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Abstract

In the context of gauge-Higgs unification scenario in a 5-dimensional flat space-
time, we investigate Higgs boson production via gluon fusion and its diphoton decay
mode at the LHC. We show that the signal strength of the Higgs diphoton decay
mode observed at ATLAS and CMS, which is considerably larger than the Standard
Model expectation, can be explained by a simple gauge-Higgs unification model with
color-singlet bulk fermions to which a half-periodic boundary condition is assigned.
The bulk fermions also play a crucial role in reproducing the observed Higgs boson
mass around 125 GeV.



1 Introduction

It was recently announced by ATLAS [1] and CMS [2] collaborations that Higgs(-like)

boson was discovered at the Large Hadron Collider (LHC). Although the observed data for

a variety of Higgs boson decay modes are found to be consistent with the Standard Model

(SM) expectations, the diphoton decay mode shows the signal strength considerably larger

than the SM prediction. Since the Higgs-to-diphoton coupling arises at the quantum level

even in the SM, there is a good chance that the deviation originates from a certain new

physics effect. This has motivated many recent studies for explanation of the deviation

in various extensions of the SM with supersymmetry [3] or without supersymmetry [4].

In this paper, we investigate Higgs production via the gluon fusion and its diphoton

decay in gauge-Higgs unification (GHU) [5]. The GHU scenario offers a solution to the

gauge hierarchy problem without invoking supersymmetry, where the SM Higgs doublet

is identified as an extra spatial component of the gauge field in higher dimensional theory.

The scenario predicts various finite physical observables such as Higgs potential [6, 7],

H → gg, γγ [8, 9], the anomalous magnetic moment g − 2 [10], and the electric dipole

moment [11], thanks to the higher dimensional gauge symmetry, irrespective of the non-

renormalizable theory.

In our previous paper [8] based on a simple GHU model, we have calculated loop-

contributions of Kaluza-Klein (KK) modes to the Higgs-to-digluon and Higgs-to-diphoton

couplings and found that the KK mode contributions are destructive to the SM contri-

butions by corresponding SM particles. This is a remarkable feature of the GHU, closely

related to the absence of the quadratic divergence in Higgs self-energy corrections. In

this paper we revisit this analysis for a simple extension of our previous GHU model.

Introducing color-singlet bulk fermions with a half-periodic boundary condition, we in-

vestigate their effects on the Higgs-to-diphoton coupling and Higgs boson mass. We will

show that the bulk fermions of certain representations of the bulk gauge group can easily

enhance the Higgs-to-diphoton coupling with appropriately chosen electric charges. The

bulk fermions also play a crucial role to achieve a Higgs boson mass around 125 GeV.

Without the bulk fermions, Higgs boson mass is predicted to be too small, less than 100
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GeV.

The plan of this paper is as follows. In the next section, we consider a 5-dimensional

GHU model based on the gauge group SU(3) × U(1)′ with an orbifold S1/Z2 compact-

ification [12, 13]. As simple explicit examples, we introduce color-singlet bulk fermions

of 10 and 15 representations and impose a half-periodic boundary condition for them.

U(1)′ charges for the bulk fermions are appropriately assigned. In this context, we cal-

culate Higgs production via gluon fusion and diphoton decay processes. The KK modes

of the bulk fermions contribute to the Higgs-to-diphoton coupling constructively to the

W -boson loop corrections in the SM and enhance the Higgs diphoton branching ratio.

The magnitude of enhancement is determined by U(1)′ charges and the representation

of the bulk fermion, and a suitable choice of them can account for the observed signal

strength of Higgs diphoton decay mode. In section 3, we estimate Higgs boson mass using

a 4-dimensional effective theory approach developed in Ref. [14], where Higgs boson mass

is determined via 1-loop renormalization group equation (RGE) of the Higgs quartic cou-

pling with the “gauge-Higgs condition” [14]. We find that the introduced bulk fermions

play a crucial role to achieve a Higgs boson mass around 125 GeV through the RGE

running of the Higgs quartic coupling. Section 4 is devoted for the conclusions.

2 Higgs production and diphoton decay in GHU

We consider a GHU model based on the gauge group SU(3)×U(1)′ in a 5-dimensional flat

space-time with orbifolding on S1/Z2 with radius R of S1. In our setup of bulk fermions,

we follow Ref. [13]: the up-type quarks except for the top quark, the down-type quarks

and the leptons are embedded respectively into 3, 6, and 10 representations of SU(3).

In order to realize the large top Yukawa coupling, the top quark is embedded into a rank

4 representation of SU(3), namely 15. The extra U(1)′ symmetry works to yield the

correct Weinberg angle, and the SM U(1)Y gauge boson is given by a linear combination

between the gauge bosons of the U(1)′ and the U(1) subgroup in SU(3) [12]1. We assign

appropriate U(1)′ charges for bulk fermions to give the correct hyper-charges for the SM

1It is known that the correct Weinberg angle can also be obtained by introducing brane localized
gauge kinetic terms [12], but we do not take this approach in this paper.
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fermions.

The boundary conditions should be suitably assigned to reproduce the SM fields as

the zero modes. While a periodic boundary condition corresponding to S1 is taken for

all of the bulk SM fields, the Z2 parity is assigned for gauge fields and fermions in the

representation R by using the parity matrix P = diag(−,−,+) as

Aµ(−y) = P †Aµ(y)P, Ay(−y) = −P †Aµ(y)P, ψ(−y) = R(P )ψ(y) (1)

where the subscripts µ (y) denotes the four (the fifth) dimensional component. With this

choice of parities, the SU(3) gauge symmetry is explicitly broken to SU(2) × U(1). A

hypercharge is a linear combination of U(1) and U(1)′ in this setup. One may think that

the U(1)X gauge boson which is orthogonal to the hypercharge U(1)Y also has a zero

mode. However, the U(1)X symmetry is anomalous in general and broken at the cutoff

scale and hence, the U(1)X gauge boson has a mass of order of the cutoff scale [12]. As a

result, zero-mode vector bosons in the model are only the SM gauge fields.

Off-diagonal blocks in Ay have zero modes because of the overall sign in Eq. (1), which

corresponds to an SU(2) doublet. In fact, the SM Higgs doublet (H) is identified as

A(0)
y =

1√
2

(

0 H
H† 0

)

. (2)

The KK modes of Ay are eaten by KK modes of the SM gauge bosons and enjoy their

longitudinal degrees of freedom like the usual Higgs mechanism.

The parity assignment also provides the SM fermions as massless modes, but it also

leaves exotic fermions massless. Such exotic fermions are made massive by introducing

brane localized fermions with conjugate SU(2)× U(1) charges and an opposite chirality

to the exotic fermions, allowing us to write mass terms on the orbifold fixed points. In

the GHU scenario, the Yukawa interaction is unified with the gauge interaction, so that

the SM fermions obtain the mass of the order of the W -boson mass after the electroweak

symmetry breaking. To realize light SM fermion masses, one may introduce a Z2-parity

odd bulk mass terms for the SM fermions, except for the top quark. Then, zero mode

fermion wave functions with opposite chirality are localized towards the opposite orbifold

fixed points and as a result, their Yukawa coupling is exponentially suppressed by the
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overlap integral of the wave functions. In this way, all exotic fermion zero modes become

heavy and small Yukawa couplings for light SM fermions are realized by adjusting the

bulk mass parameters. In order to realize the top quark Yukawa coupling, we introduce

a rank 4 tensor representation, namely, a symmetric 15 without a bulk mass [13]. This

leads to a group theoretical factor 2 enhancement of the top quark mass as mt = 2mW

at the compactification scale [12]. Note that this mass relation is desirable since the top

quark pole mass receives QCD threshold corrections which push up the mass about 10

GeV. See, for example, Ref. [15] for flavor mixing and CP violation in the GHU scenario.

2.1 Higgs boson production through gluon fusion

At the LHC the Higgs boson is dominantly produced via gluon fusion process with the

following dimension 5 operator between Higgs and digluon:

Leff = hCggG
a
µνG

aµν (3)

where h is the SM Higgs boson, and Ga
µν (a = 1 − 8) is the gluon field strength. With

the setup discussed above, we calculate the coefficient of this operator Cgg in our model.

The SM contribution to Cgg is dominated by top quark 1-loop corrections. As a good

approximation, we express the contribution by using the Higgs low energy theorem [16],

CSMtop
gg ≃ g23

32π2v
bt3

∂

∂ log v
logmt =

αs

12πv
(4)

where g3 (αs = g23/(4π)) is the QCD coupling constant (fine structure constant), mt is a

top quark mass, and bt3 = 2/3 is a top quark contribution to the beta function coefficient

of QCD.

In addition to the top quark contribution, KK top loop contributions must be taken

into account in our model. As mentioned before, the top quark is embedded into the

15-plet with a periodic boundary condition and its KK mass spectrum is given by [13]

m
(±)
n,t = mn ± 2mW (5)

where mW = 80.4 GeV is the W -boson mass, mn ≡ nmKK with an integer n = 1, 2, 3, · · ·
and the compactification scale/the unit of KK mode mass mKK = 1/R. Although the

4



15-plet includes exotic massless fermions, we assume that all the exotic fermions are de-

coupled by adjusting large brane-localized mass terms with the brane fermions as discussed

above. Thus, we only consider KK modes of the SM top quark2. It is straightforward to

calculate KK top contributions by using the Higgs low energy theorem:

CKKtop
gg ≃ αs

12πv

∞
∑

n=1

∂

∂ log v
[log(mn + 2mW ) + log(mn − 2mW )]

=
αs

12πv

∞
∑

n=1

[

2mW

mn + 2mW

− 2mW

mn − 2mW

]

≃ − αs

12πv
2

∞
∑

n=1

(

2mW

mn

)2

= − αs

12πv
× π2

3

(

2mW

mKK

)2

, (6)

where we have used an approximation m2
W ≪ m2

n and
∑∞

n=1 1/n
2 = π2/6. Note that

the KK top contribution in the gluon fusion amplitude is destructive to the SM one and

finite [8]. This is because of the sign difference between m
(+)
n,t and m

(−)
n,t , which plays a

crucial role to make the KK loop corrections finite3. This destructive contribution is a

typical feature of the GHU, in sharp contrast with the one in the universal extra dimension

models [17]. Now the ratio of the Higgs production cross section in our model to the SM

one is estimated as

Rσ ≡
(

1 +
CKKtop

gg

CSMtop
gg

)2

≃
(

1− π2

3

(

2mW

mKK

)2
)2

. (7)

2.2 Higgs decay to diphoton

Next we calculate the KK model contributions to the Higgs-to-diphoton coupling of the

dimension 5 operator,

Leff = hCγγFµνF
µν , (8)

2One might think that the KK mode contributions from the light fermions should be taken into
account. However, they can be safely neglected compared to those from the heavy fermions since the
total KK mode sum is proportional to their fermion masses generated by the electroweak symmetry
breaking as is seen in (6) for instance.

3This finiteness is shown to be valid in various space-time dimensions and at any perturbative level
similar to the Higgs potential in GHU [9].
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where Fµν denotes the photon field strength. The coefficient can also be extracted from

the 1-loop RGE of the QED gauge coupling by using the Higgs low energy theorem. The

diphoton coupling is induced by two contributions via top quark loop and W -boson loop

corrections.

2.2.1 Top quark loop contributions

As a good approximation, top loop contribution is calculated by

CSMtop
γγ ≃ e2bt1

24π2v

∂

∂ log v
logmt =

2αem

9πv
, (9)

where b1 = (2/3)2 × 3 = 4/3 is a top quark contribution to the QED beta function coeffi-

cient, and αem is the fine structure constant. Corresponding KK top quark contribution

is given by

CKKtop
γγ ≃ e2bt1

24π2v

∞
∑

n=1

∂

∂ log v
[log(mn +mt) + log(mn −mt)]

≃ −2αem

9πv
× π2

3

(

2mW

mKK

)2

. (10)

As in the case of the Higgs-to-digluon coupling, the KK top contribution is destructive to

the SM top contribution.

2.2.2 W -boson loop contributions

The SM W -boson loop contribution is calculated as

CW
γγ ≃ e2

32π2v
bW1

∂

∂ log v
logmW = −7αem

8πv
(11)

wheremW = g2v/2, and b
W
1 = −7 is aW -boson contribution to the QED beta function co-

efficient. This is a rough estimation of theW -boson loop contributions since 4m2
W/m

2
h ≫ 1

is not well satisfied. For our numerical analysis in the following, we actually use known

loop functions for the top quark and W -boson loop corrections.

In our model, the KK mode mass spectrum of the W -boson is given by

m
(±)
n,W = mn ±mW , (12)
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so that the contribution from KK W -boson loop diagrams is found to be

CKKW
γγ =

e2

32π2v
bW1

∞
∑

n=1

∂

∂ log v
[log(mn +mW ) + log(mn −mW )]

≃ 7αem

8πv

π2

3

(

mW

mKK

)2

. (13)

Note again that the KK W -boson contribution is destructive to the SM W -boson contri-

bution.

Combining these results, we have

CSMtop
γγ + CW

γγ ≃ −47αem

72πv
, (14)

CKKtop
γγ + CKKW

γγ ≃ − αem

216πv
π2

(

mW

mKK

)2

. (15)

Interestingly, there is an accidental cancellation between KK top and KK W -boson con-

tributions. We find the partial decay width of h → γγ of our model to the SM one

as

Rγγ ≡
(

1 +
CKKtop

γγ + CKKW
γγ

CSMtop
γγ + CW

γγ

)2

≃
(

1 +
π2

141

(

mW

mKK

)2
)2

. (16)

Because of the accidental cancellation, Rγγ is very close to one for, say, mKK & 1 TeV.

2.3 gg → h→ γγ

Let us now estimate the ratio of the signal strength of the process gg → h → γγ in our

model to the one in the SM. Putting all together, we find

R ≡ σ(gg → h→ γγ)

σ(gg → h→ γγ)SM
= Rσ × Rγγ ≃ 1− 374

141
π2

(

mW

mKK

)2

. (17)

The result (using loop functions for the SM top andW -boson loop corrections) is depicted

in Fig. 1 as a function of the KK mode mass/the compactification scale. The ratio R is

found to be smaller than one, because of the destructive KK mode contribution to the

gluon fusion channel and the accidental cancellation among the KK mode contributions to

the Higgs-to-diphoton decay width. This fact has already been advocated in the previous

paper by the present authors [8].
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Figure 1: The ratio of diphoton events in the simple GHU model to those in the SM as a
function of the compactification scale.

Now we extend the present GHU model to account for the signal strength measured by

ATLAS and CMS for the process gg → h→ γγ which is considerably larger than the SM

expectation. The simplest extension is to introduce color-singlet bulk fermions with the

half-periodic boundary condition, ψ(y + 2πR) = −ψ(y), in the bulk. The main reasons

for this strategy are two folds. The first is that since the KK mode fermion contribution is

destructive to the SM fermion contribution, colored KK mode contribution is not desirable

for the Higgs production process via gluon fusion. On the other hand, the KK mode

contribution is constructive to the SM one for the Higgs-to-diphoton couple. Thus, the

introduction of color-singlet bulk fermions nicely work to enhance the diphoton signal

strength. The second is that the half-periodic bulk fermion has no massless mode, and

unwanted exotic massless fermions do not come out in the model. Another advantage

of the half-periodic bulk fermion is that its first KK mode mass is smaller than the

compactification scale and its loop corrections dominate over those from the KK modes

of the periodic bulk fermion. Furthermore, the existence of the half-periodic bulk fermion

is crucial to achieve a Higgs boson mass around 125 GeV in our GHU model, as we will

discuss in the next section.

In this paper, we consider two examples for the color-singlet bulk fermions of the

representations 10 and 15 of SU(3), with a suitable U(1)′ charge assignment. The 10-
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plet of SU(3) is decomposed into representations under SU(2)× U(1) as

10 = 1−1 ⊕ 2−1/2 ⊕ 30 ⊕ 41/2, (18)

where the numbers in the subscript denote the U(1) charges. After the electroweak

symmetry breaking of the Higgs doublet (H : 21/2), the KK mass spectrum is found as

follows:

(

m
(±)
n,−1

)2

=
(

mn+ 1

2

± 3mW

)2

+M2,
(

mn+ 1

2

±mW

)2

+M2,
(

m
(±)
n,0

)2

=
(

mn+ 1

2

± 2mW

)2

+M2, m2
n+ 1

2

+M2,
(

m
(±)
n,+1

)2

=
(

mn+ 1

2

±mW

)2

+M2,
(

m
(±)
n,+2

)2

= m2
n+ 1

2

+M2, (19)

where the numbers in the subscript denote the “electric charges”4 of the corresponding

KK mode fermions, mn+ 1

2

=
(

n+ 1
2

)

mKK with n = 0, 1, 2, · · · , and M is a bulk mass.

Employing the Higgs low energy theorem with these mass spectrum, we calculate the

10-plet KK mode contributions to the Higgs-to-diphoton coupling as

CKK−10
γγ ≃ (Q− 1)2F (3mW ) + (Q− 1)2F (mW ) +Q2F (2mW ) + (Q + 1)2F (mW ) (20)

where Q is a U(1)′ charge for the 10-plet, and the function F (mW ) is defined as

F (mW ) ≡ αem

6πv

∞
∑

n=1

∂

∂ log v

[

log
√

M2 + (mn+ 1

2

+mW )2 + log
√

M2 + (mn+ 1

2

−mW )2
]

=
αem

6πv
mW

∞
∑

n=0

(

mn+ 1

2

+mW

(mn+ 1

2

+mW )2 +M2
+

mn+ 1

2

−mW

(mn+ 1

2

−mW )2 +M2

)

≃ −αem

3πv

(

mW

mKK

)2 ∞
∑

n=0

(

n+ 1
2

)2 − c2B
(

(

n+ 1
2

)2
+ c2B

)2

= −αem

6πv

(

mW

mKK

)2
π2

cosh(πcB)
. (21)

Here we have used the approximation m2
W ≪ m2

KK, and cB ≡ M/mKK.

4Here “electric charges” mean by electric charges of SU(2)×U(1) ⊃ SU(3). A true electric charge of
each KK mode is given by a sum of the “electric charge” and U(1)′ charge Q.
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For the 15-plet case, the decomposition under SU(2)× U(1) is given as

15 = 1−4/3 ⊕ 2−5/6 ⊕ 3−1/3 ⊕ 41/6 ⊕ 52/3. (22)

After the electroweak symmetry breaking, the KK mass spectrum is found as follows:

(

m
(±)
n,−4/3

)2

=
(

mn+ 1

2

± 4mW

)2

+M2,
(

mn+ 1

2

± 2mW

)2

+M2, m2
n+ 1

2

+M2,
(

m
(±)
n,−1/3

)2

=
(

mn+ 1

2

± 3mW

)2

+M2,
(

mn+ 1

2

±mW

)2

+M2,
(

m
(±)
n,2/3

)2

=
(

mn+ 1

2

± 2mW

)2

+M2, m2
n+ 1

2

+M2,
(

m
(±)
n,5/3

)2

=
(

mn+ 1

2

±mW

)2

+M2,
(

m
(±)
n,8/3

)2

= m2
n+ 1

2

+M2, (23)

where the numbers in the subscript denote the “electric charges” of the corresponding

KK fermions. In this case, the Higgs-to-diphoton coupling is calculated as

CKK−15
γγ ≃ (Q− 4/3)2F (4mW ) + (Q− 4/3)2F (2mW )

+ (Q− 1/3)2F (3mW ) + (Q− 1/3)2F (mW )

+ (Q+ 2/3)2F (2mW ) + (Q+ 5/3)2F (mW ). (24)

For the two cases, we plot the ratio R as a function of the KK mode mass mKK in

Fig. 2. The left panel corresponds to the case with the 10-plet bulk fermion, where we

have fixed Q = −1 and cB = 0.23. As we will see in the next section, the Higgs boson

mass around 125 GeV can be reproduced with the bulk mass cB = 0.23 for mKK = 3

TeV. The result for the case with the 15-plet bulk fermion is depicted in the right panel

for Q = −5 and cB = 0.69. This bulk mass reproduces the Higgs boson mass around

125 GeV. We find the Higgs-to-diphoton signal strength is considerably enhanced in the

presence of the half-periodic bulk fermions with the TeV scale mass.

As can be understood from Eqs. (20) and (24), the rate of the enhancement depends

on the choice of U(1)′ charge Q. In other words, it can be large as we like by adjusting

a U(1)′ charge. In Fig. 3, we plot the ratio of diphoton signal strength to the SM one

as a function of the U(1)′ charge Q, for the two cases. For each plot, the bulk masses
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Figure 2: The diphoton signal strength (normalized by the SM prediction) in the GHU
model with the 10-plet (left) and 15-plet (right) bulk fermions as a function of the com-
pactification scale. Here we have used Q = −1 and cB = 0.23 for the left panel, while
Q = −5 and cB = 0.69 for the right panel.

are fixed to be the same values as in the previous plots. We can see that |Q| = O(1) is

enough to give rise to an order 10% enhancement of the diphoton signal. In general, a

larger representation field leads to more enhancements than those by smaller representa-

tions, since large representations include more fields with higher U(1) charges in the SM

decomposition. In Fig. 3, the deviation of the diphoton signal strength for the case with

the 15-plet fermion is milder than the case with the 10-plet. This is because a large bulk

mass is assigned for the case with the 15-plet fermion and the KK modes are heavier.
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Figure 3: The diphoton signal strength (normalized by the SM prediction) in the GHU
model with the 10-plet (left) and 15-plet (right) bulk fermions as a function of the U(1)′

charge Q, for mKK = 3 TeV. The bulk masses are fixed as cB = 0.23 for the left panel,
while cB = 0.69 for the right panel.
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3 Estimate of Higgs boson mass

In this section, we discuss how the Higgs boson mass around 125 GeV is realized in our

model. Realizing the 125 GeV Higgs boson mass as well as the electroweak symmetry

breaking is a quite non-trivial phenomenological issue in 5-dimensional GHU scenario.

This is because the Higgs doublet is embedded in the five dimensional component of the

bulk gauge field and as a result, the Higgs doublet has no scalar potential at the tree

level. The electroweak symmetry should be broken dynamically, in other words, at the

quantum level. In addition, a calculated Higgs boson mass is most likely to be small, since

the Higgs quartic coupling is generated at loop levels. Towards a realistic GHU scenario, a

variety of extra bulk fields with suitable boundary conditions and bulk/brane mass terms

have been considered (see, for example, Refs. [12, 13]). It is a highly non-trivial task to

propose a simple and phenomenologically viable GHU model.

In estimating Higgs boson mass, we take a 4-dimensional effective theory approach de-

veloped by Ref. [14]. As has been shown in this paper, the low energy effective theory of

the 5-dimensional GHU scenario is equivalent to the SM with the so-called “gauge-Higgs

condition” on the Higgs quartic coupling, namely, we impose a vanishing Higgs quartic

coupling at the compactification scale. This boundary condition reflects the 5-dimensional

gauge invariance which gets restored at an energy higher than the compactification scale.

Employing this effective theory approach, the Higgs boson mass at low energies is easily

calculated by solving the RGE of the Higgs quartic coupling with the gauge-Higgs con-

dition, instead of calculating the Coleman-Weinberg potential of the Higgs doublet. We

assume that the electroweak symmetry breaking correctly occurs by the introduction of

a suitable set of bulk fermions. Note that the effective Higgs mass squared is quadrati-

cally sensitive to the mass of heavy states, while the effective Higgs quartic coupling is

dominantly determined by interactions of the Higgs doublet with light states. Therefore,

the Higgs boson mass at low energies is mainly determined by light states below the

compactification scale, once we assume the correct electroweak symmetry breaking.

In our model, we have introduced bulk fermions with the half-periodic boundary con-

dition, and their first KK modes appear below the compactification scale. Therefore, not
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only the SM particles but also the first KK modes are involved in our RGE analysis with

the gauge-Higgs condition5. The 1-loop RGE for the Higgs quartic coupling λ below the

compactification scale is given by

dλ

d lnµ
=

1

16π2

[

12λ2 −
(

9

5
g21 + 9g22

)

λ+
9

4

(

3

25
g41 +

2

5
g21g

2
2 + g42

)

+4

(

3y2t + C2(R)

(

g2√
2

)2
)

λ− 4

(

3y4t + C4(R)

(

g2√
2

)4
)]

, (25)

where yt is the top Yukawa coupling, g1,2 are the SU(2), U(1)Y gauge couplings, respec-

tively, and C2(R) and C4(R) are contributions to the beta function by the representation

R = 10 or 15. In our RGE analysis, we neglect the KK mode mass splitting by the

electroweak symmetry breaking and set the first KK mode mass as

m
(±)
0 =

1

2
mKK

√

1 + 4c2B. (26)

For the energy scale m
(±)
0 ≤ µ ≤ mKK, the coefficients C2(R) and C4(R) are explicitly

given by

C2(10) = 2
(

32 + 12 + 22 + 12
)

,

C4(10) = 2
(

34 + 14 + 24 + 14
)

,

C2(15) = 2
(

42 + 22 + 32 + 12 + 22 + 12
)

,

C4(15) = 2
(

44 + 24 + 34 + 14 + 24 + 14
)

, (27)

while these coefficients are set to be 0 for µ < m
(±)
0 . In our analysis, the running effects

for yt, g1,2 are simply neglected.

The numerical results of 1-loop RGE of the Higgs quartic coupling are shown in Fig. 4.

Here we have applied the gauge-Higgs condition at the compactification scale 1/R =

mKK = 3 TeV and numerically solve the RGE toward low energies. In the analysis, we

have used yt(µ) = 0.943 for µ ≥ mt = 173.1 GeV (yt(µ) = 0 for µ < mt = 173.1 GeV),

and g1 = 0.459, and g2 = 0.649 at the Z-boson mass scale. For simplicity, we estimate

the Higgs boson pole mass by the condition λ(µ = mh)v
2 = m2

h. In Fig. 4, the bulk

5In Ref. [18], the gauge-Higgs condition with only the SM particle contents below the compactification
scale is used to predict Higgs boson mass.
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Figure 4: 1-loop RGE running of the Higgs quartic coupling. The solid (dashed) line
corresponds to the case of the 10-plet (15-plet) bulk fermion with the bulk mass cB = 0.23
(cB = 0.69). Here the compactification scale is fixed as mKK = 1/R = 3 TeV, at which
the gauge-Higgs condition (λ(mKK) = 0) is applied. The dotted line shows the running
of the SM Higgs quartic coupling with the boundary condition, λ(µ = mh) = 0.258,
corresponding to the Higgs pole mass mh = 125 GeV.

masses of the 10-plet and the 15-plet are fixed to be the values used in the previous

section, cB = 0.23 and cB = 0.69, respectively, with which Higgs boson mass of mh = 125

GeV (equivalently, λ(µ = mh) = 0.258) is realized. The solid (dashed) line represents

the running Higgs quartic coupling for the case with the 10-plet (15-plet) bulk fermion,

while the dotted line corresponds to the RGE running in the SM case with the boundary

condition λ(µ = mh) = 0.258. In this rough analysis, the Higgs quartic coupling becomes

zero at µ ∼ 104.5 GeV. As is well-known, in more precise analysis with higher order

corrections (see, for example, [19]), the Higgs quartic coupling becomes zero at µ ∼ 1010

GeV. In the precise analysis, the running top Yukawa coupling is monotonically decreasing

and the higher order corrections positively contribute to the beta function, as a result,

the scale realizing λ(µ) = 0 is pushed up to high energies.

As can be seen from Fig. 4, the existence of the half-periodic bulk fermions is essential

to realize the Higgs mass around 125 GeV with the compactification at the TeV scale.

Since the bulk fermions provide many first KK mode fermions in the SM decomposition,

the running Higgs quartic coupling is sharply rising from zero toward low energies. In

14



addition, the bulk mass also plays a crucial role to adjust the resultant Higgs boson mass

to be 125 GeV.

4 Conclusion

In this paper, we have revisited the Higgs boson production via gluon fusion and its

diphoton decay process in a 5-dimensional SU(3) × U(1)′ GHU model. As shown in [8]

and re-confirmed in this paper, the diphoton signal events is reduced in a simple GHU

model with only the KK modes of the SM top quark and W -boson taken into account.

As a simple extension of the simple model, we have introduced color-singlet bulk fermions

with the half-periodic boundary condition and bulk masses. For concreteness, we have

considered the SU(3) 10-plet and the 15-plet with a U(1)′ charge Q. With the charge Q

being of order one, the diphoton signal events can be remarkably enhanced from the SM

prediction by 1-loop corrections of the KK modes at the TeV scale. The signal significance

of the diphoton events observed at ATLAS and CMS shows a positive deviation form the

SM expectation and it can be an indirect signal of the GHU model. The bulk fermions also

play a crucial role to yield the observed Higgs boson mass around 125 GeV. Employing

the gauge-Higgs condition, we have shown in the RGE analysis that a Higgs boson mass,

which is predicted to be too small in the simple GHU model, is dramatically enhanced

in the presence of the half-periodic bulk fermions and the 125 GeV Higgs boson mass is

reproduced by adjusting the fermion bulk masses.

There was an interesting argument of naturalness in Ref. [20] that if a large diphoton

signal excess is caused by extra fermions having strong couplings with the Higgs boson,

the Higgs potential becomes unstable far beneath the 10 TeV scale. In order to keep

the Higgs potential stable up to a very high energy, we need a new light scalar field

with a strong coupling to the Higgs doublet, which positively contributes to the beta

function of the Higgs quartic coupling. One may think that the existence of such a new

light scalar field makes the Standard Model more unnatural [20]. However, note that

in the 5-dimensional GHU model, the vanishing of the running Higgs quartic coupling

indicates not the instability of the Higgs potential but instead, the restoration of the
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bulk gauge symmetry which should occur at an energy higher than the compactification

scale. Therefore, the GHU scenario offers a natural solution to the instability of the Higgs

potential.

There is another interesting feature of our model. As discussed in [21] (see also [22]),

the lightest KK mode of the half-periodic bulk fermion, independently of the background

metric, is stable in the effective 4-dimensional theory due to the remaining accidental

discrete symmetry. Thus, if its electric charge is arranged to be 0, the lightest KK mode

becomes a good candidate for the dark matter in the present Universe. For detailed

discussion on the dark matter physics in the GHU model, we refer Ref. [21].

One may be also interested in the KK mode contributions to the h → Zγ process

and its correlation to the h → γγ process. However, it seems that the analysis is not so

straightforward since the Higgs low energy theorem for h→ Zγ is not very clear and the

corresponding loop functions are complicated. We leave this subject for the future study.
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