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Abstract

Roberge and Weiss showed that for SU(N) gauge theories, phase transitions occur in the presence

of an imaginary quark chemical potential. We show that at asymptotically high temperature, where

the phase transition is of first order, that even with dynamical quarks ’t Hooft loops of arbitrary

Z(N) charge are well defined at the phase boundary. To leading order in weak coupling, the ’t

Hooft loop satisfies Casimir scaling in the pure glue theory, but not with quarks. Because the

chemical potential is imaginary, typically the interaction measure is negative on one side of the

phase transition. Using a matrix model to model the deconfining phase transition, we compute the

phase diagram for heavy quarks, in the plane of temperature and imaginary chemical potential. In

general we find intersecting lines of first order transitions. Using a modified Polyakov loop which

is Roberge-Weiss symmetric, we suggest that the interface tension is related to the ’t Hooft loop

only at high temperature, where the imaginary part of this Polyakov loop, and not the real part,

is discontinuous across the phase boundary.
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I. INTRODUCTION

Understanding the nature of the phase diagram of Quantum Chromodynamics (QCD) is

one of the outstanding problems in nuclear physics. At zero chemical potential, the theory

can be studied by numerical simulations on the lattice. Generally this is not possible at

nonzero chemical potential because of the sign problem [1].

One way to trying to understand the theory for nonzero chemical potential is to consider

a chemical potential which is purely imaginary: then there is no sign problem, and numerical

simulations are possible. Although an imaginary chemical potential is not directly physi-

cal, results can be related to those for real chemical potential using Fourier and Laplace

transformations [2].

The pure gauge theory is invariant under a global symmetry of Z(N), but this is violated

when dynamical quarks are present. Roberge and Weiss showed, however, that in the pres-

ence of φ, an imaginary quark chemical potential, that the theory acquires a global Z(N)

symmetry, under which φ → φ+1/N [2]. They also showed that at high temperature, there

is a first order transition at constant temperature, as φ is varied across φRW = 1/(2N). We

generalize this to Z(N) transformations of charge k, and find a first order transition when

φRW = k/(2N). As the temperature is lowered, this single line of transitions can split into

two lines at φ 6= φRW ; these can be a true phase transition, of first or second order, or just

crossover. For a transition which occurs when φ 6= φRW , the Roberge-Weiss transition mixes

either with the transitions for deconfinement or for the restoration of chiral symmetry. This

has been studied by numerical simulations on the lattice [3–5], in effective theories [6], and

in holographic models [7].

In this paper we show that Roberge-Weiss phase transitions have an unexpected connec-

tion with pure glue theories. Consider SU(N) gauge theories without dynamical quarks.

Running the Wilson loop in the temporal direction gives the Polyakov loop. This is an order

parameter for Z(N) electric charge, whose expectation value vanishes in the confined phase

and is nonzero in the deconfined phase. Similarly, the two point function of Polyakov loops

exhibits an area law in the confined phase.

The response of the theory to Z(N) magnetic charge is given by the ’t Hooft loop [8–11].

Its behavior is converse to that of the Wilson or Polyakov loops, in that the ’t Hooft loop

exhibits an area law only in the deconfined phase. The string tension for the area law of
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the ’t Hooft loop [9] is equal to the order-order interface tension for Z(N) interfaces [12].

(Throughout this paper we assume that the ’t Hooft loop is purely spatial; with or without

quarks, temporal ’t Hooft loops do not develop an area law at any temperature [10].)

Dynamical quarks carry Z(N) electric charge, and so modify the behavior of both loops.

The Polyakov loop is no longer a strict order parameter, but is nonzero at any temperature

T 6= 0. Similarly, one expects that the ’t Hooft loop acts as in the deconfined phase of the

pure glue theory, and so exhibits an area law. However, it is not clear how to define the ’t

Hooft loop in a theory with dynamical quarks [9].

In this paper we show that ’t Hooft loops are well defined for a Roberge-Weiss transition

at φRW = k/(2N). Establishing this result is not difficult. In a gauge theory, a global Z(N)

transformation is an overall rotation of the quark field by a constant phase. This can be

exactly compensated by a shift in an imaginary chemical potential for the quarks. What is

less obvious is how the boundary conditions of the Roberge-Weiss transition are precisely

equivalent to those for a Z(N) interface, and thus to the ’t Hooft loop [9].

We compute the behavior of the ’t Hooft loop at asymptotically high temperature, where

the calculation can easily be done using semi-classical techniques. In the pure glue theory,

at leading order and up to corrections ∼ g3, the interface tension associated with ’t Hooft

loops of different charges satisfies Casimir scaling [13]. We find that even to leading order,

dynamical quarks do not respect the Casimir scaling found in the pure glue theory.

We also consider the thermodynamics of Roberge-Weiss phase transitions. We show that

the interaction measure is negative on at least one side of the Roberge-Weiss transition. This

happens because both the chemical potential and the associated quark number densities are

imaginary. Thus their contribution to the energy density can be negative, and so unphysical.

It is also of interest to know how the ’t Hooft loop behaves for temperatures which

are not asymptotic. To study this, we consider heavy quarks, so that there are Roberge-

Weiss and deconfining phase transitions in the plane of temperature and imaginary chemical

potential. We use a matrix model [14, 15], which was used previously to locate the position

of the deconfining critical endpoint for heavy quarks [16]. In this matrix model we find

intersecting lines of first order transitions in the T − φ plane. There are lines of first order

transitions both at φRW and φ 6= φRW . Depending upon the quark mass, these first order

lines end in either critical or tri-critical points. Our results are in good agreement with

recent results on the lattice [5].

3



The phase transitions in T and φ are naturally characterized by a modified Polyakov loop,

which is constructed to be invariant under the Roberge-Weiss symmetry. For the transition

at φRW , as occurs at high temperature, only the imaginary part of the Polyakov loop is

discontinuous. At lower temperatures, there are first order transitions for φ 6= φRW , where

both the real and imaginary parts of the modified Polyakov loop jump. Since the real part of

the Polyakov loop characterizes the usual phase transition for deconfinement, the transitions

when 0 < φ 6= φRW < 1/N are those where deconfinement mixes with the Roberge-Weiss

transition. We find that the interface tension of a first order transition is related to a ’t

Hooft loop if and only if it is entirely Roberge-Weiss, occurring at φRW .

In this paper we do not analyze a matrix model with light quarks, where the restoration

of chiral symmetry also enters [3, 4]. At high temperature there is only a Roberge-Weiss

transition at φRW , while at lower temperatures, the order parameter for chiral symmetry

breaking can mix with the imaginary part of the Polyakov loop. Nevertheless, we suggest

that an analogous criterion occurs: the ’t Hooft loop is related to the interface tension of a

first order transition only at high temperature, for a Roberge-Weiss transition at φ = φRW .

Hence in general, ’t Hooft loops can only be defined at temperatures which are above that

for deconfinement or the restoration of chiral symmetry. Nevertheless, we find it noteworthy

that even a limited region of an extended phase diagram, it is possible to measure ’t Hooft

loops in a gauge theory with dynamical quarks.

In Sec. (II) we discuss the global Z(N) symmetries of the pure gauge theory, the symme-

tries with dynamical quarks, and the relationship to ’t Hooft loops. In Sec. (III) we consider

the thermodynamics of Roberge-Weiss phase transitions, and the phase diagram with heavy

quarks.

II. Z(N) SYMMETRY AND ’T HOOFT LOOPS

A. General analysis

We work in imaginary time τ at a temperature T , so τ : 0 → 1/T . Under a gauge

transformation U(~x, τ), the gluons and quarks transform as

Aµ(~x, τ) →
1

ig
U(~x, τ)Dµ U

†(~x, τ) , q(~x, τ) → U(~x, τ) q(~x, τ) , (1)

Dµ = ∂µ + igAµ.
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A special class of gauge transformations are those which are symmetric up to elements

of Z(N). Consider the matrix e2πik/N1N ; this has determinant one, and so is an element

of SU(N). Since it is proportional to the unity matrix, we can consider aperiodic gauge

transitions

U(~x, 1/T ) = e2πik/NU(~x, 0) , (2)

where k is an integer. Gluons must be periodic in τ , but this aperiodicity in the U ’s does

alter the gluon boundary conditions, cancelling between U and U †.

Quarks are fermions, and so in the absence of a chemical potential, are anti-periodic in τ .

The boundary conditions are altered by the presence of a chemical potential, µ. Consider

the analytic continuation from a real chemical potential, µ, to one which is imaginary and

proportional to the temperature,

µ = 2πi φ T . (3)

The quarks now satisfy

q(~x, 1/T ) = − e−2πi φ q(~x, 0) . (4)

Because of the change in the fermion boundary conditions, when φ 6= 0 the theory can

exhibit unphysical behavior. For example, φ = 1
2
turns fermions into bosons. We shall see

an example of this unphysical behavior later, when we find that the interaction measure is

negative on one side of the Roberge-Weiss transition line.

As the Z(N) transformation of Eq. (2) is proportional to the unit matrix, for the quarks

it just alters them by an overall phase. Thus in all, quarks transform as

q(~x, 1/T ) = −e2πi (−φ+k/N) q(~x, 0) . (5)

It is useful to think of the boundary condition on the quarks at τ = 1/T as a type of Z(N)

“charge”. Because the Z(N) transformations of the gauge field arise from the details of

the SU(N) algebra, this Z(N) quark charge is heuristic, meant mainly to understand the

detailed computations in the next subsection. By Eq. (5) we normalize the Z(N) charge of

the quark as −φ + k/N .

When there is an imaginary chemical potential, then, a shift in φ can be compensated by

a Z(N) transformation,

φ → φ+
k

N
. (6)
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The action is invariant under this transformation. By construction, so are the boundary

conditions. This is the Roberge-Weiss symmetry [2].

This periodicity can also be understood topologically. In the pure glue theory, the gauge

group is SU(N)/Z(N), and so there is a global symmetry of Z(N). When φ = 0, the gauge

group is just SU(N), and this global Z(N) symmetry is lost. However, by introducing an

imaginary chemical potential, φ, for free quarks we gain an extra global symmetry of U(1).

The coupling of gauge fields reduces this U(1) symmetry to one of Z(N).

We thus have global Z(N) symmetries both in the pure glue theory and, when φ 6= 0,

for dynamical quarks. Thus we might expect that there are non-contractible loops which

measure windings in these global Z(N) symmetries. In the pure glue theory, such windings

are measured by the ’t Hooft loop. Since the transformation of φ is so intimately tied to

the Z(N) symmetry of the pure glue theory, it is perhaps not so surprising that the ’t Hooft

loop continues to measure such windings, even in the presence of dynamical quarks.

We can understand where the Roberge-Weiss transition occurs even without detailed

computation. By the Roberge-Weiss symmetry, φ = 0 is equivalent to φ = k/N . The

simplest way is to introduce a background Z(N) charge k/N , so that at φ = k/N , the total

Z(N) charge is zero. The question is then how to match these two cases, moving up from

φ = 0, and down from φ = k/N . Since at some point the background field has to jump from

zero to k/N , this might generate a transition at some φ.

The most natural place for the transition to occur is exactly halfway in between, at

φRW =
k

2N
. (7)

As φ increases from zero, the Z(N) quark charge decreases, going from zero at φ = 0 to

−φRW just to the left of φRW .

Now work in the opposite direction, letting φ decrease from k/N . Here we have to include

the background charge k/N , so that as φ = k/N , the total Z(N) charge vanishes, consistent

with the Roberge-Weiss symmetry. As φ decreases, the Z(N) charge increases, and equals

−φRW + k/N = +φRW just to the right of φRW .

Thus exactly at the Roberge-Weiss point, the quark Z(N) charge is −φRW on the left, and

+φRW on the right. Because of charge conjugation symmetry, various quantities transform

simply as we flip the sign of the quark Z(N) charge. The pressure is even in φ, so quarks

with equal and opposite Z(N) charge are degenerate, and have no forces acting between
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them. In contrast, the (imaginary) quark number density is odd in φ, and flips moving

across φRW . The change in the sign of the quark number density implies that if we change

φ at fixed temperature, that there is a phase transition at φRW which is of first order.

The existence of a first order transition at φRW is valid only at high temperature. As

we show in the next section using a matrix model for heavy quarks, and in agreement with

lattice results [5], at temperatures near that for deconfinement there can be transitions for

φ 6= φRW , which are of either first or second order. A similar statement can be made for

light quarks, near the transition for the restoration of chiral symmetry [4].

B. Semi-classical analysis

Although the above discussion of quark Z(N) charge is illustrative, it is merely heuristic.

This is because while the quark chemical potential only involves a U(1) phase, the Z(N)

transformations of the gauge field involve the Lie algebra of SU(N), and in particular

the Cartan subalgebra of mutually commuting generators, in a detailed manner. In this

subsection we perform an analysis at high temperature, where all computations can be done

semiclassically.

To generate a Z(N) transformation, consider the diagonal matrix [13]

Yk =
1

N
diag (k . . . k,−N + k, . . .−N + k) . (8)

There are N − k elements with entry k/N , and k elements equal to −1+ k/N . Thus Yk has

zero trace and is an element of the Lie algebra of SU(N). Since

e2πiYk = e2πik/N 1N , (9)

Yk generates a Z(N) transformation with strength k. Y3 is the hypercharge matrix for

three flavors.

The thermal Wilson line is given by

L(~x) = exp

(

ig

∫ 1/T

0

A0(~x, τ)dτ

)

. (10)

Then the path

A0 =
2πT

g
q Yk , (11)
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takes one from the ordinary perturbative vacuum for q = 0, L = 1N , to the kth Z(N)

transform thereof, for q = 1, L = e2πik/N1N .

At the outset it is also useful to consider the matrix YN−k, where

YN−k =
1

N
diag (N − k . . .N − k,−k . . .− k) ; (12)

this has k elements with entry 1 − k/N , and N − k elements with value −k/N . It is clear

that

e2πiYN−k = e2πi(−k)/N 1N . (13)

That is, YN−k generates a Z(N) transformation with charge N − k, which by the additive

Z(N) symmetry is equivalent to charge −k. This symmetry is useful, because we expect that

the interface tension for charge k should be equal to that for charge N−k. The matrix YN−k

makes this manifest, although our final expressions do not obviously reflect this symmetry.

Because of this symmetry, we can restrict k to be less than the nearest integer ≤ N/2.

Classically there is no potential for the q’s, but one is generated at one loop order. This

was first computed by Weiss [17] and Yaffe et al. [18],

Vgl
pt =

2π2T 4

3

(

−
N2 − 1

30
+

N
∑

i,j=1

q2ij(1− |qij|)
2

)

. (14)

The qi are the elements of qYk. The gluon contribution involves the adjoint covariant

derivative, and so only the differences of the qi enter, qij = qi − qj .

The qij ’s arise as the gluon energies divided by 2πT . Since the potential for the qi’s arises

for a Matsubara sum, then it is periodic in the qij , qij → qij+1. Consequently, the potential

only involves the absolute value of qij , modulo one. Thus for the gluon term we can always

require that q : 0 → 1.

The term independent of q is the just (minus) the pressure of an ideal gas of gluons. For

the qij, there are k elements = q(k/N), and N − k elements = q(−1 + k/N). The potential

arises from the (absolute value) of the qi − qj ’s. For these elements, the |qij |’s are either

zero, or q (assuming q > 0). There are 2k(N − k) such terms which give q, and so the gluon

potential is

Vgl
pt(q)− Vgl

pt(0) =
4π2T 4

3
k(N − k) q2(1− q)2 . (15)

The potential is identical at q = 0 and q = 1, which illustrates the Z(N) symmetry of the

pure glue theory between the ordinary vacuum, k = 0, and the kth Z(N) transform.
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In all, the potential is proportional to k(N − k). This is known as Casimir scaling. It is

satisfied in the pure glue theory up to corrections ∼ g3 times the leading order term [13].

For a single, massless flavor, quarks contribute to the potential for q as

Vqk
pt = −

4π2T 4

3

(

−
N

30
+

N
∑

i=1

q2i (1− |qi|)
2

)

. (16)

For the qi, there are N − k elements

qi =
1

2
− φ+

k

N
q ,

and k elements

qi =
1

2
− φ+

(

−1 +
k

N

)

q . , (17)

These q’s differ from the gluon case because of the change in the boundary conditions in τ ,

for fermions and bosons, and because the quarks carry an imaginary chemical potential ∼ φ.

The quark contribution involves the covariant derivative in the fundamental representation,

so it is the qi, and not qi − qj , which enter. Like the gluon potential, as the quark potential

arises from a sum over the Matsubara frequencies, each qi enters only as the absolute value,

modulo one. Thus it is necessary to be careful about the range of the qi. Even so, clearly

Eq. (16) is invariant under two symmetries. As only the absolute value of the qi enter, one is

qi → −qi. The second is apparent from the form of the potential: assuming that 1 ≥ qi ≥ 0,

the quark potential is also invariant under qi → 1− qi.

The qi are the Euclidean energies divided by 2πT . Thus the first factor of 1
2
is the πT

which arises because quarks are fermions, with boundary conditions which are anti-periodic

in imaginary time. The second term, −φ, is the contribution of the imaginary chemical

potential. Lastly, the terms ∼ q arise from the background field.

While we explicitly compute the potential shortly, most aspects of the physics can be

understood without going into such details.

First consider vanishing chemical potential, φ = 0. As discussed above, for the gluons

the potential is periodic in q, with q = 1 degenerate with q = 0, Eq. (15). This reflects the

Z(N) symmetry of the pure glue theory.

This is no longer true with dynamical quarks. Then qi’s involve factors of kq/N ; for

q = 1, this is k/N , and generates a nontrivial potential. Computation shows the quark

potential has a higher value when q = 1 than for q = 0. This occurs because quarks in
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the fundamental representation do not respect the Z(N) global symmetry of the pure glue

theory.

Looking just at the qi’s shows how the Roberge-Weiss symmetry of Eq. (6) works. Com-

pare the ordinary perturbative vacuum, where φ = q = 0, to a state where φ = k/N , and

q = 1. When φ = q = 0, all qi’s equal
1
2
. When φ = k/N , and q = 1, all of the qi’s are either

1
2
or −1

2
. Since only the absolute value enters, both are equivalent to 1

2
.

Thus we see that a state with φ = k/N is equivalent to the perturbative vacuum, if we

shift the background field by k/N . As we increase φ from 0, there is no background field,

but at some point, it shifts to that with k/N . As discussed previously, this happens halfway

in between, at φRW = k/(2N).

At φRW , when q = 0 all N elements equal

qi =
1

2

(

1−
k

N

)

. (18)

When q = 1, there are N − k elements equal to

qi =
1

2

(

1 +
k

N

)

, (19)

and k elements equal to

qi = −
1

2

(

1−
k

N

)

. (20)

Even without computation one can see that the values in Eqs. (19) and (20) are equal to

those in in Eq. (18). The qi’s in Eq. (19) are related to those in in Eq. (18) by qi → 1− qi;

the qi’s in Eq. (20) are equivalent to those in Eq. (18) under qi → −qi.

Explicitly, at φRW = k/(2N) the quark potential is given by

Vqk
pt (q) = −

4π2

3
T 4

(

(N − k)

(

1

4
−

(

k

N

)2(
1

2
− q

)2
)

+ k

(

1−
k

N

)2(
1

2
− q

)2(

1−

(

1−
k

N

)
∣

∣

∣

∣

1

2
− q

∣

∣

∣

∣

)2
)

. (21)

The values of the potential are clearly equal when q = 0 and q = 1; note, however, that

the second term does involve the absolute value of 1
2
− q. Also, this potential is not simply

proportional to k(N − k), and so does not respect Casimir scaling. As argued above, the

potential will respect a transformation under k → N − k, since then Y−k enters, instead of

Yk.
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We can use these results to discuss ’t Hooft loops. In the theory without dynamical

quarks, Kovner, Korthals-Altes, and Stephanov [9] showed that the ’t Hooft loop has a

simple physical interpretation. Consider a box which is long in one spatial direction, say

that in the z-direction. Put a ’t Hooft loop of kth Z(N) charge around the boundary of the

box at one end of the box, at z = L. Then consider boundary conditions which are q = 0 at

z = 0, and q = 1 at z = L. These boundary conditions are identical to that for a order-order

Z(N) interface of charge k [12, 13]. The ’t Hooft loop at z = L then forces q to jump from

1 back to 0, so that in all one has periodic boundary conditions. Neglecting this singularity

shows that the interface tension for the order-order interface is equal to that for the ’t Hooft

loop.

Our analysis above shows that one has identically the same boundary conditions across

the Roberge-Weiss transition point. The vacuum jumps from q = 0 on the left hand side,

to q = 1 on the right hand side. Consequently, at φRW , we can define the ’t Hooft loop in

precisely the same manner as in the pure gauge theory.

We stress that the ’t Hooft loop can only be defined at the Roberge-Weiss transition point,

when φRW . For example, in the ordinary vacuum, φ = 0, the states with q = 0 and q = 1

are not degenerate. Typically, the state with q = 1 is not even extremal [9]. (Depending

upon the matter content, it is possible that the state with q = 1 is metastable [19]; see,

also, [20].) In this case, one can define a ’t Hooft loop, but the interface tension will have

an imaginary part, reflecting this metastability. A necessary condition for the Z(N) loop to

be non-contractible is if the Z(N) transformed states are absolutely degenerate. This only

happens across a Roberge-Weiss transition.

In the pure gauge theory, the value of the ’t Hooft loop depends only upon the area of the

loop, but not upon its shape. Away from the Roberge-Weiss transition, the Z(N) charges of

the quarks are unequal, and have different pressures. This difference in pressure generates

a force, which drives the ’t Hooft loop to be flat.

In contrast, at the Roberge-Weiss transition the Z(N) charges of the quarks are equal

and opposite, and have the same pressure. Thus there is no net force which acts upon the

’t Hooft loop, and its value depends only upon the area of the loop, and not its shape.

In the pure gauge theory, the ’t Hooft loop measures a non-contractible loop for the

global Z(N) symmetry. As we argued in Sec. (IIA), there is also a global Z(N) symmetry

if the quarks have an imaginary chemical potential. Since this global Z(N) symmetry of
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dynamical quarks is intimately tied to the Z(N) transformations of the pure glue theory, it

is natural that the ’t Hooft loop continues to measure the winding in Z(N).

Our results are valid at asymptotically high temperature, where the Roberge-Weiss phase

transition is manifestly of first order. As one lowers the temperature, numerical simulations

on the lattice show that the single transition at φ = φRW can split into two, for φ 6= φRW ,

which are of either first or second order [3–5].

In the next section we also find that for heavy quarks in a matrix model, a single line

of Roberge-Weiss transitions at φRW splits into two transitions for φ 6= φRW , see Fig. (2).

This agrees with the lattice results of Ref. [5]. We argue there that the interface tension

across a first order transition is related to the ’t Hooft loop if and only if the transition

is entirely Roberge-Weiss. For a transition at φRW , the two degenerate vacua are Z(N)

transformations of one another, and so the interface tension is naturally related to the ’t

Hooft loop. In contrast, for transitions for 0 < φ 6= φRW < k/N , the Roberge-Weiss and

deconfining transitions mix with one another. Thus across the dotted lines in Fig. (2),

when φ 6= φRW while the vacua are degenerate across the transition, they are not Z(N)

transformations of one another. Thus the corresponding interface tension is not related to

a ’t Hooft loop.

For light quarks, numerical simulations on the lattice suggest that the single line of

Roberge-Weiss transitions for φRW at high temperature can also split into two transitions

at low temperature, with φ 6= φRW [4]. When this happens, the Roberge-Weiss transition

mixes with that for chiral symmetry restoration. We suggest that as for heavy quarks, the

interface tension across such a first order transition is related to a ’t Hooft loop only when

φ = φRW .

C. Computing the ’t Hooft loop

The explicit computation of the ’t Hooft loop follows standard methods. A Z(N) interface

has an electric field, which contributes to the action as

4π2T 2

g2N
k(N − k)

∫

dz

(

dq

dz

)2

. (22)

The interface tension is determined as a semiclassical tunneling between q = 0 and q = 1. In

the pure glue theory, this involves the sum of the kinetic term in Eq. (22) and the potential
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of Eq. (15). Since each term is proportional to k(N − k), the interface tension is as well,

and so it respects Casimir scaling, at least to leading order in the coupling constant.

With dynamical quarks, the kinetic term remains as in Eq. (22), but now the potential

is a sum of the gluon term in Eq. (15) and the quark term in Eq. (21). Since the quark

potential is not proportional to k(N−k), the interface tension is a more complicated function

of k.

The appearance of Casimir scaling is to some extent an observation about the structure

of the theory in weak coupling. Computation to corrections ∼ g3 beyond that of leading

order shows a small violation of Casimir scaling even in the pure glue theory [13]. So there

is nothing fundamental in Casimir scaling, nor in that it is violated by dynamical quarks.

The only symmetry principle which must be respected is that for Z(N) periodicity. This

requires that the interface tension for k is the same for N−k; this is equivalent to −k, which

as we have argued, is valid.

Let us assume that the path for the interface tension is along the direction Yk. This is

a straight line in the Cartan subalgebra. If true, it is easy computing the ’t Hooft loop.

One has a tunneling problem in this one dimension, and it is easy to solve this by using

“energy” conservation for the associated problem in quantum mechanics [12]. This involves

both the potential and the kinetic term for the gluons, Eq. (22). For the pure glue theory, as

both terms are ∼ k(N − k), and the interface tension follows immediately. With dynamical

quarks, since the quark contribution to the potential is more involved, and even with the

conservation of energy one is left with a single integral over q which needs to be computed

numerically. We defer this exercise, and simply observe that with dynamical quarks, Casimir

scaling will not be satisfied.

This assumes that the straight line path is minimal. We consider this in the next sub-

section.

1. Straight line path

While in the pure glue theory the path for the interface tension is along the direction Yk,

in principle it can move in other directions. The general path for an SU(N) gauge theory

lies in the subspace of all commuting generators, which is the Cartan subalgebra, with N−1

dimensions.
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For the pure gauge theory one can show that the straight line path is minimal [13]. This

has deep geometric reasons: the Yk form the boundary of the Weyl chamber, which is the

smallest possible region to describe the Cartan subalgebra [14]. The endpoints of Yk are the

relevant endpoints for the interface tension, so then it is natural that the boundary, along

Yk, is the minimal path which connects these two points.

With dynamical quarks, the structure of the Weyl chamber at the Roberge-Weiss tran-

sition is more involved. We have not been able to answer this question for an arbitrary

numbers of colors, and so satisfy ourselves with working out the simplest possible cases,

working up from N = 2 to N = 4.

The case of two colors is trivial. There is only one direction, alongY1 ∼ σ3 ∼ diag(1,−1),

and so the path necessarily lies along Y1.

The first nontrivial case arises for three colors, where there are two directions in the

Cartan sub-algebra. For the quarks, the qi’s are

qi =

(

1

2
− φ

)

13 +
q3
2

diag(1,−1, 0) +
q8
3

diag(1, 1,−2) . (23)

In the standard Gell-Mann notation, the directions are λ3 ∼ (1,−1, 0) and λ8 ∼ Y1 ∼

(1, 1,−2), with associated coordinates q3 and q8. For three colors, there is only one interface

tension, as k = −2 is equivalent to k = 1. The endpoints of the interface are given by q8 = 0

and 1, with q3 = 0. The straight line path is along Y1, with one transverse direction, along

λ3.

The qi’s of Eq. (23) are for quarks, but we can use them for gluons, since only the

differences of the qi’s enter in the gluon potential, through qij = qi−qj . Numerically we find

that for the gluon potential of Eq. (14), the straight line path along Y1 is minimal. That

is, for the path where q8 6= 0 and q3 = 0, for every value of q8 the potential is minimal with

respect to variations in the transverse direction, along q3. As noted, this is because Y1 is

the boundary of the Weyl chamber for three colors.

Now consider the quark potential at the Roberge-Weiss transition point, φ = 1/6, using

the qi’s of Eq. (23) in Eq. (16). As in the pure glue theory for three colors, numerically we

have checked that the minimal path is a straight line along Y1.

For four colors there are two possible interfaces, k = 1 and k = 2; the associated elements

of Z(4) are i and −1, respectively.
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For k = 1 we can parametrize the qi’s using the usual Cartan generators,

qi =

(

1

2
− φ

)

14 +
q3
2

diag(1,−1, 0, 0) +
q8
3

diag(1, 1,−2, 0) +
q15
4

diag(1, 1, 1,−3) . (24)

The k = 1 interface is from q15 : 0 to 1, with q3 = q8 = 0 at either end. The straight line

path is along Y1 ∼ (1, 1, 1,−3), with only q15 nonzero. Numerically we checked that the

straight line path is minimal, both in the pure glue theory and with dynamical quarks at

the Roberge-Weiss point for k = 1, where φRW = 1/8.

This exercise also shows that the potential has nontrivial structure. At the Roberge-

Weiss transition for k = 1, φRW = 1/8, there is a metastable minimum in the potential

when q15 = 0: it occurs for q8 = 1, with q3 = 0. It is metastable in all three directions,

but tunnels with finite lifetime to the usual Z(4) vacua, which are absolutely stable. Such

metastable vacua are known to arise for these types of potentials [19].

Lastly we consider four colors with k = 2. For the qi’s we take

qi =

(

1

2
− φ

)

14 +
q2
2

diag(1,−1, 0, 0) +
q′2
2

diag(0, 0, 1,−1) +
q4
4

diag(1, 1,−1,−1) . (25)

For the interface with k = 2, q4 = 0 at one end and q4 = 1 at the other, with q2 = q′2 = 0 at

both ends. The straight line path is along Y2 ∼ (1, 1,−1,−1).

To determine stability of a path it is essential to have a parameterization in three indepen-

dent directions. Our path is along Y2 ∼ (1, 1,−1,−1). The diagonal matrix ∼ (1,−1, 0, 0)

is a generator for (the diagonal part of) SU(2) in the first two colors, and is obviously trans-

verse to Y2. To determine the remaining direction, one can use brute force: one computes

the linear combination of (1, 1,−2, 0) and (1, 1, 1,−3) which is transverse to (1,−1, 0, 0) and

(1, 1,−1,−1). The answer, as in Eq. (25), is ∼ (0, 0, 1,−1). This is just the SU(2) type

generator for the third and fourth and fourth colors of SU(4). At least after the fact, this

is obvious.

By explicit computation, again one finds that the minimal path is a straight line, with

q4 6= 0 and q2 = q′2 = 0. This is true both for the pure glue theory, and for the theory with

(massless) dynamical quarks at the Roberge-Weiss transition point, φRW = 1/4. We did not

find metastable minima when k = 2.

The examples of k = 1 for three colors, and k = 1 and k = 2 for four colors, suggests

that for SU(N) at the Roberge-Weiss transition point(s), φRW = k/(2N), that the path for

the associated interface tension is always a straight line along Yk. At present, we can only
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suggest this as a conjecture and have no general proof. If true, surely it is due to the nature

of the Weyl chamber with dynamical quarks at the Roberge-Weiss transition point(s).

III. THERMODYNAMICS OF ROBERGE-WEISS TRANSITIONS

A. High temperature

The total pressure p and the entropy density s are a sum,

p = pg + pq, s = sg + sq, (26)

where pg and sg are the gluon contributions, and pq and sq the quark contributions.

On the left side of the Roberge-Weiss transition, φRW = k/(2N), the gluon contribution

is

pg = (N2
c − 1)

π2T 4

45
; sg = 4

pg
T
, (27)

while the quarks contribute

pq =
π2NNfT

4

3

[ 7

60
− 2
( k

N
q − φ

)2

+4
( k

N
q − φ

)4]

;

sq = 4
pq
T

;

Im(nq) =
2πNNfT

3

3

[( k

N
q − φ

)

− 4
( k

N
q − φ

)3]

, (28)

Here kq/N − φ is defined between −1/2 and 1/2. The quark number density is imaginary

because the chemical potential is.

To define the energy density, we take the standard expression for a real chemical potential,

and assume it remains valid for an imaginary chemical potential:

e = −p + sT + µnq = −p+ sT − 2πT φ Im(nq). (29)

Now consider how thermodynamic functions change on either side of the Roberge-Weiss

transition, φRW = k/(2N). On the left side of the transition, q = 0, while on the right,

q = 1, so kq/N − φ = ∓k/(2N) changes sign across the transition. The pressure and the

entropy density are even in kq/N − φ and do not change. The quark number density is odd

in kq/N − φ and so changes sign. This change in sign for the (imaginary) quark number
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density is the only reason why the energy density changes at the Roberge-Weiss point and

makes the transition of first order.

If we assume that φ and T are both fixed, at asymptotically high temperature the con-

tribute of the quark number density to the internal energy density is:

e

T 4
→ 3

p

T 4
− 2πφ

Im(nq)

T 3
(30)

Thus at high T the interaction measure is due entirely to the contribution from the quark

number density,

∆ ≡
e− 3p

T 4
= −2πφ

Im(nq)

T 3
. (31)

The interaction measure is nonzero even at high T because we assume that the (imaginary)

chemical potential is proportional to temperature, µ = 2πiTφ. As discussed, it also flips

sign across the transition. This holds not only at high T , but persists down to temperatures

close to the transition temperature, as we see in the model calculations which follow.

B. Non-perturbative models

The perturbative potential for the q’s is given by Eq. (14). It involves the function

V2(x) = x2(1− |x|)2, and qij = (qi − qj)mod 1.

The minimum of this potential is always the usual perturbative vacuum, or a Z(N)

transform thereof. To model the transition to deconfinement, we can add, by hand, non-

perturbative terms [14–16]. The involves one new function, V1(x) = |x|(1− |x|), where like

V2(x), this function is defined to be periodic in x, modulo one.

For all values of N , a successful fit was obtained with the form

Vnp
g = −

4π2

3
T 2 T 2

d

∑

i,j

(

−
c1
5

V1(qij)− c2 V2(qij) +
N2 − 1

60
c3

)

(32)

The parameters c1 and c2 are assumed to be independent of temperature, while the temper-

ature dependence of c3 is simply

c3(T ) = c3(∞) + (c3(Td)− c3(∞))

(

Td

T

)2

. (33)

Driven by the lattice data, most terms in the non-perturbative potential are ∼ T 2. The

temperature dependence of c3 also incorporates a MIT bag constant ∼ c3(Td)− c3(∞).
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The parameters of the model are fit by the transition in the pure glue theory, where we

assume Td = 270 MeV. At the outset, the model involves four parameters, c1, c2, c3(Td) and

c3(∞). One then requires two conditions. First, that the transition occurs at Td. Second,

that the pressure vanishes at Td. The first is a reasonable condition at any N . The second is

an approximation, modeling that the pressure is suppressed by 1/N2 in the confined phase,

relative to that in the deconfined phase. This leaves two parameters, which are fit by the

value of the latent heat, and the fall off of the pressure with temperature at asymptotically

high T .

To include quarks, we follow Ref. [16] and simply add the one loop term for quarks in

the background field. This is then the only way in which the (imaginary) chemical potential

enters. For constant quark mass, this contribution is

Vq = −2T trf,c

∫

dp3

(2π3)

[

ln
(

1 + e−β{Ef−i2πT (φ+qc)}
)

+ ln
(

1 + e−β{Ef+i2πT (φ+qc)}
)]

, (34)

where trf,c represents the trace over flavor and color and Ef(p) =
√

p2 +m2
f . We assume

that the up and down quarks are isospin symmetric. We thus adopt the notation that the

light (up and the down) quark masses are ml, and the strange quark mass is ms.

For light quark masses there is a back from to the gluon potential for chiral symmetry

breaking or restoration, but we can neglect this here. Such back reaction may be discussed

by using the functional renormalization group or the gluon and ghost potentials from the

Landau gauge gluon and ghost propagators [21]. When we consider the small quark mass

region, we should also consider the meson and also the baryon contributions, but inclusion

of these effects is much more involved, and will be treated later.

We shall work in the limit of heavy quark masses, where the light and strange quark

masses are constant, and such effects can be neglected. Therefore, as a first step to construct

the reliable model of QCD, we investigate the upper part of the Columbia plot at the

Roberge-Weiss endpoint.

From the thermal Wilson line L in Eq. (10), we introduce a modified Polyakov loop as

Ψ = e2πiφ
1

N
tr L , Ψ = e−2πiφ 1

N
tr L† . (35)

The Polyakov loop is the trace of the quark propagator. Multiplying by e2πiφ is exactly like

the phase which enters for the boundary conditions for a dynamical quark field, Eq. (4).
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The modified loop Ψ is periodic under the Roberge-Weiss symmetry, and so henceforth, we

always refer to the Polyakov loop as that of Eq. (35).

Previously it was found the the pressure and other thermodynamical quantities exhibit

unphysical behavior below Td in the matrix model [16]. This is because the behavior of color

singlet quantities, such as glueballs, are not included self-consistently. To handle this, we

modify the potential as

V(q) → V(q)− V(qc) + V(qc)ΨΨ , (36)

where qc = (1/3,−1/3, 0). This follows a similar modification in Ref. [16] where the q-

dependent part of the potential was modified in one particular direction in color space. The

above form is more natural, and suppresses it in a color symmetric manner.

C. Phase diagram for heavy quarks

In this subsection we discuss the nature of the phase diagram, in the plane of temperature

and quark chemical potential, as the mass of a heavy quark changes. For this purpose, we

can concentrate on the behavior of the order parameter(s), which are the real and imagi-

nary parts of the (Roberge-Weiss symmetric) Polyakov loop. After this we give results for

thermodynamic quantities in the following subsection. To be definite, we assume that there

are three degenerate flavors of quarks, although qualitatively our results rather insensitive

to the number of flavors.

Consider first quarks in the absence of an imaginary chemical potential, φ = 0. For

heavy quarks, we consider how deconfinement changes as we go from the pure gauge theory,

m = ∞, to large quark masses. For three (or more) colors, the deconfining transition is of

first order. Quarks act like a background Z(3) field for the transition, and so in all parts

of the phase diagram, the real part of the Polyakov loop is nonzero whenever there are

dynamical quarks present.

As the quark mass decreases, the latent heat of the deconfining transition decreases,

until it first vanishes at a deconfining critical endpoint, when m = mdce. Numerically, in

the matrix model we find that mdce/Td ≈ 8.2 ± .1 [16]. When m < mdce, there is no

deconfining transition, only crossover. At the critical endpoint, m = mdce. the critical field

is the deviation of the real part of the Polyakov loop from its expectation value, with the

universality class that of the Ising model in three dimensions. In the matrix model this
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occurs at a temperature which is very close to that the transition temperature in the pure

gauge theory, Tdce/Td ≈ .991± .001 [16].

When the quarks have an imaginary chemical potential which is nonzero, we expect that

the imaginary part of the Polyakov loop is also nonzero. By Roberge-Weiss periodicity, the

imaginary part vanishes when φ = 0 and 1/3. In all cases, we find that the imaginary part

of the Polyakov loop is positive when φ < 1/6, and negative when φ > 1/6.

The Roberge-Weiss transition occurs when φRW = 1/6 at sufficiently high temperature

for any value of the quark mass. Then the expectation value of the imaginary part of the

loop is positive to the left of the Roberge-Weiss transition, and negative to the right. We

illustrate the behavior of the Polyakov loops in Fig. (1). In this figure, m = mdce, and we

choose a temperature Td. As expected, the real part of the loop is always nonzero, decreasing

to a minimum at the Roberge-Weiss transition, φRW = 1/6.

0 0.1 0.2 0.3

−0.5

0

0.5

R
e 

Ψ
,  

Im
 Ψ

φ

FIG. 1. Expectation value of the real (dotted line) and imaginary (solid line) parts of the Polyakov

loop at the Roberge-Weiss transition, φRW = 1/6. The values are for m = mdce and T = Td, but

the behavior is qualitatively similar for any Roberge-Weiss transition.

The phase diagram in the plane of temperature and imaginary chemical potential is

illustrated in Fig. (2). Here we choose m = mdce, so when φ = 0 (or 1/3), so there is a
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second order transition as T is varied. The phase diagram for m > mdce is very similar, the

only difference being that the transition at φ = 0 (or 1/3) is of first order instead of second.

0 0.1 0.2 0.3
0.8

1

1.2

T
 / 

T
d

φ

m = mdce

FIG. 2. Phase diagram at the deconfining critical endpoint, m = mdce. The solid line denotes a

Roberge-Weiss transition, of first order, at φRW = 1/6; the dotted lines, first order transitions,

which mix deconfining and Roberge-Weiss transitions. The points at φ = 0 and 1/3 are deconfining

critical endpoints, and so of second order.

The solid line indicates the Roberge-Weiss transition at φRW = 1/6. Across this line

of first order transitions, by the arguments in the previous section the interface tension

corresponds directly to the ’t Hooft loop. At a temperature ≈ (1.00 ± .01)Td, this line of

first order transitions splits into two lines of first order transitions, drawn as dotted lines.

The first order transitions for 0 < φ < 1/6, and 1/6 < φ < 1/3, are manifestly those

where the Roberge-Weiss and deconfining transitions mix. This is clear above the deconfining

critical endpoint, for m ≥ mdce, since then the line of first order transitions for the Roberge-

Weiss transition is directly connected by lines of first order transitions to the deconfining

transition at φ = 0, where the imaginary part of the Polyakov loop vanishes, and the

transition is entirely one of deconfinement.
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As φ increases from 0 to 1/6, the jump in the imaginary part of the Polyakov loop

increases. In this region, transition is one where the deconfining and Roberge-Weiss tran-

sitions mix. We have checked that for φ 6= 1/6, that the jump in the Z(3) phase does not

correspond to a Z(3) transformation. Thus as argued in the previous section, the interface

tension across such first order transitions is not related to a ’t Hooft loop.

0 0.1 0.2 0.3
0.8

1

1.2
T

 / 
T

d

φ

mtri < m < mdce

FIG. 3. Phase diagram for masses below the deconfining critical endpoint, but above the tri-critical

point, mdce > m > mtri. Again, the solid line denotes a Roberge-Weiss transition, of first order,

at φRW = 1/6; the dotted lines, first order transitions, which mix deconfining and Roberge-Weiss

transitions.

As the quark mass decreases below that for the deconfining critical endpoint, the two lines

of first order transitions for φ 6= 1/3 move closer to 1/6, see Fig. (3). There are two critical

endpoints, at φc and 1/3 − φc. At the critical endpoints, both the real and the imaginary

parts of the Polyakov loop of Eq. (35) are nonzero. The universality class is that of Z(2),

with the critical field some combination of real and imaginary parts of the Polyakov loop.

As φc → 1/6, the two critical endpoints merge, and the line of Roberge-Weiss transitions

ends at tri-critical point, as illustrated in Fig. (4). In the matrix model, this occurs for a
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quark mass mtri/Td ∼ 6.3± .1, at a temperature Ttri/Td ∼ 0.983± .001. At this tri-critical

point the effective theory is that of a single scalar field in three dimensions, where the mass

squared and quartic coupling vanish at the tri-critical point. Thus the universality class is

mean field, up to calculable logarithmic corrections.

For masses below mtri, there is only a line of Roberge-Weiss transitions, which end in an

ordinary critical endpoint, in the universality class of the Ising model in three dimensions.

0 0.1 0.2 0.3
0.8

1

1.2

T
 / 

T
d

φ

m = mtri

FIG. 4. Phase diagram for a quark mass at the tri-critical point, m = mtri. In this region, there

is only a Roberge-Weiss transition at φRW = 1/6, which ends in a tri-critical point, denoted by

a solid point. For m < mtri, the line of Roberge-Weiss transitions ends in an ordinary critical

endpoint.

We note that in general, the imaginary part of the quark number density is positive for

0 < φ < 1/6, and negative for 1/6 < φ < 1/3. For temperatures sufficiently high that there

is a Roberge-Weiss transition, the sign of the imaginary part of the quark number density

flips at φRW = 1/6, and there is a first order transition. For temperatures below that for the

Roberge-Weiss transition, the imaginary part of the quark number density is still positive

for 0 < φ < 1/6, and negative for 1/6 < φ < 1/3, but because there is no phase transition,
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it vanishes for φRW = 1/6.

1. Thermodynamics of Roberge-Weiss transitions

We now turn to the thermodynamics of Roberge-Weiss transitions. We concentrate on

the transitions for φRW = 1/6, as those for φ 6= 1/6 are qualitatively similar.

5 10
0

2

4

p 
/ T

4

T / Td

φ = 1/6 − ε
φ = 1/6 + ε

5 10

−2

0

2

Im
(n

q)
 / 

T
3

T / Td

FIG. 5. The temperature dependence of the pressure and the imaginary part of the quark number

density across the Roberge-Weiss transition at φRW = 1/6 with m = mdce. All quantities are

scaled by appropriate powers of the temperature to be dimensionless, and shown as functions of

T/Td. The solid and dashed lines represents φ = 1/6 − ǫ and φ = 1/6 + ǫ, respectively.

We begin with a quark mass at the deconfining critical endpoint (when φ = 0). In Fig.

(5) we show the pressure, p(T ), the imaginary part of the quark number density, nq(T ).

Both quantities are rescaled by powers of the temperature to be dimensionless, so we show

p(T )/T 4 and Im nq(T )/T
3. Similarly, in Fig. (6) we show the rescaled energy density

e(T )/T 4, Eq. (29), and the interaction measure, (e− 3p)/T 4.

Fig. (5) shows that the pressure is like the real part of the Polyakov loop, and is continuous

across the Roberge-Weiss transition. In contrast, the imaginary part of the quark number

density is like the imaginary part of the Polyakov loop, and flips sign across this transition.

Because the pressure is continuous, the change in the imaginary part of the quark number

density implies that the energy density is discontinuous across the transition. Thus this

24



5 10

0

10
e 

/ T
4

T / Td

5 10

−2

0

2

(e
 −

 3
p)

 / 
T

4

T / Td

FIG. 6. The temperature dependence of the energy density, e(T )/T 4 and the interaction measure,

(e − 3p)/T 4, across the Roberge-Weiss transition at φRW = 1/6, with m = mdce. The solid and

dashed lines represents φ = 1/6− ǫ and φ = 1/6 + ǫ, respectively.

change in the imaginary part of the quark number density is the only reason the transition

is of first order, Fig. (6). On the right hand side of the transition, for φRW = 1/6+, the

smaller value of the energy density implies that the interaction measure eventually becomes

negative, Fig. (6), for temperatures above ∼ 3 Td.

To the left of the Roberge-Weiss transition, the interaction measure displays a charac-

teristic two peak structure [16]. The peak near Td is due to the gluons, that at several

times Td is due to the quarks, because they are so heavy. Because the energy density to

the right of the Roberge-Weiss transition is negative, the peak in the interaction measure

persists, but that due to the quarks is completely washed out by the negative energy density

for φRW = 1/6+. At high temperatures, the interaction measure has the same value for

φRW = 1/6±, but with opposite sign, see Sec. IIIA.

The behavior of the thermodynamic quantities is similar across the Roberge-Weiss tran-

sition for other quark masses. In Fig. (7) we show the behavior of the imaginary part of

the quark number density, and the interaction measure, for m = mtri. This is similar to the

behavior at the deconfining critical endpoint, Figs. (5) and (6), and so we do not bother to

show the corresponding results for the pressure and the energy density.

One can compute the position of the tri-critical point versus the number of flavors, and
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FIG. 7. The temperature dependence of the imaginary part of the quark number density,

Im(nq)/T
3, and the interaction measure, (e − 3p)/T 4, across the Roberge-Weiss transition at

φRW = 1/6, with m = mtri. The solid and dashed lines represents φ = 1/6 − ǫ and φ = 1/6 + ǫ,

respectively.

is illustrated in Fig. (8). Recent lattice QCD data [4] suggest that there is the tri-critical

line in the heavy quark mass region at the RW endpoint. The matrix model reproduces the

result and values of mtri/Ttri are summarized in Table. I. These values well reproduce the

ml = ∞ ml = ms ms = ∞

Ref. [5] 5.56(3) 6.66(3) 6.25(3)

This model 5.0 6.4 5.9

TABLE I. Summary for mtri/Ttri in the recent LQCD simulation with the strong coupling and

hopping parameter expansions [5] and the matrix model for deconfinement. We show our result

down to first decimal place.

recent LQCD simulation with the strong coupling and hopping parameter expansions [5].
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FIG. 8. The dependence of the tri-critical endpoint for 2 + 1 flavors.

D. Summary

In this paper we showed that ’t Hooft loops of arbitrary Z(N) charge are well defined

even with dynamical quarks at a Roberge-Weiss transition, for φRW = k/(2N). To leading

order in weak coupling, the ’t Hooft loop satisfies Casimir scaling in the pure glue theory,

but not with quarks.

For three colors we computed thermodynamic behavior at large quark mass using an

effective matrix model for deconfinement, and computed the form of the Columbia plot. We

computed the interaction measure about the Roberge-Weiss transition, φRW = 1/6± ǫ, and

find an enhancement on one side of the transition, but not the other.

Considering an imaginary chemical potential is clearly useful to discriminate between

various effective models of deconfinement. The relationship to the ’t Hooft loop suggests

that it probes more fundamental aspects of the dynamics in unforeseen ways.
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