dβ dα

= EDD(x, ξ) + ξ

∫
Ω

(
α

β
e(β, α)

)
+

δ(x− β − ξα) dβ dα

≡ EDD(x, ξ) + ξE1
+(x, ξ) , (62)

where

E1
+(x, ξ) ≡

∫
Ω

(
α

β
e(β, α)

)
+

δ(x− β − ξα) dβ dα .

(63)

Since E1
+(x, ξ) is built from the “plus” part of a DD,

its x-integral from −1 to 1 is equal to zero, but in fact
it vanishes also for a simpler reason that E1

+(x, ξ) is an
odd function of x. So, in this case, we cannot make
any conclusions about the magnitude of the x-integral of
E1

+(x, ξ) from 0 to 1.
Summarizing, GPD E+ is obtained from the naive

EDD function by adding to it the ξE1
+(x, ξ) term, which

results in a rather nontrivial non-monotonic behavior of
the E+ function. To get the full GPD E, one should
subtract also the D-term contribution:

E(x, ξ) =E+(x, ξ)− sgn(ξ)D(x/ξ) (64)

= EDD(x, ξ) + ξE1
+(x, ξ)− sgn(ξ)D(x/ξ) .

For GPD H, we then have

H(x, ξ) = FDD(x, ξ)− ξE1
+(x, ξ) + sgn(ξ)D(x/ξ) .

(65)

Now one should subtract ξE1
+(x, ξ) from the naive FDD

function and then add the D-term contribution.

0.2 0.4 0.6 0.8 1.0

-5

5

10

x

E+(x, ⇠)/x

FIG. 3. GPD E+(x, ξ)/x for ξ = 0.3.
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FIG. 4. Function ξE1
+(x, ξ) for ξ = 0.3.

0.2 0.4 0.6 0.8 1.0

-1

1
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+(x, ⇠)

x

FIG. 5. Model nucleon GPD H(x, ξ) (without D-term) for
ξ = 0.3.

Comparing this result with the pion case for which

H(x, ξ) = FDD(x, ξ) + ξF 1
+(x, ξ) + sgn(ξ)D(x/ξ) ,

(66)

we see that the structure of the pion GPD H+ is similar
to that of the nucleon GPD E+: the term ξF 1

+(x, ξ) is
added to FDD(x, ξ) rather than subtracted. However, in
case of the nucleon GPD H, the extra term is built from
the second nucleon DD e(β, α) rather than from f(β, α),
and it is subtracted from FDD(x, ξ) rather than added to
it.

D. Polynomiality

Taking the xn moment of H(x, ξ) in this construction,
we note that the FDD(x, ξ) term produces only the pow-
ers of ξ up to ξn. Next observation is that the highest,
namely nth power of ξ in the xn moment of E1

+(x, ξ)

involves the integral

∫
Ω

αn
(
α

β
e(β, α)

)
+

dβ dα (67)

that vanishes because the integrand is a “plus” distribu-
tion with respect to β. Hence, ξE1

+(x, ξ) term also can-
not produce the ξn+1 contribution for the xn moment of
H(x, ξ). Such a term is produced by the D-term only.

E. Comparison with “DD plus D-term” model

The usual “DD plus D-term” model in the context
of the present paper corresponds to “FDD plus D-term”
combination, i.e. modeling nucleon GPDs without sub-
tracting the ξE1

+(x, ξ) term when modeling H(x, ξ), (or
adding it when modeling E(x, ξ)).

In a sense, our new model results from the old
“DD plus D” model by substituting sgn(ξ)D(x/ξ) with
−ξE1

+(x, ξ) + sgn(ξ)D(x/ξ).

Since the D-term is fitted to data, one may wonder
if adding ξE1

+(x, ξ) may be absorbed by redefinition of
the D-term. However, there are important qualitative
differences between E1

+(x, ξ) and D(x/ξ). First, the sup-
port region of E1

+(x, ξ) is not restricted to the segment
|x| ≤ ξ. Furthermore, existing models of D(x/ξ) assume
that it is a continuous function that vanishes not only
outside the central |x| ≤ ξ region, but also at the bor-
der points |x| = ξ (otherwise, GPDs H and E would be
discontinuous at the border points, and pQCD factoriza-
tion formula for DVCS would make no sense). As we
have seen, E1

+(x, ξ) is a continuous function of x in the
whole |x| ≤ 1 region, and it is not vanishing at the border
points |x| = ξ.

Thus, the most apparent difference between the two
models is that the value ofH(ξ, ξ), the GPD at the border
point, in the new model is different from that given by
GPD FDD(ξ, ξ) built solely from DD f(β, α) related to
the usual forward parton density f(β). Furthermore, this
difference is determined by DD e(β, α) that is related to
GPD E(x, ξ) invisible in the forward limit.

VI. SUMMARY

Summarizing, the model for GPD H proposed in this
paper differs from the “old-fashioned” DD+D model
by an extra −ξE1

+(x, ξ) term constructed from the DD
e(β, α) corresponding to the GPD E(x, ξ). The inclu-
sion of such a term modifies the original DD-based term
FDD(x, ξ) at the border points |x| = ξ and outside the
central |x/ξ| ≤ 1 region, which may have strong phe-
nomenological consequences.
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