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We present a determination, from lattice QCD, of charge symmetry violation in the spin-
independent and spin-dependent parton distribution functions of the nucleon. This is done by
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I. INTRODUCTION

Charge symmetry refers to the equivalence of u quarks
in the proton and d quarks in the neutron, and vice-versa.
Precisely, it is the invariance of the strong interaction un-
der a rotation of 180◦ about the ‘2’-axis in isospin space.
At low energies, charge symmetry is obeyed to a preci-
sion of order 1% [1]. It would be natural to expect that
partonic charge symmetry should hold to a similar ex-
tent. Traditionally, this expectation has been applied to
parton phenomenology [2, 3], and the assumption of good
charge symmetry has been used to reduce the number of
independent quark distribution functions by a factor of
two.

Recently, charge symmetry violating (CSV) effects
have been included in phenomenological parton distri-
bution functions for the first time [4], and theoretical es-
timates of the size of such effects have been made [5, 6].
Experimental upper limits on partonic CSV are in the
range 5-10% [2, 3]. CSV of this magnitude would produce
important effects in tests of physics beyond the standard
model, for example in neutrino deep inelastic scattering
experiments [7].

The first two Mellin moments of the spin-dependent
quark distribution functions of the octet baryons, and
the second spin-independent Mellin moment, have re-
cently been determined from Nf = 2 + 1 lattice simula-
tions by the QCDSF/UKQCD Collaboration [8, 9]. The
first analysis of this lattice data used a linear flavour ex-
pansion about the simulation SU(3) symmetric point to
extract values for the charge symmetry violating distri-
butions [8]. Using chiral extrapolation formulae for the
Mellin moments of quark distribution functions [10–16],
recently extended to include CSV effects [17], we improve
on the original analysis by extrapolating the lattice re-
sults to the physical point. We find that chiral physics
generates small corrections to the parton CSV terms.

II. METHOD

In terms of quark distributions, charge symmetry im-
plies

up(x,Q2) = dn(x,Q2), dp(x,Q2) = un(x,Q2), (1)

with analogous relations for the antiquark distributions.
A measure of the size of the violation of charge symmetry
is given by the ‘CSV parton distributions’, defined in
terms of the Mellin moments as

δum± =

∫ 1

0

dxxm(up±(x)− dn±(x)) (2)

= 〈xm〉p±u − 〈xm〉n±d (3)

and

δdm± =

∫ 1

0

dxxm(dp±(x)− un±(x)) (4)

= 〈xm〉p±d − 〈x
m〉n±u (5)

for the spin-independent distributions, with analogous
expressions for the spin-dependent case. Here, the plus
(minus) superscripts indicate C-even (C-odd) distribu-
tions:

q±(x) = q(x)± q(x). (6)

The Mellin moments accessible to lattice simulations
alternate between C-even and -odd moments with in-
creasing m; the (m−1)th spin-independent (SI) and mth
spin-dependent (SD) lattice moments are defined as

〈xm−1〉Bq =

∫ 1

0

dxxm−1(qB(x) + (−1)mqB(x)), (7)

〈xm〉B∆q =

∫ 1

0

dxxm(∆qB(x) + (−1)m∆qB(x)). (8)

Recent lattice simulations from the QCDSF/UKQCD
Collaboration [8] give results for the first two SD and first
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SI lattice moments. As these Nf = 2 + 1 lattice simula-
tions use degenerate light quarks, the CSV terms cannot
be directly evaluated from the simulation results using
Eqs. (2) and (3) (as this would give zero in each case).
The problem can, however, be approached indirectly.

The original analysis of the QCDSF/UKQCD Collab-
oration lattice data used a linear flavour expansion at
the simulation SU(3) symmetric point to estimate the
CSV terms [8]. That is, the CSV terms were expressed
in terms of hyperon moments as

δu = mδ

(
−∂〈x〉

p
u

∂mu
+
∂〈x〉pu
∂md

)
+O(m2

δ), (9)

where mδ = (md − mu), and δd may be written in a
similar way. The equivalence of the u and d quarks in
the simulations, i.e., that ∂〈x〉nd/∂md = ∂〈x〉pu/∂mu and
∂〈x〉nd/∂mu = ∂〈x〉pu/∂md, has been used to simplify the
expression.

Near the SU(3) symmetric point, the strange quark is
considered as a ‘heavy light quark’, so that

∂〈x〉pu
∂mu

≈ 〈x〉
Ξ0

s − 〈x〉pu
ms −ml

,
∂〈x〉pu
∂md

≈ 〈x〉
Σ+

u − 〈x〉pu
ms −ml

, (10)

∂〈x〉pd
∂mu

≈
〈x〉Ξ0

u − 〈x〉
p
d

ms −ml
,

∂〈x〉pd
∂md

≈
〈x〉Σ+

s − 〈x〉pd
ms −ml

. (11)

Rearranging, the CSV momentum fractions can be writ-
ten as [37]

δu

〈x〉pu−d
=

1

2

mδ

mq

(〈x〉Σ+

u − 〈x〉Ξ0

s )/〈x〉pu−d
(m2

K −m2
π)/X2

π

, (12)

δd

〈x〉pu−d
=

1

2

mδ

mq

(〈x〉Σ+

s − 〈x〉Ξ0

u )/〈x〉pu−d
(m2

K −m2
π)/X2

π

, (13)

where mq = (2ml + ms)/3 and X2
π = (2m2

K + m2
π)/3.

Similar expressions hold for the spin-dependent CSV mo-
ments. This method allows an estimate of CSV at the
SU(3) symmetric point.

To evaluate the CSV terms at the physical point, we
perform a chiral extrapolation of the lattice data for the
quark moments [17]. As the isospin-averaged and -broken
expressions for the Mellin moments as functions of pseu-
doscalar or quark mass have the same unknown parame-
ters, a fit to the available isospin-averaged lattice results
allows the CSV terms to be evaluated from the isospin-
broken expressions using Eqs. (2) and (3) - a technique
also used in [24]. These expressions can be evaluated
at any pseudoscalar masses, in particular at the physical
point.

III. EXTRAPOLATION OF LATTICE DATA

A. Fit to isospin-averaged lattice data

In previous work, we described an isospin-averaged chi-
ral perturbation theory fit to QCDSF/UKQCD Collab-
oration lattice data for the first few Mellin moments of

quark distributions [8]. Complete details of the fit for-
mulae, fit parameters and method are given in Ref. [17].

In brief, chiral perturbation theory expansions, de-
scribed in Ref. [17], were fit to QCDSF/UKQCD Col-
laboration lattice data for the first spin-independent and
zeroth and first spin-dependent moments. The fit func-
tions include loop corrections and counterterms to lead-
ing non-analytic order. In particular, the effect of chiral
loops with both octet and decuplet baryon intermedi-
ate states, as well as, for the spin-dependent moments,
loops involving a transition between octet and decuplet
baryons, are included. Tadpole diagrams and terms rep-
resenting wavefunction renormalization are also consid-
ered.

The finite-range regularization scheme (FRR) is used
to regularize the loop integrals. This technique, dis-
cussed further in Refs. [18–20], involves the introduction
of a mass scale Λ through a regulator u(k) inserted into
each integral expression. Λ is related to the scale be-
yond which a formal expansion in powers of the Gold-
stone boson masses breaks down (this scale is typically
∼ Λ/3 for a dipole). For this analysis, a dipole regula-

tor u(k) =
(

Λ2

Λ2+k2

)2

and a regulator mass Λ = 1 GeV

are chosen. This is based on a comparison of the nu-
cleon’s axial and induced pseudoscalar form factors [22]
and the value of Λ deduced from a lattice analysis of nu-
cleon magnetic moments [21]. All results are insensitive
to this choice; choosing different regulator forms, for ex-
ample monopole, Gaussian or sharp cutoff, and allowing
Λ to vary by ±20% does not change the results of the
analysis within the quoted uncertainties.

Within the FRR framework, expressions for loops with
octet intermediate states involve the integral:

J(m2) =
4

3

∫ ∞
0

dk
k4u2(k)

(
√
k2 +m2)3

(14)

with the finite-range regulator u(k) inserted. The nor-
malization of J(m2) has been defined so that the non-
analytic part matches the common form of dimensionally
regularized results, as J(m2) →

DR
m2ln(m2/µ2). Loops

with decuplet intermediate states may be written in an
analogous way, in terms of

J1(m2, δ) =
4

3

∫ ∞
0

dk
k4u2(k)

(
√
k2 +m2)2(

√
k2 +m2 + δ)

(15)

and

J2(m2, δ) =
4

3

∫ ∞
0

dk
k4u2(k)

(
√
k2 +m2)(

√
k2 +m2 + δ)2

,

(16)

which describe loops with one and two decuplet propaga-
tors respectively. The tadpole contributions are written
in terms of

JT (m2) = 4

∫ ∞
0

dk
k2u2(k)√
k2 +m2

(17)
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which has the same non-analytic structure as J , i.e.,
JT (m2) →

DR
m2ln(m2/µ2). To make comparison with DR

expressions clear, we make the integral replacement

I(mφ)→ Ĩ(mφ) =
[
I(mφ)− dΛ

0 − dΛ
2m

2
φ

]
, (18)

where dΛ
0 and dΛ

2 denote the leading analytic parts of the
Taylor expansion of the integral, and I represents any of
the integrals in Eqs. (14)–(17).

The fit to the lattice results is performed by minimiz-
ing the sum of χ2 for each set of moments. There are
24 lattice data points available for each moment con-
sidered [8, 23]. The fit parameters, discussed in detail
in Ref. [17] and listed in Appendix A, are different for
each moment. For the zeroth spin-dependent moment
there are eight free parameters, while both the first spin-
dependent and first spin-independent moment have nine

fit parameters.

Figures 5, 6, 7, taken from Ref. [17] and located in
Appendix B, show the quality of fit for each moment.
Here Xπ =

√
(2m2

K +m2
π)/3 = 411 MeV is the sim-

ulation centre-of-mass of the pseudoscalar meson octet.
Ratios of moments are shown and the Xπ normalization
is taken for the figures so that they may be easily com-
pared against published results [8]. The quality of fit is
clearly acceptable in each case, with the χ2/dof between
0.6 and 0.9 for each moment. All χ2 values are less than
one as the effect of correlations between the original lat-
tice data could not be included. Figures 1, 2 and 3 show
the fits to the data in a form suitable for the extraction
of the CSV terms at the unphysical symmetric point by
Eqs. (12) and (13). The full analysis, presented in the
next section, includes an extrapolation to the physical
point.
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FIG. 1. Illustration of the fit to the zeroth spin-dependent moments – data from Ref. [8].
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FIG. 2. Illustration of the fit to the first spin-dependent moments – data from Ref. [8].

B. Evaluation of CSV terms

As described in section II, the CSV terms given in
Eqs. (2) and (3) may be evaluated by simply substi-

tuting the best-fit parameters of the isospin-averaged fit
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FIG. 3. Illustration of the fit to the first spin-independent moments – data from Ref. [8].

described in section III A into the full SU(3), isospin-
broken, perturbation theory expressions for the CSV

terms. For example, δ∆um may be expressed as a func-
tion of quark mass in the form [17]:

δ∆um = 〈xm〉p∆u − 〈x
m〉n∆d = a

(m)
∆ +

1

16π2f2

(
b
(m)
∆ + d

(m)
∆ + g

(m)
∆

)
, (19)

where

a
(m)
∆ =

1

2

(
−∆n

(m)
1 + ∆n

(m)
2 + ∆n

(m)
3 + ∆n

(m)
6

)
B(mu −md), (20)

b
(m)
∆ =

1

6
√

3

(
D2 − 2DF − 3F 2

)
sin(2ε)

(
5∆α(m) + 2∆β(m) + 6∆σ(m)

) [
J̃(m2

π0
)− J̃(m2

η)
]

(21)

+
1

24

[
−D2

(
9∆α(m) + 2∆β(m) + 8∆σ(m)

)
+ 2DF

(
19∆α(m) + 10∆β(m) + 24∆σ(m)

)
+3F 2

(
5∆α(m) + 2∆β(m) + 8∆σ(m)

)] [
J̃(m2

K0)− J̃(m2
K±)

]
+

1

24

(
5∆α(m) + 2∆β(m)

) [
J̃T (m2

K0)− J̃T (m2
K±)

]
,

d
(m)
∆ =− 1

72

(
5∆α(m) + 2∆β(m) + 6∆σ(m)

)
C2
[
J̃2(m2

K0 , δ)− J̃2(m2
K± , δ)

]
(22)

− 1

108

(
5∆γ(m) −∆γ′(m)

)
C2
[
J̃2(m2

K0 , δ)− J̃2(m2
K± , δ)

]
g

(m)
∆ =− 4

9
√

3
(D − 3F ) sin(2ε)∆ω(m)

[
J̃1(m2

π0 , δ) + J̃1(m2
η, δ)

]
(23)

+
2

9
(D − 3F )∆ω(m)

[
J̃1(m2

K0 , δ)− J̃1(m2
K± , δ)

]
,

and expressions for the (subtracted) integrals J̃ are
given in the previous section. Clearly, entirely analo-
gous expressions may be written for δ∆dm and the spin-
independent CSV terms. These, taken from Ref. [17],
are given in appendix A. We remind the reader that,
to the same order in the broken SU(3) symmetry, anal-
ogous expressions for each quark flavour combination in

each octet baryon are expressed in terms of different lin-
ear combinations of the same coefficients. The general
case is given in Ref. [17].



5

In the above expression, meson masses take the form

m2
π± =B(mu +md) (24)

m2
π0 =B(mu +md)

− 2B

3
(2ms − (mu +md))

sin2ε

cos2ε
(25)

m2
K± =B(ms +mu) (26)

m2
K0 =B(ms +md) (27)

m2
η =

B

3
(4ms +mu +md)

+
2B

3
(2ms − (mu +md))

sin2ε

cos2ε
, (28)

and the π0 − η mixing angle ε is given by

tan2ε =

√
3 (md −mu)

2ms − (md +mu)
. (29)

The parameters ∆n
(m)
i , ∆α(m), ∆β(m) and ∆σ(m) are

determined, for m = {0, 1}, from the isospin-averaged
fits. All that remains to be specified for an evaluation of
δ∆um from the expression above are values for Bmq.

To evaluate the CSV terms at the physical point we
take as input the estimate for the physical up-down quark
mass ratio from Ref. [25]

R :=
mu

md
= 0.553± 0.043, (30)

determined by a fit to meson decay rates. We note that
this value is compatible with more recent estimates of the
ratio from 2+1 and 3 flavor QCD and QED [26, 27], and
lies within uncertainties of the FLAG lattice averaging
group estimate R = 0.47(4) [28]. The Gell-Mann-Oakes
Renner relation suggests the definition

ω =
B(md −mu)

2
:=

1

2

(1−R)

(1 +R)
m2
π(phys)

, (31)

which allows one to define

Bmu = m2
π(phys)

/2− ω, (32)

Bmd = m2
π(phys)

/2 + ω, (33)

Bms = m2
K(phys)

−m2
π(phys)

/2. (34)

Here, mπ(phys)
= 137.3 MeV and mK(phys)

= 497.5 MeV
are taken to be the physical isospin-averaged meson
masses [29].

As the available QCDSF/UKQCD Collaboration lat-
tice results are presented only in terms of ratios of mo-
ments, there is an unknown constant scaling factor Z as-
sociated with all data points. This Z is distinct for each
moment (zeroth and first SD and first SI) under consider-
ation. These constants are determined by matching the
extrapolations for the isovector moments to experimental

values at the physical point at 4 GeV2 [30–32]:

gA = 〈1〉p∆u−∆d =
expt

1.2695(29), (35)

〈x〉p∆u−∆d =
expt

0.190(8), (36)

〈x〉pu−d =
expt

0.157(9). (37)

The uncertainty of these experimental numbers is
propagated into the final results. The full error analy-
sis also takes account of correlated uncertainties between
all of the fit parameters in the original fits [17], as well
as allowing for the stated variation of R. The regulator
mass Λ = 1 GeV is allowed to vary by ±20%, which is
again propagated into the final uncertainty. Changing
the regulator u(k) within the FRR scheme leads to small
variations of order 1%.

The results of this analysis are summarized and com-
pared with previous work in Table I. While the
light quark ratio R was used as input in this cal-
culation, the determination of the CSV terms via a
linear flavour expansion [8] used the quark mass ra-
tio 3(md −mu)/(md +mu +ms) = 0.066(7) [25]. The
choice of R made here sets this ratio to the same value.
The other inputs used in both calculations, namely the
experimental isovector moments at the physical point,
take the same values in both calculations. Thus, the lin-
ear and chiral results in Table I are directly comparable.

In particular, evaluating the chiral perturbation the-
ory expressions for the CSV terms at the point where
(md+mu) = 2ms and both (md−mu) and (mu+md+ms)
take their physical values, labelled ‘SU(3)-sym’ in Ta-
ble I, gives results which may be directly compared with
the linear flavor expansion calculation. As might be an-
ticipated from an inspection of Figs. 1–3 which show fits
qualitatively consistent with straight lines, chiral loop
corrections to the CSV terms at this point are small and
within uncertainties.

Comparison with results evaluated at the physical
pseudoscalar masses gives an indication of the chiral loop
corrections in moving away from the SU(3) point. Again,
these corrections are small in the spin-dependent case,
while being more significant in the spin-independent case.
It is noted that, in contrast to the results of the linear
flavour expansion, the chiral perturbation theory results
are based on fits for the quark distribution moments to all
lattice data simultaneously (for each moment), and thus
include the proper correlations between quark moments
in each of the baryons. As a consequence, even with more
fit parameters, the uncertainties are comparable to the
simple linear fits.

The origin of the chiral loop contributions to the CSV
terms can be seen clearly from the form of Eq. (19) (and
the analogous Eqs. (A1), (A6) and (A7) in Appendix A).
One contribution to the (u − d) moments is illustrated
diagrammatically in Fig. 4. The kaon loop diagrams
shown, and the analogous diagrams for the (d − u) mo-
ments, give contributions to the CSV terms proportional

to
[
J̃(m2

K0)− J̃(m2
K±)

]
, which is non-vanishing when
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Moment Linear: SU(3)-sym Chiral: SU(3)-sym Chiral: physical
δ∆u0+ −0.0057(14) −0.0063(13) −0.0061(13)
δ∆d0+ −0.0018(6) −0.0019(6) −0.0018(6)
δ∆u1− −0.0010(3) −0.0007(2) −0.0007(2)
δ∆d1− −0.0004(1) −0.0003(1) −0.0002(1)
δu1+ −0.0012(3) −0.0013(3) −0.0023(7)
δd1+ 0.0010(2) 0.0012(2) 0.0017(4)

TABLE I. Comparison of results. The column labelled ‘Linear’ gives the results which were published with the lattice simulation
results [8], calculated using a linear flavor expansion about the SU(3) symmetric point. These have been corrected from the
values quoted in [8], as explained in the footnote preceding Eq. (12). ‘Chiral’ gives the results of this work, i.e., including
chiral physics, both at the comparable ‘SU(3) symmetric’ point (with (md +mu) = 2ms but the physical (md −mu)), labelled
‘SU(3)-sym’, and at physical pseudoscalar masses.

m2
K0 6= m2

K± . The corresponding wavefunction renor-
malization terms, as well as tadpole and decuplet kaon-
loop diagrams, also contribute to the CSV terms propor-

tional to
[
J̃(m2

K0)− J̃(m2
K±)

]
. In the spin-independent

case, this kaon mass difference effect yields the only chi-
ral loop corrections to the CSV terms. For the spin-
dependent moments, however, additional terms propor-

tional to
[
J̃(m2

m0
)− J̃(m2

η)
]

also contribute. Cancella-

tion of octet loop terms with wavefunction renormaliza-
tion contributions ensures that these terms vanish in the
SI case.

The chiral loops also account for the corrections in
moving from the ‘SU(3) point’ to the physical point. For
example, as one moves along the line of constant sin-
glet quark mass ((mu + md + ms) = constant) from the
SU(3) symmetric point to the physical point, the dif-

ference
[
J̃(m2

K0)− J̃(m2
K±)

]
decreases in magnitude by

approximately 30%.
1

p ⇤,⌃0

K+

⇤,⌃0 p

u

n ⇤,⌃0

K0

⇤,⌃0 n

d

p ⌃+

K0

⌃+ p

u

n ⌃�

K+

⌃� n

d

FIG. 4. Illustration of some of the octet loop terms contributing to δ∆um = 〈xm〉p∆u−〈x
m〉n∆d or δum = 〈xm〉pu−〈xm〉nd . These

contributions are non-vanishing when the loop pseudoscalar masses are different, i.e., when m2
K0 6= m2

K± .

IV. CONCLUSION

We have used a chiral perturbation theory analysis to
extrapolate QCDSF/UKQCD Collaboration lattice data
for the first several Mellin moments of quark distribution
functions to the physical quark masses. This technique
allows the charge symmetry violating (CSV) parton dis-
tributions to be evaluated at the physical point.

The conclusion of this study is quite clear. The chiral

corrections to the spin-dependent CSV moments are very
small. In particular, an analysis of the same lattice data
using a linear flavor expansion about the SU(3) symmet-
ric point gave compatible results [8]. A detailed analysis
shows that both the chiral corrections at the SU(3) sym-
metric point, as well as the extrapolation from this point
to the physical quark or pseudoscalar masses, are small
effects.

At the physical point, this analysis gives the spin-
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dependent CSV terms to be δ∆u0+ = −0.0061(13),
δ∆d0+ = −0.0018(6), δ∆u1− = −0.0007(2), and
δ∆d1− = −0.0002(1). As a result, one would expect CSV
corrections to the Bjorken sum rule [33, 34] to appear
at the half-percent level. Measuring these corrections
would require significant improvement over the current
best determination of the sum rule to 8% precision at
Q2 = 3 GeV2 from a recent COMPASS Collaboration
experiment [35].

For the spin-independent moments, the chiral correc-
tions are more significant. This analysis gives δu1+ =
−0.0023(7) and δd1+ = 0.0017(4), in good agreement
with previous phenomenological estimates of CSV both
within the MIT bag model [5, 7] and using the MRST
analysis [4]. These results support the conclusion [3, 7]
that partonic CSV effects may reduce the 3σ discrepancy

with the standard model reported by the NuTeV Collab-
oration [36] by up to 30%.
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Appendix A: Extrapolation formulae

This section gives formulae for the spin-dependent and spin-independent charge symmetry violating quark distri-
butions as functions of quark and meson mass. All integrals are defined in the body of the report.

The fit parameters which appear in the following expressions are discussed in detail in Ref. [17]. For the zeroth

spin-dependent moment there are eight free parameters; six linearly independent linear coefficients ∆n
(0)
i=1−6, the

baryon-baryon-meson coupling constant D, and an operator insertion parameter ∆σ(0). Both the first spin-dependent

and first spin-independent moment have nine fit parameters; six linear coefficients ∆n
(1)
i=1−6 (n

(2)
i=1−6), and three

operator insertion parameters ∆α(1), ∆β(1),∆σ(1) (α(2), β(2), σ(2)) in the spin-dependent (-independent) case.

Baryon-baron-meson couplings F and D are set to their physical values by D → Dphys = 3
5gAphys

for each of the

first-moment fits. For all three fits, SU(6) symmetry is used to set F = 2
3D and C → Cphys = − 6

5gAphys
is fixed.

Decuplet (γ) and transition (ω) insertion parameters are also fixed for each fit, either by using SU(6) symmetry to
relate them to other fit parameters, or, in the case of γ for the first spin-independent moment, by using an experimental
result, as detailed in Ref. [17]. Best fit values and uncertainties for all fit parameters are given in Table II.

1. Spin-dependent CSV terms

This section gives an explicit expression for the spin-dependent CSV distribution δ∆dm as a function of quark and
meson mass. The corresponding expression for δ∆um is given in the body of the report.

δ∆dm = 〈xm〉p∆d − 〈x
m〉n∆u = a

(m)
∆ +

1

16π2f2

(
b
(m)

∆ + d
(m)

∆ + g
(m)
∆

)
(A1)

first spin-indep. n
(2)
1 n

(2)
2 n

(2)
3 n

(2)
4 n

(2)
5 n

(2)
6 α(2) β(2) σ(2)

1.1(25) -7.0(28) 8.3(26) 0.5(27) 11(4) 6.2(24) -4.1(17) -8.6(31) 7.5(26)

zeroth spin-dep. ∆n
(0)
1 ∆n

(0)
2 ∆n

(0)
3 ∆n

(0)
4 ∆n

(0)
5 ∆n

(0)
6 D ∆σ(0)

4.9(84) 0.5(98) -2.2(58) -15(17) 0.2(50) -1.1(88) 0.74(24) -0.22(26)

first spin-dep. ∆n
(1)
1 ∆n

(1)
2 ∆n

(1)
3 ∆n

(1)
4 ∆n

(1)
5 ∆n

(1)
6 ∆α(1) ∆β(1) ∆σ(1)

-1.5(13) 6.3(29) -3.9(16) -7.0(46) -1.0(11) -6.0(28) 0.41(50) -1.5(10) -0.93(61)

TABLE II. Values of the fit parameters corresponding to the fits shown in Appendix B. All (∆)n
(j)
i have dimensions (GeV−2),

other parameters are dimensionless.
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a
(m)
∆ =

1

2

(
−∆n

(m)
3 + ∆n

(m)
6

)
B(mu −md) (A2)

b
(m)

∆ =
1

6
√

3

(
D2 − 2DF − 3F 2

)
sin(2ε)

(
∆α(m) + 4∆β(m) + 6∆σ(m)

) [
J̃(m2

π0
)− J̃(m2

η)
]

(A3)

+
1

24

[
D2
(

∆α(m) − 4∆β(m) − 8∆σ(m)
)

+ 6DF
(

∆α(m) + 4∆β(m) + 8∆σ(m)
)

+F 2
(

5∆α(m) + 20∆β(m) + 24∆σ(m)
)] [

J̃(m2
K0)− J̃(m2

K±)
]

− 1

24

(
∆α(m) + 4∆β(m)

) [
J̃T (m2

K0)− J̃T (m2
K±)

]
d

(m)

∆ =− 1

72

(
∆α(m) + 4∆β(m) + 6∆σ(m)

)
C2
[
J̃2(m2

K0 , δ)− J̃2(m2
K± , δ)

]
(A4)

+
1

324

(
5∆γ(m) −∆γ′(m)

)
C2
[
J̃2(m2

K0 , δ)− J̃2(m2
K± , δ)

]
g

(m)
∆ = +

4

9
√

3
(D − 3F ) sin(2ε)∆ω(m)

[
J̃1(m2

π0 , δ) + J̃1(m2
η, δ)

]
(A5)

+
4

9
F∆ω(m)

[
J̃1(m2

K0 , δ)− J̃1(m2
K± , δ)

]
.

2. Spin-independent CSV terms

This section gives explicit expressions for the spin-independent CSV distributions as functions of quark and meson
mass.

δum =〈xm〉pu − 〈xm〉nd = a(m) +
1

16π2f2

(
b(m) + d(m)

)
(A6)

δdm =〈xm〉pd − 〈x
m〉nu = a(m) +

1

16π2f2

(
b
(m)

+ d
(m)
)

(A7)
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a(m) =
1

2

(
−n(m)

1 + n
(m)
2 + n

(m)
3 + n

(m)
6

)
B(mu −md) (A8)

b(m) =
1

24

[
D2
(

7α(m) − 2β(m)
)

+ 6DF
(
α(m) − 2β(m)

)
+ 3F 2

(
5α(m) + 2β(m)

)] [
J̃(m2

K0)− J̃(m2
K±)

]
(A9)

+
1

24

(
5α(m) + 2β(m)

) [
J̃T (m2

K0)− J̃T (m2
K±)

]
d(m) =− 1

72

(
5α(m) + 2β(m) + 6σ(m)

)
C2
[
J̃2(m2

K0 , δ)− J̃2(m2
K± , δ)

]
(A10)

− 1

36

(
3γ(m) − γ′(m)

)
C2
[
J̃2(m2

K0 , δ)− J̃2(m2
K± , δ)

]
.

a(m) =
1

2

(
−n(m)

3 + n
(m)
6

)
B(mu −md) (A11)

b
(m)

=
1

24

[
−D2

(
7α(m) + 4β(m)

)
+ 6DF

(
α(m) + 4β(m)

)
− 3F 2

(
α(m) + 4β(m)

)] [
J̃(m2

K0)− J̃(m2
K±)

]
(A12)

− 1

24

(
α(m) + 4β(m)

) [
J̃T (m2

K0)− J̃T (m2
K±)

]
d

(m)
=− 1

72

(
α(m) + 4β(m) + 6σ(m)

)
C2
[
J̃2(m2

K0 , δ)− J̃2(m2
K± , δ)

]
(A13)

+
1

108

(
3γ(m) − γ′(m)

)
C2
[
J̃2(m2

K0 , δ)− J̃2(m2
K± , δ)

]
.

Appendix B: Figures

This section shows the fits to QCDSF/UKQCD lattice
results discussed in section III A. The figures are taken
from Ref. [17], and are included here to give an indication
of the quality of fit.
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