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We discuss building models for nucleon generalized parton distributions (GPDs) H and E that
are based on the formalism of double distributions (DDs). We found that the usual “DD+D-term”
construction should be amended by an extra term, ¢EL (x, &) built from the a/8 moment of the
DD e(B, «) that generates GPD E(x,§). Unlike the D-term, this function has support in the whole
—1 <z <1 region, and in general does not vanish at the border points |z| = €.

PACS numbers: 11.10.-z,12.38.-t,13.60.Fz

I. INTRODUCTION

The studies of Generalized Parton Distributions
(GPDs) [1-4] require building theoretical models for
GPDs which satisfy several nontrivial requirements such
as polynomiality [5], positivity [6-8], hermiticity [1], time
reversal invariance [5], etc. The constraints follow from
the most general principles of quantum field theory. Poly-
nomiality (that may be traced back to Lorentz invari-
ance) imposes the restriction that ™ moment of a GPD
H(z,&;t) must be a polynomial in £ of the order not
higher than n+ 1. This property is automatically obeyed
by GPDs constructed from Double Distributions (DDs)
[1, 3, 8, 9]. (Another way to impose the polynomiality
condition onto model GPDs is “dual parameterization”
[10-14]). Thus, within the DD approach, the problem of
constructing a model for a GPD converts into a problem
of building a model for the relevant DD.

Double distributions F(8, a;t) behave like usual par-
ton distribution functions (PDFs) with respect to its vari-
able (3, as a meson distribution amplitude (DA) with re-
spect to «, and as a form factor with respect to the in-
variant momentum transfer ¢. The factorized DD ansatz
(FDDA) [8, 15] proposes to build a model DD F(8, a)
(in the simplified formal ¢ = 0 limit) as a product of the
usual parton density f(8) and a profile function h(g, @)
that has an a-shape of a meson DA. However, it was no-
ticed [16] that in the case of isosinglet pion GPDs, FDDA
does not produce the highest, (n + 1)%* power of £ in the
2™ moment of H(x,¢). To cure this problem, a “two-DD”
parameterization for pion GPDs was proposed [16], with
the second DD G(3, a) capable of generating, among oth-
ers, the required £" "1 power. It was also proposed [16] to
use a “DD plus D” parameterization in which the second
DD G(B,«) is reduced to a function D(«) of one vari-
able, the D-term , that is solely responsible for the ¢*+!
contribution. As emphasized in Ref. [16], one should
also add D-term in case of nucleon distributions. The
importance of the D-term and its physical interpretation
were studied in further works (see Ref. [17] and references
therein).

In the pion case, it was shown [18] that one can reshuf-
fle terms between F' and G functions of the F + G de-

composition without changing the sum (“gauge invari-
ance”). Furthermore, it was found in Ref. [19], that one
can write a parameterization that incorporates just one
function f(f, «), but still produces all the required pow-
ers up to "1, A model for the pion GPD based on this
representation was built in our paper [20]. An impor-
tant ingredient of our construction was separation of DD
f(B,) in its “plus” part [f(53,a)]+ that gives zero after
integration over 8, and D-term part 6(8)D(«)/a. For
DDs singular in small-/3 region, such a separation serves
also as a renormalization prescription substituting a for-
mally divergent integral over 8 by “observable” D-term.

In the present paper, we apply the technique of Ref.
[20] (see also [21]) for building models of nucleon GPDs
H(z,€) and E(x,€&). The paper is organized as follows.
To make it self-contained, we start, in Sect. II, with a
short review of the basic facts about DDs, GPDs and D-
term, using a toy model with scalar quarks, that allows
to illustrate essential features of GPD theory avoiding
complications related to spin. In Sect. III, we describe
the theory of pion GPD H(x,¢), presenting the results
of Ref. [20] in a form suitable for generalization onto the
nucleon case. In Sect. IV, we recall the basic ideas of the
factorized DD Ansatz of Refs. [8, 15]. In Sect. V, we use
the formalism described in previous sections for building
DD models for nucleon GPDs H(x,&) and E(z,¢).

An essential point is that two functions A and B as-
sociated with two basic Dirac structures present in the
twist decomposition of the nucleon matrix element do not
coincide with H and F. In fact, A= H+F and B = —F.
What is most important, A and B have different types
of DD representation: A is given by the simplest (scalar-
type) DD representation, while B is given by a more
complicated representation coinciding with the one-DD
parametrization of the pion case. Thus, building a model
for H one should deal with a sum A + B, the terms of
which have different-type DD representations. The re-
sult of this mismatch is a term, which we call {E7 (z,€)
that is given by the “plus” part of the o/ moment of
DD e(, &) used in parametrization for F(z,£) GPD. The
term {E1 (, £) should be included in the model for GPD
H(z,£). However, unlike the D-term contribution, the
function ¢EY (z,€) in general does not vanish both at



the border points |x| = ¢ and also outside the central
region |x| < ¢&.
In final section, we summarize the results of the paper.

II. BASICS OF THEORY FOR DDS AND GPDS
A. Matrix elements and DDs

Parton distributions provide a convenient way to
parametrize matrix elements of local operators that ac-
cumulate information about hadronic structure. Vari-
ous types of distributions differ by the nature of the
matrix elements involved. In particular, to define
GPDs, one starts with non-forward matrix elements
(P+r/2|...|P —r/2), with P being the average of the
initial and final hadron momenta, and r being their dif-
ference. In scalar case (which illustrates many essential
features without irrelevant complications) we have

(P4 1/20(0){ Dy, - Dy }(0)|P —7/2)

co rn—1
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The notation {...} indicates the symmetric-traceless part
of the enclosed tensor. Since two vectors are involved,
we have n + 1 distinct tensor structures differing in the
number [ of r factors involved. In the forward r = 0 limit,
only the A,, coefficients are visible. Another extreme
case is | = n, corresponding to the tensor {r,, ...7, }
built solely from the » momentum.

The forward r = 0 limit corresponds to matrix ele-
ments defining usual parton distributions f(z) as a func-
tion whose moments produce A,:

/_ 11 F@)a™dz = A, | @)

The parton interpretation of f(z) is that it describes a
parton with momentum xP. This definition of f(z) may
be rewritten in terms of matrix elements of operators on
the light cone:

(Plo(=2/2)y(2/2)|P)
1

:/ f(z) e (P2) gy 4 0(2?) . (3)
-1

In a general non-forward case, the parton carries the
fractions of both P and r momenta. Note, that in the

>
momentum representation, the derivative 9, converts
into the average k,, = (k,+¥k;,)/2 of the initial k and final

k" quark momenta. After integration over k, (k)™ should
produce the P and r factors in the r.h.s. of Eq. (1). In

this sense, one may treat (k)" as (BP+ar/2)™ and define
the double distribution (DD) [1, 3, 8, 9]

|
(n_TlLW/QF(ﬂ,a)ﬂ"lal dBda=A,  (4)

as a function whose 8" 'a! moments are proportional to
the coefficients A,;. It can be shown [1, 3, 15] that the
support region {2 is given by the rhombus |a| + || < 1.
These definitions result in the “DD parameterization”

(P =r/2ld(=2/2)(2/2)|P +1/2)
— [ P(g.a) e PIe R 45 da 1 OG2) . (5)
Q

of the matrix element.

B. Introducing GPDs and D-term

Another parametrization of the non-forward matrix el-
ement is in terms of generalized parton distributions. In
scalar case GPDs are defined by

(P —r/2[¢(=2/2)p(2/2)|P +1/2)
:/ e P H (5, €) dx + O(?) | (6)

-1

and relation between GPD and DD functions is given by
H(z,¢) = / F(8,0)6(x — B —€a)dBda . (7)
Q

The skewness parameter £ in this definition corresponds
to the ratio (rz)/2(Pz).

In the forward limit £ = 0, GPD H(x,&) converts into
the usual parton distribution f(z). Using DDs, we may
write

1—|x|
f(z) :/ F(z,a)da . (8)

—1+|z|

Thus, the forward distributions f(xz) are obtained by in-
tegrating DDs over vertical lines 8§ = z in the (8, «)
plane. As discussed above, f(z) is defined through the
coefficients A, corresponding to tensors without r fac-
tors. Similarly, one can treat the A, coefficients, corre-
sponding to tensors without P factors, as the moments
of another function D(«)

/_ D(0) (0/2)" dar = Ay )

the D-term [16]. From the definition of DD (4), it follows
that

1—|«f
D(a) = /-1+|a F(B,a)dB | (10)



i.e.,, D-term D(«) is obtained from DD F(8,«) by inte-
gration over horizontal lines in the {8, a} plane. In this
sense, one can think of “vertical” projection of DD that
produces the forward distribution f(3), and “horizontal”
projection that produces D-term D(«).

Taking the 2™ moment of GPD H(z,¢)

1 n
/ H(z, &) a"do =) An(2)", (11)
-1 1=0

we see that the coeflicients A,, are responsible for the
highest power of skewness £ in this expansion.

C. DD plus D parametrization

Parameterizing the matrix element (1), one may wish
to separate the A,,,, terms that are accompanied by ten-
sors built from the momentum transfer vector r only,
and, thus, are invisible in the forward r = 0 limit, i.e., to
separate the D-term contribution. This can be made by
simply using

efiﬁ(Pz) — [efiB(Pz) _ 1] +1 (12)

which converts the DD-parameterization into a
“DDy plus D” parameterization

(P —=r/2[p(=2/2))(2/2)| P +7/2)
_ / [F(B, )]s e~ BP=iatr2)/2 45 4o
o

1
+ / D(a) e~ r2)/2 do 4+ O(2?) | (13)
-1

where

1—|a

[F(B. )]+ = F(B.a) — 6(8) / Flr.a)dy (14)

—1+|af

is the DD with subtracted D-term given by Eq.(10).
Then

F(B,a) =[F(8,a)ly +(8)D(a) (15)
and
H(w.€) = Hy(o.8) + D) (16)
where

1y (0.6) = [ [F(8.0)), 8o = f— ¢0) dida
— [ F(s.0) [5a - 5 ¢a)
Q
— oz — ga)] dBde (17)

is the “plus” part of GPD H(z,§).

A straightforward observation is that the " moment
of H(z,€) does not contain the highest, namely the n't
power of &, since the relevant integral

/Q o [F(B,0)], dfda (18)

vanishes because the integrand is a “plus” distribution
with respect to .

For n = 0, the highest power is £°, and since the
n = 0 moment of Hy (x, ) should not contain this highest
power, it contains no powers of £ at all, i.e. it vanishes:

/_1 H+(x,§)dx:/Q[F(ﬁ,a)]+ dBda=0. (19)

Thus, Hy(z,£) has the same property with respect to
integration over x as a “plus” distribution

1

(@) =h(@) - 3) [ bz (20)

-1

However, Hi(z,£) may be a pretty smooth function,
without any d(z) terms. It should just possess regions
of positive and negative values of H, (z,£) averaging to
zero after x-integration.

D. D-term as a separate entity

In the simple model with scalar quarks, one may just
use the original DD F(8,«) without splitting it into
the “plus” part and the D-term. One may imagine
that the DD F(f8,«) is some smooth function on the
rhombus, with nothing spectacular happening on the
B = 0 line. In such a case, one may, of course, write
F(B,a) = [F(B,a)]+ + 6(8)D(«a), with the D-term ac-
companied by the §(3) function, but this term is precisely
canceled by the ~ §(8) term contained in [F(3, )] .

However, if the theory allows purely t¢-channel ex-
changes, then the relevant diagrams generate ~ 0(0)
terms not necessarily connected to other contributions.
E.g., our scalar quarks may have a quartic interaction,
and the t-channel loop would generate a §(8)p(a) type
contribution into F(f, ).

Furthermore, D term is formally given by the integral
of F(8,a). An implicit assumption is that this integral
converges, which is the case if F'(8, a/) is not too singular.
Note, however, that the integral of F(f3,a) over « gives
f(B), a usual parton distribution which are known to
have a singular ~ 7% behavior for small 8. This means
that the S-profile of DD F(f,«) should be similar to
that of f(8), and also be singular in the 8 — 0 region,
F(B,a) ~ B~*. The integral over 3 converges if a < 1.
However, as we will see in Sec. III B, one may need
the integrals involving F(8,a)/8 which diverge for any
positive a. The integral for [F'(3, «)]+ still converges for
a < 1, and the role of the D term in this case is to



substitute the divergent integral

1—|e
/ F(B,a)dp (21)

—1+]af

by a finite function D(a)) whose o™ moments then give
finite coefficients A,,,. In this case, the “DD, plus D”
separation serves as a renormalization prescription defin-
ing the moments of DD.

An attempt to consistently “implant” the Regge be-
havior into a quantum field theory construction was made
in Ref. [22], where a dispersion relation was used for an
amplitude that has s* Regge behavior at large energies.
For any positive a, such a relation requires a subtraction,
which (as shown in Refs.[20, 22]) results in a §(8)p(«)
term contributing to D(a).

III. PION DDS AND GPDS
A. Two-DD representation

In fact, D-term was introduced first [16] in the context
of pion GPDs, with pion made of spinor quarks. In that
case, it is more difficult to avoid an explicit introduction
of the D-term as an extra function. The basic reason is
that the matrix element of the bilocal operator in pion
case has two parts

<P*7"/2|1/_’(*Z/2)’YM/1(2’/2)|P+7’/2>|twist—2
= 2P#f((Pz), (rz), 22) + r#g((Pz), (rz), 22) . (22)

This suggests a parametrization with two DDs corre-
sponding to f and g functions [16]. For the matrix ele-
ment (22) multiplied by z* (the object one obtains doing
the leading-twist factorization for the Compton ampli-
tude [23] ) this gives

(P —1/21(=2/2)7, P (2/2)|P +1/2)

:/e,ig(Pz)fiaz(TZ)/2 {Q(Pz)F(ﬁ,a)
Q

+ (rz)G(B, a)] dBda + O(z%). (23)

Then GPDs are given by a DD representation
H(z,¢) = /Q[F(@a) +£G(B, )] 6(x — B — €a)dBda
(24)

that involves two DDs: F(3,«) and G(8, ). The highest
power "FL for the 2™ moment of H(x,£) is given now
by the G term, which one can separate

G(B,a) = [G(B, )]+ +6(8) D(e) (25)

into a “plus” part and D-term

As a result,

H(z,§) = F(x,8) + £G4 (2,§) +sgn(§)D(x/€) . (27)

where
F@.8) = [ F(.0)dw—p—ga)ddda (29
and
Gi(w.8) = [ GBo) [3(o —p—<a)
~ oz — ga)] dBdo . (29)

The forward distribution f(z) in two-DD formulation is
obtained from the DD F only:

1-18|
£(8) = [ oy Pl do (30)

Thus, D-term and f(x) are obtained from different func-
tions, so the D-term is indeed looking like an independent
entity.

B. One-DD representation

Note that the Dirac index p is symmetrized in the lo-
<>

cal twist-two operators @Z_J{fyu Ouy - - B),U'n i with the p;
indices related to the derivatives. Thus, one may ex-
pect that it also produces the factor P, + ar,/2. In
Ref. [24], it was shown that this is really the case. In
other words, not only the exponential produces the z-
dependence in the combination S(Pz)+«(rz)/2, but also
the pre-exponential terms come in the S(Pz) + a(rz)/2
combination. The result is a representation in which

2(P2)F(B,a) + (r2)G(B, @)
= [28(Pz) + a(r2)]f (B, @) , (31)

that corresponds to

F(ﬁaa) = ﬂf(ﬁ7a)

and

G(B,a)=af(B,a) .

Thus, one deals formally with just one DD f(3,a). The
two-DD representation for GPDs (24) converts into

H(x, ) = /Q (B + £0) f(B0) 6(z — B — £a) df da
— 2 /Q f(B.a) bz — f—€a)dBda  (32)

in the “one-DD” formulation.



The D-term in the one-DD case is given by

1—|ef
D() = a / F(B,a)dp (33)

—1+]af

and one may write f(5,«) as a sum

F(80) = (B o)+ (3
of its “plus” part
1—|«|
fB.a))e = £Be) =03 [ fa)dy @)
—~1+]al

and D-term part §(8)D(«a)/c.
For the GPD H(z,§), the “DD,+ D” separation cor-
responds to the representation

H(z,§) = Hy(x,8) +sgn(§)D(z/S) , (36)

where

Helnd) | #66.0) [pta = 5~ €0

[ 5a)} dBde . (37

Using f(8,«) = F(B,a)/B we may rewrite

H(w, ) = /Q (6+ €a)f(B,) b(z — B — £a) dB da
- /QFw,a) 5(a — B - £a)dB da

Mm——a—m—a a
¢ [ SE[5la 5~ €a) ~ ba - o) dpd

+sgn(&) D(x/€)
= Fpp(,€) + EF} (2,€) +sgn(€) D(z/¢) , (38)

where
Fpp(z,€) = /QF(ﬁ,a) Sz —B—ca)dBda  (39)

is GPD constructed from DD F(8,«) by the same for-
mula as in scalar case. Another term

Flao= [

(§70.) b5~ eadsda o)
o \ B .

is a GPD built from the “plus” part of the DD
aF(B,a)/B. The latter, of course, may be written as
G(f, «), but in the spirit of the one-DD formulation, one
may wish to express the results in terms of just one func-
tion F(8, a).

IV. FACTORIZED DD ANSATZ

In the forward limit £ = 0, GPD H(z,£) converts into
the usual parton distribution f(x). In the one- DD for-
mulation, we may write

1—|z|
fz) = x/ f(z,a)da . (41)

—1+|=|

Thus, the forward distributions f(z) are obtained by in-
tegrating over vertical lines 8 = x in the (8, «a) plane.
For nonzero &, GPDs are obtained from DDs through
integrating them along the lines 8 = x — £a having 1/¢
slope. The reduction formula (41) suggests the factorized
DD Ansatz

f(B; ) = h(B,a) f(B)/B (42)

where f(3) is the forward distribution, while h(8, @) de-
termines DD profile in the « direction and satisfies the
normalization condition

18]
/ h(B,a)da=1. (43)

—1+8]

The profile function should be symmetric with respect
to @ — —a because DDs f(,«) are even in « [15, 25].
For a fixed 8, the function h(8,«) describes how the
longitudinal momentum transfer r* is shared between
the two partons. Hence, it is natural to expect that
the shape of h(f,«) should look like a symmetric me-
son distribution amplitude (DA) ¢(«). Since DDs have
the support restricted by |a] < 1 — ||, to get a more
complete analogy with DAs, it makes sense to rescale
a as a = (1 — |B]|)y introducing the variable v with /-
independent limits: —1 < v < 1. The simplest model
is to assume that the y—profile is a universal function
g(y) for all 5. Possible simple choices for g() may be
§(7) (no spread in y-direction), 2(1 —~?) (characteristic
shape for asymptotic limit of nonsinglet quark distribu-
tion amplitudes), }—2(1 —~2)? (asymptotic shape of gluon
distribution amplitudes), etc. In the variables 3, «, these
models can be treated as specific cases of the general
profile function

_ T(2N+2)
- 22NHIT2(N 4+ 1)

[(1—18)% = ¥
(1 =[B!

N (8, ) , (44)

whose width is governed by the parameter N.
To give a graphical example, we show in Fig.1 the sim-
plest GPD Fpp(z,£) (39) built from the model

F(B,a) = f(B)RM (8, ) (45)
with forward distribution
) = (1-2)* Ve (46)

and N = 1 profile function (analytic results for
fmed(z) = (1 —2)327% and N = 1 profile may be found
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FIG. 1. GPD Fpp(z,§) for £ =0.3.

in Refs. [26-28]). The model forward function was cho-
sen in the form reproducing the x — 1 behavior of the
nucleon parton distributions and the ~ 795 Regge be-
havior of valence part of quark distributions for small z,
which was taken for simplicity, though the GPD shown
corresponds to the C-even component (the full function
is antisymmetric in z, and only the x > 0 part is shown).

V. NUCLEON GPDS
A. Definitions of DDs and GPDs

In the nucleon case, for unpolarized target, one can
parametrize

W10 (—2/2) 62/ DIP)wist—2 (47)
= [ P2 [ fu(p) a( B, )

,Q /
+ %Qﬁp) [28(Pz) + a(rz)]b(B, a)} dBda + O(z%) .

Here, the functions a,b are DDs corresponding to the
combinations A = H + E and B = —F of usual GPDs
H and FE (see Ref. [28]). These GPDs may be expressed
in terms of relevant DDs as

A9 = [ alp.0)d(e—p—a)dbda (9)
and
B(x,¢&) :x/ﬂb(ﬁ,a) d(x— B —ECa)dfda . (49)

Notice that we have two different types of relations
between GPDs and DDs: A(x,&) is obtained from its
DD a(B,«) just like in the simplest scalar case, while
B(x,§) is calculated from b(f, ) using the formula with
the one-DD representation structure. The difference, of
course, is due to the factor [28(Pz)+«a(rz)] in the b-part.

In the forward limit, we have
A(x,0) = H(z,0) + E(z,0) = f(z) + e(x) (50)
and
B(z,0) = —E(z,0) = —e(x) . (51)

These reduction formulas suggest the model representa-
tion

a(B,a) = f(B,a) + (B, ) (52)
and
__eBa)
b(B,a) = 5 (53)

Because of possible singularity of e(8,a)/8 at =0, we
write it in the “DD, + D” representation:

e(B, ) D(a)
e )++6<5> ()

a
where D(«) is the D-term.

b(6.0) = - (

B. General results for GPDs

As a result, we have
H(z,§) = A(z,§) + B(,¢) (55)
= [ 1#(5.0)+ e(8.0)) a5~ €a) dB da

_;U/Q l(e(ﬁﬁ,a)x_(s(@)%a)] §(x — B — &) dB da

= Fpp(x,§) + Epp(x,§) — EL(x,§) +sgn(§) D(x/§) ,

where

Fop(a,€) = /Q F(B.)6(z — f— €a)dfda  (56)
and

Epp(,¢) = /Q e(B,a)5(x - f— €a)dBda  (5T)

are build from DDs by simplest formulas not involving a
division by [ factors, while

(2,6 _ / (8,0)
Q

X

; [5@; B fa) — (x — ga)] dB do
:/ (ew?a)) Sz — 8 — €a)dBda (58)
Q +

B

has the structure of a one-DD representation. Since
E,(z,£)/z is built from the “plus” part of a DD it should
satisfy
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FIG. 2. GPD E4(z,€) for £ =0.3.

Being (for C-even combination) an even function of x,
the function F, (z,&)/x obeys

/1E+(””’5)dxo. (60)
0

X

C. Modeling GPDs

To illustrate the structure of F, (z,£), we show it in
Fig.2 using the model based on

e(B,a) = e(B)hM (B, a) (61)

with N = 1 profile function and the same forward dis-
tribution e(r) = (1 — 2)®/y/x that was used to model
Fpp above. Again, we have in mind the C-even,
quark+antiquark part of the distribution, and valence-
type functional form is used to simplify the illustration.
One can see that Ey(x,¢) is a regular function, and van-
ishing of Ey (x,&)/x integral is due to compensation over
positive and negative parts (see Fig.3) rather than be-
cause of subtraction of a §(x) term.

In a more realistic modeling, one should adjust nor-
malization of e(z) to reflect its relation to the anomalous
magnetic moment. Also, the fits of the nucleon elas-
tic form factors [29] suggest for e(x) a higher power of
(1 — x). However, our aim while showing the curves in
the present paper is just to illustrate the qualitative fea-
tures of various GPD models, so we will stick to the same
generic forward function both for f(x) and e(x).

The function E, (z,¢) may be displayed as

Pr@=a | i

=/ (B,0)8(z —  — €a) dB da

e
Q

[0(z — B —&a) —d(x — €a)] dB da

+£/Q & e(8.0) (6w~ B - 6a) = 8(z ~ )] dida

~ Eon(e.9) +€ | (g e(ﬁ,oo)+ 5z — B — €0) df da

= EDD(xag) + gEi(SL’,f) ) (62)

where

Y@= [ (g e(ﬂ,oo)+ 5z — f — €a) B dac
(63)

Since E1 (&) is built from the “plus” part of a DD,
its x-integral from —1 to 1 is equal to zero, but in fact
it vanishes also for a simpler reason that Ei(ﬂmf) is an
odd function of z. So, in this case, we cannot make
any conclusions about the magnitude of the z-integral of
Bl (z,€) from 0 to 1.

Summarizing, GPD E, is obtained from the naive
Epp function by adding to it the EY (z,€) term, which
results in a rather nontrivial non-monotonic behavior of
the F, function. To get the full GPD E, one should
subtract also the D-term contribution:

E(z,8) =E4(x,§) —sgn(§)D(z/¢) (64)
= Epp(x,&) + EE (2,€) —sgn(€) D(z/€) -
For GPD H, we then have

H(x,€) = Fpp(x,§) — EE4 (z,€) + sgn(€) D(x/€) .
(65)

Now one should subtract EY (z,£) from the naive Fpp
function and then add the D-term contribution.

E+(LL’,€)/ZC
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5
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FIG. 3. GPD E (z,&)/z for £ = 0.3.
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FIG. 5. Model nucleon GPD H(z,§) (without D-term) for
£=0.3.

Comparing this result with the pion case for which

H(z,§) = Fpp(x,8) + £Fy (x,8) +sgn(€) D(x/€)
(66)

we see that the structure of the pion GPD H is similar
to that of the nucleon GPD E,: the term £FY(z,€) is
added to Fpp(z,£) rather than subtracted. However, in
case of the nucleon GPD H, the extra term is built from
the second nucleon DD e(8, ) rather than from f(8, a),
and it is subtracted from Fpp(z,§) rather than added to
it.

D. Polynomiality

Taking the 2™ moment of H(x, &) in this construction,
we note that the Fpp(z,&) term produces only the pow-
ers of £ up to £". Next observation is that the highest,
namely n*® power of ¢ in the 2 moment of Ei(z,)

involves the integral

o (ge(ﬂ,a))+ dp do (67)

that vanishes because the integrand is a “plus” distribu-
tion with respect to 8. Hence, {E7 (z,£) term also can-
not produce the £"*! contribution for the ™ moment of
H(z,£). Such a term is produced by the D-term only.

E. Comparison with “DD plus D-term” model

The usual “DD plus D-term” model in the context
of the present paper corresponds to “Fpp plus D-term”
combination, i.e. modeling nucleon GPDs without sub-
tracting the £EY (z,€) term when modeling H (z,§), (or
adding it when modeling E(z,¢)).

In a sense, our new model results from the old
“DD plus D” model by substituting sgn(£)D(z/£) with
—EB (2,€) +sgn(§) D(x/€).

Since the D-term is fitted to data, one may wonder
if adding £F7 (z,&) may be absorbed by redefinition of
the D-term. However, there are important qualitative
differences between EY (z,£) and D(x/€). First, the sup-
port region of E (x,) is not restricted to the segment
|z] < €. Furthermore, existing models of D(z/£) assume
that it is a continuous function that vanishes not only
outside the central |z| < & region, but also at the bor-
der points |z| = £ (otherwise, GPDs H and E would be
discontinuous at the border points, and pQCD factoriza-
tion formula for DVCS would make no sense). As we
have seen, E}r(x,f) is a continuous function of x in the
whole |z| < 1 region, and it is not vanishing at the border
points |z| = &.

Thus, the most apparent difference between the two
models is that the value of H (¢, €), the GPD at the border
point, in the new model is different from that given by
GPD Fpp(&,€) built solely from DD f(3, ) related to
the usual forward parton density f(/3). Furthermore, this
difference is determined by DD e(3, «) that is related to
GPD E(x,¢) invisible in the forward limit.

VI. SUMMARY

Summarizing, the model for GPD H proposed in this
paper differs from the “old-fashioned” DD+D model
by an extra —¢E% (z,£) term constructed from the DD
e(B,a) corresponding to the GPD E(x,¢). The inclu-
sion of such a term modifies the original DD-based term
Fpp(x,€) at the border points || = £ and outside the
central |z/¢] < 1 region, which may have strong phe-
nomenological consequences.
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