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ABSTRACT

We present physical results for a variety of light hadronic quantities obtained via a combined

analysis of three 2+1 flavour domain wall fermion ensemble sets. For two of our ensemble sets we

used the Iwasaki gauge action withβ = 2.13 (a−1 = 1.75(4) GeV) andβ = 2.25 (a−1 = 2.31(4)

GeV) and lattice sizes of 243 × 64 and 323× 64 respectively, with unitary pion masses in the

range 293(5)–417(10) MeV. The extentLs for the 5th dimension of the domain wall fermion

formulation isLs = 16 in these ensembles. In this analysis we include a third ensemble set

that makes use of the novel Iwasaki+DSDR (Dislocation Suppressing Determinant Ratio) gauge

action atβ = 1.75 (a−1 = 1.37(1) GeV) with a lattice size of 323 × 64 andLs = 32 to reach

down to partially-quenched pion masses as low as 143(1) MeV and a unitary pion mass of

171(1) MeV, while retaining good chiral symmetry and topological tunneling. We demon-

strate a significant improvement in our control over the chiral extrapolation, resulting in much

improved continuum predictions for the above quantities. The main results of this analysis in-

clude the pion and kaon decay constants,fπ = 127(3)stat(3)sys MeV and fK = 152(3)stat(2)sys

MeV respectively (fK/ fπ = 1.199(12)stat(14)sys); the average up/down quark mass and the

strange-quark mass in theMS-scheme at 3 GeV,mud(MS,3 GeV) = 3.05(8)stat(6)sys MeV and

ms(MS,3 GeV) = 83.5(1.7)stat(1.1)sys; the neutral kaon mixing parameter in theMS-scheme at 3

GeV,BK(MS,3 GeV) = 0.535(8)stat(13)sys, and in the RGI scheme,̂BK = 0.758(11)stat(19)sys; and

the Sommer scalesr1=0.323(8)stat(4)sysfm andr0=0.480(10)stat(4)sys(r1/r0=0.673(11)stat(3)sys).

We also obtain values for the SU(2) chiral perturbation theory effective couplings,̄l3=2.91(23)stat(7)sys

andl̄4 = 3.99(16)stat(9)sys.
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I. INTRODUCTION

The RBC & UKQCD collaborations have recently published continuum limit results [1, 2] for a

variety of light hadronic quantities, including the pion and kaon decay constants, quark masses

and the neutral kaon mixing parameterBK, determined using two ensemble sets of 2+1-flavor

domain wall fermions (DWF) with the Iwasaki gauge action atβ = 2.25 (corresponding to a lattice

spacing ofa≈ 0.086 fm) andβ = 2.13 (a≈ 0.114 fm), with lattice sizes of 323×64 and 243×64

respectively and fifth-dimensional extents ofLs= 16. We refer to this as the ‘2010 analysis’. With

precise non-perturbative renormalization methods made possible by the good chiral symmetry of

the action, and a combined chiral/continuum fit analysis to maximise the use of the available data,

our predictions were limited mainly by theO(5%) systematic error on the extrapolation from the

simulated 293(5) MeV ≤ mπ ≤ 417(10) MeV pion mass-range to the physical point. In order to

address this issue we must simulate with lighter quark masses, which necessitates an increase in

the physical lattice volume in order to maintain small finite-volume corrections. As increasing

the number of lattice sites is very costly we must use coarserlattices in order to perform the

calculation with the currently available resources. Asidefrom the larger discretization errors, the

only significant impact of simulating with a coarser latticeis an increase in the size of the residual

massmres, which parameterizes the explicit chiral symmetry breaking occuring due to the finite

length of the fifth dimension.mres gets larger due to the increased number of low-modes of the

Wilson Dirac operator in the infrared regime, that are likely caused by so-called ‘dislocations’ –

localized instanton-like artefacts – in the gauge fields. Configurations containing these low modes

may be suppressed in the path integral via the introduction to the gauge action of an additional

weighting factor known as the Dislocation Suppressing Determinant Ratio (DSDR) [3–6].

In this paper we present the ‘2012 analysis’ of the RBC & UKQCDcollaboration’sβ = 1.75

323×64×32 DWF ensembles that make use of the Iwasaki+DSDR gauge action to reach unitary

pion masses as low as 171(1) MeV and partially-quenched pion masses at a near-physical value

of 143(1) MeV. The results for the physical quark masses and lattice spacings presented in this

document were used in our recent calculation of the∆I = 3/2 K → ππ amplitudes with physical

kinematics [7].

Note that the pion masses in physical units quoted above and in the abstract, as well as those given

in the remainder of this paper, were obtained by combining the data at the simulated strange quark

mass with the final lattice spacings obtained in this analysis, and the error represents the combined
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systematic and statistical uncertainty.

Throughout this document we make use of the shorthand 32ID torefer to the 323 × 64× 32

Iwasaki+DSDR ensemble set, and 32I and 24I for the 323×64×16 and 243×64×16 Iwasaki

ensemble sets respectively. This notation differs slightly from ref. [7], where the Iwasaki+DSDR

ensemble set was labelled 32IDSDR.

In this paper all dimensionful quantities are expressed in lattice units unless other units are explic-

itly specified or clarity is served by introducing explicit factors of the lattice spacinga.

In section II we provide further details on the Iwasaki+DSDRgauge action and present the simu-

lation parameters of our 32ID ensembles. In section III we present our results for the pseudoscalar

masses and decay constants, the Omega baryon mass (used to set the scale), the Sommer scalesr0

andr1 and alsoBK, measured on these ensembles.

In the Symanzik effective action (up to and including dimension-5 terms), explicit chiral symme-

try breaking effects manifest as a dimension-3 term closelyrelated to the residual mass, and a

dimension-5 clover term. The latter introducesO(a) discretization errors that make it difficult to

perform continuum extrapolations with traditional Wilsonfermions. In the domain wall formula-

tion however, the clover term has a magnitude ofO(a2mres), and can therefore be discounted in our

simulations, whereamres is always on the order of 10−3 or smaller. (In Appendix C we perform

additional checks to ensure that this assumption remains true for our Iwasaki+DSDR ensembles.)

Due to the excellent chiral symmetry, lattice artefacts involving odd powers of the lattice spacing

are heavily suppressed and we gain automatic offshellO(a) improvement. As a result, the leading

discretization effects appear atO(a2), and the next-to-leading effects atO(a4). Note that higher

order corrections to the Symanzik expansion can lead to terms logarithmic in the lattice spacing

that can, in extreme circumstances, spoil the neat power-law behaviour we have described; in

Appendix D we discuss this possibility further, and conclude that, providing the range of lattice

spacings under consideration is not too large, such corrections introduce systematic errors into

our continuum extrapolation similar to those that result from the neglectedO(a4) terms and, for

the 0.086–0.11 fm range of lattice spacings considered here, can be expected to be of a similar

size. (At non-zero quark mass there can also arise termsO(a2mq), which can also be expected

to be of a similar size.) In our analysis of the present DSDR ensemble, we find the typical size

of theO(a2) terms to be. 5%, hence we can expect the next-to-leading discretizationerrors to

be roughlyO(0.052) ∼ 0.25%. These are an order of magnitude smaller than the errors arising

from the chiral extrapolation and the non-perturbative renormalization (where appropriate), and
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can therefore be safely ignored. The only surviving dependence on the lattice spacing is there-

fore a singleO(a2) term for each measured quantity. Of course this term dependson the lattice

action, but as all other parameters (the slopes with respectto the quark masses) describing the

quantity are common between the Iwasaki and Iwasaki+DSDR actions, we can easily obtain the

a2 coefficients for the Iwasaki+DSDR action by comparing any single measured value on the

32ID ensemble set with the continuum limit obtained from theIwasaki ensembles. In practice we

include the Iwasaki+DSDR ensembles in our simultaneous chiral/continuum fitting framework,

allowing these data to constrain the mass dependences closeto the physical point, substantially

reducing the chiral extrapolation systematic error on our continuum predictions, as well as allow-

ing us to obtain thea2 coefficients for the Iwasaki+DSDR data. In this framework, any remaining

errors associated with the leading,O(a2) effects are included in the statistical error. Since we have

only two ensembles with different values for the lattice spacing that use the same lattice action,

we can only make a simplea2 → 0 extrapolation to remove theO(a2) artifacts. Remaining lattice

artifacts of ordera4 or higher, or possiblea2 ln(a2) effects, can only be estimated from the size of

the observeda2 effect and contribute small systematic errors.

The chiral/continuum fitting framework is discussed in moredetail in section IV. We use this

procedure in sections V through VIII to simultaneously fit the aforementioned quantities over all

three ensemble sets, from which we obtain the lattice spacings and physical quark masses as well

as improved continuum predictions for the decay constants,Sommer scales andBK.

In closing this section we would like to emphasize the importance of the discussion in the above

paragraphs. Aside from theO(a2) errors that are explicitly included in our fit, the next largest

discretization effects arise atO(a4). This level of control over the discretization effects can be

achieved, as we demonstrated in our 2010 analysis and also inthis document, using only two

lattice spacings. To resolve theO(0.25%) next-to-leading effects would require another lattice

spacing (and likely a substantial increase in statistics),which we do not deem a sensible use of our

resources in light of their expected size in comparison to our other systematic errors. This is in

contrast to other lattice formulations which do not have automaticO(a) improvement, such as the

Wilson approach, for which not three but five lattice spacings are required for an effect of this size

to be measured.
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II. SIMULATION DETAILS AND ENSEMBLE PROPERTIES

We generated a set of domain wall fermion ensembles using theIwasaki+DSDR gauge action,

which allows for simulations to be performed on coarser lattices while retaining good chiral sym-

metry and topological tunneling. In this section we providebackground on the DSDR term fol-

lowed by a list of simulation parameters and an analysis of the integrated autocorrelation length

and topological charge evolution.

A. The DSDR Term

The explicit breaking of chiral symmetry in the domain wall fermion framework can be described

by an additive mass renormalization parameter referred to as mres, whose magnitude is related to

the eigenvalue densityρ(λ ) of the logarithm of the transfer matrix in the fifth-dimension,

Htransfer= 2tanh−1
(

HW

2+DW

)
, (1)

that describes the propagation of quarks through the fifth dimension, via the following relation [8]:

mres= R4
∫ ∞

0
dλ ρ(λ )e−Lsλ . (2)

HereR is a (possibly eigenvalue-dependent) radius factor,DW is the Wilson Dirac operator and

HW = γ5DW is the hermitian Wilson Dirac operator.

In the low-eigenvalue region the eigenmodes ofHtransferand those ofHW are necessarily identical.

It has been demonstrated [8–14] that the modes of the latter can be divided into two regions,

one containing only localized eigenmodes with small eigenvalues and one containing extended

eigenmodes with large eigenvalues, separated by a mobilityedgeλc. Picking out the dominant

contributions above and below the mobility edge from eqn. 2,we expect the following dependence

of mres uponLs:

mres= R4
eρ(λc)

e−λcLs

Ls
+R4

l ρ(0)
1
Ls

, (3)

whereRe andRl are the radius parameters for the extended and local modes respectively. The

exponentially-decreasing contribution from the extendedmodes above the mobility edge can be

controlled by increasingLs, with a cost that rises at worst linearly. In our previous Iwasaki simu-

lations the magnitude ofmres was dominated by the term inρ(0), the density of near-zero eigen-

modes. These modes are thought to be associated with localized and short-lived dislocations or
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‘tears’ in the gauge fields, which can cause changes in the field topology. As the strong coupling

limit is approached, the gauge fields become more disorderedand the density of near-zero modes

increases sharply. In order to maintain good chiral symmetry properties at stronger coupling we

must therefore seek to suppress the near-zero modes. On the other hand we must take care not

to also remove the very-near-zero eigenmodes that are required for topological tunneling to occur

during the gauge evolution.

The DSDR, or ‘Auxiliary Determinant’ is applied to the gaugeaction as a multiplicative weight of

the form [3–6]

W (M;ε f ;εb) =
det
[
DW(−M+ iε f γ5)†DW(−M+ iε f γ5)

]

det[DW(−M+ iεbγ5)†DW(−M+ iεbγ5)]
= ∏

i

λ 2
i + ε2

f

λ 2
i + ε2

b

, (4)

whereε f andεb are tunable parameters with typical sizes 0< ε2
f ≪ ε2

b < 1. With this weighting,

the contribution of a single eigenmode to the Molecular Dynamics force becomes a function ofε f

andεb of the form

Fi(ε f ,εb) =
d

dλi

(
− log

λ 2
i + ε2

f

λ 2
i + ε2

b

)
, (5)

which when plotted against the eigenvalue has a peak and tailwhich are independently tunable

by varying the two parameters. It is therefore possible to tune the force to suppress near-zero

eigenmodes while not completely suppressing the essentialvery-near-zero modes.

Numerical studies [6] have demonstrated a reduction in chiral symmetry breaking while retaining

adequate topological tunneling through the use of this term. In Appendix C we demonstrate the

lack of observable explicit chiral symmetry breaking effects on our Iwasaki+DSDR ensembles.

B. Simulation Parameters

We generated DWF ensembles with the Shamir kernel and the Iwasaki+DSDR gauge action on a

323×64 lattice volume withLs = 32. We used a ‘domain wall height’ ofM5 = 1.8 and a gauge

coupling ofβ = 1.75, which as determined in section V, corresponds to an inverse lattice spacing

of 1.37(1) GeV. The parameters of the DSDR factor,εb = 0.5 andε f = 0.02, were chosen to

minimise the residual mass while still allowing a reasonable rate of topological tunneling. We

generated two ensembles with bare light-quark masses ofml = 0.001 andml = 0.0042, for which

the corresponding unitary pion masses are 171(1) and 246(2) MeV. In this document we analyse

∼ 1400 and∼ 1200 MD time units on these ensembles respectively (discarding 500 and 600 MD
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time units respectively for thermalization). On each of theensembles we simulated with a single

strange-quark mass close to the physical value and use reweighting to correct to the true physical

value in our fitsa posteriori. Further details of the number of reweighting steps and stochastic

samples are given in the following subsection.

C. Ensemble Generation

In this section we provide a summary of the Monte Carlo algorithms that were employed for the

gauge evolution. Further discussion of our algorithms, along with the full set of parameters, can

be found in Appendix A.

For the fermionic contribution to the evolution of theml = 0.0042 ensemble we employed the

‘RHMC II’ algorithm [15], in which the calculation of the strange-quark determinant is broken

into three factors and evaluated using the rational approximation with equal molecular dynam-

ics time steps, and the determinant of the two degenerate light-quarks was preconditioned by the

strange-quark determinant. With the notationD(m) = D†
DWF(M5,m)DDWF(M5,m) for the Her-

mitian domain wall operator and usingRa(m) to represent the rational approximation to theath

power ofD for massm, the algorithm can be written as

det

[
D(ms)

1
2 D(ml )

D(1)
3
2

]
= det

[
R 1

2

(
D(ms)

D(1)

)]
·det

[
R 1

2

(
D(ms)

D(1)

)]
·det

[
R 1

2

(
D(ms)

D(1)

)]
·det

[
D(ml )

D(ms)

]
,

(6)

where each determinant is estimated using independent pseudofermion fields. We made use of an

Omelyan integrator with parameterλ = 0.22 during the evolution of this ensemble.

For the lighterml = 0.001 ensemble, we were able to achieve a significant speed-up [16] in evalu-

ating the light-quark contribution to the gauge field updateusing multiple Hasenbusch mass split-

tings [16, 17]. Here the determinant is split intok steps (withk = 6 in our case), each evaluated

using a shifted mass:

det

[
D(ml )

D(1)

]
=

k+1

∏
i=1

det

[
D(ml +µi−1)

D(ml +µi)

]
, (7)

where 0= µ0 < µ1 . . .µk+1 = 1−ml . The intermediate massesµi(i = 1..k) can be continuously

tuned, enabling us to evaluate the individual determinantsat a reduced precision – 10−6 residual as

opposed to 10−8 – considerably reducing the computational cost. The strange-quark determinants

were again evaluated using the rational approximation. We obtained a further increase in speed by

utilizing a force gradient integrator [16, 18] in place of the Omelyan integrator.
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ms ml m̃s/m̃l ∆t ×Nsteps NG : NDSDR : Nferm τ(MD) Acceptance 〈P〉 〈ψ̄ψ(ml )〉

0.045
0.0042 7.8 1/8×8 64:8:(2:1) 1176 70% 0.512198(3)0.001579(5)

0.001 16.5 1/9×9 12:6:1 1432 73% 0.512230(3)0.001202(3)

TABLE I. Simulation parameters for the 32ID ensembles. Herethe fifth column contains a gross summary

of the algorithm, giving the ratio of gauge field updates (NG) to the number of DSDR updates (NDSDR) to

the number of updates of the fermion force (Nferm). For the heavier ensemble, the fermion component is

divided into the rational approximation for the strange-quark determinant and the light quark determinant;

the former is updated twice as often as the latter. On the lighter ensemble the strange-quark determinant and

the Hasenbusch-preconditioned light-quark determinant are not nested but instead are evaluated indepen-

dently and their force contributions combined linearly. The Molecular Dynamics time step for the top-level

integrator and the number of steps per trajectory (Nsteps) is given in the fourth column. The quantityτ(MD)

is the length of the ensemble used for the analyses in this document, measured in Molecular Dynamics time

units.

In table I we give details of the Molecular Dynamics time steps and the update ratios for each

component of the force, alongside the total MD time, the Metropolis acceptance and the values of

the average plaquette and chiral condensate on each ensemble.

D. Ensemble Properties

In figure 1 we plot the Monte Carlo evolution of the plaquette,topological charge and the light-

quark pseudoscalar density. We measured the topological charge directly using ‘cloverleaf’ esti-

mates of the field strength tensor, with 1x1, 1x2, 2x2, 1x3 and3x3 Wilson loops calculated on

APE-smeared gauge fields (with 60 smearing steps) and combined using the ‘5li’ (five-loop im-

proved) combination [19] which eliminates theO(a2) andO(a4) terms at tree-level. We show

histograms of the topological charge distribution in figure2.

Figure 3 contains plots of the integrated autocorrelation time for various quantities on theml =

0.001 andml = 0.0042 ensembles as a function of the cut on the upper bound of the integral,∆cut:

τint(∆cut) =
1
2 +

∆cut

∑
∆=1

C(∆) , (8)

where

C(∆) =
〈(Y(t)−Ȳ)(Y(t+∆)−Ȳ)

σ2

〉
t

(9)
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FIG. 1. Monte Carlo evolution of the average plaquette (top), topological charge (middle), and light-quark

pseudoscalar density (bottom) on theml = 0.001 (left) andml = 0.0042 (right) ensembles.
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FIG. 2. Topological charge distributions for theml = 0.001 (left) andml = 0.0042 (right) ensembles.

for a quantityY, whereȲ is the expectation value over the ensemble,σ2 its variance, and∆ is the

Molecular Dynamics time separation between measurements.The average in the second equation

is performed over the set of pairs of configurations separated by ∆ MD time units. In order to

correctly estimate the errors on the integrated autocorrelation time, we investigated two strategies:

1. At each fixed∆ we formed a bootstrap distribution to estimate the error on the mean〈...〉t
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in eqn. 9. Prior to performing the bootstrap resampling, we binned the set of measurements

(Y(t)−Ȳ)(Y(t+∆)−Ȳ) over neighboring configurations (indexed here byt). The bin size

was successively increased until the errors stopped growing, which we found to be at bin

sizes of 25 and 20 on theml = 0.001 andml = 0.0042 ensembles respectively. The error on

τint was obtained from the bootstrap sum overC(∆) according to eqn. 8. This method closely

resembles the standard strategy for binning equivalent quantities over a set of correlated

measurements under a bootstrap.

2. We took the full set of measurementsY(t) over the ensemble and formed blocks by aver-

aging over neighbouring configurations. We then measured the correlations between these

blocks, taking the center-point of each block as the associated MD time. This has the ef-

fect of averaging over short-range correlations, exposingthose with longer range, but also

results in changes to the central value ofτint at fixed∆cut as the bin size is increased, as at

each bin size we are measuring a different quantity. We chosethe optimal bin size to be the

point where further increases resulted in statistically consistent central values. This strategy

was used in our 2010 analysis for estimating the autocorrelation length of the two Iwasaki

ensemble sets.

The aforementioned figure contains plots for both of these strategies. We see that they give con-

sistent results. The integrated autocorrelation time for the majority of the quantities we looked at

appears to lie between 5 and 10 MD time units. However, as is typically the case, the topological

charge (and of course the pseudoscalar condensate) displayconsiderably larger autocorrelation

lengths, around 25 MD time units on the ligher ensemble and 15on the heavier ensemble, re-

flecting their sensitivity to the underlying global gauge field topology. The larger autocorrelation

length suggests a lower topological tunneling rate for our lighter ensemble. However we empha-

size that these autocorrelation times are considerably shorter than those of the Iwasaki lattices,

which were estimated to beO(80) MD time units [1] from the topological charge measurements.

For the simulation parameters and properties of the 32I and 24I Iwasaki ensemble sets we refer to

reader to ref. [1].



12

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140150
∆

cut
 (MD time units)

0

5

10

15

20

25

30

35

40

45

50
τ in

t
Pseudoscalar Propagator (t=20)
Plaquette
Chiral Condensate (l)
Pseudoscalar Condensate (l)
Chiral Condensate (h)
Pseudoscalar Condensate (h)
Topological Charge

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140150
∆

cut
 (MD time units)

0

5

10

15

20

25

30

35

40

45

50

τ in
t

Pseudoscalar Propagator (t=20)
Plaquette
Chiral Condensate (l)
Pseudoscalar Condensate (l)
Chiral Condensate (h)
Pseudoscalar Condensate (h)
Topological Charge

A

A

A

A

A

A

A

A

A

A
A

A
A

A
A

A
A

A
A

A
A

A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140150
∆

cut
 (MD time units)

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

τ in
t

Pseudoscalar Propagator (t=20)
Plaquette
Chiral Condensate (l)
Pseudoscalar Condensate (l)
Chiral Condensate (h)
Pseudoscalar Condensate (h)
Topological ChargeA A

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140150
∆

cut
 (MD time units)

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

τ in
t

Pseudoscalar Propagator (t=20)
Plaquette
Chiral Condensate (l)
Pseudoscalar Condensate (l)
Chiral Condensate (h)
Pseudoscalar Condensate (h)
Topological Charge

FIG. 3. The integrated autocorrelation time is shown for theaverage plaquette, topological charge, the chiral

condensate and pseudoscalar density for the light and heavyquark species (labelled ‘l’ and ‘h’ respectively),

and the pseudoscalar two-point function att = 20, as a function of the upper bound on the integral∆cut, using

data from theml = 0.001 (top) andml = 0.0042 (bottom) ensembles. For those plots on the left we estimated

the errors by binning the set of correlations between measurements at fixed MD time separation (the first

strategy discussed in the text), and in those on the right we block over the data and measure the correlation

between blocks (the second strategy). We chose bin sizes of 25 and 20 on the lighter and heavier ensembles

respectively. The pseudoscalar two-point function was only measured every 8 MD time units, hence for

both methods we bin these data with a bin size of 24 MD time units. In the right-hand plots the data have

been shifted slightly for clarity.
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E. Reweighting the Strange Quark

We make use of reweighting in the strange sea-quark mass to obtain the mass dependence of our

data, and hence interpolate to the physical value, without incurring the expense of simulating with

additional masses. The reweighting factorwi for a particular reweighted massmrw
h and configu-

ration i is determined by measuring the degree to which that configuration, as sampled from the

un-reweighted path integral, contributes to the path integral with the reweighted mass; in practice

this involves the calculation of the ratio of Dirac-matrix determinants with the reweighted and

simulated masses respectively. The expectation value of anobservableO with the shifted strange-

quark mass is then obtained by first measuring on the original, unreweighted configurations, then

applying the reweighting factors:

〈O〉mrw
h
=

〈wO〉msim
h

〈w〉msim
h

. (10)

The determinants are stochastically evaluated using several Gaussian sampled vectors and the

weight factor obtained from the average over these samples.This procedure was used in the 2010

analysis, and more details can be found in ref [1].

We performed measurements over incremental steps from the simulated mass of 0.045 up to 0.052.

We previously found that the number of stochastic samples required for a reliable estimate of

the weighting factor is dependent upon the size of the mass increments, with smaller increments

requiring less samples. As a result, we use two stochastic samples and small increments of∆mh =

0.00025 – the same parameters as were used for the 24I ensembles.

The reweighting procedure naturally reduces the effectivenumber of configurationsNeff in each

ensemble set. In ref [1] we showed that a reliable estimate ofthis quantity can be determined via

the following expression:

Neff =
(∑i wi)

2

∑w2
i

. (11)

A value of unity indicates that the measurement is entirely dominated by a single configuration,

whereasNeff is equal to the original number of configurationsNconf when there are no fluctuation

in the weighting factors. In section V we measure the physical strange quark mass to bemphys
h =

0.0467(6), which is close to the simulated value. At the nearest reweighted mass-step to the

physical mass, that withmh = 0.0465, we findNeff = 133 (Nconf = 180) andNeff = 119 (Nconf =

148) on theml = 0.001 andml = 0.0042 ensembles respectively, suggesting that reweightingto

the physical strange-quark mass will result in only a 10-15%increase in the statistical errors on
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these ensembles. This is of a similar magnitude to the increase suggested by the values ofNeff

on the 32I ensembles, which are given in ref [1]. On the 24I ensembles we require a slightly

larger extrapolation to reach the physical value, hence thereweighting introduces larger increases

of 25-35%.

III. RESULTS FROM THE 323 DWF+ID ENSEMBLES

In this section we present the results of fitting to a number ofobservables on the 32ID ensembles.

We performed measurements on 180 configurations on theml = 0.001 ensemble and 148 on the

ml = 0.0042 ensemble, with each configuration separated by 8 MD timeunits. The analysis in the

previous section suggests an autocorrelation length of∼ 25 on theml = 0.001 ensemble and∼ 7

on theml = 0.0042 ensemble, which can be overcome by binning the data before performing the

fits. We shifted the gauge fields in the time-direction by 16 lattice spacings relative to the previous

configuration prior to measuring the quark propagators. This has the effect of reducing the corre-

lation between successive measurements, suggesting that binning the data may not be necessary.

However, this does not apply to the measurements of the Sommer scalesr0 and r1, which are

formed using Wilson loops with origins on all lattice sites.In order to remain consistent, we de-

cided to bin the data for all of our quantities over 4 successive measurements (32 MD time units)

on both ensembles; although this is larger than the measuredautocorrelation length, it matches

the periodicity of the quark propagator measurements, and is therefore a more natural choice. We

found no statistically significant dependence on the bin size in any of our measured error values,

hence the choice of bin size has little effect on the final results of this analysis.

The pseudoscalar meson two-point correlation functions were calculated in the same manner as

those on the 32I ensembles, namely using Coulomb gauge-fixedwall source propagators origi-

nating at the lattice time boundaryt = 0 with both periodic (p) and anti-periodic (a) boundary

conditions in the temporal direction. Taking thep+a combination of propagators to form each

leg of the correlation function projects out the component travelling forwards in time. Likewise,

the p−a combination projects out the degenerate backwards-propagating state. The correlation

functions formed using these combinations of propagators have a temporal periodicity of double

the usual length, which results in a significant reduction inround-the-world propagation. The

Omega baryon correlation functions were calculated separately using box-sources with a spatial

volume of 153 lattice sites and with one corner at the spatial origin. These were placed on time-
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mx ml

0.001 0.0042

0.00010.0018447(60) 0.0018888(48)

0.001 0.0018510(43) 0.0018889(47)

0.00420.0018269(58) 0.0018735(48)

0.008 0.0018025(57) 0.0018500(48)

0.035 0.0016939(44) 0.0017356(39)

0.045 0.0016739(39) 0.0017141(37)

0.055 0.0016619(36) 0.0017014(35)

TABLE II. m′
res on the 32ID ensemble set at the simulated strange-quark mass.

slicest = 0 and 32, and anti-periodic boundary conditions were used for the propagators. As

mentioned above, the gauge fields were shifted in time by 16 units with respect to the previous

configuration prior to performing all of these measurements.

For each quantity we tabulate the results of fitting to the time-dependence of the corresponding

correlation functions measured at the simulated strange-quark mass, and we present example ef-

fective mass plots demonstrating the quality of our data. Wealso provide tables of data corrected

to the physical strange-quark mass ofms= 0.0467(6) determined in section V, using the the NLO

ChPT with finite-volume corrections parameterization for the mass dependence.

1. The Residual Mass

The residual mass at a non-zero (partially-quenched) quarkmassmx may be determined via the

following ratio:

m′
res(mx) =

〈0|Ja
5q|π〉

〈0|Ja
5|π〉

, (12)

whereJa
5q is the pseudoscalar density at the midpoint of the fifth dimension, andJa

5 is the physical

pseudoscalar density constructed from the surface fields. The prime superscript is used to differ-

entiate this quantity from the residual mass in the two-flavor chiral limit, mres= m′
res(mx = ml = 0).

We averaged the data att andT − t (we refer to this as folding the data), whereT is the lattice

temporal extent, and fit over the time range 6–32 on both ensembles, obtaining the values given in

table II. Note that on the lighter ensemble, the non-unitaryvalues were determined on a reduced
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FIG. 4. The chiral extrapolation ofm′
res over the unitary data points at the simulated strange-quarkmass,

with mres in the chiral limit denoted by the brown square point (left);and the strange-quark mass dependence

of mres in the chiral limit (right).

data set of 92 configurations; these data were not used in the later analysis but are presented here

for completeness. We obtainedmres by extrapolating the unitary light-quark mass to the chiral

limit at each reweighted strange quark mass. As discussed inrefs. [22] and [15], defining the

residual mass as this limit guarantees that the pion mass will vanish in the limitmf +mres → 0

up to sub-percent corrections of orderdm′
res(mf )/dmf ·mres. A plot of the chiral extrapolation at

the simulated strange-quark mass is shown in figure 4. Owing to the minor strange-quark mass

dependence of this quantity evident in the right panel of figure 4, and the small separation between

the simulated and physical strange quark masses, the value of mres at the physical strange quark

mass is not measurably different from that at the simulated value of 0.001842(7).

2. Pseudoscalar Masses

We calculated a series of pseudoscalar meson two-point functions of the form:

C
s1s2
O1O2

(t) = 〈0|Os1
1 (t)O

s2
2 (0)|0〉 . (13)

Here the subscripts index the interpolating operators and the superscripts denote the operator

smearing (wallW or local L) at the sink and source respectively. In the following we refer to

these by the shorthandO1Os1s2
2 , for example usingAALW to denote the axial-axial correlator with

wall source and point sink. The pseudoscalar masses were determined via a combined fit to the
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following five correlation functions:PPLW, APLW andAALW, PPWW andAPWL. The correlation

functions exhibit the following time dependence:

C
s1s2
O1O2

(t) =
〈0|Os1

1 |π〉〈π |O
s2
2 |0〉

2mxyV

[
e−mxyt ±e−mxy(2Nt−t)

]
, (14)

where the sign in the square brackets is+ for thePPandAAcorrelators and− for theAPcorrela-

tors. We denote the amplitudes as

N
s1s2

O1O2
≡ 〈0|Os1

1 |π〉〈π |O
s2
2 |0〉

2mxyV
. (15)

Taking full advantage of the doubled time-extent of the lattice, we performed our fits over the

time range 8–63 on both ensembles, obtaining the masses listed in table IV. The values at the

(unitary) physical strange-quark mass are given in tables Vand VI for the light-light (pion-like)

and strange-light (kaon-like) quark mass combinations respectively. In figures 5 and 6 we show

example effective mass plots for the data at the simulated strange-quark mass on theml = 0.001

ensemble.

3. Pseudoscalar Decay Constants

The pseudoscalar decay constantsfxy were calculated from the two-point function amplitudes via

the following equation:

fxy = ZA

√
2

mxyV

N LW
AP

2

N WW
PP

. (16)

HereZA relates the local four-dimensional axial currentAa
µ – formed with the domain wall surface

fields – to the Symanzik-improved axial currentASa
µ , and thus renormalizes the local current into

the continuum normalization. The indicesa andµ correspond to the flavor and Euclidean direction

respectively.

For domain wall fermions, a partially-conserved five-dimensional axial currentA a
µ can also be de-

fined, which is related to the Symanzik improved current by a different renormalization coefficient

ZA . Prior to the 2010 analysis, it was typically assumed that the difference betweenZA and unity

was negligable, henceZA was assumed equal toZA/ZA . This can be obtained using the improved

ratio [20] of the partially-conserved 5D axial current matrix element〈A4(t)P(0)〉 to the local axial

current matrix element〈A4(t)P(0)〉. As discussed in ref. [21], the assumption thatZA = 1 is only

true up to termsO(amres), leading to an additionalO(1%) systematic error in our earlier results.
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However, in refs. [22] and [21] it was shown thatZA is approximately equal toZV - the ratio

of the Symanzik-improvedvector currentVSa
µ to the local vector currentVa

µ - with their differ-

ence of orderm2
res. Since the ratioZV of the conserved 5D domain wall vector currentV a

µ to its

Symanzik-improved currentV Sa
µ is unity up to termsO(a2), this led to the observation thatZA

can be determined much more accurately via the ratio of the local and 5D vector currents,ZV/ZV ,

calculated using the following expression:

ZV

ZV

=
∑3

i=1 ∑~xV a
i (~x, t)Va

i (
~0,0)

∑3
i=1∑~xVa

i (~x, t)V
a
i (
~0,0)

(17)

in the limit t ≫ a. We calculatedZV/ZV on 192 and 93 configurations of theml = 0.001 and

0.0042 ensembles respectively, and fit to folded data over the time intervals 8–12 and 7–17. Fig-

ure 7 showsZV/ZV (mx = ml = 0.001) as a function of time, illustrating the quality of our data. In

the same figure we also show the chiral extrapolation of the results toml =−mres. In table III we

give the fit results on both ensembles and the chirally extrapolated values. For completeness we

also calculate the ratioZA/ZA using the aforementioned ratio [20], fitting over the time interval

5–30 to folded data. The values of this quantity on each ensemble and in the chiral limit are also

given in table III, and we show an example correlation function in figure 7 alongside a plot of

the chiral extrapolation toml = −mres. The value ofZA/ZA at the physical strange-quark mass is

indistinguishable from the value at the simulated mass. Currently we have not measuredZV/ZV

on reweighted configurations, however the lack of measurable strange-quark mass dependence of

ZA/ZA suggests this will not have any effect on our conclusions.

We calculated the normalized decay constants using the above ratios. The values at the simulated

strange-quark mass are listed in the second column of table IV, and the pion-like and kaon-like

decay constants at the physical strange-quark mass are given in the second columns of tables V

and VI respectively. For these quantities, the statisticaluncertainty onZV/ZV is considerably

larger than that of the bare decay constant. For example, thebare unitary value on theml = 0.001

ensemble has a 0.3% error compared to 1.2% on the normalized quantity. The error onZA/ZA

is much smaller, and if used to normalise the bare decay constants has virtually no effect on the

relative error. However we chose to continue usingZV/ZV to normalize the decay constants in

order to eliminate the systematic error associated with using the axial currents.
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mq ZA/ZA ZV/ZV

0.0042 0.68901(9) 0.6637(46)

0.001 0.68828(15) 0.6685(36)

-mres 0.68778(34) 0.6728(80)

TABLE III. Results forZA/ZA andZV/ZV at the simulated strange-quark mass.

4. Omega Baryon Mass

We determined the Omega baryon masses using box-source propagators with antiperiodic bound-

ary conditions. In order to improve our statistics we averaged the degenerate upper and lower

spin-components of the correlation functions prior to fitting. Our fits were performed over the

intervalt = 3–10 on both ensembles, giving the values listed in table VII. In figure 8 we show the

effective mass of the Omega baryon on theml = 0.001 ensemble withmh = mx = 0.045, demon-

strating the quality of our data.

5. Neutral Kaon Mixing Parameter

The neutral-kaon mixing parameterBxy was obtained by fitting the time dependence of the follow-

ing correlation function to a constant:

Blat
K (t) =

〈K0(t1)|OVV+AA(t)|K̄0(t2)〉
8
3〈K0(t1)|A0(t)〉〈A0(t)|K̄0(t2)〉

, (18)

whereOVV+AA is the∆S= 2 four-quark operator responsible for the mixing. This operator is

inserted at all timest betweent1 andt2. We form the forwards-propagatingK0 state using thep+a

combination of propagators, and the backwards-propagating K̄0 state using thep−a combination;

in effect this setst1 = 0 andt2 = 64 and reduces the round-the-world effects associated withthe

kaons propagating through the temporal boundaries. We performed our fits over the time interval

8–56, giving the values listed in table VIII. We show an example matrix element in figure 8 and list

the values ofBxy at the physical strange-quark mass in table IX. Note thatBK is a renormalization-

scheme dependent quantity and must therefore be renormalized into a common scheme prior to

being included in our simultaneous fits; this is discussed inmore detail in section VII.
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6. The Sommer Scales

Finally, we obtain the Sommer scalesr0 and r1 using Wilson loops formed from products of

time-directed gauge links, for which closure is not required due to Coloumb gauge-fixing. The

time dependence of the Wilson loopW(r, t) was fit fromt = 3 to 8 for each value of the spatial

separationr, and the resulting potentialV(r) then fit over the ranger = 2.00−9 to the Cornell

potential [23]

V(r) =V0−
α
r
+σ r , (19)

whereV0, α andσ are constants. The Sommer scales are determined directly from the potential:

r i =

√
Ai −α

σ
, (20)

whereA0 = 1.65 andA1 = 1.00 for r0 and r1 respectively. In figure 9 we show an example of

the effective potentialVeff(t) at r = 2.45 on theml = 0.001 ensemble and the resulting fit to the

potentialV(r) using the Cornell form. In table X we give the values ofr1 andr0, as well as their

ratios, at the simulated and physical strange-quark masses.
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mx my mxy(0.001) mxy(0.0042) fxy(0.001) fxy(0.0042)

0.055 0.055 0.5463(2) 0.5476(2) 0.1354(16) 0.1363(16)

0.045 0.055 0.5207(2) 0.5220(2) 0.1324(16) 0.1334(16)

0.035 0.055 0.4941(2) 0.4954(2) 0.1291(16) 0.1302(16)

0.008 0.055 0.4159(3) 0.4174(3) 0.1183(14) 0.1200(15)

0.0042 0.055 0.4041(4) 0.4055(4) 0.1164(14) 0.1184(15)

0.001 0.055 0.3942(6) 0.3955(6) 0.1151(14) 0.1173(15)

0.0001 0.055 0.3915(7) 0.3928(7) 0.1149(14) 0.1173(15)

0.045 0.045 0.4940(2) 0.4953(2) 0.1294(16) 0.1305(16)

0.035 0.045 0.4662(2) 0.4675(2) 0.1262(15) 0.1274(15)

0.008 0.045 0.3831(3) 0.3846(3) 0.1156(14) 0.1174(14)

0.0042 0.045 0.3703(3) 0.3718(4) 0.1137(14) 0.1158(14)

0.001 0.045 0.3594(5) 0.3610(5) 0.1123(14) 0.1148(14)

0.0001 0.045 0.3564(6) 0.3581(6) 0.1121(14) 0.1147(15)

0.035 0.035 0.4368(2) 0.4381(2) 0.1231(15) 0.1243(15)

0.008 0.035 0.3476(3) 0.3491(3) 0.1126(14) 0.1144(14)

0.0042 0.035 0.3334(3) 0.3350(3) 0.1107(13) 0.1129(14)

0.001 0.035 0.3212(4) 0.3230(4) 0.1092(13) 0.1118(14)

0.0001 0.035 0.3178(5) 0.3197(5) 0.1090(13) 0.1118(14)

0.008 0.008 0.2273(2) 0.2287(3) 0.1024(12) 0.1044(13)

0.0042 0.008 0.2048(2) 0.2063(3) 0.1005(12) 0.1028(13)

0.001 0.008 0.1839(2) 0.1854(3) 0.0988(12) 0.1015(12)

0.0001 0.008 0.1775(2) 0.1791(3) 0.0984(12) 0.1013(13)

0.0042 0.00420.1795(2) 0.1810(2) 0.0986(12) 0.1011(12)

0.001 0.00420.1549(2) 0.1564(2) 0.0969(12) 0.0997(12)

0.0001 0.00420.1472(2) 0.1487(3) 0.0964(12) 0.0994(12)

0.001 0.001 0.1250(2) 0.1265(2) 0.0950(12) 0.0981(12)

0.0001 0.001 0.1151(2) 0.1167(3) 0.0944(12) 0.0977(12)

0.0001 0.00010.1042(2) 0.1058(3) 0.0938(12) 0.0973(12)

TABLE IV. Pseudoscalar massesmxy (ml ) and decay constantsfxy (ml ) on the 32ID ensembles at the simu-

lated strange-quark mass (mh = 0.045).
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mx my mxy(0.001) mxy(0.0042) fxy(0.001) fxy(0.0042)

0.008 0.008 0.2272(2) 0.2286(3) 0.1027(12) 0.1048(13)

0.0042 0.008 0.2048(2) 0.2063(3) 0.1008(12) 0.1031(13)

0.001 0.008 0.1838(2) 0.1854(3) 0.0991(12) 0.1018(13)

0.0001 0.008 0.1775(2) 0.1791(3) 0.0987(12) 0.1016(13)

0.0042 0.00420.1794(2) 0.1809(3) 0.0989(12) 0.1014(12)

0.001 0.00420.1548(2) 0.1563(3) 0.0972(12) 0.1000(12)

0.0001 0.00420.1471(2) 0.1486(3) 0.0967(12) 0.0997(12)

0.001 0.001 0.1249(2) 0.1265(3) 0.0953(12) 0.0984(12)

0.0001 0.001 0.1151(2) 0.1166(3) 0.0947(12) 0.0981(12)

0.0001 0.00010.1042(2) 0.1058(3) 0.0941(12) 0.0976(12)

TABLE V. Pion massesmxy (ml ) and decay constantsfxy (ml ) on the 32ID ensembles at the physical strange-

quark mass (mh = 0.0467(6)).

mx mxh(0.001) mxh(0.0042) fxh(0.001) fxh(0.0042)

0.008 0.3890(20) 0.3903(21)0.1161(14) 0.1178(15)

0.0042 0.3762(21) 0.3777(22)0.1143(14) 0.1163(15)

0.001 0.3653(21) 0.3669(23)0.1128(14) 0.1153(15)

0.0001 0.3624(21) 0.3640(23)0.1126(14) 0.1153(15)

TABLE VI. Kaon massesmxh (ml ) and decay constantsfxh (ml ) on the 32ID ensembles at the physical

strange-quark mass (mh = 0.0467(6)).

my mh mΩ(0.001) mΩ(0.0042)

0.055 0.045 1.2641(34) 1.2735(36)

0.045 0.045 1.2130(37) 1.2220(41)

0.035 0.045 1.1608(42) 1.1695(48)

0.0467(6) 0.0467(6)1.2248(77) 1.2326(55)

TABLE VII. Omega baryon masses on the 32ID ensembles at the simulated strange quark massmh = 0.045

(first three rows) and at the physical strange quark mass (fourth row).
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mx my Bxy(0.001) Bxy(0.0042)

0.008 0.055 0.645(2) 0.645(2)

0.0042 0.055 0.643(4) 0.645(4)

0.001 0.0550.650(16) 0.665(16)

0.0001 0.0550.665(28) 0.689(28)

0.008 0.045 0.629(2) 0.628(1)

0.0042 0.045 0.626(3) 0.625(3)

0.001 0.0450.630(10) 0.632(10)

0.0001 0.0450.639(17) 0.644(18)

0.008 0.035 0.610(1) 0.609(1)

0.0042 0.035 0.605(2) 0.604(2)

0.001 0.035 0.606(6) 0.602(6)

0.0001 0.0350.610(10) 0.605(10)

TABLE VIII. The partially-quenched neutral kaon mixing parameterBxy (ml ) on the 32ID ensembles at the

simulated strange-quark mass (mh = 0.045).

mx Bxh(0.001) Bxh(0.0042)

0.008 0.632(2) 0.631(2)

0.0042 0.630(4) 0.628(3)

0.001 0.638(11) 0.635(11)

0.0001 0.651(17) 0.649(19)

TABLE IX. The partially-quenched neutral kaon mixing parametermxh (ml ) on the 32ID ensembles at the

physical strange-quark mass (mh = 0.0467(6)).
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ml mh r0 r1 r1/r0

0.0042
0.045 3.2732(63) 2.1208(97) 0.6479(36)

0.0467(6)3.2616(75) 2.1270(105) 0.6521(37)

0.001
0.045 3.2977(62) 2.1346(98) 0.6473(34)

0.0467(6)3.2959(73) 2.1401(100) 0.6493(37)

TABLE X. The Sommer scalesr0 and r1 and their ratio on the 32ID ensembles at the simulated strange

quark massmh = 0.045 (first and third rows) and at the physical strange quark mass (second and fourth

row).
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FIG. 5. Effective unitary pion masses on theml = 0.001 ensemble from the PP LW correlator (top left), PP

WW correlator (top right), AP LW correlator (center left), AP WW (center right) and AA LW correlator

(bottom). Note the different vertical scale for the WW correlators. The horizontal bands represent the result

for the mass from a simultaneous fit.
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FIG. 6. Effective unitary kaon masses on theml = 0.001 ensemble from the PP LW correlator (top left),

PP WW correlator (top right), AP LW correlator (center left), AP WW (center right) and AA LW correlator

(bottom). Note the different vertical scale for the WW correlators. The horizontal bands represent the result

for the mass from a simultaneous fit.
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FIG. 7. ZV/ZV (top left) andZA/ZA (top right) as a function of time, calculated with unitary quarks on

theml = 0.001 ensemble. The bottom figure shows the chiral extrapolation ofZV/ZV andZA/ZA . In these

plots the ratios have been abbreviated toZV andZA.

FIG. 8. The left panel displays the fit to theΩ baryon mass with valence strange massmx = 0.045 on the

ml = 0.001,mh = 0.045 ensemble on the 32ID lattice, showing the quality of the fit with our box source.

The right panel shows theBxy matrix element withmx = my = 0.001 as a function of time on the same

ensemble.
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FIG. 9. The left panel shows the effective potential of the Wilson loops with a spatial extent ofr = 2.45 on

theml = 0.001 ensemble at the simulated strange-quark mass, overlaidby the fit to the ranget = 3–8. The

right panel shows the static inter-quark potentialV(r) on this ensemble, again at the simulated strange-quark

mass, as a function of the spatial extent of the Wilson loops,overlaid by the fit to the Cornell form over the

ranger = 2.00–9.00.
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IV. SIMULTANEOUS CHIRAL/CONTINUUM FITTING PROCEDURE

In order to extrapolate to the continuum limit and physical quark masses we perform a simultane-

ousglobal fit over our three ensemble sets. In this section we detail the fitting procedure and the

subsequent chiral/continuum extrapolation. In addition we discuss the differences between this

analysis and the 2010 analysis [1, 2] of the 243 and 323 DWF+I ensembles.

A. Global Fits and Scaling

For a given choice of lattice action and a given bare couplingβ , 2+1 flavor lattice QCD has two

free parameters: the relevant couplings representing the quark masses. For 2+1 flavor QCD these

are the average up/down quark massamu/d and the strange quark massms, expressed in lattice

units. We can picture taking the continuum limit of the discretized theory as gradually taking

β → ∞ while following a curve ofamu/d(β ) andams(β ) that fixes the continuum physics to that

of the real world; this curve is known as ascaling trajectory. Experimental inputs are used to

determine the lattice spacing and physical quark masses foreach bare coupling, and this imposes

a constraint on each point on this scaling trajectory. (Our standard choice is to require thatmΩ,

mπ/mΩ andmK/mΩ take their physical values.) This in turn allows us to constrain the continuum

limit we determine to be the physical point.

We can relate two points(aml ,amh,β ) and(a′m′
l ,a

′m′
h,β

′) that lie on a particular scaling trajectory

via twoscaling parameters Zl andZh, defined as [1]:

Zf (β ,β ′) =
1

Ra(β ,β ′)
am̃f

a′m̃′
f
, (21)

where f ∈ {l ,h}. Here

Ra(β ,β ′) =
a(β )
a′(β ′)

(22)

is the ratio of lattice spacings and ˜mf = mf +mres, wheremres is the residual mass of domain

wall QCD. In practice, we define our scaling parameters usingthe β = 2.25 (32I) ensemble as

a reference; we refer to this as theprimary ensemble set, on whichZl , Zh andRa are unity by

definition. We may interpret our matching of quark masses to the bare masses on our primary

ensemble set as a convenient, if inelegant, intermediate renormalization scheme, for which the

regularization involves an explicit choice of lattice action and bare coupling, and whose values are

determined by the hadronic inputs. The renormalization scale in this scheme is the scale at which
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the bare mass is defined: the inverse lattice spacing of the primary ensemble. The renormalized

masses are then

m̃r′
l = Zl Ra[a′m̃′

l ]/a, (23)

m̃r′
h = ZhRa[a′m̃′

h]/a, (24)

where unprimed quantities are defined on the primary ensemble set and primed quantities on some

other ensemble set, anda′ is related toa via a′ = R−1
a a.

Considering only the unitary observables for simplicity, any observableQ is a function of the bare

quark masses and the bare coupling. We take this asQ(a′m̃′
l , a′m̃′

h, β ′), at coupling and quark

masses differing from the primary ensemble set. This can equally be expressed as a function of

the renormalized quark masses and the lattice spacing as

Q(a′m̃′
l ,a

′m̃′
h,β

′) = f (m̃r′
l , m̃r′

h , a′2) . (25)

The function f depends on the lattice action and on the choice of physical quantities used to

determine the scaling trajectory. Since among these input parameters is a quantity with a physical

scale (in our case theΩ− mass), we choose to view the function as depending on this scale so its

arguments can be expressed in physical units. The function itself will have a continuum limit asβ

andβ ′ become large.

Consider a double expansion in quark masses and in lattice spacing around our primary ensemble

f (m̃r′
l , m̃r′

h , a′2) = f (m̃l , m̃h, a2)

+ ∂ f
∂m̃r′

l
(m̃r′

l − m̃l )

+ ∂ f
∂m̃r′

h
(m̃r′

h − m̃h)

+ ∂ f
∂a′2 (a

′2−a2).

+ O(m̃2
f ,a

2m̃f ,a4)

(26)

where the partial derivatives are evaluated atRa = Zl = Zh = 1.

If f is a quantity used to determine the scaling trajectory then we necessarily constrain that∂ f
∂a′2 = 0

at the match point. In this paper we introduce a new DSDR term to the effective gauge action. To

this order only the term∂ f
∂a′2 depends on the the lattice action. We can therefore determine the

parameters off for a given parameterization, accurate to this order, via a fit to a set of points

over multiple ensembles, and including the two different gauge actions. Even though there is only

a single lattice spacing with the DSDR gauge action, it will usefully contribute to a universality
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constrained global fit by significantly constraining the mass dependent terms in a global parame-

terization of f (m̃l , m̃h, a2).

For the purposes of matching ensemble sets with different lattice spacing we ignore terms of higher

order inδml , δmh and ina2. Since we allowZh for masses in the region of the strange quark to

differ from Zl for masses in the region of the up/down quarks, in this matching context we may

consider small variations in the quark masses only.

We can also see immediately that if we instead use a nearby reference point(aml ,amh,β ) →
(a[ml +∆l ],a[mh+∆h],β ), the ratiosZf andRa change only by termsO

(
a(β )2−a′(β ′)2

)
with

coefficients that are functions of the mass differences∆ f that vanish as∆ f → 0. This means that

there is anallowed rangeoverwhichZl andZh may be simply taken as a constant. Higher order

terms in quark masses are, of course, subsequently introduced in our global chiral-continuum fits,

and we introduceZh andZl as free fit parameters multiplying quark masses in the allowed range.

In practice we even findZl ∼ Zh; were the matching and primary ensemble sets taken sufficiently

close to the continuum limit, such that lattice artifacts were small andmh ≪ 1/a, then we would

necessarily findZl = Zh. The matching scheme can therefore be considered mass-independent

as the mass dependence of the renormalization factors dropsout when the renormalization scale

becomes large.

In the following subsection we discuss our strategy for determining the scaling parametersZl , Zh

andRa.

B. Determination of the Scaling Parameters

In our analysis [1] of the 243 and 323 DWF+I ensembles, we determinedRa, Zl andZh by matching

our lattice data at an unphysical light and heavy quark mass within the range of available data

on the two simulations. The matching was performed by first choosing a suitablematch point

on one of the ensemble sets (labelledM ) which can, but does not necessarily have to be, the

primary ensemble. On every other ensemble sete (in the 2010 analysis only the 24I ensemble set

remained), two dimensionless ratios,Rl =mll /mhhh andRh =mlh/mhhh, were linearly interpolated

in the unitary light and heavy quark masses until their values matched those measured at the match

point on ensembleM . Heremll , mlh andmhhh are respectively the pion, kaon and Omega baryon

masses measured at unphysical light (l ) and strange (h) quark masses. The match point was chosen

to minimise the distance of interpolation required on the ensemble setse. This procedure provides
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a pair of equivalent masses (in lattice units),(am̃l)
e and (am̃h)

e, for each ensemble set. Using

these masses we determinedZl andZh using eqn. 21, calculatingRa from the ratio of the Omega

baryon masses at the match point:

Ze
f =

1
Re

a

(am̃f )
1

(am̃f )e , Re
a =

a1

ae =
m1

hhh(m̃
1
l ,m̃

1
h)

me
hhh(m̃

e
l ,m̃

e
h)

, (27)

where f ∈ {l ,h}.

The above procedure defines the scaling parameters such thatmll , mlh andmhhh scale perfectly up

to termsO(ma2) within the allowed region around the match point. Note that this choice is not

unique; we could for instance use the pion and kaon decay constants, fll and flh, and the Sommer

scaler0, and matchr0 fll andr0 flh. Ra can then be determined from the ratio ofr0 measured at the

match point on each ensemble set. In this caser0, fll and flh would have noO(a2) dependence

instead. In ref. [1] we demonstrated that this produces results that are completely consistent.

The benefit of thisfixed trajectorymethod is that it enables the separation of the matching fromthe

complexities of the subsequent global fits. However, in our combined analysis of the DWF+I and

DWF+ID ensemble sets, we find that, apart from the lightest partially-quenched point, the range

of light quark masses on the 24I ensemble set does not overlapwith that on the 32ID ensemble

set (cf. figure 11). As a result, matching the 24I and 32ID ensemble sets to the 32I primary

ensemble set at a single point would require a long extrapolation beyond the unitary mass range.

In addition, the use of independent linear interpolations on each ensemble set is more vulnerable

to statistical fluctuations than if we were to fit over all datasimultaneously. As a result we choose

the alternategeneric scalingmethod [1], in whichRa, Zl andZh are left as free parameters which

are determined, alongside the low-energy constants, in a global fit of mπ , mK andmΩ over all

ensemble sets. Here the three conditions that define the scaling trajectory are imposed by omitting

scaling terms up toO(ma2) from the fit forms describing these quantities, and the values of the

ratios are selected as those that minimize the globalχ2. In ref. [1] we demonstrated that this

approach gives consistent results with the fixed trajectoryapproach.

Prior to discussing our fit ansätze, it is illustrative to compare the ratios of various dimensionless

quantities between the 32I and 32ID ensemble sets at a particular match point, using the scal-

ing parameters determined later in section V. This allows usto visualize the magnitude of the

scaling corrections for each quantity. Choosing[aml ]
32I = 0.004 and the physical strange-quark

mass[amh]
32I = 0.0263(10) as a match point, we used the scaling parameters listed in table XIII

(combining the statistical error with the systematic errors determined using the procedure given in
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FIG. 10. Ratios of various dimensionless combinations of observables between the 32I and 32ID ensemble

sets. The combination of physical quantities is given aboveor below the corresponding point. A ratio of

unity indicates perfect scaling between the two ensemble sets.

section V B) to determine the corresponding point on the 32IDensemble as[aml ]
32ID = 0.0066(3)

and[amh]
32I = 0.0467(6). We then performed linear fits to a range of quantities over each ensem-

ble set independently and interpolated each to the corresponding match point quark masses. In

figure 10 we plot the ratio of a number of dimensionless combinations of these quantities between

the two ensemble sets. It is immediately apparent that the scaling parameters do indeed fixmπ ,

mK andmΩ to scale between the two ensemble sets, and the errors on the ratios of these quantities

are indicative of the size of higher order corrections – in a fixed trajectory matching at this point

those errors would be zero by definition.

Considering combinations ofmπ , mK andmΩ with other quantities that retain a scale dependence,

and for the purpose of making a crude estimate ignoring the small discretization error on the 32I

measurements, we can use this plot to read off the rough size of the discretization error for the

measurements on the 32ID ensemble set: we estimateO(3–5%) discretization terms forfll and

flh, O(1–2%) for r0, and then a slightly largerO(5–7%) contribution forr1.

As an aid to the reader, we also use the aforementioned scaling parameters to place all of the

simulated quark masses on a common scale, and draw a line to indicate the physical point as

determined in section V. These plots are shown in figure 11.
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FIG. 11. Simulated quark masses on each of our three ensemblesets brought into a common normalization

with the bare quark masses on our 32I ensemble set using the scaling factors determined in section V. The

top panel shows the light quark mass regime and the bottom panel the heavy quark mass regime. Circular

points are used to mark the unitary masses and square points the partially-quenched masses. The physical

up/down and strange quark masses are marked with dashed lines.

C. Chiral/Continuum Fitting Strategy

The chiral/continuum fit forms are obtained via a joint expansion in a2 and m̃f . As in ref. [1]

we consider both an NLO expansion around the SU(2) chiral limit using partially-quenched chiral

perturbation theory (PQChPT) and also a leading-order analytic expansion about an unphysical

light-quark mass. Including finite-volume effects in the ChPT, this provides three fit ansätze, which

we label ‘analytic’, ‘ChPT’ and ‘ChPTFV’, where the latter two refer to the chiral perturbation

theory forms without and with finite-volume corrections respectively. For each ansatz we expand

the heavy-quark mass dependence to linear order in the vicinity of the physical strange-quark mass.

We use a power-counting scheme whereby terms of order ˜mf a2 and higher are neglected. This

truncation leaves only a singlea2 term arising from the expansion of the leading order parameter.
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For example, the analytic form for the pion decay constantfll in physical units is as follows:

fll =C fπ
0

(
1+C fπ

a a2
)
+C fπ

1 (mR
v −mR

l0)+C fπ
2 (mR

l −mR
l0)+C fπ

3

(
mR

h −mR
h0

)
, (28)

where the superscriptR indicates a renormalized physical quark mass (in a general scheme), and

mR
l0 andmR

h0 are the expansion points for the light and heavy quark massesrespectively. In our

power counting scheme, a term in the lattice spacing arises only in the expansion of the leading

termC fπ
0 . It is important to note that thea2 coefficients parameterizing the lattice artifacts will

differ between the Iwasaki and Iwasaki+DSDR gauge actions,therefore for the remainder of this

work we label these coefficients with a superscript denotingthe lattice action.

As discussed in ref. [1], the scaling parametersZe
l andZe

h that relate the quark masses between

the ensemblee and the primary ensemble set can be thought of as ‘renormalization coefficients’,

removing the ultraviolet divergence and converting the masses into a mass-independent ‘matching

scheme’ defined with lattice regularization atβ = 2.25. It is therefore unnecessary to renormalize

the input quark masses into a continuum renormalization scheme such asMS prior to performing

the fits; we need only convert the input masses into the matching scheme. The predictions for the

physical up/down and strange quark masses can be converted into a more conventional schemea

posteriori; this is performed in section VI.

In the 2010 analysis, we performed our fits to quantities in physical units. However this required

us to continually update the lattice spacings and physical quark masses based on the results of

the fit, iterating until convergence. For this analysis we instead fit to quantities in lattice units,

which removes the need to repeat the global fit multiple times. However, for clarity, we continue

to quote our fit forms in dimensionful units; the correctly normalized versions in lattice units for

an ensemblee can easily be obtained by inserting powers ofae where appropriate to make the

measurement and input quark masses dimensionless; applying factors ofZe
l andZe

h as before to

bring the quark masses into the normalization of the primaryensemble; substitutingae with a1/Re
a;

and finally settinga1 to unity.

In the matching scheme the analytic fit form forfll on the primary ensemble1 becomes:

f 1
ll =C fπ

0

(
1+C fπ ,A(1)

a [a1]2
)
+C fπ

1 m̃1
v+C fπ

2 m̃1
l +C fπ

3

(
m̃1

h−mh0

)
, (29)

wherem̃v =
1
2(m̃x+ m̃y) and we have taken advantage of the linearity of the expression to absorb

any terms inm̃0
l into the leading coefficient. Here the superscriptA(1) denotes the gauge action

of the primary ensemble: for our choice of primary ensemble this is the Iwasaki action, labelledI .
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The fit form describingfll on any other ensemble can then be obtained by applying equation 25 to

the above and replacing thea2 coefficient with that appropriate to the particular action.

Before continuing, it is illustrative to discuss how thea2 coefficients for the Iwasaki+DSDR gauge

action can be determined without having multiple lattice spacings with this action. Let us imagine

that we have performed a global fit over the 24I and 32I ensembles as in ref. [1], and have thus

determined the coefficientsC fπ
0 throughC fπ

3 and the Iwasaki scaling coefficientC fπ , I
a . We then

perform a fixed trajectory matching between the 32I and 32ID ensemble sets, providing us with

Z32ID
l , Z32ID

h and R32ID
a . The fit form describingfll on the 32ID ensemble now has only one

unknown coefficient, namelyC fπ , ID
a , which can be obtained by comparing any single simulated

data point with the predicted value or by fitting over severalpoints. In practice we would like the

32ID data to contribute to the determination of the coefficients, thus we perform a combined fit to

all three ensemble sets and allowC fπ , ID
a to be determined by minimizing the globalχ2.

Recall that our choice of scaling trajectory defines the pion, kaon and Omega baryon masses to

have no lattice spacing dependence up to termsO(ma2) arising from the match-point dependence

of Zl , Zh andRa. These terms are neglected by our power counting, hence the fit forms for these

quantities contain no discretization terms. For example, the form for the Omega baryon with the

analytic ansatz is:

mhhh=CmΩ
0 +CmΩ

1 m̃l +CmΩ
2 (m̃y−mh0)+CmΩ

3 (m̃h−mh0) . (30)

The remaining analytic and ChPT fit forms can be found in section V-B of ref. [1]. Note that as we

now measure the strange-quark dependence in the global fit rather than linearly interpolating to

the physical strange mass prior to fitting, we include additional parameters for the heavy valence-

quark dependence (where appropriate) and the heavy sea-quark dependence, in this order. For the

analytic fit forms these coefficients are labelled followingthe existing sequence, for example the

heavy valence and sea quark dependences ofmhhh areCmΩ
2 andCmΩ

3 respectively. For the ChPT fit

forms we label the parameterscQ,my andcQ,mh for the valence and sea dependence of the quantity

Q respectively.

We perform our fits with the strange-quark mass expansion point mh0 set initially to the un-

reweighted strange sea-quark mass on the 323 DWF+I ensemble set. This is then corrected to

the physical strange quark massa posteriori; with our power counting this requires only a redef-

inition of the leading order coefficient (e.g.CmΩ
0 ). For the ChPT forms we must also adjust the

LECs in order to absorb the effect of adjusting the chiral scale Λχ to the conventional 1 GeV once
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the lattice scale has been determined.

Once the fits have been performed, we determine the physical up/down and strange quark masses

(normalized to the units of the 32I primary ensemble) by numerically adjusting the quark masses

in our fit functions such thatmπ/mΩ andmK/mΩ match their physical values in the continuum

limit. Here, as in ref. [1], we usemπ = 135 MeV,mK = 495.7 MeV andmΩ = 1672.45 MeV. The

primary lattice spacing can then be extracted by dividing the predicted continuum value formΩ

in lattice units by its physical value. Using these results and the values ofRa, Zl andZh found by

fitting the data, the lattice spacings and physical quark masses for the other ensemble sets can be

determined; we discuss this in more detail in section VI.

V. FIT RESULTS AND SYSTEMATIC ERROR DETERMINATION

Following the 2010 analysis strategy, we split the chiral/continuum fits into three parts. In the first

part, to which this section is dedicated, we performed simultaneous fits tomπ , mK, mΩ, fπ and fK

over the three ensemble sets, from which we determined the physical quark masses (in matching

scheme normalization), the lattice spacings and the scaling parameters, along with predictions for

the physical pseudoscalar decay constants. The second set of fits were performed toBK and the

third to the Sommer scalesr0 andr1; these are documented in sections VII and VIII respectively.

We also separate out the discussion of the determination of the physical quark masses in theMS-

scheme into section VI.

A. Fit Results

In the 2010 analysis we did not attempt to correct for finite-volume effects in our analytic fits,

as the magnitude of the change was small with respect to the systematic error arising from the

chiral extrapolation. However on the 32ID ensemble set we have data reaching down almost to

the physical point, hence we might expect that the chiral systematic error will be reduced and that

the finite-volume error may begin to dominate (as we discuss below, this does indeed seem to be

the case). As a result, in anticipation of our later discussion, we perform our analytic fits to data

corrected using ChPT to the infinite-volume limit. Althoughwe do not have multiple volumes

from which to measure the size of the correction directly, weexpect that the finite-volume terms in

NLO chiral perturbation theory will provide a somewhat reliable estimate now that we are so deep
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in the chiral regime; we therefore estimate the finite-volume correction for each simulated data

point as the fractional difference between the ChPTFV fit value for that point with and without

the finite-volume terms applied. The analytic fits presentedin this section are all performed to

the finite-volume corrected data. Note that despite the near-physical pion masses on our 32ID

ensembles, the smallestmπL is roughly 3.3, which is in fact larger than the value of 3.1 obtained

for the lightest pion on the 32I ensembles, due to the greaterphysical volume of the 32ID lattice.

As a result we do not expect our new data involving lighter quark masses to further enhance the

finite-volume errors.

In order to prevent accidental correlations between independent data from influencing the fit, while

retaining the correlations between data measured on the same ensemble, we make use of the su-

perjackknife technique to propagate the errors through ourfits. A superjackknife distribution for

a measurement is essentially a collection of independent jackknife distributions, each containing

the fluctuations from a particular ensemble. As for the standard jackknife, any procedure, such as

a fit or binary operation, is performed sequentially to each jackknife sample in all distributions.

The total error on the superjackknife is obtained by evaluating the errors on each of its component

jackknife distributions and adding these in quadrature. This technique was also used for our 2010

analysis.

As discussed in the previous section, our use of the strange-quark mass reweighting in the chi-

ral/continuum fits differs from the 2010 strategy. Previously, each quantity was independently

interpolated to the physical strange-quark mass prior to fitting; after the fit the values were up-

dated to the new mass and the fit repeated, with this process iterated until convergence. We now

constrain the heavy sea-quark dependence of each quantity to be the same on all ensemble sets

and include multiple reweighted data points in the fit. As thenumber of reweighted masses differs

between the ensemble sets, and considering that there are likely to be strong correlations between

the reweighted data points, we might worry that theχ2 contributions of the data on the ensemble

sets with more reweighted masses will be incorrectly enhanced in our uncorrelated fits. In order

to avoid this we used only four reweighted strange-quark masses on each ensemble set, spread

uniformly across the range.

Upon performing the fits, we discovered significant (up to 4σ ) tensions between the fits and the

pion and kaon data on the 32ID ensembles at the upper end of thereweighted mass range. How-

ever, the upper limit of this mass range (mh = 0.052) is considerably larger than the physical

strange quark mass of∼ 0.047, which is actually very close to the directly simulated mass of
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mh = 0.045. From the effective number of configurations calculatedin section II, we estimated

that reweighting to the physical strange quark mass introduces a 10–15% increase in our statisti-

cal errors. As we go further from the simulated point we expect the accuracy of the reweighting

procedure to further decrease due to the reduced overlap of the reweighted path integral and the

original. At mh = 0.052 we found that the effective number of configurations was reduced to only

15 on the lighter ensemble (down from 180) and 24 on the heavier (down from 148). This suggests

that the measurements at the far end of the reweighting rangeare dominated by only a very small

number of configurations and are therefore unreliable. As a result, the tension we observed be-

tween the fits and the data at the upper end of the reweighting range is likely to be an artifact of the

reweighting procedure. With this in mind, we repeated the fits again using four reweighted masses

this time spread only over the range beginning at the simulated strange quark mass and ending at

the estimated physical strange quark mass. In doing so we found that the tension disappeared.

The inclusion of the 32ID ensembles greatly enhances the mass range over which our fits are

performed. This should reduce the systematic error on the extrapolation to the physical light quark

mass, and also allows us to consider removing some of the heavier ensembles from the Iwasaki

data sets which may lie near the limits of convergence of NLO chiral perturbation theory. We

removed the 24Iml = 0.01 ensemble and the 32Iml = 0.008 ensemble, as well as the partially-

quenched data points on the lighter ensembles containing quarks with these masses. In performing

this cut, we restrict our fits to pion masses smaller than 350 MeV, where previously the upper

bound was 420 MeV. This amounts to a∼ 30% reduction in the largest unitary light-quark mass.

Note that this is not a straight cut on the partially-quenched pion mass as the elimination of these

heavy ensembles also removes a number of partially-quenched pions containing these now ‘heavy’

quarks ranging down to∼ 230 MeV.

With the cut data set we were able to obtain excellent fits using the ChPT and ChPTFV ansätze.

For the analytic ansatz we again found excellent fits to the decay constants as well asmK and

mΩ, but for the pion mass we found a number of outlying data points on the 32ID ensembles

that deviated from the fit by up to 4σ , with the typical size of the deviation beingO(2%). These

deviations appear to occur due to non-linearities in the light data. The fact that no corresponding

deviations appear for the ChPT fits suggests that these non-linearities are consistent with the NLO

chiral logarithms. However, the discrepancies are also of the size expected for NLO terms in the

Taylor expansion that are beyond the range of our power counting, hence we cannot draw any

strong conclusions about their nature within our modest range of masses. As the linear ansatz
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must be locally correct around the physical point, we soughtto reduce these discrepancies by

further lowering the cut for these fits, first by eliminating the 32Iml = 0.006 ensemble, then by

systematically removing the data corresponding to the heaviest partially-quenched pions. The

limit to which this bound can be pushed in our analysis is dictated by the stability of the fits and

the necessity to retain some data on the remaining 24I ensemble such that thea2 coefficients of the

decay constants can be determined; the latter implies that a240 MeV bound is the lowest that we

can currently reach. In practice we reached a similar level of agreement between the analytic fits

and the data as found in the ChPT fits by lowering the bound to 260 MeV. Although this removes

a large amount of data, we found that the fit remained very stable and that the effect of the cut on

the values and precision of the fit parameters and predictions was surprisingly small; the typical

change was of the order of a few percent, with the only large, statistically significant change being

a 15% increase in the valence light-quark dependence offπ . With this in mind, we chose the 260

MeV cut for our analytic fits. The mass combinations of the data points remaining after performing

this cut are listed in table XI.

As a side note, we also repeated the ChPT and ChPTFV fits to the full data set, for which the

upper bound on the pion mass is 420 MeV. We found that, even over this large range, the NLO

SU(2) ChPT fits were able to describe all of our data with only afew points on the 32ID ensembles

deviating by between 2 and 3σ .

In table XII we list the results for the inverse lattice spacings and quark masses obtained using each

fit ansatz, alongside the associated uncorrelatedχ2/dof. The results are completely consistent,

which suggests that the extrapolation to the physical quarkmasses is under control. A similar

degree of consistency can be seen between the fit parameters (where applicable) given in table XIII.

Here, as mentioned in the previous section, we have adjustedthe chiral scaleΛχ of the ChPT LECs

to the conventional 1 GeV. In figures 13 and 14 we overlay our simulated data formπ and fπ on the

32ID ensembles with the ChPTFV and analytic fit curves respectively, and in figure 15 we present

similar plots formK and fK overlaid with the ChPTFV fit curves. We list the individual predictions

for fπ , fK and their ratio at the simulated lattice spacings and the continuum limit in table XIV.

In figure 16 we plot the chiral extrapolations offπ andmΩ overlaying the data corrected to the

continuum limit. (Note that the Omega baryon mass data requires no correction due our choice of

scaling trajectory.)

The uncorrelatedχ2/dof are all less than unity, suggesting that the fits are behaving. In order to

demonstrate the quality of the fits in greater detail, we present histograms of the deviation of the
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Ensemble set ml {mx} {my}

32I

0.008 - -

0.006 - -

0.004 0.002 0.002, 0.004

24I
0.01 - -

0.005 0.001 0.001

32ID
0.00420.0001, 0.001, 0.00420.0001, 0.001, 0.0042, 0.008

}
(excl. [0.0042,0.008])

0.001 0.0001, 0.001, 0.00420.0001, 0.001, 0.0042, 0.008

TABLE XI. Sea and valence quark masses of the data included inthe analytic fit with a 260 MeV cut on the

pion mass. The third and fourth columns give the set of partially-quenched valence quark masses; the mass

combinations of light-light quantities (mπ and fπ ) are found by combining each choice ofmx with each

choice ofmy from the appropriate columns, with the exception of the[mx,my] = [0.0042,0.008] points on

the 32I ensemble set, for which the partially-quenched pionmasses are above the cut. For heavy-light data

(mK , fK) the light valence-quarks are chosen from the{mx} column, and the heavy valence-quarks from

the full set of simulated heavy-quark values. FormΩ and the Sommer scales, all data are included on those

ensembles not marked with a dash (-).

fit from the data in units of the statistical error in figure 12.

In the remainder of this section, we discuss how we combine the results of our fits into predictions

for fπ and fK and final results for the lattice spacings and physical quarkmasses (in the matching

scheme).
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Analytic ChPT ChPTFV

χ2/dof(32IW) 0.279(64) 0.191(55) 0.221(57)

aml (32I) 0.000320(42) 0.000307(34) 0.000308(35)

ams(32I) 0.02660(98) 0.02650(85) 0.02627(89)

a−1(32I) 2.295(40) GeV 2.302(35) GeV 2.310(37) GeV

aml (24I) −0.001754(83) −0.001757(75) −0.001749(78)

ams(24I) 0.0337(18) 0.0338(13) 0.0336(13)

a−1(24I) 1.743(43) GeV 1.743(30) GeV 1.747(31) GeV

aml (32ID) −0.000090(34) −0.000096(21) −0.000090(22)

ams(32ID) 0.04667(76) 0.04674(60) 0.04671(61)

a−1(32ID) 1.372(10) GeV 1.371(8) GeV 1.371(8) GeV

TABLE XII. The χ2/dof, unrenormalised physical quark masses in bare latticeunits (withoutmres included)

and the values of the inverse lattice spacinga−1 obtained by fitting to data withmπ ≤ 350 for the ChPT and

ChPTFV fits, andmπ ≤ 260 MeV for the analytic fit.

Parameter ChPT ChPTFV Parameter Analytic

ZI
l 0.983(14) 0.981(14) 0.992(21)

ZID
l 0.929(15) 0.930(15) 0.936(16)

ZI
h 0.9730(94) 0.9719(95) 0.976(14)

ZID
h 0.939(13) 0.935(13) 0.940(14)

RI
a 0.7571(65) 0.7562(66) 0.7595(90)

RID
a 0.5955(72) 0.5934(76) 0.5976(74)

B 4.174(83) 4.148(86) Cmπ
0 0.00043(23)

L(2)
8 0.000616(22) 0.000610(23) Cmπ

1 7.70(16)

L(2)
6 −0.000131(69) −0.000159(72) Cmπ

2 0.173(40)

cmπ ,mh −2.1(2.5) −2.5(2.5) Cmπ
3 −0.041(26)

f 0.1167(31) 0.1196(31) C fπ
0 0.1221(30)

cI
f −0.021(70) −0.031(68) C fπ , I

a −0.064(88)

cID
f 0.040(45) 0.014(43) C fπ , ID

a 0.030(47)

L(2)
5 0.000560(51) 0.000524(51) C fπ

1 1.054(32)
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Parameter ChPT ChPTFV Parameter Analytic

L(2)
4 −0.00014(13) −0.00020(14) C fπ

2 0.88(16)

cfπ ,mh 0.422(90) 0.484(89) C fπ
3 0.120(49)

m(K) 0.2365(77) 0.2364(80) CmK
0 0.2364(88)

λ2 0.01907(77) 0.02028(76) CmK
1 3.637(99)

λ1 0.00220(75) 0.00233(80) CmK
2 0.47(20)

cmK ,my 3.811(61) 3.828(64) CmK
3 3.802(71)

cmK ,mh 0.033(43) 0.031(43) CmK
4 0.001(64)

f (K) 0.1466(36) 0.1484(37) C fK
0 0.1500(35)

cI

f (K) −0.034(57) −0.040(57) C fK , I
a −0.075(69)

cID

f (K) 0.020(38) 0.008(38) C fK , ID
a 0.013(38)

λ4 0.00622(22) 0.00601(22) C fK
1 0.349(44)

λ3 −0.0034(19) −0.0032(20) C fK
2 0.76(19)

cfK ,my 0.2917(42) 0.2923(42) C fK
3 0.2967(64)

cfK ,mh 0.118(40) 0.118(40) C fK
4 0.144(57)

m(Ω) 1.6659(100) 1.666(11) CmΩ
0 1.6657(99)

cmΩ,ml 2.9(1.2) 3.1(1.2) CmΩ
1 3.0(1.8)

cmΩ,mv 5.439(58) 5.462(63) CmΩ
2 5.441(65)

cmΩ,mh 0.74(29) 0.87(31) CmΩ
3 0.35(39)

TABLE XIII: The fit parameters of each of our chiral ansatzë obtained by fitting to data withmπ < 350

MeV for the ChPT and ChPTFV fits, andmπ ≤ 260 MeV for the analytic fit. The parameters are given

in GeVn for the appropriate power ofn, and with the heavy quark mass expansion point adjusted to the

physical strange quark mass. We have ordered the table such that the equivalent parameters of the ChPT

and analytic fits lie on the same line. The coefficients of the chiral logarithms have also been adjusted so

that they are defined at the conventional chiral scaleΛχ = 1 GeV.

B. Combining Results and Estimating Systematic Errors

Prior to discussing our method of estimating the systematicerror contributions arising from the

chiral extrapolation and finite-volume effects, it may be appropriate to detail two of the contri-
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Analytic ChPT ChPTFV

f 32IW
π 0.1249(21) 0.1242(22) 0.1264(22)

f 24IW
π 0.1238(28) 0.1238(25) 0.1258(26)

f 32ID
π 0.1284(18) 0.1273(18) 0.1280(18)

f continuum
π 0.1264(28) 0.1247(27) 0.1271(27)

Analytic ChPT ChPTFV

f 32IW
K 0.1502(23) 0.1499(23) 0.1512(24)

f 24IW
K 0.1485(30) 0.1491(26) 0.1503(27)

f 32ID
K 0.1536(21) 0.1526(21) 0.1531(21)

f continuum
K 0.1525(28) 0.1509(29) 0.1524(30)

Analytic ChPT ChPTFV

( fK/ fπ)32IW 1.202(12) 1.207(9) 1.197(9)

( fK/ fπ)24IW 1.199(18) 1.205(11) 1.195(11)

( fK/ fπ)32ID 1.196(4) 1.199(4) 1.196(4)

( fK/ fπ)continuum 1.206(14) 1.211(12) 1.199(12)

TABLE XIV. Predictions for fπ (top-left) andfK (top-right) in GeV as well as their ratio (bottom) for each

global fit ansatz at each simulated lattice spacing and in thecontinuum limit obtained by fitting to data with

mπ ≤ 350 for the ChPT and ChPTFV fits, andmπ ≤ 260 MeV for the analytic fit.

butions that we neglect in our final predictions: those arising from the explicit chiral symmetry

breaking due to simulating with finiteLs, and those from the truncation of the combined Symanzik-

chiral expansion that we discussed in the previous section.We have addressed the explicit chiral

symmetry breaking at leading order by additively renormalizing the quark masses in our fit forms

with mres. However, up to operators of dimension-6, the chiral symmetry breaking also intro-

duces a dimension-5 clover term that potentially introduces O(aΛQCD) discretization errors; we

discuss this issue in Appendix C and conclude that this can beneglected in our calculations. We

may therefore treat our domain wall simulations asO(a)-improved, which allows us to also ne-

glect higher-order terms involving the lattice spacing raised to an odd power, e.g.O(a3Λ3
QCD)

terms. Regarding the truncation of the Symanzik-chiral expansion, we stated in the previous sec-

tion that we ignore termsO(mqa2ΛQCD) ∼ O(m2
πa2) and higher. These include terms of magni-

tudeO(a4Λ4
QCD), O(m4

πΛ−4
QCD), O(mresm2

πΛ−3
QCD), O(mresa2ΛQCD), etc. These are expected to be

on the scale of a fraction of a percent or less, considerably smaller than the percent-scale chiral

and finite-volume errors in our calculation. For example we find that ourO(a2Λ2
QCD) terms are

typically ≤ 3%, from which we can estimate theO(a4Λ4
QCD) error as(0.03)2 ∼ 0.1%. There are

also effects arising from higher-order terms in the Symanzik expansion that are typically ignored

in lattice calculations: The coefficients ofa2 in the expansion are themselves dependent on the



45

FIG. 12. Histograms of the deviation of the fit from the data for each quantity on each of the three ensemble

sets (32I top, 24I middle and 32ID bottom) with the analytic (left) and ChPTFV (right) ansätze.
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lattice spacing through loop corrections, giving rise to terms likeαs(a) ln(aΛQCD)a2. We discuss

these in detail in Appendix D and conclude that they can be expected to be of a similar magnitude

to theO(a4Λ4
QCD) errors for our range of lattice spacings. We now proceed to the discussion of

the finite-volume and chiral extrapolation errors.

The method of combining the results obtained using our threechiral ansätze into a final prediction

was discussed at length in ref. [1]. The main issues were firstly deciding which result or combi-

nation of results to use for the central value and secondly deciding how to estimate the systematic

errors arising from finite-volume corrections and the extrapolation to the physical quark masses.

The discussion was focussed on the predicted decay constants as they are known to high precision.

We observed that our predicted value forfπ from the ChPTFV fit was 7(2)% too low, and 4(2)%

in the analytic case, where the quoted errors are obtained from the statistical error on the result.

Smaller discrepancies were also found in the kaon decay constants. We concluded that these are of

the size expected for NNLO terms in the chiral expansion, as obtained by squaring the difference

between our data andf – the leading order term in the ChPT chiral expansion. Notingthat both the

analytic fits and ChPTFV fits appeared to describe our data equally well, we decided to average

the two results and take their full difference as our estimate for the chiral extrapolation systematic.

We estimated the size of the finite-volume systematic error from the full difference of the ChPTFV

and ChPT results.

Now that we have data ranging down almost to the physical point, we are able to revisit the issue

of estimating the systematic errors. We first note that the differences between the ChPTFV and

analytic results forfπ and fK are now very small, smaller in fact than the formerly sub-dominant

finite-volume contributions estimated from the differencebetween the ChPT and ChPTFV results.

By comparing the above results with those obtained by fittingto all available data we observed

that this reduction is mainly due to our removal of the data corresponding to heavier pion masses

from the fits.

As discussed in the previous section, we performed our analytic fits to finite-volume corrected data

in anticipation of the increased importance of these effects on our results. Here we investigate how

large an effect the finite-volume corrections have on the analytic fits by repeating the latter with

un-corrected data. The resulting fit parameters and predictions are compared to the original fits in

table XV. In the table we also provide the superjackknife ratios of the fit results with and without

finite-volume corrections. We notice that in taking the ratio, many of the correlated fluctuations

cancel, exposing underlying changes that were formerly masked by the statistical error. We ob-
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serve that in many cases the deviation of the ratio from unityis statistically significant but is only

O(2%) or less; these changes are of the order expected for higher-order (mass-squared ora2m)

effects that are beyond the range of our power counting, hence we cannot draw any conclusions

from these results. The only quantities that change significantly are the slopes offπ , fK andmπ

with respect to the light-quark masses; this behaviour is expected as the finite-volume corrections

will be larger in the light quark-mass regime, in which the physical length scales are greater. We

observe a 1.7 MeV upwards shift in the continuum prediction forfπ , which is consistent with the

2.4 MeV difference between the ChPT and ChPTFV results.

Although we now correct for the finite-volume using NLO chiral perturbation theory, we note that

resummation techniques [24] may lead to somewhat larger estimates of the finite-volume effects.

As we lack the ability to repeat our calculations on a larger volume, we choose to continue to

include a conservative finite-volume systematic error in our final results, obtained, as before, from

the full difference of the ChPTFV and ChPT results.

In the previous section we demonstrated that the ChPTFV fit forms describe our data reliably

over a considerably larger range of pion masses than the linear ansatz. For the final predictions

given in the following sections we therefore take the ChPTFVresults for our central values and

use the analytic ansatz only to estimate the chiral systematic. However, we continue to find it

surprising that a linear ansatz appears capable of describing QCD at the 1% level from the 260

MeV pion-mass regime down to the physical point, and at the 2%level if that range is extended to

350 MeV.

In some cases we observed that the superjackknife errors on the differences between results ob-

tained using the three parameterizations were larger than the differences between the central val-

ues. In these cases we chose to be conservative and took the statistical error on the difference for

our estimate of the systematic error.
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Quantity Original data FV corrected dataRatioR |R−1|/σ

χ2/dof 0.219(54) 0.274(65) 1.254(33) 7.672

ml 0.002230(58) 0.002259(58) 1.01293(53) 24.379

mh 0.0627(12) 0.0626(12) 0.99857(31) 4.603

Zl (24I) 0.996(22) 0.992(21) 0.99619(41) 9.377

Zl (32ID) 0.927(16) 0.936(16) 1.00932(42) 22.131

Zh(24I) 0.975(14) 0.976(14) 1.00073(20) 3.580

Zh(32ID) 0.942(14) 0.940(14) 0.99876(29) 4.366

Ra(24I) 0.7595(91) 0.7595(90) 1.00004(17) 0.218

Ra(32ID) 0.5977(75) 0.5976(74) 0.99980(22) 0.911

a−1(32I) 2.295(40) 2.295(40) 1.00025(24) 1.032

a−1(24I) 1.743(43) 1.743(43) 1.00029(41) 0.710

a−1(32ID) 1.372(10) 1.372(10) 1.000048(21) 2.282

fπ 0.1247(27) 0.1264(28) 1.01359(72) 18.879

fK 0.1515(28) 0.1525(28) 1.00627(31) 19.916

fK/ fπ 1.213(12) 1.202(12) 0.99143(36) 24.076

Cmπ
0 -0.00011(16) -0.00014(16) 1.28(51) 0.563

Cmπ
1 3.378(30) 3.355(30) 0.99334(28) 24.172

Cmπ
2 0.084(18) 0.075(18) 0.892(20) 5.490

Cmπ
3 -0.016(11) -0.018(11) 1.084(74) 1.146

C fπ
0 0.0539(13) 0.0547(13) 1.01534(81) 18.970

C fπ , I
a -0.013(17) -0.012(17) 0.91(13) 0.702

C fπ , ID
a 0.0093(91) 0.0057(89) 0.61(38) 1.032

C fπ
1 1.121(32) 1.054(32) 0.9404(21) 28.102

C fπ
2 0.94(16) 0.88(16) 0.9414(88) 6.662

C fπ
3 0.120(48) 0.120(49) 1.001(10) 0.110

CmK
0 0.06589(63) 0.06597(62) 1.00113(11) 10.556

CmK
1 1.600(30) 1.585(30) 0.99058(37) 25.545

CmK
2 0.208(86) 0.206(85) 0.99130(46) 18.716

CmK
3 1.6544(97) 1.6561(97) 1.00101(11) 9.208
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Quantity Original data FV corrected dataRatioR |R−1|/σ

CmK
4 -0.000(28) 0.000(28) 0(1500) 0.009

C fK
0 0.0705(14) 0.0710(14) 1.00633(32) 19.911

C fK , I
a -0.014(13) -0.014(13) 1.011(22) 0.510

C fK , ID
a 0.0041(73) 0.0024(72) 0.60(76) 0.529

C fK
1 0.378(44) 0.349(44) 0.9246(84) 9.007

C fK
2 0.77(20) 0.76(19) 0.9793(31) 6.752

C fK
3 0.2965(65) 0.2967(64) 1.00060(22) 2.749

C fK
4 0.144(57) 0.144(57) 0.9982(45) 0.395

CmΩ
0 0.7992(100) 0.7994(99) 1.00023(11) 2.056

CmΩ
1 3.0(1.8) 3.0(1.8) 0.9937(29) 2.158

CmΩ
2 5.436(65) 5.441(65) 1.00093(22) 4.281

CmΩ
3 0.35(39) 0.35(39) 1.013(29) 0.454

TABLE XV: A comparison of the results of analytic fits to the simulated data and the data corrected to the

infinite volume using the ChPTFV fit forms. The quantity in thefourth column is the jackknife ratio of the

results,R, and the quantity in the fifth column is the statistical significance of the deviation of this ratio from

unity.

C. Global Fit Predictions

Applying the procedure detailed above, we present our predictions for the pion and kaon decay

constants:

fπ = 127.1(2.7)(0.9)(2.5) MeV, (31)

fK = 152.4(3.0)(0.7)(1.5) MeV, (32)

fK/ fπ = 1.1991(116)(69)(116) . (33)

Here the errors are statistical, chiral and finite-volume respectively. Note that by restricting the

ChPTFV fit tomπ < 350 MeV rather thanmπ < 420 MeV used in the 2010 analysis (a 30%

cut in the light quark mass), we obtain a value forfπ that is now consistent with the known

physical value, justifying our assertion that the previously observed deviation was mainly due to
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the influence of higher order terms in the chiral expansion.

For the inverse lattice spacings we obtain:

a−1(32I) = 2.310(37)(17)(9) GeV, (34)

a−1(24I) = 1.747(31)(24)(4) GeV, (35)

a−1(32ID) = 1.3709(84)(56)(3) GeV. (36)

For comparison, in the 2010 analysis we obtaineda−1(32I)=2.282(28)(1)(1)GeV anda−1(24I)=

1.730(25)(1)(0) GeV by fitting only to the Iwasaki data. These results are statistically consistent,

although we find a considerable enhancement in the systematic errors. Upon detailed investigation

we determined that these differences arise almost entirelybecause the scaling factorsZl , Zh and

Ra are now allowed to vary between the fits (generic scaling), asopposed being fixed to the values

obtained at some unphysical mass point (fixed trajectory) asin the 2010 analysis: In the fixed

trajectory case the prediction for the physical Omega baryon mass, which we use to set the overall

scale, can vary only through the values of the physical lightand strange quark masses, whereas in

the generic scaling case the scaling parameters are those that contribute to the minimisation of the

global χ2, and can thus introduce larger variations in the predicted Omega mass. This does not,

however, suggest that generic scaling is worse than the fixedtrajectory approach, as the shifts in

the scaling parameters between the three ansätze in the former approach would simply be absorbed

elsewhere in the latter, increasing the systematic error onsome other quantities.

Using the NLO SU(2) ChPT fits we can obtain values for the effective couplingsl̄3 andl̄4. For the

ChPTFV and ChPT fits on their own, we find:

l̄3 = 2.91(23), l̄4 = 3.99(16) (ChPTFV)

l̄3 = 2.98(22), l̄4 = 3.90(16) (ChPT) .
(37)

As before we take the ChPTFV result for our central value. Although we cannot obtain a chiral

extrapolation error without a corresponding analytic fit result, we can continue to estimate a finite-

volume error from the difference between the two ChPT results. Therefore, our final values for the

effective couplings are as follows:

l̄3 = 2.91(23)(7), l̄4 = 3.99(16)(9) , (38)

where the errors are statistical and finite-volume respectively. In the 2010 analysis (applying

the same procedure to obtain the finite-volume error), we found l̄3 = 2.57(18)(25) and l̄4 =
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3.83(9)(7). Comparing to our fits without the reduced pion mass cuts, we determined that the

inflation of the statistical error and the rises in the central values over the 2010 analysis results

derive mostly from the lowering of the cut from 420 MeV to 350 MeV. However the values for̄l3

andl̄4 agree more closely in our current analysis even without the reduced cut, suggesting that the

inclusion of the 32ID ensembles has some stabilizing influence upon the fit. For comparison, the

FLAG working group obtained [25] an estimate ofl̄3 = 3.2(8), which was chosen to cover a large

number of independent lattice results for this quantity, among which there are some discrepancies

between the values. Our result is entirely consistent with this estimate. For̄l4, the inconsistencies

between the results were considered too large to make a meaningful estimate. For both of these

quantities, recent results include 2+1f determinations bythe MILC collaboration [26, 27] and our

2010 analysis paper [1], and a 2+1+1f determination by the ETM collaboration [28].

Finally we give our predictions for the physical quark masses on the primary ensemble set:

m̃ud(32I) = 2.243(46)(24)(10) MeV, m̃s(32I) = 62.2(1.1)(0.5)(0.3)MeV (39)

In the 2010 analysis we obtained ˜mud(32I) = 2.355(81)(79)(42) andm̃s(32I) = 63.7(9)(1)(1).

These numbers are again consistent, although here it appears that the enhanced control over the

chiral extrapolation afforded by the 32ID ensembles has decreased the statistical error on the aver-

age up/down quark mass in spite of our exclusion of a large number of data points. We also observe

a vastly improved chiral extrapolation systematic and a substantially reduced finite-volume error

on this quantity. In the next section we discuss how these masses are renormalized into theMS

scheme.

VI. PHYSICAL RESULTS FOR THE LIGHT- AND HEAVY-QUARK MASSES
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FIG. 13. Global fits obtained using NLO SU(2) chiral perturbation theory with finite-volume corrections

for the pion mass (top) andfπ (bottom) on the 32ID ensembles. Here the left-hand plot of each pair show

the data at the simulated strange-quark mass and the corresponding fit curves on theml = 0.001 ensemble,

and the right-hand plots those on theml = 0.0042 ensemble. The plots of the pion mass havem2
π/(m̃x+ m̃y)

on the ordinate axis, a quantity used traditionally to emphasize the chiral curvature of the data.
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FIG. 14. Global fits using the analytic ansatz with finite-volume corrected data for the pion mass (top) and

fπ (bottom) on the 32ID ensembles. Here the left-hand plot of each pair show the data at the simulated

strange-quark mass and the corresponding fit curves on theml = 0.001 ensemble, and the right-hand plots

those on theml = 0.0042 ensemble. The plots of the pion mass havem2
π/(m̃x+ m̃y) on the ordinate axis,

a quantity used traditionally to emphasize the chiral curvature of the data. The circular points are those

included in the fit, and the diamond points those excluded by the cut on data withmπ ≥ 260 MeV.
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FIG. 15. Global fits obtained using NLO SU(2) chiral perturbation theory with finite-volume corrections

for the square of the kaon mass (left) andfK (right) on the 32ID ensembles.

FIG. 16. The chiral extrapolation of the pion decay constant(left) and Omega baryon mass (right) using the

analytic and ChPTFV ansätze. Overlaying these curves we have plotted the unitary data extrapolated to the

continuum limit using thea2 dependence of our fit forms. The lighter-shaded points were corrected using

the analytic fit form, and the darker points by the ChPTFV form. Here the circular points are those included

in the fit, and the diamond points are those excluded by the cuts at 350 MeV (ChPTFV) and 260 MeV

(analytic). The upper and lower square points show the continuum predictions obtained using the ChPTFV

and analytic ansätze respectively. Note that forfπ , the analytic fit does not include any unitary data points

on the 32I and 24I ensembles as they lie above the pion mass cut(cf. table XI). Note also that the physical

limit of the Ω− mass shows no statistical errors and agrees precisely with its physical value because it is

this quantity that we use to determine the lattice scale.
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In the previous section we determined the physical quark masses in lattice units in the matching

scheme defined in section V. In this section we discuss how we convert these into the conventional

MS-scheme.

A. Non-perturbative Renormalization for the Quark Masses

We cannot simulate with a non-integer number of dimensions,hence we must match our lattice

results to perturbation theory in order to quote a result in the MS-scheme. Rather than matching

using lattice perturbation theory, which is often poorly convergent, we obtain the renormalization

coefficientsZMS
m non-perturbatively at each lattice spacing via several intermediate renormaliza-

tion schemes – the so-called RI/SMOM schemes – that are variants of the Rome-Southampton

RI/MOM scheme. In these schemes the renormalization coefficients are calculated by fixing the

values of appropriate amputated vertex functions, constructed using quark propagators on Landau-

gauge fixed configurations, at a renormalization scale defined by the quark momenta. These

schemes are defined without reference to a particular regularization, hence they can easily be

formulated in continuum perturbation theory with dimensional regularization, and the matching

coefficients between them and theMS scheme can be determined without reference to the lattice

regularization. The matching is performed at a sufficientlyhigh energy scale to be within the

perturbative regime.

We have shown [1] that renormalizing at 3 GeV rather than the conventional 2 GeV results in

a significant improvement in the contribution to the systematic error from the truncation of the

perturbative series. The quark masses in ref. [1] were calculated at the 2 GeV scale; in this analysis

we update the procedure to use the higher scale, and use twisted boundary conditions to gain better

control of the discretization effects on the off-shell amplitudes entering the renormalization [29].

The RI/SMOM→ MS matching coefficients at one-loop [30] and two-loops are known [31, 32].

For the lattice calculation of the RI/SMOM renormalizationcoefficients, we are constrained in our

choice of renormalization scale only by the desire to avoid large discretization and finite-volume

effects. Therefore for a lattice of spatial extentL and lattice spacinga, we must choose a scaleµ

in the window:

L−2 ≪ µ2 ≪ (π/a)2 . (40)

However, if we wish to match to theMS scheme, this window is further constrained to the typically
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much smaller regime in which both the discretization and non-perturbative effects are small:

Λ2
QCD ≪ µ2 ≪ (π/a)2 . (41)

This is known as the Rome-Southampton window [33]. For the 32I and 24I lattices, witha−1∼ 2.3

GeV and 1.75 GeV respectively, our target of 3 GeV is accessible directly within this window.

However, for the 32ID lattice, witha−1 ∼ 1.37 GeV, we cannot calculate the lattice renormaliza-

tion conditions in the perturbative regime without incurring large discretization errors. The 32ID

renormalization factors are not needed for the analysis of the quark masses in this section (see

below), but this is an issue forBK; we discuss this further in section VII.

The need to calculate the RI/SMOM coefficients within the perturbative regime can be circum-

vented via the use of off-shell step-scaling functions [29,34] determined through a continuum

extrapolation of the scale dependence (with a fixed lattice action) – in this limit the dependence

on the action disappears and the scale dependence becomes universal. Similar step-scaling func-

tions were used in our recent analysis of theK → ππ ∆I = 3/2 amplitudes [7]. In that analysis,

performed only on the 32ID ensemble set, we used the following strategy:

1. We evaluated the Z-factors (or the matrix of Z-factors in the case of operator-mixing) at

a low energy scaleµ0 on the 32ID lattice and computed the relevant renormalized matrix

elements. The scaleµ0 was chosen within the region given in equation 40, in which the

finite-volume and discretization effects are small. In practice we choseµ0 ∼ 1.1 GeV.

2. We computed the scale evolution betweenµ0 ∼ 1.1 GeV andµ = 3 GeV of these operators

on the finer Iwasaki (IW) lattices, upon which the high scale lies within the usual Rome-

Southampton window. At finite lattice spacingaIW, if ZS(µ,aIW) is the renormalization

factor of the operator under consideration in a (lattice) scheme S, the corresponding scale

evolution is given by

ΣS(µ,µ0,aIW) = ZS(µ,aIW)(ZS(µ0,aIW))
−1

. (42)

The result was extrapolated to the continuum limit, giving the universal running in this

energy range for this given scheme S:

σS(µ,µ0) = lim
aIW→0

ΣS(µ,µ0,aIW) . (43)
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3. We multiplied the Z-factors obtained in step 1 at the scaleµ0 by the continuum non-

perturbative running obtained in step 2 to obtain the desired Z-factors at 3 GeV. We then

converted these to theMS scheme using one-loop perturbation theory [35].

Further details of the renormalization strategy used in theaforementioned analysis can be found

in ref. [36].

It is conceptually cleaner to divide our determination of the MS-scheme quark masses in a similar

way to the above, separating the calculation of the non-perturbative renormalization coefficients

and their subsequent continuum extrapolation from the perturbative matching stage. We therefore

first calculate the RI/SMOM coefficients at a low energy scaleµ0 and then calculate the step-

scaling functions from this scale to 3 GeV. As discussed in section VII, the choiceµ0 = 1.4 GeV

is optimal for theBK analysis – we use this scale in the quark-mass analysis for consistency.

Providing the jackknife/bootstrap errors are propagated correctly, the value ofZS
m(3 GeV) obtained

after applying the step-scaling function to the 1.4 GeV result will be exactly the same as if we had

performed the continuum extrapolation directly at 3 GeV, due to the fact that the step-scaling

functions are calculated using the same data.

1. Determination of the Lattice Renormalization Coefficients

Before presenting the results of our analysis, we summarizeour measurement strategy, highlight-

ing several important improvements over the original RI/MOM methods.

The original RI/MOM scheme, defined in ref. [33], was shown [37] to suffer from greatly enhanced

chiral symmetry breaking errors. These were found to occur due to the use of so-called exceptional

kinematics, for which the vertex has channels along which the momentum transfer is zero; these

allow quark and gluon loops with momenta below the spontaneous chiral symmetry breaking

scale to exist even when the external momenta are moderatelyhard. The persistence of non-

perturbative effects at high energy gives rise to large uncertainties in the perturbative matching.

In order to avoid this problem we follow the 2010 analysis procedure in using non-exceptional

‘symmetric’ kinematics [37] for which no exceptional channels exist. With these kinematics the

non-perturbative effects fall off much faster as the virtuality is increased.

The quark mass renormalization coefficientZm, which is taken in product with the bare quark

mass to obtain the renormalized quantity, is determined from the flavor non-singlet scalar and

pseudoscalar vertex renormalization coefficients,ZS andZP respectively, via the relationZm =
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1/ZS = 1/ZP. The equivalence ofZS andZP is not exact if the chiral symmetry is broken; this

occurs due to the low-energy spontaneous chiral symmetry breaking of QCD and to a much lesser

degree from finite-Ls effects. With non-exceptional kinematics, the former vanishes as 1/p6 [38],

and is therefore small at the 3 GeV scale at which we perturbatively convert to theMS-scheme. In

ref. [38] and during the present analysis we found that the effect of the difference betweenZS and

ZP on our finalMS scheme quark masses was considerably smaller than the errorassociated with

the truncation of the perturbative series; as a result we do not need to include a systematic error

for this effect. For the central values we arbitrarily choseto take the average of the scalar and

pseudoscalar renormalization factors to determineZm, as was performed in ref. [38].

The scalar and pseudoscalar vertex functionsΠS andΠP were constructed at all sink locations

of two quark propagators with momentap1 and p2. The symmetric kinematics require that the

momenta are chosen such thatp2
1 = p2

2 = (p1 − p2)
2 = q2 = −µ2 for a renormalization scale

µ. As before we used volume momentum source propagators as these have been shown [2] to

significantly reduce the statistical error on the NPR coefficients.

The renormalization conditions for the scalar and pseudoscalar vertex functions, applied at the

scaleµ in the three-flavor chiral limit, are:
ZS

Zq
ΛS= 1 and

ZP

Zq
ΛP = 1, where

ΛS=
ZS

Zq

1
12

tr [ΠS· I ] , ΛP =
1
12

tr
[
ΠP · γ5

]
. (44)

Here I is the identity matrix andZq is the wave-function renormalization factor.Zm in the non-

exceptional schemes is thus calculated as

ZmZq =
1
2
(ΛS+ΛP) . (45)

The wave-function renormalization factor is determined from the renormalization condition on the

vector current:
ZV

Zq
ΛV = 1, where

ΛV =
1
12

tr
[
ΠVµ ·Γµ

]
(46)

for the vector bilinear vertexΠVµ . With symmetric kinematics, the momentum transferq2 is

non-zero, hence we have two choices for the projection matrix Γµ , namelyγµ/4 and /̂qq̂µ/q̂2;

these define two different renormalization schemes which welabel RI/SMOMγµ and RI/SMOM

respectively. Here we have used ˆqµ = sin(qµ) following ref. [1]. In the remainder of this work we

refer to the two schemes collectively as the ‘SMOM schemes’.
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In the above, the vector renormalization coefficientZV is identical to the factor relating the four-

dimensional vector current to the corresponding Symanzik current. In section III we discussed

how this quantity can be calculated independently using theratio of the local four-dimensional and

conserved five-dimensional vector currents. (The values for this quantity on the Iwasaki ensemble

sets were determined in ref. [1].) AsZV is known, we can combine its measurement with the ratio
ZV
Zq

, obtained from the vector-vertex renormalization condition, in order to determineZq.

In principle a separate measurement ofZq could be obtained using the axial-vector vertex. As was

the case for the scalar and pseudoscalar vertex functions, this measurement can differ from that

calculated via the vector vertex due to the residual effectsof the low-energy spontaneous chiral

symmetry breaking and small finite-Ls effects. However, in refs. [1] and [2] we found that the

effect of the difference between the vector and axial-vector vertex functions on our final result is

again negligable compared to the perturbative truncation error.

As mentioned above, the renormalization conditions are applied in the three-flavor chiral limit. In

practice we generate data on each ensemble with quark massesset equal to the dynamical light-

quark mass; the chiral extrapolation is then performed using a linear fit over the unitary light-quark

mass-dependence. The vertex functions are flavor-independent, hence this extrapolation also takes

the valence strange-quark, but not the sea strange-quark, to the chiral limit. As we have only a

single simulated dynamical strange-quark mass and reweight over only a short range, we cannot

reliably take this final mass to the chiral limit. In refs. [1]and [2] we estimated the effect of

not taking the strange sea-quark to zero using the slope of the unitary light-quark extrapolation,

reduced by a factor of two to obtain the contribution of a single flavor. For the RI/MOM scheme,

the two-flavor mass-dependence was found to be significant, resulting in a large systematic effect

comparable in size to the truncation systematic. However, for the RI/SMOM schemes we found

a very benign mass-dependence that was statistically indistinguishable from zero. Note that this

estimate is highly conservative as the slope is likely dominated by the valence mass dependence;

this suggests that we can ignore this systematic effect in our present analysis, for which we use

only the non-exceptional schemes.

In ref. [1] we calculated the renormalization factors over arange of momentum scales. The scales

at which we could perform our lattice measurements were limited by the need to form a symmetric

momentum configuration with spatial momentum components that are discretized in units of 2π/L

by the periodic boundary conditions. The resulting momentum configurations were typically dis-

tinct under the hypercubic group, hence the measurements were susceptible to lattice artifacts that
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vary underO(4) rotations. These induced a scatter in the data, breaking theexpected smooth scale

dependence; as a result we were forced to artificially inflateour errors by a factor of
√

χ2/dof,

taken from a straight-line fit to the data. In ref. [29] we showed that the scatter can be eliminated

entirely using twisted boundary conditions to induce quarkmomenta with a fixed direction; the

remaining lattice artifacts can be removed by a continuum extrapolation. This approach was used

for the renormalization ofBK in the second of the 2010 analysis papers [2]. In the current analysis

we also adopt this technique for the quark mass renormalization.

2. Perturbative Matching to theMS Scheme

The conversion factorsCRI/SMOM→MS
m between the RI/SMOM andMS schemes were first computed

at one loop in ref. [30] and the two-loop corrections for bothRI/SMOM and RI/SMOMγµ are

known from refs. [31, 32]. Regarding our notation, we write the running of the renormalized

quark mass (in a given scheme S) between the scaleµ0 andµ in the form

mS(µ) = mS(µ0) exp

(∫ as(µ)

as(µ0)
dx

γS
m(x)

β (x)

)
, (47)

where, following [39], we useas = (αs/π). We expand the anomalous dimensionγS
m and the

β -function (dropping the superscriptS for clarity)

γS
m(as) =−γ(0) as− ∑

i≥1
γ(i)S ai+1

s , (48)

β (as) =−∑
i≥0

βi a
i+2
s , (49)

where we have made explicit the fact thatγ(0) is scheme-independent (we do not discuss here the

scheme dependence ofαs, which cancels in equation 47). We can then express the result of eqn. 47

with the help of

exp

(∫ as(µ)

as(µ0)
dx

γS
m(x)

β (x)

)
=

cS(µ)
cS(µ0)

, (50)

where

cS(µ) = as(µ)
γ(0)
β0

(
1+

(
γ(1)S

β0
− β1γ(0)

β0
2

)
as(µ)+O(a2

s)

)
. (51)

Still following [39], we then define the renormalization-group-invariant (RGI) mass ˆm by

m̂= lim
µ→∞

mS(µ)as(µ)
− γ(0)

β0 . (52)
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Using equation 47 and 51, this gives

m̂=
mS(µ0)

cS(µ0)
∀µ0 . (53)

In particular, since ˆm is renormalization group invariant, we can use the ratio ofc’s to change

scheme: for example, the conversion factor between a schemeS1 and a scheme S2 at the scaleµ

is given by

CS1→S2
m (µ) =

cS2(µ)
cS1(µ)

. (54)

The RGI mass is obtained frommS(µ) using equation 53, which implies that

CS→RGI
m (µ) =

1
cS(µ)

. (55)

With some simple linear algebra we are able to convert the numerical results of ref. [30] to our

conventions and evaluate eqn. 51.

Finally, to obtainαs at 3 GeV in the three-flavor theory, we used the four-loop running of refs. [40]

and [41] and tookαs(mZ) = 0.1184 [42] as an initial condition. We ran this quantity down to the

charm mass, changing the number of flavors when crossing eachthreshold, obtainingαs(3 GeV)=

0.2454.

Putting everything together, we found

1

cRI/SMOM(3 GeV)
= 3.1052(1−0.0825−0.0066+O(a3

s)) = 2.8283, (56)

1

cRI/SMOMγµ (3 GeV)
= 3.1052(1−0.1086−0.0147+O(a3

s)) = 2.7223, (57)

1

cMS(3 GeV)
= 3.1052(1−0.0699−0.0035+O(a3

s)) = 2.8773. (58)

Combining these we obtained for the conversion factors:

CRI/SMOM→MS
m (3 GeV) =

cMS(as(3 GeV))

cRI/SMOM(3GeV)
= 0.9830, (59)

C
RI/SMOMγµ →MS
m (3 GeV) =

cMS(as(3 GeV))

cRI/SMOMγµ (3 GeV)
= 0.9462, (60)

which are correct to ordera3
s.

With the four-loop anomalous dimension of ref. [39], we obtain

CMS→RGI
m (3 GeV) = 3.1052(1−0.0699−0.0035−0.0001+O(a4

s)) = 2.8769. (61)
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For completeness we apply the same procedure at a renormalization scale ofµ = 2 GeV (using

αs(2 GeV) = 0.2960):

1

cRI/SMOM(2 GeV)
= 2.5452+O(a3

s) , (62)

1

cRI/SMOMγµ (2 GeV)
= 2.4218+O(a3

s) , (63)

1

cMS(2 GeV)
= 2.6017+O(a3

s) , (64)

which are again quoted toO(a3
s). Thus we find

CRI/SMOM→MS
m (2 GeV) = 0.9783, (65)

C
RI/SMOMγµ →MS
m (2 GeV) = 0.9309, (66)

CMS→RGI
m (2 GeV) = 2.6012, (67)

where, as before, the SMOM toMS conversion factors are correct up to termsO(a3
s), whereas

the RGI conversion factor is true up to termsO(a4
s) by virtue of using the four-loop anomalous

dimension. As expected, these numbers are in very nice agreement with the ones given in ref. [31].

We close this paragraph with a remark about the definition of the RGI quantities: Our convention

is such that, at the first order of perturbation theory, the conversion to the RGI quark mass is given

by

CA→RGI
m (µ) = (αs(µ)/π)−4/(11−2nf /3) . (68)

This convention differs from the one used forBK, whereαs is not divided byπ :

CA→RGI
BK

(µ) = (αs(µ))−2/(11−2nf /3) . (69)

(Here the difference between the anomalous dimensions of the quark mass andBK accounts for the

factor of two in the exponent between the two expressions.) Although the difference in conventions

is rather unfortunate, we adopt them in order to match those commonly used in the literature.

3. Calculation of Zm in the RI/SMOM Schemes

We calculated the RI/SMOM and RI/SMOMγµ bilinear vertex functions on each ensemble of the

Iwasaki lattices, using quark propagators with the (twisted) momenta given in the first two blocks

of table XVI (as explained below, the 32ID renormalization factors are not needed). These were

then linearly extrapolated to the two-flavor chiral limit. We plot the scale dependence of the
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24I p1 p2 θ

(-2,0,2,0) (0,2,2,0) {−0.45136,0.732}

(-3,0,3,0) (0,3,3,0)3
16n : n= {−2,1...,12}

(-4,0,4,0) (0,4,4,0) 3
2

32I p1 p2 θ

(-2,0,2,0) (0,2,2,0) {−0.413,0.783}

(-3,0,3,0) (0,3,3,0) 1
4

(-4,0,4,0) (0,4,4,0) {−3
4 , 3

8}

(-5,0,5,0) (0,5,5,0) {−5
8,

3
8}

32ID p1 p2 θ

(-3,0,3,0) (0,3,3,0) {0.0}

(-4,0,4,0) (0,4,4,0) 1
2n : n= {−1,0,1,2}

(-5,0,5,0) (0,5,5,0) 1
2n : n= {−1,0}

TABLE XVI. Non-exceptional momenta and twist angles used for the evaluation of amputated twisted

Green’s functions in our NPR analyses. The momenta here are listed in(x,y,z, t) order. The integer Fourier

mode numbers{ni} are related to the lattice momenta viaapi =
ni2π
Li

. The momentum added by the twist is

determined by the twist angleθ giving api =
(2ni+θ )π

Li
. The twists that are not multiples of1

8 are chosen to

match specific momenta on a larger volume lattice that will bedescribed in a forthcoming publication.

resulting chiral-limit renormalization factors in figure 17; here we clearly see the smooth scale

dependence arising from the use of twisted boundary conditions.

In order to obtain the values at 1.4 GeV we performed an interpolation over several data points

in the region surrounding the 1.4 GeV renormalization scale. Using the lattice spacings from

section V we find the corresponding values of(ap)2 to be 0.367 and 0.642 on the 32I and 24I

lattices respectively. In this region of figure 17 we see a non-linear scale dependence arising

from the (supressed) poles and the renormalization group running, hence we cannot perform our

interpolation using a simple linear function. Upon experimenting with several different non-linear

forms, we found that the following parameterization:

Zm[(ap)2] =C0+C1/(ap)2+C2(ap)2 , (70)

fit the data well and was stable when the number of points was increased. We present the results
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FIG. 17.Zm in the two SMOM schemes at a range of scales on the 24I (left) and 32I (right) ensemble sets.

32I 24I

RI/SMOM RI/SMOMγµ RI/SMOM RI/SMOMγµ

ZS
m(µ = 1.4 GeV) 1.7782(62) 1.9612(52)1.7763(43) 1.9558(36)

ZS
m(µ = 3.0 GeV) 1.4414(5) 1.5183(2) 1.4579(2) 1.5419(2)

TABLE XVII. Renormalization factors in the intermediate RI/SMOM scheme S at the scaleµ . Here the

quoted error contains only the statistical contributions from the amputated vertex functions, not the fluctua-

tions from the uncertainties on the lattice spacings andZV .

of interpolating toµ = 1.4 GeV in table XVII. In order to later obtain the step-scalingfactors, we

repeated the above with a 3.0 GeV renormalization scale; these results are also given in the table.

Note that the error quoted for the results in this table contains only the statistical contributions

from the amputated vertex functions; the fluctuations arising from the statistical and systematic

uncertainties on the lattice spacings andZV are discussed below.

4. Renormalization of the Continuum Quark Masses

The physical quark masses determined in section V are quotedin the ‘matching scheme’, whereas

the renormalization factors above act upon thebarephysical quark masses. Therefore in order to

obtain the quark masses in either theMS scheme or one of the Rome-Southampton schemes, we

must first convert the matching scheme masses into bare masses using equation 27.

The matching scheme is a non-continuum (due to its explicit cutoff dependence), mass-independent

scheme in which a bare quark mass in physical units that is determined at a couplingβ is renor-
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malized by fixing its value to that obtained on a 323×64×16 domain wall lattice with the Iwasaki

gauge action atβ = 2.25:

mmatch
f = Zmatch(mf ,β )mf (β ) . (71)

As discussed in section IV, the renormalization factorZmatch(mf ,β ) at finite lattice-spacing is only

weakly dependent upon the mass, hence we require just two factors: one to renormalize heavy

quarks near the physical strange quark mass, and one to renormalize the light quarks. We labelled

theseZh(β ) andZl (β ) respectively, and calculated their values on the 24I and 32ID lattices as part

of our global fits in section V (the values on the 32I ensemble are unity by definition).

Given the values ofmmatch
u/d andmmatch

s , we can obtain quark masses renormalized in one of our

intermediate RI/SMOM schemes S at a givenβ using the non-perturbative renormalization factors

calculated above via the following ratios:

mS
u/d(β ) = mmatch

u/d ×ZS
m(β )/Zl(β ) and mS

s(β ) = mmatch
s ×ZS

m(β )/Zh(β ) . (72)

These quantities still retain lattice artifacts which mustbe removed via a continuum extrapolation.

Since, by definition,Zh andZl absorb the coupling dependence of the quark masses, we need only

extrapolate the ratios

ZS
ml(β ) = ZS

m(β )/Zl (β ) and ZS
mh(β ) = ZS

m(β )/Zh(β ) . (73)

For this we assume a linear dependence ona2, neglecting the higher order effects. Note that we

cannot include the values ofZm calculated on the 32ID lattice in this extrapolation due to this

lattice having a different gauge action, and hence a different scale dependence, than the 24I and

32I lattices. As a result we have not analyzed this quantity in the present analysis.

In order to correctly propagate the statistical errors and the chiral/finite-volume errors on the var-

ious quantities we use the superjackknife procedure as before and repeated the analysis usingZl ,

Zh, the lattice spacings and the quark masses calculated usingeach of the three chiral ansätze

separately, taking the differences between these results at the final stage to determine the system-

atic errors in the usual way. In practice, the determinationof the renormalization coefficients was

performed using bootstrap resampling and used only the finalresults for the lattice spacings in

determining the renormalization scale. In order to ensure that the systematic and statistical er-

rors were correctly propagated we devised a procedure for generating suitable ’super-jackknife’

distributions from these; this procedure is given in Appendix B.
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FIG. 18. The continuum extrapolations ofZml (left) andZmh (right) in the RI/SMOM at 1.4 GeV.

We performed the continuum extrapolation ofZS,A
ml (µ = 1.4 GeV) andZS,A

mh (µ = 1.4 GeV) for each

choice of scheme S and chiral ansatz A, obtaining the values listed in table XVIII. In the table

and below we add a superscript ‘c’ to denote continuum quantities. An example of the continuum

extrapolation is shown in figure 18.

The step-scaling factorsσS,A(3 GeV,1.4 GeV) were then determined via a continuum extrapola-

tion over the Iwasaki lattices of the ratioΣ of renormalization coefficients at 3 GeV and 1.4 GeV

(cf. equation 43). This was repeated for each scheme and chiral ansatz, giving the values also

listed in table XVIII. We then applied the step-scaling factors toZc
ml andZc

mh at the 1.4 GeV scale

to obtain the corresponding values at 3 GeV; these are again listed in table XVIII. Note that there is

a quite considerable cancellation between the statisticalfluctuations on the step-scaling factors and

the 1.4 GeV renormalization coefficients; this cancellation is necessary to reproduce the smaller

statistical errors on the 3 GeV factors and justifies the use of superjackknife error propagation.

(Similar results might be obtained using bootstrap resampling for all quantities, with a consis-

tent number of bootstrap samples, although this risks accidental cancellation between ostensibly

uncorrelated fluctuations.)

5. MS-scheme Renormalization Factors and Systematic Errors

Applying the perturbative conversion factors toZc
ml andZc

mh at 3 GeV, we finally obtain theMS

renormalization coefficients for the quark masses determined in section V. We list the values in ta-

ble XVIII. All that remains prior to obtaining theMS quark masses is to decide which intermediate

scheme to use for the renormalization and to analyze the systematic errors.
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Ansatz A

Quantity Scheme S Scale(s)µ ChPTFV ChPT Analytic

Zc
ml

SMOM

1.4 GeV

1.735(36) 1.735(36) 1.752(51)

SMOMγµ 1.918(39) 1.917(39) 1.935(55)

Zc
mh

SMOM 1.712(27) 1.711(27) 1.712(34)

SMOMγµ 1.893(29) 1.890(29) 1.890(37)

σ
SMOM

1.4→ 3.0 GeV
0.797(8) 0.798(8) 0.799(8)

SMOMγµ 0.755(7) 0.756(7) 0.758(7)

Zc
ml

SMOM

3.0 GeV

1.383(27) 1.385(27) 1.401(40)

SMOMγµ 1.449(28) 1.450(28) 1.466(42)

MS (via SMOM) 1.360(26) 1.361(26) 1.377(40)

MS (via SMOMγµ ) 1.371(26) 1.372(26) 1.387(40)

Zc
mh

SMOM 1.365(18) 1.365(18) 1.368(25)

SMOMγµ 1.429(18) 1.429(18) 1.432(26)

MS (via SMOM) 1.341(17) 1.342(17) 1.345(25)

MS (via SMOMγµ ) 1.352(17) 1.353(17) 1.355(25)

TABLE XVIII. The factors Zc
ml andZc

mh used to convert our matching-scheme physical quark masses into

each intermediate NPR scheme at 1.4 and 3.0 GeV, and the step-scaling factors used to run between those

scales. We also list theMS renormalization factors withµ = 3.0 GeV, obtained by applying the perturbative

conversion from each of the intermediate RI/SMOM schemes. The superscript ‘c’ on the renormalization

factors is used to indicate that these are continuum quantities. The right-most columns correspond to the

three choices of chiral ansatz used to obtain the lattice spacings used for the scale-setting and continuum

extrapolations.
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In the 2010 analysis we decided that the most reliableMS renormalization coefficients were ob-

tained using the SMOMγµ intermediate scheme. This was based on the fact that this scheme

showed a considerably smaller scatter fromO(4)-symmetry breaking lattice artifacts than the

SMOM scheme. However, now that the scatter has been eliminated through the use of twisted

boundary conditions, we base our choice of ‘best’ scheme on the size of the error in the matching

of the intermediate scheme toMS, which we estimate from the size of the two-loop terms in equa-

tion 60. We see that the SMOM-scheme conversion factors appear to converge faster than those

in the SMOMγµ -scheme, with a two-loop term roughly 75% smaller. As a result we adopt the

SMOM scheme for our final numbers.

We expect the main contribution to the systematic error to beassociated with the truncation of

the perturbative expansion of theMS scheme-change factors. In ref. [1] we discussed two suitable

methods for estimating this error: The first is to use the sizeof the two-loop term in the perturbative

conversion and the second to take the full difference between theMS coefficients calculated at 3

GeV using our two intermediate SMOM schemes. For the 2010 analysis, the most conservative

estimate was obtained from the size of the two-loop term, however, now that we have adopted

the RI/SMOM scheme for our final result we find that the 0.4% two-loop contribution is smaller

than the 0.8% difference between the results obtained via the SMOM and SMOMγµ intermediate

schemes. We therefore use the latter as our estimate of the truncation error.

In section VI A 1 we detailed several additional sources of error in our renormalization procedure

that arise from non-perturbative effects; specifically, wehighlighted the effects of the low-energy

spontaneous chiral symmetry breaking and those associatedwith the dynamical strange sea-quark

mass-scale. There are also likely to be additional effects at the ΛQCD scale that were not con-

sidered. Although we concluded that the non-perturbative effects at the 3 GeV matching scale

are negligable compared to the truncation error on our final results, it is illustrative to consider

at what point they enter into our calculations. The RI/(S)MOM schemes are actually defined in

the limit µ2 ≫ Λ2
QCD, at which the behavior is purely perturbative. The momentumschemes that

we actually implement on our lattice can be therefore be regarded as different schemes that take

into account the non-perturbative behavior. We therefore consider the aforementioned errors not

as properties of the numerical renormalization factors, but rather as additional errors on the per-

turbative conversion to theMS-scheme, arising from the fact that the scheme-change factors are

calculated using a slightly different scheme than the numerical results.

There are two final sources of systematic error on the renormalization conditions – those arising
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from the chiral extrapolation and finite-volume errors on the lattice spacings used in the scale-

setting and the continuum extrapolation. In the previous section, we repeated the analysis using

the lattice spacings obtained from our global fits with the three different chiral ansätze. We can

therefore estimate these errors using the procedure discussed in section V B, namely estimating the

chiral systematic error as the larger of two values, the firstbeing the difference in central values

between the results obtained using the ChPTFV and analytic parameterizations, and the second the

superjackknife error on this difference. The same procedure is applied to the ChPTFV and ChPT

results to estimate the finite-volume error. We take the central value and statistical error from the

ChPTFV ansatz.

The final values for the quark mass renormalization factors are:

Zc
ml(MS,3 GeV) = 1.360(26)(22)(2)(11) ,

Zc
mh(MS,3 GeV) = 1.341(17)(15)(1)(11) .

(74)

Here the errors are due to statistical, chiral, finite-volume and truncation effects.

B. Results for the Physical Quark Masses

Multiplying Zml andZmh by the physical quark masses in the matching scheme, we obtain

mud(MS,3 GeV) = 3.05(8)(6)(1)(2)MeV, ms(MS,3 GeV) = 83.5(1.7)(0.8)(0.4)(0.7)MeV,

(75)

where the errors are statistical, chiral, finite-volume andfrom the perturbative matching. The quark

masses obtained in our 2010 analysis were quoted in theMS scheme at 2 GeV. In order to facilitate a

comparison between these and our new results we must therefore convert to a common scheme; for

this we use the Renormalisation-Group Invariant (RGI) scheme, for which the conversion factors

from MS are given in eqns. 67 and 61 for 2 and 3 GeV respectively. Applying the latter to the

results above we find:

m̂ud = 8.78(24)(17)(3)(7)MeV, m̂s = 240.1(4.8)(2.4)(1.2)(2.0)MeV, (76)

where the hat is used to label the RGI values. In the 2010 analysis we obtained

m̂ud = 9.34(34)(31)(16)(21)MeV, m̂s= 250.2(3.9)(0.5)(0.3)(5.5)MeV. (77)

Our new result appears to be consistent with that of the 2010 analysis, but has a renormalization

systematic error that is over a factor of two smaller by virtue of performing the matching to the
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MS scheme at 3 GeV, rather than 2 GeV, at which the perturbation theory is more reliable. For

the up/down quark mass we also see a substantial improvementin the chiral and finite-volume

systematics, resulting from the lowering of the pion mass cut in the fit and the inclusion of the

32ID data. For the strange quark mass, the 32ID data does not have the same effect because

the Iwasaki data were already (after reweighting) at the physical mass, and the light-quark mass

dependence of the kaon is small. The larger chiral and finite-volume systematics on this quantity

likely arise from allowing the scaling parameterZh, and also to a lesser extentZl , to differ between

the fit ansätze rather than remaining fixed; this allows the larger changes in the quality of the fit

for the other fitted quantities to influence the kaon fit. A similar effect was observed for the lattice

spacings and was discussed in section V C.

For comparison with the above, the FLAG working group givemud(MS,2 GeV) = 3.43(11) MeV

andms(MS,2 GeV) = 94(3) MeV [25]. These values were obtained by combining results from the

MILC [27, 43] and HPQCD [44] collaborations, as well as our 2010 analysis results. Converting

to the RGI scheme using the conversion factor given above, these become ˆmud = 8.92(29) MeV

andm̂ud = 245(8) MeV, which both agree very well with our results.

Finally, for completeness we also calculate the ratios of the strange and up/down quark masses:

ms

mud
= 27.36(39)(31)(22)(0) , (78)

where the errors are again as above.

VII. CHIRAL/CONTINUUM FITS AND PHYSICAL RESULTS FOR BK

In this section we present our results for the neutral kaon mixing parameterBK. Continuum re-

sults are obtained by performing chiral/continuum fits overour three ensemble sets following the

strategy outlined in section IV. This analysis extends thatin ref [2] through the inclusion of the

32ID ensemble set.

As BK is a scheme-dependent quantity we must perform our fits to renormalized data. We de-

termine the renormalization factors again using variants of the RI/MOM scheme with symmetric

kinematics. We first outline this calculation, then discussthe application of our chiral fitting tech-

niques to this quantity. Finally we present the continuum results in theMS scheme at 3 GeV.
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A. Non-perturbative Renormalization Factors

Unlike in the case of the quark mass renormalization, we require renormalization factors forBK

on both the Iwasaki and Iwasaki+DSDR ensemble sets. In this case, the option of calculating

our lattice renormalization factors directly at 3 GeV is notan option since we cannot simulate

within the perturbative regime without incurring large lattice artifacts. (We remind the reader that

perturbation theory is required to match the renormalization factors computed on the lattice to a

continuum scheme, typicallyMS in which the Wilson coefficients are computed.) As discussed

in section VI, our analysis [7] of the∆I = 3/2 K → ππ amplitudes had a similar issue, which

was solved by computing the renormalization factors at a lowenergy scale,µ0 = 1.1 GeV, at

which finite-volume effects and lattice artifacts are small(i.e. satisfying eqn. 40), and using the

continuum step-scaling factors to evolve this to the perturbative matching scale. For this analysis

we adopt a similar procedure.

1. Determining the NPR factors

We follow ref. [2] in calculating the renormalization factors in four different lattice schemes. First

we consider the process

d(p1)s̄(−p2)→ d̄(−p1)u(p2) (79)

with a variety of momenta satisfying the symmetric momentumconfigurationp2
1 = p2

2 = (p1−
p2)

2 = µ2. We write the corresponding amputated Green’s function evaluated on Landau gauge-

fixed configurations asΛi j ,kl
αβ ,γδ (the color indicesi, j, . . . and Dirac indicesα,β , . . . correspond to

the external states). We have to project these Green’s functions onto their Dirac-color structure,

where, as before we, define two projectors using both theγ-matrices and/̂q (whereNC is the number

of colors and ˆqµ = sin(qµ)) :

P(γµ) i j ,kl
αβ ,γδ =

1
128Nc(Nc+1)

[
(γ L

µ )βα(γ L
µ )δγ

]
δ i j δ kl (80)

P( 6q) i j ,kl
αβ ,γδ =

1
32q̂2Nc(Nc+1)

[
( 6 q̂L)βα( 6 q̂L)δγ

]
δ i j δ kl . (81)

These act onΛ in the following way:

M ≡ P{Λ} ≡ Pi j ,kl
αβ ,γδ Λi j ,kl

αβ ,γδ (82)
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As before we can renormalise the quark field, and hence obtainZq, in both the RI/SMOM and

RI/SMOMγµ schemes; we therefore have four independent renormalization schemes forZBK :

Z(A,B)
(27,1) = (Z(B)

q )2[P(A){Λ}
]−1

(83)

whereA andB can be eitherγµ or 6q. Here the label(27,1) refers to theSU(3)L×SU(3)R trans-

formation properties of theVV+AA four-quark operator that forms the numerator of equation 18.

Motivated by [2], we focus only on two schemes : the(A,B) = (γµ ,γµ) and( 6q, 6q) combinations.

The renormalization factor forBK is then

Z(A,B)
BK

=
Z(A,B)
(27,1)

Z2
A

. (84)

We obtainZ2
q/Z2

A from the renormalization conditions on the vector and axial-vector vertices:

Zq

ZA
= 1

2(ΛA+ΛV) . (85)

As discussed in section VI, the difference between these vertices in the SMOM schemes is tiny

and can be ignored; we used their average only such that the same procedure can be applied for

the exceptional schemes.

2. Perturbative Conversion Factors

The one-loop perturbative conversion factors for converting to theMS-scheme from the SMOM

schemes are obtained using the expressions in ref. [2], resulting in the following:

C
(/q,/q)
BK

= 1 − 0.45465
( αs

4π
)
= 0.99112 and

C(γµ ,γµ)
BK

= 1 + 0.21197
( αs

4π
)
= 1.00414,

(86)

where

αs(3 GeV) = 0.24544. (87)

As discussed in the following section, we do not use the SMOM(/q,γµ) or SMOM(γµ ,/q) schemes

for our final predictions, hence we have not listed the corresponding conversion factors above.

3. Renormalization Scales

As the 3 GeV matching scale lies within the Rome-Southamptonwindows for the two Iwasaki

lattices, we need only compute the 32ID renormalization factors at the low energy scale and sub-

sequently use the continuum step-scaling factors to run these up to the same scale as the Iwasaki
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coefficients. However in practice we found that the statistical errors on the step-scaling factors

were quite large, which resulted in considerably larger errors on the 3 GeV renormalization fac-

tors than their Iwasaki counterparts. Note that contrary tothe case of the mass renormalization, no

cancellation occurs between the statistical fluctuations on ZBK(µ0) andσ(3 GeV,µ0) as the data

sets from which they were determined are entirely independent.

The disparity in the statistical errors between the renormalization factors has the effect of weaken-

ing the constraints that the 32ID data imposes on the simultaneous chiral/continuum fit under the

global χ2 minimization. As a naı̈ve test of the impact of this disparity, we repeated our fits with

the errors on the 32ID renormalization factors artificiallyreduced to match those on the Iwasaki

lattices. We found that the central value of the continuum prediction forBK shifted by an amount

comparable to the chiral and finite-volume systematics; an effect too large to be ignored. As we

pointed out in section V when discussing the number of reweighting samples to use on each lattice,

it is important to treat each ensemble set uniformly such that the weight of each of the ensemble

sets in the fit depends only on the statistics of the data. We therefore calculate the renormalization

factors for all three lattices at the same scale, chosen within the regime in which the discretization

effects are under control. The 1.1 GeV scale used in ref. [7] meets this criteria, although we found

a noticable reduction in the statistical errors by raising this to 1.4 GeV (actually 1.426 GeV, the

nearest scale at which we had a simulated point). Of course, using a larger scale increases the size

of the discretization effects on the 32ID lattice, however,as we ultimately perform a universality-

constrained continuum extrapolation, only theO [(ap)4] terms and higher remain in the final result

for BK. Only after performing the continuum limit do we apply the step-scaling factor to evolve

the continuum prediction to 3 GeV, at which the matching toMS is performed.

4. Results

Following the above strategy we calculatedZBK at µ0 = 1.426 GeV on each of the three ensemble

sets. In addition, we re-calculated the Iwasaki renormalization factors at 3 GeV such that we could

obtain the continuum step-scaling functions. The quark momenta used in these measurements are

listed in table XVI, and we present the values at both renormalization scales in table XIX. We

used the central values of the lattice spacings given in section V C to set the physical scales in

these determinations.

In order to correctly propagate errors on the lattice spacings, we formed superjackknife distribu-
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Quantity Projector P Scaleµ Value

32I 24I 32ID

ZBK

(/q,/q)

1.426 GeV

1.0608(12) 1.0320(11) 0.9992(11)

(γµ ,γµ) 0.9788(9) 0.9527(3) 0.9210(8)

(/q,γµ) 0.8758(25) 0.8554(17) 0.8187(13)

(γµ ,/q) 1.1865(38) 1.1496(32) 1.1241(24)

ZBK

(/q,/q)

3 GeV

0.9765(1) 0.9549(1) –

(γµ ,γµ) 0.9396(2) 0.9153(1) –

(/q,γµ) 0.8795(4) 0.8537(2) –

(γµ ,/q) 1.0432(4) 1.0238(2) –

TABLE XIX. BK renormalization factors in the four intermediate RI/SMOM schemes at the scalesµ . Here

the quoted error contains only the statistical contributions from the amputated vertices, not the fluctuations

from the uncertainties on the lattice spacings. Note that wedid not calculate the 32ID renormalization

factors at 3 GeV as this point lies beyond the Rome-Southampton window on this lattice.

tions for the renormalization factors that include the fluctuations on the lattice spacings, following

the procedure in section VI A 4. As before, separate distributions were obtained for each of the

three chiral ansätze, with the central values shifted appropriately, allowing us to later separate the

chiral and finite-volume systematic errors. The formation of the superjackknife distributions re-

quires the derivatives ofZBK with respect to the lattice spacings, which we again determined by

measuring the differences in the central values as the lattice spacings are varied by their total error.

We use the full superjackknife distributions to renormalizeBK in the following sections.

We determined the step-scaling factors by taking the continuum limit of the ratio ofZBK at 3 GeV

and 1.4 GeV in each of the four schemes. The results are given in table XX.
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Projector P Chiral Ansatz

ChPTFV ChPT Analytic

(/q,/q) 0.9140(34) 0.9145(33) 0.9150(34)

(γµ ,γµ) 0.9589(21) 0.9591(21) 0.9593(21)

(/q,γµ) 1.0127(74) 1.0127(75) 1.0128(75)

(γµ ,/q) 0.8641(80) 0.8647(80) 0.8654(81)

TABLE XX. Non-perturbative step-scaling factors for each intermediate scheme SMOM(P), useda poste-

riori to run ZBK from 1.426 to 3 GeV. A different value is obtained for each determination of the lattice

spacings.

B. Chiral/continuum Fits

The determination ofBK on the 32ID ensemble set was discussed in section III and the values listed

in tables VIII and IX. These data and those on the Iwasaki ensemble sets were renormalized into

Parameter ChPT ChPTFV Parameter Analytic

χ2/dof 0.71(45) 0.56(40) 0.49(33)

B 4.144(89) 4.110(93)

f 0.1221(29) 0.1259(28)

B0
K 0.580(10) 0.584(10) CBK

0 0.597(11)

cI
BK ,a 0.073(44) 0.072(44) CBK , I

a 0.059(46)

cID
BK ,a 0.099(23) 0.095(23) CBK , ID

a 0.086(23)

cBK ,mx 0.00458(72) 0.00398(76) CBK
1 0.33(24)

cBK ,ml −0.0079(16) −0.0079(17) CBK
2 −0.07(54)

cBK ,my 1.440(39) 1.450(40) CBK
3 1.450(40)

cBK ,mh −0.08(13) −0.06(13) CBK
4 −0.04(13)

TABLE XXI. The χ2/dof and parameters for each of our chiral fit ansatzë forBK , with the fits performed to

data renormalised in the SMOM(/q,/q) scheme with a cut on data with corresponding pion massesmπ > 350

MeV. The parameters are given in physical units and with the heavy quark mass expansion point adjusted to

the physical strange quark mass. For the ChPT and ChPTFV ansatzë the chiral scaleΛχ has been adjusted

to 1 GeV.
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Scheme

Ansatz SMOM(/q,/q) SMOM(γµ ,γµ)

Analytic 0.5978(87) 0.5506(77)

ChPT 0.5871(84) 0.5410(75)

ChPTFV 0.5904(85) 0.5436(75)

TABLE XXII. Predictions forBK in the continuum limit in the SMOM(/q,/q) and SMOM(γµ ,γµ) schemes at

µ = 1.426 GeV for each global fit ansatz. These results were obtained using simultaneous/chiral continuum

fits to renormalised data with a pion mass cut of 350 MeV.

the RI/SMOM intermediate schemes atµ = 1.426 GeV using the results of the previous section.

Anticipating the discussion in the following section, we present only the results of fitting to data

renormalized in the SMOM(γµ ,γµ) and SMOM(/q,/q) intermediate schemes.

As before, we obtain our chiral/continuum fit forms by performing an expansion in the quark

masses anda2 to NLO, with the light-quark mass expanded about both the chiral limit – using

chiral perturbation theory – and about a fixed mass via a Taylor expansion. For example, for the

analytic ansatz we obtain the following:

B1
xy =CBK

0

(
1+CBK ,A(1)

a [a1]2
)
+CBK

1 m̃1
x+CBK

2 m̃1
l +CBK

3

(
m̃1

y−mh0

)
+CBK

4

(
m̃1

h−mh0

)
, (88)

and for the ChPT ansatz:

B1
xy = B0

K

{
1+cA(1)

BK ,a
[a1]2+

cBK ,ml χ
1
l

f 2 +
cBK ,mxχ1

x

f 2 − χ1
l

32π2 f 2 log

(
χ1

x

Λ2
χ

)}

+cBK ,my

(
m̃1

y −mh0

)
+cBK ,mh

(
m̃1

h−mh0

)
,

(89)

whereχq = 2Bm̃q and the chiral scaleΛχ is set to 1 GeV. These fit forms apply specifically to

the primary lattice1; the forms for any other ensemble sete can be obtained by inserting factors

of Ze
l andZe

h and selecting thea2 coefficient appropriate to the lattice action. The finite-volume

correction terms for the ChPT fit form can be found by applyingthe rules given in Appendix C of

ref. [15].

Following the 2010 analysis strategy, we fixed the leading order LECsB and f in the ChPT fits to

those obtained in section V, reducing the number of free parameters. We also fix the the scaling

factorsZl , Zh andRa, as well as the physical quark masses and the overall scale tothose obtained

using the corresponding ansatz in section V.
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We once again performed cuts to the data set used in the ChPT and ChPTFV fits, reducing the

largest pion mass to 350 MeV. In the main analysis we performed our analytic fits with a lower

pion mass cut of 260 MeV in order to obtain a better fit to the data. When using this cut for the

analyic fits toBK, we found that we lost almost all statistical precision on our continuum prediction

because the statistical errors on the 32ID ensembles becomevery large in the light-mass regime

(cf. figure 20), hence the effective number of points contributing to the fit after the cut is smaller

than in the case ofmK or fK. Raising the cut to 350 MeV produced much more reliable results,

hence we adopt this higher cut for the analytic fits in this section. This is justified by the fact

that we observed no statistically significant deviations ofthe fit functions from the data over this

expanded range, hence we have no reason to believe that this will lead to an incorrect estimate for

the chiral systematic error. This was not the case for the fitsto mπ , where we observed significant

deviations.

The analytic fits were again performed to data corrected to the infinite-volume using the ChPTFV

fit form.

The parameters and uncorrelatedχ2/dof obtained by fitting to data renormalized in the SMOM(/q,/q)

are listed in table XXI and we give histograms showing the deviation of the data from the fits in

figure 19. We list the continuum predictions in both the SMOM(/q,/q) and SMOM(γµ ,γµ) schemes

in table XXII.

In figure 20 we overlay the data with the fit curves on the 32ID ensembles, and in figure 21

we show the chiral extrapolation overlaying data correctedto the continuum and infinite-volume

limits as well as the physical strange quark mass via the ChPTFV and analytic parameterizations.

In the latter we also plot the data at finite lattice spacing (adjusted to the infinite-volume limit and

physical strange quark mass as before) and the corresponding finite-a fit curves. The separation

of the points at the physical up/down quark mass in the formeris used as a measure of the error

on the chiral extrapolation. In these figures we see that the statistical errors increase substantially

as we approach the chiral limit. The central values also appear to trend upwards, although this

apparent curvature is in the opposite direction to that suggested by chiral perturbation theory and

is therefore likely to be simply due to the low resolution on these data points.
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Scheme

Ansatz SMOM(/q,/q) SMOM(γµ ,γµ)

Analytic 0.5213(72) 0.5397(76)

ChPT 0.5188(72) 0.5369(76)

ChPTFV 0.5282(73) 0.5470(78)

TABLE XXIII. Predictions forBK in the continuum limit in the SMOM(/q,/q) and SMOM(γµ ,γµ) schemes

atµ = 3 GeV for each global fit ansatz. These results were obtained by applying the continuum step-scaling

factors to the values in table XXII.

C. Final Results for BK

Applying the step-scaling factors given in table XX to the continuum predictions in table XXII, we

obtainedBK in the SMOM(/q,/q) and SMOM(γµ ,γµ) schemes at a 3 GeV renormalization scale.

Once again we see some cancellation between the statisticalfluctuations on the step-scaling factor

and the 1.4 GeV quantity.

Finally, we apply theMS conversion factors given in section VII A 2 to convert our results into the

MS scheme for the convenience of the reader. Before quoting ourfinal results, we first discuss the

various contributions to the systematic error.

1. Systematic Errors

For our central values and statistical errors of our finalMS prediction, we follow the 2010 analysis

in taking the results obtained using the SMOM(/q,/q) intermediate scheme, which is best described

by one-loop perturbation theory. Following section V we estimate the finite-volume and chiral

extrapolation systematics on this quantity from the differences between the ChPTFV result (which

we take as our central value) and the ChPT and analytic results respectively, taking for our estimate

the larger of the superjackknife error on the difference or the difference in central values. As we

propagated the differences between the lattice spacings through our analysis in section VII A 4,

the aforementioned systematics on the renormalization factors are automatically included in the

differences above.

The remaining systematic errors are associated with the perturbative conversion into theMS

scheme. The largest of these is the perturbative truncationerror. To determine this we again
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FIG. 19. Histograms of the deviation of the fit from the data for BK on each of the three ensemble sets (32I

top, 24I middle and 32ID bottom) with the analytic (left) andChPTFV (right) ansätze.



80

FIG. 20. The analytic (left) and ChPTFV (right) fit curves overlaying the partially-quenched data on the

32ID ensembles at the simulated strange quark mass. The fits were performed to the data set with corre-

sponding pion massesmπ < 350 MeV, with the data renormalized in the SMOM(/q,/q) intermediate scheme.

follow the 2010 analysis strategy of taking the difference between the values ofBK in the MS-

scheme at 3 GeV obtained using the SMOM(/q,/q) and SMOM(γµ ,γµ) intermediate schemes,

the latter of which is also well-described by perturbation theory. As discussed in section VI A 5

and above, there are non-perturbative effects associated with the spontaneous chiral symmetry

breaking and the presence of additional energy-scales (ΛQCD, ms, etc.), that contribute to the per-

turbative systematic. In ref. [2] we found that in the non-exceptional schemes these effects are tiny

compared to the truncation systematic, therefore we do not include these effects in our systematic

error budget.

2. Final Results

Using the ChPTFV result in the SMOM(/q,/q) for the central value and statistical error, and obtain-

ing the chiral and finite-volume systematic errors as above,we find:

BK(SMOM(/q,/q),3 GeV) = 0.540(8)(7)(3) . (90)

where the errors are associated with the statistical, chiral, and finite-volume respectively. Convert-

ing this to theMS-scheme at 3 GeV using one-loop perturbation theory we obtain

BK(MS,3 GeV) = 0.535(8)(7)(3)(11) , (91)
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FIG. 21. The left figure shows the chiral extrapolation ofBK in the continuum limit, renormalized in the

SMOM(/q,/q) scheme at a scale of 1.4 GeV. The circular and diamond-shaped data points in darkershades

show the data corrected to the continuum limit using the ChPTFV fit form, and those in lighter shades

via the analytic form. The circular points indicate those data included in the fits, and the diamond points

those that were not. The upper and lower curves show the analytic and ChPTFV chiral fit forms and the

corresponding square data points the extrapolated values at the physical up/down quark mass. All data and

curves are shown at the physical strange quark mass. The right figure shows the data at finite-a, adjusted to

the infinite volume limit and the physical strange quark mass, overlaid by the ChPTFV fit curves at finite-a

and the continuum curve shown in the previous plot (shown without error bands for clarity).

where the first three errors are as before, and the final error is that associated with the truncation

of the perturbative series. Converting to the Renormalisation-Group Invariant (RGI) scheme, we

find

B̂K = 0.758(11)(10)(4)(16) . (92)

In the 2010 analysis we obtained:

BK(MS,3 GeV) = 0.529(5)(15)(2)(11) . (93)

This is highly consistent with the result of the present analysis. In our new result we see a large

improvement in the chiral extrapolation systematic, whichresults from lowering the pion mass cut

to 350 MeV from the 420 MeV used in the previous analysis.

For comparison, the FLAG working group givêBK = 0.738(20) [25] for BK in the RGI scheme

with 2+1 quark flavors, which was determined by combining our2010 analysis result [2] with the

value calculated by Aubinet al [45], which used domain wall valence quarks on the 2+1 flavor
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staggered fermion lattices produced by the MILC collaboration. The result ofB̂K = 0.758(22)

obtained in the current analysis is consistent with this value. Other calculations performed since

the publication of the FLAG 2010 paper include refs. [46], [47] and [48].

VIII. CHIRAL/CONTINUUM FITS AND PHYSICAL RESULTS FOR THE SO MMER SCALES

In this section we present the results of applying our globalfit technique to the Sommer scales,r0

andr1. In ref. [1] we determined continuum values for these parameters using global fits to our

Iwasaki ensemble sets. In this paper we extend these fits to include the 32ID ensemble set and

observe the effect of lowering the pion mass cut. The values of r0 andr1 measured on the 32ID

ensemble sets can be found in section III.

Assuming a linear dependence on the quark masses and ona2, we performed our chiral/continuum

fits using the following form:

r1
i = cr i ,0(1+cA(1)

r i ,a [a1]2)+cr i ,ml m̃
1
l +cr i ,mh(m̃

1
h−mh0) (94)

on the primary lattice1. As always the fit form describing another ensemble set,e, is obtained

by inserting factors ofZe
l andZe

h to convert the simulated quark masses on ensemblee into the

matching scheme, and selecting thea2 coefficient for the lattice action of the ensemble set.

For convenience, we simultaneously fit bothr0 andr1, even though they do not share any common

parameters other than the scaling factors,Zl andZh. The lattice spacings and scaling factors were

fixed to those obtained in the main analysis, with the fits repeated for each of the three chiral

ansätze. For each fit we applied the same cuts as were performed to the data in section V; this

corresponds to removing the data points on the 32I,ml = 0.008 and 24I,ml = 0.01 ensembles,

Ansatz χ2/dof χ2/dof

Uncut Cut

Analytic 1.45(66) 0.141(71)

ChPT 1.47(67) 0.41(40)

ChPTFV 1.47(67) 0.42(40)

TABLE XXIV. Fit ansatze and the associated uncorrelatedχ2/dof obtained by fitting tor0 andr1 over the

full data set (second column) and to the cut data set (third column). The upper bounds on the pion mass in

the cut data sets aremπ = 350 MeV for the ChPT and ChPTFV fits andmπ < 260 MeV for the analytic fit.
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Uncut Cut

Parameter Analytic ChPT ChPTFV Analytic ChPT ChPTFV

cr0,0 (GeV−1) 2.479(34) 2.445(36) 2.438(38) 2.462(49) 2.453(51) 2.441(52)

cI
r0,a (GeV2) −0.065(53) −0.013(46) −0.008(47) −0.008(85) −0.018(64) −0.010(65)

cID
r0,a (GeV2) −0.055(24) −0.028(26) −0.023(28) −0.032(35) −0.030(33) −0.021(34)

cr0,ml (GeV−2) −1.67(87) −1.65(88) −1.64(87) −5.0(1.7) −3.6(1.4) −3.6(1.4)

cr0,mh (GeV−2) −0.83(42) −0.83(42) −0.83(42) −0.27(64) −0.56(52) −0.56(51)

cr1,0 (GeV−1) 1.697(24) 1.675(26) 1.671(27) 1.662(41) 1.650(40) 1.642(40)

cI
r1,a (GeV2) −0.099(64) −0.050(58) −0.045(58) 0.00(11) 0.014(91) 0.023(92)

cID
r1,a (GeV2) −0.148(25) −0.123(26) −0.118(28) −0.110(38) −0.097(38) −0.088(39)

cr1,ml (GeV−2) −1.84(60) −1.82(59) −1.81(59) −2.6(2.4) −2.2(1.1) −2.2(1.1)

cr1,mh (GeV−2) −1.02(20) −1.02(20) −1.01(20) −0.88(37) −0.73(24) −0.73(24)

TABLE XXV. The a2 and mass dependences ofr0 andr1 obtained by fitting to the full and cut data sets.

We repeat the fits for each choice of chiral ansatz used for thedetermination of the scaling parameters. The

upper bounds on the pion mass in the cut data sets aremπ = 350 MeV for the ChPT and ChPTFV fits and

mπ < 260 MeV for the analytic fit. The parameters are given in physical units and with the heavy quark

mass expansion point adjusted to the physical strange quarkmass

Uncut Cut

Analytic ChPT ChPTFV Analytic ChPT ChPTFV

rcontinuum
0 2.475(33) 2.441(35) 2.435(37) 2.451(48) 2.445(49) 2.433(50)

rcontinuum
1 1.693(23) 1.671(24) 1.666(25) 1.657(38) 1.645(38) 1.637(39)

(r1/r0)
continuum 0.684(8) 0.684(8) 0.684(8) 0.676(11) 0.673(11) 0.673(11)

TABLE XXVI. Continuum predictions forr0 andr1 in GeV−1 as well as their ratio, using scaling parameters

obtained from each of the three global fit ansatzë. The first set of columns contain the values obtained by

fitting to the full data set, and the second set those obtainedby fitting to the cut data set. The upper bounds

on the pion mass in the cut data sets aremπ = 350 MeV for the ChPT and ChPTFV fits andmπ < 260

MeV for the analytic fit.
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and also in the analytic fit, the data point on the 32I,ml = 0.006 ensemble (cf. table XI). For

later comparison we also quote the results of fitting to the full data set in this section, although as

previously discussed these results are flawed due to the poorfit to several of the pion mass data

points on the 32ID ensembles. In table XXIV we give the uncorrelatedχ2/dof of our fits and in

figure 22 we show histograms of the deviations of the data fromunity for the fits. We list the fit

parameters in table XXV and the continuum predictions forr1, r0 and their ratio in table XXVI.

In the 2010 analysis we remarked on a tension between the fit and the value ofr1 on the heaviest 24I

ensemble, which led to us inflating the error on the prediction for this quantity. In figures 23 and 24

we plot the chiral extrapolation in the continuum limit and at finite lattice spacing respectively. In

these figures we see the large apparent difference in the slopes ofr1 with respect toml between the

two Iwasaki ensemble sets that was responsible for this tension. It appears however that the slopes

of r1 agree very well between the 32I and 32ID ensemble sets, whichhas led to a substantially

better fit tor1 upon including the 32ID data. Restricting the fits to lighterdata markedly improves

our fits, reducing theχ2/dof by at least a factor of three. The chiral behaviour of the data, as

illustrated in the right-hand plots in figure 23, is now very linear. As a result of these observations,

we decided that inflating the error onr1 is no longer necessary.

We obtain continuum predictions forr1, r0 and their ratio from the cut fit results using the strategy

detailed in section V B. We find

r1 = 1.637(39)(20)(8) GeV−1 = 0.3230(77)(39)(16) fm,

r0 = 2.433(50)(18)(13) GeV−1 = 0.4795(99)(35)(26) fm,

r1/r0 = 0.6729(109)(30)(2) ,

(95)

where the errors are statistical, chiral and finite-volume respectively. The values determined in

ref. [1] werer1 = 0.3333(93)(2)(1) fm, r0 = 0.4870(89)(2)(2) fm andr1/r0 = 0.6844(97)(1)(0).

By comparing the results in table XXVI with those obtained inthe 2010 analysis we find that,

as with the Omega mass, the use of the generic scaling procedure for determining the scaling

factors leads to considerably larger chiral and finite-volume systematic errors than the fixed tra-

jectory approach. In the case ofr1, we see a reduced systematic error in the continuum predic-

tion due to the improved control over the chiral extrapolation. However forr0 – which formerly

did not display any tensions with the linear ansatz requiring error inflation – this is offset by

the reduction in the amount of data. For comparison, the MILCcollaboration recently obtained

r1 = 0.3106(17) fm [26] and in an earlier workr0 = 0.462(12) fm [49], both of which appear to

be consistent with our results.
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FIG. 22. Histograms of the deviation of the fit from the data for r0 andr1 over all three ensemble sets,

fitting with the analytic (left) and ChPTFV (right) ansätzeto the uncut (top) and cut (bottom) data sets.
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FIG. 23. The chiral extrapolation ofr0 (top) andr1 (bottom) using the analytic and ChPTFV ansätze. The

plots on the left show the fits to the full data set and those on the right to the cut data sets. We have

overlayed the fit curves with the data points corrected to thecontinuum limit and physical strange quark

mass using each of the aforementioned fit functions; those points shown in bold colors were corrected using

the ChPTFV fits and those in pastel colors using the analytic fits. The circular data points are those included

in the fits and the diamond points those that were not. The square points show the predicted value at the

physical point.
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FIG. 24. The chiral extrapolation ofr0 (left) andr1 (right) using the ChPTFV ansatz applied to the cut data

set. Here we have overlayed the fit curves at finite lattice spacing (dashed lines) with the raw data points

corrected to the physical strange quark mass. We also show the continuum fit curve (solid line) and the

physical point (square). As before the circular data pointsare those included in the fits and the diamond

points those that were not.
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IX. CONCLUSIONS

Using the Iwasaki gauge action with the addition of the DSDR term we were able to simulate

with domain wall fermions (DWF) at a relatively strong coupling (β = 1.75,a−1 = 1.37(1) GeV)

while retaining good chiral symmetry and topological tunneling; this enabled us to work with a

large enough physical volume ([4.61 fm]3) to accomodate pions as light as 143(1) MeV without

suffering from large finite-volume effects (mπL ≈ 3.2 for the lightest partially-quenched point

andmπL ≈ 4 for the lightest unitary point) and without having to simulate with a large number of

lattice sites; the dimensionless lattice volume is 323×64×32, where the final number is the length

of the fifth dimensionLs that governs the size of the chiral symmetry breaking in the domain wall

formulation.

The aim of this paper was to combine these data in a simultaneous chiral/continuum fit with our

243 × 64× 16 and 323 × 64× 16 DWF ensembles with the Iwasaki gauge action atβ = 2.13

(a−1 = 1.75(4) GeV) andβ = 2.25 (a−1 = 2.31(4) GeV) respectively, and under the constraint of

universality obtain continuum predictions for various quantities. In this we broadly followed the

strategy of our 2010 analysis [1, 2].

The fits were performed assuming three forms for the mass dependence: the ChPTFV and ChPT

forms were obtained from NLO SU(2) chiral perturbation theory with and without finite-volume

corrections respectively, and the analytic ansatz from a linear Taylor expansion about an unphysi-

cal mass point.

The largest change from our 2010 analysis strategy was the use of the ‘generic scaling’ method to

obtain the scaling parametersZl andZh that relate the physical quark masses between our ensemble

sets, andRa that relates the lattice scales. In this approach (which wasdiscussed in ref. [1] but

not used in the final analysis) the scaling parameters are left as free parameters in our fits and the

results are those that, along with the mass dependences anda2 dependence, minimise the global

χ2. In the 2010 analysis we used the ‘fixed trajectory’ approachin which the ensemble sets were

matched at an unphysical mass point prior to performing the fits. Changing to the generic scaling

approach allows for differences between the scaling parametersZl , Zh andRa, which relate the

physical quark masses and lattice spacings between the ensemble sets, as we go between the three

chiral ansätze. We associated these with chiral and finite-volume systematic errors; in the fixed

trajectory approach these differences would have been absorbed by other parameters in the fits.

These differences gave rise to larger systematic errors on the lattice spacing predictions due to
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their influence on the fit form for the Omega baryon mass, whichwe used to set the overall scale.

In these fits we were able to determine thea2 dependence of the 32ID ensembles even without a

second lattice spacing using this action. This is because, within our power counting, the choice

of action affects only the coefficient of thea2 term. As all other parameters are shared with the

Iwasaki ensemble sets, this only introduces one additionalparameter per quantity. This parameter

could in principle be determined by comparing a single data point to the continuum value predicted

using the Iwasaki ensemble sets alone, however we choose to maximize the use of our data by

including it in the global fit.

We investigated removing data associated with the heavier pions, constraining our fits to a smaller

range. For the ChPT and ChPTFV fits, we lowered the pion mass cut to 350 MeV, down from

the 420 MeV used in the 2010 analysis. For the analytic fits, wefound large deviations of our fits

from the data when fitting to this range, necessitating a further reduction in the largest pion mass

to 260 MeV. With this cut the analytic fit produced results with errors only slightly larger than the

ChPT determinations. The necessity of lowering the cut for the analytic fits hints at the presence

of non-linearity in our combined data set, which appears to be consistent with NLO SU(2) ChPT,

although we cannot rule out other higher-order terms such asm2 with our present statistics.

We presented the results of simultaneously fittingmπ , mK, fπ , fK andmΩ in section V. As in the

2010 analysis, the pion, kaon and Omega baryon masses were used to set the up/down quark mass,

strange quark mass and lattice scale respectively. We were then able to make predictions for the

other physical quantities. For the pseudoscalar decay constants, we obtainedfπ = 127.1(3.8)MeV

and fK = 152.4(3.4) MeV. These agree very well with the known continuum values of[50]

fπ− = 130.4(2) and fK− = 156.1(8), which is a marked improvement from the 2010 analysis,

in which the predictions for these quantities were considerably lower. The improvement stems

mainly from our removal of data associated with the heavier pions.

Combining our ChPT and ChPTFV fit results, we obtained valuesfor the effective chiral couplings

l̄3 = 2.91(24) and l̄4 = 3.99(18), which we found to be highly consistent with our 2010 analysis

results and with other lattice calculations.

In section VI we discussed the renormalization of the physical quark masses into theMS scheme.

We used variants of the Rome-Southampton RI/MOM scheme withsymmetric kinematics as in-

termediate non-perturbative schemes, which were applied at 1.4 GeV and the results run to 3

GeV using continuum step-scaling factors. These were then converted intoMS using perturba-

tion theory. This analysis improved on the 2010 result in theuse of twisted-boundary condi-
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tions to remove O(4)-breaking lattice artifacts in our measurements. We also increased the renor-

malization scale from 2 GeV to 3 GeV, as this considerably reduces the systematic error arising

from the truncation of the perturbative series. We obtainedmud(MS,3 GeV) = 3.05(10)MeV and

ms(MS,3 GeV) = 83.5(2.0)MeV for the average up/down quark mass and strange-quark mass re-

spectively.

In section VII we applied our chiral/continuum fits to the neutral kaon mixing parameter. This

analysis improved on the 2010 result through the inclusion of the Iwasaki+DSDR ensembles. We

found a marked improvement in the chiral extrapolation systematic due to the inclusion of these

data. For our final result we obtainedBK(MS,3 GeV) = 0.535(16).

Finally, in section VIII we performed chiral/continuum fitsto the Sommer scalesr0 and r1, for

which we obtainedr0 = 0.480(11) fm and r1 = 0.323(9) fm. Here the inclusion of the 32ID

ensembles provided considerably greater stability to the fits than in the 2010 analysis, resulting in

much reduced errors, particularly forr1, for which we were formerly forced to inflate the errors

due to the poorχ2/dof on the fits.

Although the inclusion of the 32ID ensembles resulted in considerable improvements in the chiral

extrapolation systematic error in most cases, there is still room for improvement. Our collaboration

has recently gained access to IBM Blue Gene/Q computers, which have performances in the region

of several hundred Teraflops per rack. Particularly when used with the improved techniques that

we and others have developed (some of which are discussed in section II and Appendix A), these

computers have the capability of generating domain wall fermion ensembles with physical quark

masses and large enoughLs and physical volumes to maintain small chiral symmetry breaking and

finite-volume corrections. With such ensembles the necessity of extrapolating to the physical point

will be removed and only the continuum extrapolation will remain. However, in the mean-time

the results of this analysis, particularly the physical quark masses and lattice spacings, will be

essential for any physics measurements performed on the Iwasaki and Iwasaki+DSDR ensembles.
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Appendix A: Numerical Integration Scheme

Integrators used in lattice simulation must be both reversible and symplectic. Consider a general

Hamiltonian with both a kinetic (T) and potential (S) term:

H = T(p)+S(U). (A1)

In general this Hamiltonian cannot be integrated exactly, as the corresponding time evolution

operator,

exp
(

τĤ
)
= exp

(
τ
(

T̂ + Ŝ
))

, (A2)

involves non-commuting operatorŝT and Ŝ. However, by making use of the Baker-Campbell-

Hausdorff (BCH) formula one can separateT̂ andŜand integrate them at different steps.

One of the simplest integrators that can be constructed in this way is the leapfrog integrator,

UQPQ(τ) = exp

(
1
2

τT̂

)
exp
(

τŜ
)

exp

(
1
2

τT̂

)
. (A3)
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Using the BCH formula it can be shown that

UQPQ(τ) = exp
(

τ
(

T̂ + Ŝ
)
+O(τ3)

)
. (A4)

TheO(τ3) error is accumulated over the integration such that the total error isO(τ2), hence the

leapfrog integrator is a second-order integrator. Anotherpopular second-order integrator is the

Omelyan integrator,

UQPQPQ(τ) = exp
(

ατT̂
)

exp

(
1
2

τŜ

)
exp
(
(1−2α)τT̂

)
exp

(
1
2

τŜ

)
exp
(

ατT̂
)
, (A5)

whereα is a tunable parameter.

Recent development on integrators has introduced the forcegradient integrator (FGI) [18] as a

fourth order integrator. The force gradient integrator is constructed by introducing the “force

gradient term” into the integration steps. This extra forceevaluation helps to eliminate the second

order errors and makes the force gradient integrator a fourth order integrator. One choice of the

force gradient integrator is

UFGI(τ) =exp

(
3−

√
3

6
τT̂

)
exp

(
1
2

τŜ− 2−
√

3
48

τ3 ̂{S,{S,T}}
)
·

exp

(√
3

3
τT̂

)
exp

(
1
2

τŜ− 2−
√

3
48

τ3 ̂{S,{S,T}}
)

exp

(
3−

√
3

6
τT̂

) (A6)

1. Sexton-Weingarten Integration

In practice the action contain contributions from both the gauge fields and the fermions,

H = T(p)+SG(U)+SF(U). (A7)

It is usually the case that the gauge force is larger than the fermion force by a factor of 10 or more.

If both the gauge action and the fermion action are integrated in the same step then the step size

τ has to be chosen to accommodate the larger gauge force. This approach incurs an extra cost on

the fermion part, which usually dominates the computing time.

The Sexton-Weingarten integration scheme can be used to mitigate the issue. Define

H =T ′+SF(U) (A8)

T ′ =T(p)+SG(U), (A9)
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thenT ′ andSF(U) can be fit into one integrator. When integratingT ′, its 2 partsT(p) andSG(U)

can be fit into another integrator. For example, when using the leapfrog QPQ integrator for both

levels one has the following

exp
(

τĤ
)
≈exp

(
1
2

τT̂ ′
)

exp
(

τŜF

)
exp

(
1
2

τT̂ ′
)

(A10)

exp

(
1
2

τT̂ ′
)
≈
(

exp

(
1
4n

τT̂

)
exp

(
1
2n

τŜG

)
exp

(
1
4n

τT̂

))n

, (A11)

wheren can be chosen as any positive integer. In this way different time steps are assigned to

SG(U) andSF(U), which can be tuned to minimize the cost.

2. Hasenbusch Mass Splitting

Hasenbusch mass splitting breaks a single fermion action into a few parts and offers a fine control

on distributing fermion forces among them.

The fermion action is derived from the following fermion determinant

det

(
M†(m)M(m)

M†(1)M(1)

)
=

∫
Dφ†

Dφ exp

(
−φ†M(1)

1
M†(m)M(m)

M†(1)φ
)
. (A12)

The Hasenbusch factorization [17] rewrites the above quotient action as a product of quotient

actions by introducing intermediate masses

det

(
M†(m)M(m)

M†(1)M(1)

)
=

k+1

∏
i=1

det

(
M†(mi−1)M(mi−1)

M†(mi)M(mi)

)
(A13)

=
k+1

∏
i=1

∫
Dφ†

i Dφi exp

(
−φ†

i M(mi)
1

M†(mi−1)M(mi−1)
M†(mi)φi

)
, (A14)

wherem= m0 < m1 < · · ·< mk+1 = 1.

This method offers fine grained control on the sizes of the fermion forces since all intermediate

massesmi(i = 1,2, · · · ,k) can be tuned continuously. In what follows the symbolSQ(ma,mb) will

be used to represent the quotient fermion action

SQ(ma,mb) = φ†M(mb)
1

M†(ma)M(ma)
M†(mb)φ , (A15)

The Q inSQ means “quotient”. Note that each quotient action has a different pseudofermion field

φ . This fact is not represented in the above symbol.
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3. Final Scheme

The quotient action discussed above accounts for 2 types of fermions. This is used to simulate the

2 light quarks in our simulation. For simulating strange quark, the rational approximation needs

to be used:

det

(
M†(m)M(m)

M†(1)M(1)

)1/2

=
∫

Dφ†
Dφ exp

(
−φ†

(
M†(1)M(1)

)1/4 1

(M†(m)M(m))
1/2

(
M†(1)M(1)

)1/4
φ

)
,

(A16)

where rational approximations of functionx1/4 and x−1/2 are used to evaluate the non-integer

powers of matrices. In what follows we will use the symbolSR(m1,m2) to represent this rational

action

SR(m1,m2) = φ†
(

M†(m2)M(m2)
)1/4 1

(M†(m1)M(m1))
1/2

(
M†(m2)M(m2)

)1/4
φ , (A17)

where power functions such asx1/4 andx−1/2 are understood to be shorthand notations of their

corresponding rational approximations, the “R” inSR means “rational”.

The final action used in the evolution contains the followingcomponents:

H = T(p)+SG+∑
i

SQ(mi−1,mi)+SR(ms,1)+SDSDR, (A18)

wherem0 = ml , mk+1 = 1, ml andms represents the light quark mass and strange quark mass

respectively. It is also possible to replace the quotient action SQ(m,1) with two copies of the same

rational actionSR(m,1).

When evolving the above action, we use multiple levels of nested integrators to separate the differ-

ent parts of the action. A general multi-level Sexton-Weingarten Integration scheme can be written

as follows:

H = T ′
0 =T ′

1+S1 (A19)

T ′
i =T ′

i+1+Si+1 i = 1,2, · · · ,k−1, (A20)

whereT ′
k = T(p). The above equations separate the entire action intok levels.

The details of the evolution schemes for the 2 ensembles are listed in the following tables. The

second column specifies which component of the action is usedin Si . The value given in the

fourth column,ni, denotes the number of integration steps forT ′
i . This quantity is equivalent ton

in section A11.
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level(i) Si integrator type ni step size

1 SQ(0.0042,0.015)+SQ(0.015,0.045) Omelyan QPQPQ 1 1/8

2 SR(0.045,1)+SR(0.045,1)+SR(0.045,1) Omelyan QPQPQ 2 -

3 SDSDR Omelyan QPQPQ 4 -

4 SG Omelyan QPQPQ 1 -

TABLE XXVII. ml = 0.0042, ms = 0.045 ensemble evolution details, with total 4 levels of nested inte-

grators. Also note that 2 copies of rational actionSR(0.045,1) are used to replace a single quotient action

SQ(0.045,1). We useα = 0.22 for the Omelyan integrators.

level(i) Si integrator typeni step size

1

SQ(0.001,0.01)+SQ(0.01,0.04)
+SQ(0.04,0.12)+SQ(0.12,0.31)

+SQ(0.31,0.62)+SQ(0.62,1)+SR(0.045,1)
FGI QPQPQ 3 1/9

2 SDSDR FGI QPQPQ 1 -

3 SG FGI QPQPQ 1 -

TABLE XXVIII. ml = 0.001,ms = 0.045 ensemble evolution details, with total 3 levels of nested integra-

tors.

Appendix B: Error Propagation in the Quark Mass Renormalization

In section VI A 4 we performed the continuum extrapolation ofthe ratios of quark mass renormal-

ization factors,Zml andZmh, which we defined in equation 73. These ratios combine the scaling pa-

rametersZl andZh that represent the renormalization factors in the intermediate mass-independent

’matching scheme’ used during the fits and the non-perturbative renormalization factorZm in the

SMOM schemes calculated using the Rome-Southampton method. In this calculation, the propa-

gation of statistical and systematic errors through the extrapolation and the subsequent application

of the step-scaling factors is non-trivial. Firstly, we note that the 32I and 24I lattice spacings are

very strongly correlated throughRa (recall thata24I is obtained asa32I/R24I
a ). As the errors on

these quantities give rise to uncertainties on both the renormalization scale and on the coordinates

used in the continuum extrapolation, naively treating themas independent between the lattices

could potentially give rise to unrealistically large errors on the final renormalized quark masses.

In the earlier parts of this analysis, the propagation of finite-volume and chiral extrapolation ef-
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fects was performed by repeating the global fit with each of the three chiral/continuum fit ansätze

(analytic, ChPT and ChPTFV) separately, taking the difference between these only at the final

stage to estimate the corresponding systematic errors. Allcorrelations were taken into account

through the use of the superjackknife method to propagate the statistical errors. However, the

determination of the non-perturbative renormalization coefficients was performed using bootstrap

resampling for the error propagation. Therefore, in order to propagate the effects of the statisti-

cal and systematic errors on the lattice spacings in a fashion consistent with the main analysis, we

created ‘superjackknife’ distributions from the bootstrap distributions via the following procedure:

1. On each Iwasaki lattice, we calculatedZS
m in each of the RI/SMOM schemes S at 1.4 GeV

and 3 GeV using bootstrap resampling to propagate the statistical errors. The results of

these calculations were given in the previous section. We used only the central values of

ZV and the lattice spacings during this procedure such that thestatistical error contains only

the fluctuations from the measurements of the amputated vertex functions. For the lattice

spacings we used the central values from the ChPTFV determination, which we previously

chose as our ‘best’ ansatz.

2. We repeated the previous step once again, only this time weshifted the lattice spacings by

their total error. From the change inZS
m we obtained its slope with respect toa. (The slopes

are negative for all of our schemes, as can be seen in figure 17).

3. UsingdZS
m/da we shiftedZS

m to the values we would have obtained if we had repeated

step 1 using the lattice spacings obtained with the ChPT and analytic ansätze. Along with

the original measurement we then had values ofZm with the physical scales set using the

results of each of the three global fit ansätze. We henceforth refer to these with an additional

superscript A denoting the chiral ansatz.

4. For each fit ansatz we placed the corresponding bootstrap distribution on a fictitious ‘su-

perjackknife’ ensemble, ensuring that the statistical fluctuations remain independent from

others in the analysis. (Our code is able to include both bootstrap and jackknife distribu-

tions within the same framework.) The remaining superjackknife samples were modified to

account for the statistical fluctuations in the lattice spacings by setting each samplei to the

following:

(ZS,A
m )i = 〈ZS,A

m 〉+ dZS
m

da
(ai −〈a〉) .
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Here〈...〉 denotes the central value of the distribution.

5. For the final step we take into account the fluctuations onZV by dividing the ‘superjackknife’

distributions forZS,A
m by ZV/〈ZV〉, where the quantity in the numerator is the superjackknife

distribution used to normalisefπ in the main analysis.

These superjackknife distributions were used for the analysis documented in section VI A 4.

Appendix C: O(a) Errors and Chiral Symmetry Breaking

In the Symanzik effective theory, explicit chiral symmetrybreaking manifests as a dimension-3

term corresponding to the residual mass as well as a dimension-5 clover term. The clover term

introduces O(a) discretization errors that make it difficult to perform continuum extrapolations

with traditional Wilson fermions. For domain wall fermionshowever, both terms are suppressed

due to the separation of the left- and right-handed chiral modes in the fifth dimension. As we

discussed in section II, dislocations in the gauge fields, that manifest more frequently at stronger

coupling, can allow fermion modes to tunnel between the walls, breaking the usual exponential

suppression; it is these that the DSDR factor was designed tosuppress. For the ensembles used

in this paper, the DSDR parameters were tuned to minimize theresidual mass while retaining

sufficient levels of topological tunneling. In this appendix we present evidence that this procedure

has also heavily suppressed the clover term contributions,and hence that it is not necessary to

consider O(a) discretization errors in our continuum extrapolations.

Both the residual mass and the clover term are expected to be enhanced by dislocations in the gauge

fields corresponding to zero modes of the 4D Wilson-Dirac operator. In figure 25 we reproduce

plots from ref. [6] that show the effect of the DSDR factor on the 12 lowest eigenmodes of the 4D

Wilson-Dirac matrix as a function of the 4D mass,−M5 (for positiveM5), measured on a single

representative configuration of each of three 163×8×32 domain wall ensembles, including one

with a different gauge coupling. At the massM5 = 1.8 that we used in our simulation we can

clearly see that the DSDR factor provides a strong suppression of the lowest modes. Due to the

common origin of both the clover term and the residual mass term, we expect both to be similarly

suppressed by the reduction in the number of dislocations such that the observed reduction inmres

in our simulation is accompanied by a corresponding reduction in size of the clover term.

Additional evidence for the absence of large clover term contributions can be obtained by measur-
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ing the size of the explicit chiral symmetry breaking in our simulation beyond the effects ofmres.

One place where this should be apparent is in a larger than expected difference between the local

vector and axial-vector vertex functions,ΛV andΛA respectively, and similarly between those of

the scalar and pseudoscalar operators,ΛS andΛP, evaluated at the chiral limit (includingmres)

in large-momentum Green’s functions which might be expected to have a greater sensitivity to a

dimension-5 operator. In the infinite-Ls limit these quantities differ only through the dynamical

chiral symmetry breaking at low energies, an effect that diminishes as 1/(ap)6 as the momentum-

scalep is increased. These are obtained with very high precision using the non-perturbative renor-

malization techniques discussed in section VI of this paper. In figure 26 we plot the fractional

differences as a function of the square of the momentum in lattice units. We see that the difference

ΛV −ΛA is consistent with zero at high energies, andΛS−ΛP, while falling more slowly, demon-

strates the expected 1/(ap)6 dependence and at the largest measured momentum is only a fraction

of a percent. Note also that the behaviour of the latter is very similar to that observed on our two

finer DWF+Iwasaki lattices in ref. [1] (pg. 90) which do not use the DSDR factor. We have also

published the results [7] (pg. 42) of a similar analysis, performed on our Iwasaki+DSDR ensem-

bles, of the off-diagonal components of the operator mixingmatrix between the 4-quark operators

used in ourK → ππ calculation, where we reached the same conclusion regarding the size of the

explicit chiral symmetry breaking.

Appendix D: Higher Order Corrections to Symanzik Coefficients

The standard treatment of the continuum limit is based on theusual Symanzik analysis and as-

sumes that the dominant discretization errors can be described by an effective theory given by

continuum QCD with extra, dimension-six operators whose coefficients are proportional toa2.

Higher order corrections arise from dimension eight operators witha4 coefficients. (Here we are

exploiting the chiral symmetry of the DWF formalism and considering correction terms with only

even dimensions.) Using our two Iwasaki ensembles with 1/a= 1.73 and 2.28 GeV, we extrap-

olate linearly ina2, assuming thea2 term dominates, to obtain continuum limit results. Since the

results on the 1/a= 1.73 ensemble differ from the continuum limit values by typically ≤ 3%, we

estimate the systematic errors resulting from thea4 terms as(0.03)2 ∼ 0.1%, much smaller than

the systematic errors from other sources.

While this is presently the standard approach to evaluatingthe continuum limit in a lattice QCD
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FIG. 25. The 12 lowest eigenmodes of the 4D Wilson-Dirac operator as a function of the domain wall

mass−M5 for positiveM5, measured on a single representative configuration of each of three 163×8×32

ensembles; the upper plot on aβ = 1.95 ensemble with the Iwasaki gauge action, the lower-left ona

β = 1.95 ensemble with the Iwasaki+DSDR gauge action, and the lower-right on aβ = 1.75 ensemble with

the Iwasaki+DSDR gauge action.

calculation, we should recognize that in the Symanzik theory the coefficients of theO(a2) opera-

tors are actually not constant but will themselves contain logarithms of the lattice spacing, having

the form:

c(a) = c0+c1αs(a) ln(aΛQCD)+ . . . , (D1)

where “. . . ” represents terms with higher powers of the QCD coupling αs(a) evaluated at the

lattice scale and more powers of the logarithm ln(aΛQCD). The logarithms inc(a) result from

loop corrections and appear both explicitly and implicitlythrough the dependence ofαs on a. Let

us examine how sucha-dependence ofc(a) affects the determination of the continuum limit.

Consider a physical quantityA(a)whose lattice spacing dependence is determined by the Symanzik

coefficientc(a):

A(a) = A0+a2c(a)A1 . (D2)
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FIG. 26. The fractional difference between the local vectorand axial-vector operators,ΛV andΛA (top), and

also between the scalar and pseudoscalar operators,ΛS andΛP (bottom), as a function of the square of the

momentum in lattice units. These values were obtained by measuring amputated bilinear vertex functions

at a scale defined by the momentum of the incoming quark propagators. The lower-right figure is plotting

with logarithmic axes and is overlayed by a line with the expected 1/(ap)6 dependence.

HereA0 is the matrix element of the operator which gives the continuum value ofA while A1 is the

associated matrix element of the dimension-6 Symanzik correction operator. We must determine

numericallyA(a) in a range of accessible lattice spacings and then remove theunphysicala2c(a)A1

term. To the extent that the logarithms appearing in Symanzik coefficientc(a) are constant over the

range ofa explored in the lattice calculation, they have no effect anda simple linear extrapolation

will remove the entirea2c(a)A1 term. Note this procedure will give the correct continuum limit

(assuming thatc(a) is constant in the region in which the calculation is performed) even ifc(a)

has a strong dependence ona asa → 0 [55] provided the Symanzik expansion is valid and the

producta2c(a) vanishes asa→ 0.
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However, ifc(a) does depend ona in the region where a continuum extrapolation is attempted then

an error will result which we can estimate. For example, since c(a) is likely slowly varying, we

might assume that it can be approximated by a low-order polynomial that could be obtained by a

simple Taylor expansion about an appropriately chosen point a0 within the range of the calculation.

Since we are expanding around a non-zero value ofa we can choose to expand in eithera or a2.

We find the latter more convenient since it permits an easy comparison between this and the usual

a4 corrections expected in the DWF theory. Approximating the Symanzik coefficientc(a) as

c(a) = c0+c2a2 (D3)

and using values ofA(a) obtained at two lattice spacingsa1 anda2 to perform the usual subtraction

to remove theO(a2) term gives our approximation to the continuum limit:

Alin
approx= A(a1)−

A(a2)−A(a1)

a2
2−a2

1

a2
1 (D4)

= A0−c2a2
2a2

1A1 . (D5)

The second term represents the systematic error in our evaluation of the continuum limit. If instead

we assume the logarithmic behavior ofc(a) present at one loop and given in Eq. (D1) and ignore

thea dependence ofαs, we find a similar systematic error:

Alog
approx= A0−c1αs

ln(a2/a1)

a2
2−a2

1

a2
2a2

1A1 . (D6)

Of course, Eq. (D6) reduces to Eq. (D5) if we assume ln(a2/a1)≈ (a2
2−a2

1)/(a
2
1+a2

2) and use

c2 = c1
αs

a2
1+a2

2

. (D7)

We can compare the size of this systematic error in the evaluation of the continuum limit with the

error that results from the neglect of the conventional(aΛQCD)
4 corrections. Equation (D5) can

also be used to estimate the systematic error introduced by the omission of(aΛQCD)
4 corrections:

Err(aΛQCD)
4
= (a2

1a2
2ΛQCD)

4 ≈ 0.05%. (D8)

where we assumec2 = Λ4
QCD and ΛQCD = 300 MeV and use our two Iwasaki lattice spacings

1/a = 1.73 and 2.28 GeV. We can make a similar estimate of the systematic error which arises

from the neglect of a possible logarithm in the Symanzik coefficient c(a) by using Eq. (D6) and

assumingc1 = Λ2
QCD/π andαs= 0.3:

Erra
2 ln(a) = a2

1a2
2Λ2

QCD
αs

π
ln(a2/a1)

a2
2−a2

1

≈ 0.1%. (D9)
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Both of these estimates are much smaller than the other systematic errors present in the calcula-

tions described in this paper. However, it is important to recognize that the error arising from the

neglected logarithms ofa in the Symanzik coefficients may be as large or larger than themore

familiar a4 errors and that these errors will become increasingly dominant asa is reduced. This

suggests a future strategy that uses additional lattice spacings to allow a more accurate polynomial

description ofc(a) and a more accurate subtraction of thisO(a2) Symanzik term.

We emphasize that it is our use of the Symanzik description oflattice artifacts which permits

this approach to determining the continuum limit. Instead of attempting to literally evaluate the

limit a2 → 0, we can adopt a procedure to identify (through theira2 dependence) and to subtract

specific terms in the Symanzik expansion. This approach may be viewed as complementary to the

alternative effort to reach as small a value ofa as possible. (Of course, smallera will aways be

required if sufficiently massive quarks are present in the calculation that the Symanzik expansion

cannot be relied upon.)

In this approach we need not be concerned with possible singular behavior asa2 → 0 such as

found, for example, by Baloget al. [55]. They examinec(a) asa2 varies over many orders of

magnitude in two dimensional field theories. For such a largerange of values ofa2 a sum of

leading logarithms must be performed and a simple linear or logarithmic description ofc(a) is

inadequate. Of course, for a four dimension calculation such a large range of lattice spacings in

not available and the description of the variation ofc(a) by a low order polynomial should be very

accurate.

It should be emphasized that the effect of sucha2 lnn(a2) terms on the evaluation of the continuum

limit is very different from the effect of them2
π lnn(m2

π) terms that appear in chiral perturbation

theory. In the case of a chiral extrapolation we are interested in extrapolating these logarithmic

terms to a non-zero value ofmπ , outside the region in which calculations have been performed. In

the case of the continuum limit we need only subtract the unphysicala2c(a) term and need not be

interested in its behavior outside the region in which lattice results have been obtained.
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