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Abstract

We make simulations with 2 flavor Wilson fermions to investigate the nature of the end points of

Roberge-Weiss (RW) first order phase transition lines. The simulations are carried out at 9 values

of the hopping parameter κ ranging from 0.155 to 0.198 on different lattice spatial volume. The

Binder cumulants, susceptibilities and reweighted distributions of the imaginary part of Polyakov

loop are employed to determine the nature of the end points of RW transition lines. The simulations

show that the RW end points are of first order at the values of κ in our simulations.
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I. INTRODUCTION

A full understanding of QCD phase diagram is of great importance theoretically and

phenomenologically. The QCD phase diagram addresses which forms of nuclear matter exist

at different finite temperature and baryon density, and whether there are bona fide phase

transition separating them, thus it is essential for relativistic heavy ion collision experiments

and astrophysics. QCD is a strongly interacting theory on the scales of a baryon mass and

below, so non-perturbative calculations from the first principle are preferrable. Despite that

substantial progress has been made with Monte Carlo simulations of lattice QCD at zero

baryon density, the studies at nonzero baryon density are haunted by the ”sign” problem,

for example, see Ref. [1]. To date many indirect methods have been proposed to circumvent

the ”sign” problem, overviews with references to these methods can be found in Ref. [1, 2].

One of these methods consists of simulating QCD with the imaginary chemical potential

for which the fermion determinant is positive [3–11]. Full information can be obtained by

using the imaginary chemical potential which allows for analytic continuation via truncated

polynomials.

The phase structure of QCD with imaginary chemical potential not only deserves detailed

investigations in its own right theoretically, but also has significant relevance to physics at

zero or small real chemical potential[3–6, 12–16]. QCD with imaginary chemical potential

has a rich phase diagram as a function of imaginary chemical potential and quark masses.

In this paper, we present a study of phase structure of QCD at fixed imaginary chemical

potential θ = µI/T = π for Nf = 2 QCD with Wilson quarks. The partition function

including the imaginary chemical potential is

Z(T, µI) = Tr

(

e−
1

T
(H−iµIN)

)

, (1)

Roberge and Weiss made the essential work with the imaginary chemical potential [17],

they found that the partition function of QCD with imaginary chemical potential has two

important symmetries, reflection symmetry in µ = µR + iµI and periodicity in imaginary

chemical potential,

Z(T, µ) = Z(T,−µ), (2)

Z(µ/T ) = Z(µ/T + i2πn/3). (3)
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The periodicity is smoothly realized in the low temperature, strong-coupling regime, whereas

in the high temperature, weak-coupling regime, it is realized in a non-analytic way. At high

temperature, the system undergoes a first order transition (RW transition) at critical values

of the imaginary chemical potential µI/T = (n + 1
2
)2π/3 [17–19] between adjacent Z(3)

sectors and these Z(3) sectors are characterized by the Polyakov loop. Thus the picture for

the T − θ phase diagram is that repeats with a periodicity the first order transition line in

the high temperature regime which necessarily ends at an end point at some temperature

TRW when the temperature is decreased sufficiently.

At these end points, there are evidence that the analytic continuation of deconfine-

ment/chiral transition line from real chemical potential to imaginary chemical one meets

the RW transition line. Recent numerical studies show that the RW transition line end

points are triple points for small and heavy quark mass, and second order end points for

intermediate quark masses. So there exist two tricritical points which separate the first

order regime from the second one [3–5]. Moreover, it is pointed out [3, 15, 16] that the

scaling behaviour at the tricritical points may shape the the critical line for real chemical

potential, and subsequently, the line for real chemical potential is qualitatively consistent

with the scenario suggested in Ref. [9, 10] which show that the first order region shrinks

with the increasing real chemical potential.

Most of studies of finite temperature QCD have been performed using staggered fermion

action or the improved versions [20–26], staggered fermion approach and Wilson fermion

approach have their own advantages and disadvantages, for example, see Ref. [27]. The KS

fermion formalism preserves the U(1) chiral symmetry, whereas it needs a fourth root trick

for one flavour which might lead to locality problem [28] and phase ambiguities [29]. On the

contrary, Wilson fermions completely solve the species doubling problem, whereas it suffers

from an explicit chiral symmetry breaking. The lattice simulation with Wilson fermions is

more time-consuming than staggered fermions, it can provide complementary information

and crosscheck to simulations with other actions and establish a better understanding of

QCD phase diagram.

In this paper, we attempt to investigate the RW transition line end points by lattice QCD

with two degenerate flavors of Wilson fermions. In Sec. II, we define the lattice action with

imaginary chemical potential and the physical observables we calculate. Our simulation

results are presented in Sec. III followed by discussions in Sec. IV.
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FIG. 1: Scaling behavior of susceptbilities of the imaginary part of the Polyakov loop according

to the first order critical indexes (the left panel), and to the 3D Ising critical indexes (the right

panel) at κ = 0.155.
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FIG. 2: Reweighted distributions of the imaginary part of the Polyakov loop Im(L) at the corre-

sponding end point βRW , and β > βRW and β < βRW on each lattice spatial volume at κ = 0.155.
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FIG. 3: Scaling behavior of susceptibilities, and Binder cumulants of the imaginary part of the

Polyakov loop according to the first order critical indexes (left panels), and to the 3D Ising critical

indexes (right panels)at κ = 0.198.

II. LATTICE FORMULATION WITH IMAGINARY CHEMICAL POTENTIAL

We consider the partition function of system with Nf = 2 degenerate flavors of Wilson

quarks with chemical potential on the lattice

Z =

∫

[dU ][dψ̄][dψ]e−Sg−Sf

=

∫

[dU ]

(

DetM [U, θ]

)Nf

e−Sg . (4)

where Sg is the gauge action, and Sf is the quark action with the quark imaginary chemical

potential µI = θT . For Sg, we use the standard one-plaquette action

Sg = β
∑

p

(

1−
1

N
ReTrUp

)

, (5)
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FIG. 4: Reweighted distributions of the imaginary part of the Polyakov loop at κ = 0.198 at the

corresponding end points βRW .

where β = 6/g2, and the plaquette variable Up is the ordered product of link variables U

around an elementary plaquette. For Sf , we use the the standard Wilson action

Sf =

Nf
∑

f=1

∑

x,y

ψ̄f(x)Mx,y(U, κ, µ)ψf(y), (6)

where κ is the hopping parameter, related to the bare quark mass m and lattice spacing a

by κ = 1/(2am+ 8). The fermion matrix is

Mx,y(U, κ, µ) = δx,y − κ

3
∑

j=1

[

(1− γj)Uj(x)δx,y−ĵ

+(1 + γj)U
†
j (x− ĵ)δx,y+ĵ

]

−κ

[

(1− γ4)e
aµU4(x)δx,y−4̂

+(1 + γ4)e
−aµU †

4(x− 4̂)δx,y+4̂

]

. (7)

We carry out simulations at θ = π. As it is pointed out that the system is invariant under

the charge conjugation at θ = 0, π, when θ is fixed [14]. But the θ-odd quantity O(θ) is not

invariant at θ = π under charge conjugation. When T < TRW , O(θ) is a smooth function

of θ, so it is zero at θ = π. Whereas when T > TRW , the two charge violating solutions

cross each other at θ = π. Thus the charge symmetry is spontaneously broken there and the

θ-odd quantity O(θ) can be taken as order parameter . In this paper, we take the imaginary

part of Polyakov loop as the order parameter.
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The Polyakov loop L is defined as the following:

〈L〉 =

〈

1

V

∑

x

Tr

[

Nt
∏

t=1

U4(x, t)

]〉

, (8)

here and in the following, V is the spatial lattice volume. To simplify the notations, we use

X to represent the imaginary part of Polyakov loop L, X = Im(L).

The susceptibility of imaginary part of Polyakov loop χ is defined as

χ = V
〈

(X − 〈X〉)2
〉

, (9)

which is expected to scale as: [4, 5]

χ = V γ/νφ(τV 1/ν), (10)

where τ is the reduced temperature τ = (T − TRW )/TRW . This means that the curves

χ/V γ/ν at different lattice volume should collapse with the same curve when plotted against

τV 1/ν . In the following, we employ β − βRW in place of τ = (T − TRW )/TRW . The critical

exponents relevant to our study are collected in Table. I [5, 30].

ν γ γ/ν

3D ising 0.6301(4) 1.2732(5) 1.963

tricritical 1/2 1 2

first order 1/3 1 3

TABLE I: Critical exponents relevant to our study.

We also consider the Binder cumulant of the imaginary part of Polyakov loop which is

defined as the following:

B4 =
〈

(X − 〈X〉)4
〉

/
〈

(X − 〈X〉)2
〉2
, (11)

with 〈X〉 = 0. In the thermodynamic limit, B4(β) takes on the values 3, 1.5, 1.604, 2 for

crossover, first order triple point, 3D Ising and tricritical transitions, respectively. However,

on finite spatial volumes, the steps are smeared out to continuous functions. In the vicinity

of the RW transition line end points, B4 is a function of x = (β − βRW )V 1/ν and can be

expanded as a series [3, 15, 16].

B4 = B4(βc,∞) + a1x+ a2x
2 + · · · , (12)
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III. MC SIMULATION RESULTS

In this section, we will present our results for simulating QCD with two degenerate flavors

of Wilson fermions at finite temperature T and imaginary chemical potential iµI . Both the

φ algorithm with a Metropolis accept/reject step and the R algorithm are used [31]. The

simulations are performed on lattice with different spatial volume with temporal extent

Nt = 4 at κ = 0.155, 0.160, 0.165, 0.168, 0.170, 0.175, 0.180, 0.190, 0.198. For each κ value,

we carry out simulations on lattice of size Ls = 8, 12, 16, and for some κ values, lattice of

size Ls = 10 or/and Ls = 20 are also used. Simulations are carried out with φ algorithm

with a Metropolis accept/reject step with the acceptance rate ranging from 42− 93%, The

other simulations are carried out in terms of R algorithm with the molecular dynamics

time step δτ = 0.01. Ref. [31] pointed out that R-algorithm has errors of order O(δτ 2), so

the correct results of this algorithm consists of extrapolation to zero stepsize. However, in

practice a short-cut without extrapolation is used. Recently, the exact RHMC algorithm

is invented which also allows many improvements [32]. In our simulation, δτ = 0.01 is

sufficiently smaller compared with the statistical errors of our simulations. There are 20

molecular steps for each trajectory. We generate 20,000 trajectories after 10,000 trajectories

as warmup. Ten trajectories are carried out between measurements. We use the conjugate

gradient method to evaluate the fermion matrix inversion.

On each lattice size, we make simulations at typically 4-6 different β values. For fixed

iµI = iπT , there is transition in T between the low temperature phase and the high temper-

ature phase. In order to determine the RW transition line end point βRW from the peak of

susceptibilities, we use the data obtained through simulations at the 4-6 different β values,

and calculate susceptibilities at additional β values, by employing the Ferrenberg-Swendsen

reweighting method [33].

Let us first present the critical couplings βRW on different spatial volume at different κ

in Table. II.

The presence of a first order phase transition at the end point of Roberge-Weiss transition

line at κ = 0.155 can be found from the scaling behavior of the susceptibilities of the

imaginary part of Polyakov loop χ presented in Fig. 1. From Fig. 1 we can find that

the rescaling quantities χ/V γ/ν plotted against (β − βRW )1/ν does not fall on the same

curve completely, whereas peaks of the rescaling quantities χ/V γ/ν obviously exhibit scaling

8



TABLE II: Results of critical couplings βRW on different spatial volume at different κ, we

also make simulations on lattice 83 × 4 at κ = 0.185, 0.195, the critical couplings βRW are

4.8810(20), 4.6610(20), respectively.

κ 8 10 12 16 20

0.155 5.4319(40) 5.3887(40) 5.427(10) 5.4289(50)

0.160 5.361(50) 5.365(30) 5.347(10) 5.3499(60)

0.165 5.2566(90) 5.262(13) 5.2493(20) 5.2412(10) 5.2581(10)

0.168 5.206(15) 5.2103(22) 5.2167(6) 5.2181(10)

0.170 5.1645(50) 5.1722(10) 5.1770(5) 5.1785(2)

0.175 5.0781(30) 5.0838(50) 5.0882(40) 5.1095(30)

0.180 4.9802(20) 5.0388(60) 5.0391(40)

0.190 4.7800(20) 4.7658(10) 4.7883(3)

0.198 4.5910(20) 4.5955(10) 4.5980(2)

behavior which conforms to the first order transition. From Eq. (10), we can find that the

index γ/ν regulates the height of peaks while the index ν regulates the width of peaks. As

a comparison, we also present the behavior according to the 3D Ising transition index in the

right panel of Fig. 1 from which we can find that large deviation from the 3D Ising scaling

behavior manifest clearly. At κ = 0.160, similar observations of susceptibilities as those at

κ = 0.155 can be found.

In Fig. 2, we present reweighted distributions of the imaginary part of Polyakov loop

Im(L) at the corresponding βRW and two β values on lattice size Ls = 8, 16, 20. On each

lattice size, at βRW , reweighted distribution of Im(L) exhibits two-state signal, while, at

β > βRW and β < βRW , reweighted distributions of Im(L) do not exhibit two-state signal.

At other κ values, reweighted distributions of the imaginary part of Polyakov loop Im(L)

at the corresponding βRW , β > βRW and β < βRW on each lattice size have the same

observations as those at κ = 0.155. For clarity, we only present the result at κ = 0.168 in

the following.

We also make simulations at κ = 0.190, 0.198, the results of simulations at κ = 0.198

are presented in Fig. 3, and Fig. 4. From the two upper panels of Fig. 3, we can find that
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the first order transition indexes are more suitable to describe the behavior than the 3D

Ising ones. This situation can be made clearer when we look at the B4 behavior depicted in

down panels of Fig. 3 from which we can find that the quantities of Binder cumulant plotted

against rescaling β fall on the same curve completely. Note that from Eq. (11), the scaling

behavior of Binder cumulants is governed by the critical index ν which also determines the

width of peaks of the rescaling quantities χ/V γ/ν . The fact that the value of ν for first order

transition accounts for the width of peaks of χ/V γ/ν better than the second order transition

show that the transition is first order, and this situation is confirmed by the scaling behavior

of Binder cumulant B4. We also present reweighted distribution of the imaginary part of

Polyakov loop at βRW at κ = 0.198 in Fig. 4 which exhibits two-state signal. At κ = 0.190,

similar observations as those at κ = 0.198 can be observed.

The results of simulations at κ = 0.170, 0.175, 0.180 are shown in Fig. 5. In view of

the fact that large finite-size corrections are observed in simple spin models even when the

transition is first order [3, 34], we can find that the first order transition indexes perform

much better than the second order transition ones. This observation can be enhanced from

the reweighted distribution of the imaginary part of Polyakov loop presented in Fig. 6.

Comparing to the above results, it is difficult to determine the nature of RW transition

line end points at κ = 0.165, 0.168 results of which are presented in Fig. 7. However, when

we look at the behavior at large lattice size presented in Fig. 7, it is a reasonable conclusion

that the behavior of RW transition line end points at κ = 0.165, 0.168 are of first order.

This conclusion can be enhanced when we look at the reweighted distributions of Im(L)

at the end point βRW at κ = 0.165 presented in Fig. 8. and reweighted distributions of

Im(L) at the corresponding βRW , β > βRW and β < βRW on lattice size LS = 12, 16, 20 at

κ = 0.168 presented in Fig. 9.

IV. DISCUSSIONS

We have studied the nature of critical end points of Roberge-Weiss transition of two flavor

lattice QCD with Wilson fermions. When µ = iπT , the imaginary part of Polayakov loop is

the order parameter for studying the transition from low temperature phase to high temper-

ature one. Within the imaginary chemical potential formulation, the partition function is

periodic in imaginary chemical potential. The different Z(3) sectors are characterized by the
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FIG. 5: Scaling behavior of susceptibilities of the imaginary part of the Polyakov loop according

to first order critical indexes (left panels) and to the 3D Ising critical indexes (right panels).

phase of Polyakov loop. The Roberge-Weiss transition which occurs at µI/T = 2π(k+1/2)/3

is of first order in the high temperature phase, whereas it is of crossover in the low temper-

ature phase.
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FIG. 6: Reweighted distributions of the imaginary part of the Polyakov loop at κ =

0.170, 0.175, 0.180 at the corresponding end points βRW .

Our simulations are carried out at 9 values of κ on different 3-4 spatial volumes. Our

lattice Nt = 4 is coarse. In Ref. [35], the lattice spacing with 2 flavor Wilson fermions at

β = 5.3 is estimated to be 0.12 − 0.13 fm. In Ref. [36], the lattice spacing with 2 flavor

Wilson fermions is estimated to be 0.246 fm which is found almost independent of β in the

range of β = 3.0− 4.7. In our simulations, β varies roughly from 4.6 to 5.4, thus, the lattice

spacing a is estimated to be a ∼ 0.12− 0.25 fm.

In order to estimate the pseudo-scalar meson mass mπ, the vector meson mass mρ and

ratios mπ/mρ, Tc/mρ at our simulation points, we use the data in Table II in Ref. [37]. By

using the standard quark and gauge action, Bitar et al. studied hadron thermodynamics with

Wilson fermions on lattice 83×4 and calculated the zero temperature hadron mass on lattice

83 × 16 with dynamical fermions. We compile their results and present in the following: at
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FIG. 7: Scaling behavior of susceptibilities of the imaginary part of the Polyakov loop according

to the first order critical indexes (left panels) and to the 3D Ising critical indexes (right panels).

κ = 0.16, β = 5.28, mπ/mρ = 0.943(3), Tc/mρ = 0.19425(7), at κ = 0.17, β = 5.12,

mπ/mρ = 0.899(4), Tc/mρ = 0.2066(8), at κ = 0.18, β = 4.94, mπ/mρ = 0.836(5), Tc/mρ =

0.224(1), and at κ = 0.19, β = 4.76, mπ/mρ = 0.708(7), Tc/mρ = 0.245(2). Using the lattice

spacing estimated in the above, we find that at κ = 0.190, β = 4.76, mπ = 577(2) MeV,

at κ = 0.160, β = 5.28, mπ = 1991(7) MeV. Comparing the values of κ, β at simulation

points in Ref. [37] with ours. we can roughly estimate the pseudo-scalar meson mass mπ.

Using the estimated lattice spacing, we can estimate that Roberge-Weiss transition point

temperature varies from 197− 410 MeV in our simualtions.

We consider the peak behaviour, reweighted distribution and Binder cumulant of order

parameter around the critical end point βRW , At κ = 0.190, 0.198, the three observables’

behaviour show that transition at the end point is of first order which means the end point is
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FIG. 8: Reweighted distributions of the imaginary part of the Polyakov loop at κ = 0.165 at the

corresponding end points βRW .
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FIG. 9: Reweighted distributions of the imaginary part of the Polyakov loop Im(L) at the corre-

sponding end point βRW , and β > βRW and β < βRW on each lattice spatial volume at κ = 0.168.

a triple point. At κ = 0.155 , 0.160, the peak behavior at the end point are more consistent

with that of transition of a triple point than that of 3D Ising transition behaviour. Similar

observations can be observed at κ = 0.170, 0.175, 0.180.

At κ = 0.165, 0.168, it becomes difficult to discern the peak behavior between 3D Ising

transition class and triple point, however, when we look at the peak behavior at large lattice

size, it is a reasonable conclusion that the behavior of RW transition line end points are of

first order. This conclusion is enhanced by the reweighted distribution of order parameter.
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We also fit Eq. (12) to the calculated Binder cumulant data to extract the value of critical

index ν. At κ = 0.165, 0.168, ν = 0.3661, 0.3594, respectively, and these values conform to

first order transition.

In Ref. [13], the locations of triple points are determined. In Ref. [4, 5] and Ref. [3], the

simulations with staggered fermions show that phase diagram of two flavor and three flavor

QCD at imaginary chemical potential µ = iπT are characterized by two tricritical points,

respectively. Our simulations have no evidence that shows the existence of tricritical points

separating second order region from the first order region. Considering these results, our

investigation requires further extensive numerical simulations which extend to a larger range

of quark mass region. This work is under progress.
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