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On the Polyakov loop in 2+1 flavor QCD
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We study the temperature dependence of the renormalized Polyakov loop in 2+1 flavor QCD
for temperatures T < 210 MeV. We extend previous calculations by the HotQCD collaboration
using the highly improved staggered quark action and perform a continuum extrapolation of the
renormalized Polyakov loop. We compare the lattice results with the prediction of non-interacting
static-light hadron resonance gas, which describes the temperature dependence of the renormalized
Polyakov loop up to T < 140 MeV but fails above that temperature. Furthermore, we discuss the
temperature dependence of the light and strange quark condensates.

PACS numbers:

I. INTRODUCTION

At high temperature strongly interacting matter un-
dergoes a transition to a new state characterized by de-
confinement and color screening (see e.g. Refs. [1, 2] for
recent reviews). The Polyakov loop is an order parame-
ter for deconfinement phase transition in SU(N) gauge
theories. After proper renormalization it is related to
the free energy of a static quark FQ [3, 4]. More pre-
cisely, it can be defined through the difference in the
free energy of a system containing a static quark anti-
quark (QQ̄) pair at infinite separation and a system with-
out static charges at the same temperature F∞(T ), i.e.
Lren(T ) = exp(−F∞(T )/2T ) = exp(−FQ/T ) [3]. In
the confined phase F∞ = ∞ since the static Q and Q̄
cannot be separated to infinite distance. Consequently,
the Polyakov loop which transforms non-trivially under
the center of the gauge group is zero. In the deconfined
phase the static quark and anti-quark could be separated
to infinite distance due to color screening which means
breaking of the center symmetry Z(N) [5, 6]. Dynamical
quarks explicitly break the Z(N) symmetry of the par-
tition function and F∞ is finite since the static Q and
Q̄ can be now separated to infinite distance by creating
a dynamical quark anti-quark pair from the vacuum, a
phenomenon often called string breaking. In 2+1 flavor
QCD with the quark masses realized in nature there is
no phase transition related to deconfinement. Moreover,
the renormalized Polyakov loop cannot be related to the
singular part of the free energy density [7, 8]. However,
the renormalized Polyakov loop is sensitive to the color
screening in hot QCD medium, at high temperature it
is closely related to the Debye screening mass (see e.g.
[9]). In the opposite limit of very low temperatures FQ

is related to the binding energy of a static-light meson
(see e.g. [10]). Thus the renormalized Polyakov loop is a
good probe of the hot strongly interacting medium.
On the lattice with temporal extent Nτ the renormal-

ized Polyakov loop is calculated according to the follow-
ing formula

Lren(T ) = exp(−cNτ/2)

〈

1

3
Tr

Nτ
∏

x0=1

U0(x0, ~x)

〉

, (1)

where U0(x0, ~x) is the gauge link variable in the time
direction and c is the lattice spacing dependent normal-
ization constant that ensures that the static potential cal-
culated on the lattice has a certain value at a chosen dis-
tance [11]. In the recent past the renormalized Polyakov
loop has been calculated on the lattice in 2+1 flavor QCD
with physical quark masses using improved staggered
fermion formulation [7, 8, 11–14]. Furthermore, using
the stout improved staggered action continuum results
for the renormalized Polyakov loop have been presented
[14]. The aim of this paper is to study the renormalized
Polyakov loop in the low-temperature and transition re-
gions and to perform an independent continuum extrapo-
lation using the highly improved staggered quark (HISQ)
action [15]. While the temperature dependence of the
Polyakov loop in QCD at high temperatures is very sim-
ilar to its temperature dependence in pure gauge theory,
this is not the case for the low temperature and the tran-
sition regions. To understand at which temperature color
screening effects set in, it is important to clarify to what
extent the temperature dependence of the Polyakov loop
can be understood in terms of hadrons. As mentioned
above, at very low temperatures the dominant contribu-
tion to FQ is given by the lowest static-light state. As
the temperature increases, more massive states will con-
tribute as well and also the interactions of static-light
hadrons with the medium will become more important.
For the description of the bulk thermodynamic quanti-
ties it turns out that interactions between hadrons can be
taken into account by adding the contribution of hadronic
resonances. It is reasonable to assume that the effects of
interactions of static-light hadrons with the hadrons in
the medium can be accounted for by adding excited (res-
onance) states. Therefore, we calculate the renormalized
Polyakov loop in the approximation of non-interacting
gas of static-light hadrons and hadronic resonances as has
been suggested recently [16]. Contrary to Ref. [16] (see
also [17, 18]), where the experimental spectrum of heavy-
light(strange) hadrons was used together with different
model considerations, our analysis is largely based on the
lattice QCD calculations of the spectrum of static-light
and static-strange hadrons [19, 20]. We also consider dif-
ferent quark model analyses of the heavy-light(strange)
hadron spectrum, compare them with each other and the
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available lattice calculations, and use them to estimate
the contribution of higher lying excited states to Lren.
The rest of the paper is organized as follows. In sec-

tion II we present our numerical results for the renor-
malized Polyakov loop. The temperature dependence of
the quark condensates is also discussed there. In sec-
tion III we discuss the spectrum of static-light hadrons
and the calculation of the Polyakov loop using the hadron
resonance gas approximation for static-light hadrons. Fi-
nally, section IV contains our conclusions.

II. NUMERICAL RESULTS

The chiral and deconfining aspects of the QCD tran-
sition have been studied by the HotQCD collaboration
using lattices with temporal extent Nτ = 6, 8 and 12
and combination of the tree-level improved gauge action
and the HISQ action in the quark sector [8]. This combi-
nation of the gauge action and quark action was referred
to as the HISQ/tree action in Ref. [8] but here we refer
to it as the HISQ action for simplicity. For reliable con-
tinuum extrapolations we need at least three lattice spac-
ings. Therefore we performed calculations using 403× 10
lattices, using as in the earlier work the rational hybrid
Monte-Carlo algorithm [21]. The algorithmic details of
dynamical HISQ simulations can be found in Ref. [22].
As in Ref. [8] calculations are performed for the physi-
cal value of the strange quark mass ms and light quark
masses ml = ms/20. This light quark mass corresponds
to the pion mass of 160 MeV in the continuum limit [8],
which is slightly above the physical value. However, for
the Polyakov loop this small difference from the physical
value plays no role. The parameters of the lattice simula-
tions including the lattice gauge coupling β = 10/g2 and
the strange quark mass in lattice units are shown in Table
I along with the corresponding temperatures. The last
column of the table shows the accumulated statistics for
each β value in terms of molecular dynamics time units.
The lattice spacing a is determined from the r1 parameter
defined in terms of the zero-temperature static potential
as

r2
dV

dr

∣

∣

∣

∣

r=r1

= 1.0, (2)

and we use the value r1 = 0.3106 fm [23]. We use
the parametrization of the lattice spacing and the quark
masses as functions of the gauge coupling β along the
lines of constant physics that are given in Ref. [8]. The
β dependent normalization constant c that enters Eq.
(1) was also taken from Ref. [8]. Since we are interested
in the low-temperature behavior of the Polyakov loop,
we also performed additional calculations on 323 × 8 lat-
tices for three values of the temperature, T = 116 MeV,
125 MeV and 131 MeV. The corresponding simulations
parameters are also given in Table I. Our calculations
extend to temperature as low as 116 MeV, which is lower

than in any previous lattice studies. Our numerical re-
sults for the Polyakov loop are shown in Fig. 1. To
obtain continuum results for the renormalized Polyakov
loop we first perform a smooth spline interpolation of the
numerical data for each Nτ . The errors of the spline in-
terpolation are determined using the bootstrap method.
Then we perform a continuum extrapolations at selected
temperature values from T = 120 MeV to 210 separated
by 5 MeV steps. In addition we also consider the renor-
malized Polyakov loop at T = 117 MeV. Since the leading
discretization errors in the staggered fermion formulation
are proportional to a2, we expect that for the renormal-
ized Polyakov loop they should scale like (aT )2 = 1/N2

τ .
Therefore we performed 1/N2

τ extrapolation of the renor-
malized Polyakov loop for T ≥ 135 MeV, where we have
at least three lattice spacings. At lower temperatures we
have only two lattice spacings to estimate the continuum
limit, corresponding to Nτ = 8 and 10. Furthermore,
as one can see from Fig. 1 (right) the lattice data do
no show a clear Nτ dependence at these temperatures
within the estimated errors. Moreover, the ordering of
the Nτ = 8 and Nτ = 10 data seems to be the opposite
to that at T > 135 MeV. For this reason we estimate the
continuum limit for Lren at T ≤ 135 MeV by averaging
the interpolated Nτ = 8 and Nτ = 10 data.

Our continuum estimates for the renormalized
Polyakov loop are also shown in Fig. 1 and compared
with the continuum results obtained using the stout ac-
tion [14]. The two lattice extrapolated continuum results
agree with each other, except for T = 140 MeV, where
our results are larger by two standard deviations.

As discussed in section I the deconfinement phase tran-
sition is related to Z(N) symmetry in the case of in-
finitely heavy quarks. In the opposite limit of massless
quarks there is a chiral restoring phase transition. The
connection between the deconfinement crossover and the
chiral crossover in QCD with the physical values of the
quark masses is a subject of long-standing discussions
(see e.g. Refs. [24–26]). Therefore it is interesting to
compare the temperature dependence of the renormalized
Polyakov loop in the continuum limit to the temperature
dependence of the chiral condensate which is used to de-
scribed the chiral aspects of the QCD crossover. Com-
bining our numerical results with the published HotQCD
[8] results we estimated the renormalized chiral conden-
sates ∆ls and ∆R

l defined in Ref. [8] in the continuum
limit. So far continuum extrapolated data for the chiral
condensate are only available for the stout action. The
details of this analysis are given in the Appendix, where
we also compare our results with the one obtained using
the stout action. We also calculated the strange quark
condensate ∆R

s , which is analogous to ∆R
l (see Ref. [8])

in the continuum limit. The details of these calculations
are also given in the Appendix.

In Fig. 2 the temperature dependence of the Polyakov
loop is compared with the temperature dependence of
the renormalized chiral condensate as well as with the
temperature dependence of the strange quark conden-
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FIG. 1: The renormalized Polyakov loop calculated with the HISQ and stout action. The HISQ results for Nτ = 6, 8 and 12 are
from Ref. [8]. The continuum stout data are from Ref. [14]. The filled diamonds correspond to the continuum extrapolation
for the HISQ action. The right panel shows the closeup of the Polyakov loop in the low-temperature region.

β ms T [MeV] #TU

Nτ = 10

6.285 0.0790 117 2423

6.341 0.0740 123 7679

6.390 0.0694 129 4990

6.423 0.0670 133 3640

6.460 0.0642 138 4200

6.488 0.0620 142 3370

6.515 0.0604 146 4988

6.550 0.0582 151 4990

6.575 0.0564 155 4990

6.608 0.0542 160 4990

6.664 0.0514 168 5000

6.700 0.0496 174 4990

6.740 0.0476 181 4990

6.770 0.0460 186 4990

6.800 0.0448 192 5310

6.840 0.0430 199 4990

6.880 0.0412 207 4990

Nτ = 8

6.050 0.1064 116 3977

6.125 0.0966 125 3180

6.175 0.0906 131 3732

TABLE I: Simulation parameters for 403 × 10 and 323 × 8
lattices. The last column shows the accumulated statistics in
terms of molecular dynamics trajectories.

sate. As one can see from the figure the renormalized
Polyakov loop changes very smoothly in the temperature
interval where the chiral condensates drops rapidly and it
is difficult to tell whether the transition in the renormal-
ized Polyakov loop and chiral condensates are connected.
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FIG. 2: The temperature dependence of the renormalized
Polyakov loop compared to the temperature dependence of
the renormalized chiral condensate ∆R

l and ∆ls as well as the
strange quark condensate ∆R

s . The values of ∆R
l and ∆R

s

have been normalized by the corresponding zero temperature
values. ∆ls goes to one in the zero temperature limit by con-
struction. All results are continuum extrapolated.

Comparison with the hadron gas model described in the
next section, however, can provide further insight into
this issue. Finally, the strange quark condensate shows
a smooth behavior similar to that of Lren.

III. THE HADRON GAS MODEL

As discussed in section I, at very low temperature the
free energy of a static quark is largely determined by the
binding energy of the lowest static-light meson. In addi-
tion, there are contributions from static-strange mesons
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and baryons with one static quark. Thus, following Ref.
[16], at very low temperature the Polyakov loop is given
by the contribution of the lowest static-light states

3Lren = 4 exp(−M/T ) + 2 exp(−M0
s /T ) +

∑

I

∑

j(2I + 1)(2j + 1) exp(−MB0
I,j /T ), (3)

where the spin and iso-spin degeneracies of the meson
states have been taken into account and the summation
of all iso-spin (I) states as well as of all light and/or
strange quark angular momentum states (j) for the low-
est static-light baryons. Altogether we have contribution
from 6 mesons and 21 baryons [16]. The factor 3 on
the left hand side of the above equation originates from
the color normalization in the definition of Lren in Eq.
(1) and can be seen from the spectral decomposition of
the Polyakov loop correlator derived in [27]. Interactions
with the medium are suppressed at very low tempera-
tures but start to become more important as the tem-
perature increases. One may try to include the interac-
tion by assuming that it can be approximated by reso-
nances. This assumption seems to work quite well for
bulk thermodynamic quantities [14, 28–30]. The static-
light meson contains a divergent self-energy contribution
which needs to be subtracted. This leaves the mass of
the ground static meson state undetermined, while the
masses of all other states are given with respect to the
mass of the lightest state Ei = Mi −M0. Therefore we
can generalize the above equation as follows

Lren = 1

3
exp(−∆/T )(4 + 2 exp(−Es

0/T ) +
∑

n,I,j(2I + 1)(2j + 1) exp(−En,I,j/T )). (4)

Here Es
0 is the energy of the lightest static-strange meson

with respect to the mass of the lowest static-light state
M0. The first and the second terms correspond to the
contribution of the ground state static-light and static-
strange mesons, while the third term corresponds to the
contribution of the baryon states and the excited meson
states. The index n denotes different excited states cor-
responding to the same values of I and j. The renormal-
ized Polyakov loop depends on the subtracted mass of the
lowest static-light meson ∆. This needs to be adjusted
to match the lattice data for the Polyakov loop at low
temperatures, i.e. ∆ should be adjusted to the specific
scheme used for the normalization of the Polyakov loop
on the lattice. This matching procedure will be discussed
in subsection C. In the following two subsections we are
going to discuss the meson and baryon contributions to
Lren separately.

A. Static mesons and their contribution to the

renormalized Polyakov loop

Static-light and static-strange mesons are character-
ized by the angular momentum of the light (strange)
quark and parity jP . The spectrum of static-light
mesons consist of approximately degenerate pairs with

j = |l ± 1/2|, where l is the orbital angular momen-
tum. The spectrum of static-light(strange) mesons has
been studied in 2-flavor lattice QCD by the ETMC col-
laboration for j up to 7/2 that corresponds to orbital
angular momentum l = 0, 1, 2 and 3 and is denoted by
S, P±, D±, F± [19]. Also the masses of first static-light
and static-strange excited meson states for 1/2− channel
(first radial or S∗ state in the ETMC notation ) have been
calculated [19]. To get rid of the divergent self-energy
contribution the masses of different states are calculated
with respect to the ground state (S state) mass both in
the light and the strange quark sectors. These mass dif-
ferences have been extrapolated to the continuum limit
and to the physical pion mass and are approximately the
same for static-light and static-strange mesons, see Table
5 of Ref. [19]. The errors for the above mass difference
vary between 12 MeV and 37 MeV. With all the spin and
iso-spin degeneracies the number of states identified on
the lattice is 96. To calculate the Polyakov loop accord-
ing to Eq. (4) we need to know Es

0 , the energy (mass) of
the lowest static-strange meson with respect to the light-
est static-light meson.We use phenomenological consider-
ations to do so. Consider the spin-averaged mass of the
ground state charmed (bottom) mesons with strangeness
S = 0 and S = −1

MD =
3M(D∗) +M(D)

4
= 1975 MeV, (5)

MB =
3M(B∗) +M(B)

4
= 5314 MeV, (6)

MDs =
3M(D∗

s) +M(Ds)

4
= 2076 MeV, (7)

MBs =
3M(B∗

s ) +M(Bs)

4
= 5404 MeV. (8)

Here we used the values of the charm and bottom meson
masses from Particle Data Group [31]. We get MDs −
MD = 100 MeV and MBs − MB = 90 MeV. Heavy
quark effective theory predicts that the masses of heavy-
light mesons and thus also the above difference should
scale as the inverse of the heavy quark mass mQ. Using

this and the values of MD and MB as proxies for the
charm and bottom quark respectively we get a value of
84 MeV for the difference of the lowest static-strange and
static-light meson mass, i.e. Es

0 = 84 MeV for mQ = ∞.
It is interesting to mention that the value of the strange
quark mass inMS schemems(µ = 2 GeV) = 95(5) MeV)
is close to the value of Es

0 . So E
s
0 may be interpreted as

a constituent strange quark mass.
To study the contribution of higher excited states we

will use the Ds meson spectrum calculated on the lat-
tice [32] as well as in a relativistic quark model [33–36].
The spectrum of Ds mesons has been calculated on the
lattice using improved Wilson fermion actions [32]. One
needs to establish a relation between the meson masses
in the static case and the masses of Ds mesons. Heavy
mesons, Ds mesons in particular, are characterized by
nLJ with J being the total angular momentum of the
meson, L being the orbital momentum and n being the
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radial quantum number. Obviously the j = 0 states in
the static limit are identified with spin-averaged S-state
Ds mesons. For finite heavy quark mass the L − 1/2
state in the static limit splits into two states LL−1 and
LL, while the L+1/2 state splits into LL and LL+1 state,
e.g. P− becomes 1P0 and 1P1, and P+ becomes 1P1 and
1P2. The corresponding splittings, however, are small.
Such a degeneracy pattern is indeed observed in the ex-
perimentally established positive parity (P -wave) D and
Ds mesons. Furthermore, the mass difference of various
Ds meson states calculated on the lattice and the spin-
averaged lowest S-state is in reasonable agreement with
the mass difference in the static limit discussed above.
Therefore it is justified to use the Ds meson masses cal-
culated on the lattice as proxies for static-strange mesons.
Since the above difference is approximately the same for
strange and light quark cases we can use the same mass
difference also for the light quarks. That allows to in-
clude the following excited states into the analysis: 2P ,
2D and 2F . We identify the mass of 2L− meson in the
static case with the lowest 2LL Ds meson mass and the
2L+ with the higher 2LL Ds meson. With all the spin-
iso-spin degeneracies this gives 90 states.

To include even higher excited states we use quark
model predictions. The quark model can predict cer-
tain qualitative features of the heavy-light and static-
light meson spectrum correctly [33–35]. However, the
quark models also have problems. In the static limit the
mass of the P+ state is smaller than the mass of the P−

state just the opposite to what is observed on the lattice
[19]. The mass of the P+ in a quark model, calculated in
Ref. [35], is 230 MeV below the lattice result. Similarly,
the mass of the 2S state is 441 MeV below the lattice
result [19]. Comparing the results of Ref. [33, 34] to Ref.
[35] one may conclude that the model dependence is small
for the 1P meson states, however, in the Bs sector the
masses of the 2S states differ by about 300 MeV. We try
to account for these problems by assigning a theoretical
error to the masses of higher excited states.

We took the results of quark model calculations of D
and Ds mesons [36] to estimate the contribution of 3S,
4S, 5S, 3P and 1G states. From comparison of the re-
sults of different quark models as well as the comparison
to the lattice results discussed above we estimate the un-
certainty of the masses of the higher nS states (n ≥ 3)
to be 300 MeV, while for the other states we estimate it
to be 150 MeV. It turns out, however, that contribution
of these states to Lren is negligible up to temperatures
of 210 MeV for which the model makes sense. The ex-
cited states discussed so far should include all the possible
states up to mass of 2 GeV above the ground state mass.
It is unlikely that individual resonance states can be ob-
served above that energy. In Fig. 3 we show the con-
tribution of meson states to the renormalized Polyakov
loop. We normalize the results by L0 = 4 exp(−∆/T )/3.
The contribution of all static meson states calculated on
the lattice in Ref. [19] is shown as the band, the dashed
line includes the contribution of the higher excited states,

T [MeV]

Lren/L0
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FIG. 3: Meson contribution to Lren normalized by L0 =
4 exp(−∆/T )/3. The band shows the contribution of all static
meson states calculated on the lattice (see text). The dashed
line includes the contribution of higher excited states. The
thin solid line corresponds to the contribution of the lightest
static-strange meson only.

while the thin solid line corresponds to the first static-
strange meson only. The uncertainty band is determined
by the errors of the static meson masses calculated on the
lattice [19]. We see that at low temperatures the only me-
son state that has a significant contribution to Lren in
addition to the lowest state is the lightest static-strange
meson, though the contribution of excited states cannot
be completely neglected. Excited states (up to 1F ) be-
come very important at higher temperatures, T > 140
MeV. Finally, the contribution of higher excited states is
quite small and is only visible for T > 170 MeV.

B. Baryon contribution to the renormalized

Polyakov loop

The spectrum of baryons with one static quark has
been studied by the ETMC collaboration [20] in 2 flavor
QCD. The masses of static baryons with positive and
negative parity and angular momentum of light quarks
j = 0 and 1 have been calculated. These states cor-
respond to the ground state and first orbital excitation
of baryons with one heavy quark, i.e. to 1/2+, 3/2+

and 1/2− and 3/2−. Counting the iso-spin and angular
momentum degeneracies the lowest positive and nega-
tive parity baryons correspond to 79 states. The cal-
culations have been carried out at one lattice spacing.
The lack of continuum extrapolation is not of great con-
cern, since based on the studies of the static meson spec-
trum, cutoff effects are expected to be small compared to
the statistical errors. The results presented in Ref. [20]
depend somewhat how the lattice spacing is set. More
precisely, using fπ the lattice spacing was determined to
be 0.079(3) fm, while using the nucleon mass the lat-
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tice spacing turned out to be 0.089(5) fm. In our anal-
ysis we use the values of the masses obtained by fixing
the lattice spacing through the nucleon mass mN since
this procedure gives a value of the r0 parameter that
is consistent with other determinations [8, 13], namely
r0 = 0.473 ± 0.09(stat.) ± 0.16(syst.) fm [37]. Setting
the scale with fπ gives r0 = 0.42 fm [38] which is much
smaller than any other determination. The lowest lying
positive and negative parity baryons give a fairly large
contribution to the renormalized Polyakov loop, in fact,
the largest contribution next to the ground state mesons.
However, it turns out that higher excited states cannot
be neglected. We can use quark models to estimate the
contribution of higher lying baryon states to Lren.

The spectrum of baryons containing one heavy (c or b)
quark has been studied in relativistic quark model [39]
and in relativistic quark-diquark model [40]. The anal-
ysis of Ref. [39], however, was restricted to Λb,c and
Σb,c baryons. We will use the spectrum of excited heavy
baryons containing b quark as a proxy for the spectrum
of higher excited baryon states with a static quark. The
masses of baryons with a static quark are determined
by the angular momentum of the light quarks j. There-
fore the heavy baryons form doublets with almost the
same mass that correspond to the same angular momen-
tum j of the light quarks and total angular momentum
J = j ± 1/2. In our analysis we consider the mass differ-
ence of the baryon with the lower angular momentum in
the doublet and the spin averaged mass of B(B∗) mesons.
These mass differences obtained in a quark model are
compared to the static baryon spectrum for the lowest
positive and negative parity states calculated on the lat-
tice. It turns out that the agreement between the lattice
results and the model calculations is quite good if the nu-
cleon mass is used to set the lattice spacing. In fact, the
lattice results agree with the model calculations within
the errors. For the Λb and Σb family we also find good
agreement between the diquark model and Ref. [39] for
the lowest states of both parity. In our calculations we
use the spectrum calculated in Ref. [40] which corre-
sponds to baryon states with angular momentum up to
J = 11/2 equivalently to j = 5 of the light quarks and up
to 5 radial excitations. Counting all the spin and iso-spin
degeneracies these correspond to 984 states.

As discussed above, different model calculations agree
with each other for the lowest positive and negative par-
ity states. Unfortunately, the agreement is not that good
for the higher excited states. To estimate the sensitiv-
ity of the Polyakov loop to the model uncertainty of the
higher excited baryon states we calculated the contribu-
tion of excited ΛQ and ΣQ baryons to Lren including all
states up to J = 7/2 using the results of Ref. [39] and of
the diquark model [40]. The contributions of Λb to Lren

is a factor of two larger if one uses the spectrum from
Ref. [39] compared to the case where the Λb spectrum
from the diquark model is used. On the other hand, the
contribution of the Σb baryons is factor of two smaller if
one uses the results of Ref. [39] instead of the results of
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FIG. 4: The contribution of baryons to Lren normalized by
L0 = 4 exp(−∆/T )/3. The solid line and the band correspond
to the contribution of the lowest positive and negative parity
baryons, while the dashed line corresponds to the contribution
of all baryon states.

the diquark model. Therefore we estimate that contribu-
tion of the higher excited baryon states is uncertain by
factor 2.5. This is the largest source of uncertainty in the
hadron resonance gas model for T > 170 MeV. The con-
tribution of baryons to the renormalized Polyakov loop is
shown in Fig. 4. The contribution of the static baryons
identified on the lattice in Ref. [20] is shown as the solid
line and the band. The error band corresponds to the
uncertainty that has been evaluated using the errors on
the static baryon masses. The contribution of all baryon
states to Lren is shown as the dashed black line. At tem-
peratures T < 120 MeV the contribution of the baryons
is below 10%. It becomes significant above that temper-
ature. The contribution of higher excited states becomes
significant only for T > 140 MeV. Therefore, as it will be-
come clear in the next subsection, the uncertainty in the
comparison to the lattice data due to the excited states
is small.

C. Comparison with lattice results

Let us compare the hadron resonance gas model results
with the lattice data discussed in section II. The compar-
ison is easiest in terms of the free energy of an isolated
static quark FQ(T ) = −T lnLren(T ). The renormaliza-
tion procedure of the Polyakov on the lattice introduces a
scheme dependence. Therefore, for the comparison of the
hadron resonance gas with the lattice data one needs to
adjust the parameter ∆ in Eq. (4). We fix ∆ by requiring
that hadron resonance gas model matches the continuum
lattice result at the lowest temperature T = 117 MeV.
This gives ∆ = 593±18 MeV. Once this constant is fixed
the hadron resonance gas model can predict the free en-
ergy of an isolated static quark at any other temperature.
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FIG. 5: The free energy of a static quark FQ(T ) calculated
on the lattice and compared with the resonance gas model
(solid line). The uncertainty of the hadron resonance gas
model is indicated by the band. The dotted line is the hadron
resonance gas model result with the ground state meson and
baryon contribution only.

The comparison of the lattice data with the hadron
resonance gas model is shown in Fig. 5. The solid line
and the band correspond to the hadron resonance gas
result with all the states discussed above and its uncer-
tainty, that also includes the uncertainty in the value of
∆. The dashed line corresponds to the contribution of
the ground states only. The figure shows that the con-
tribution of excited states is significant already for the
lowest temperature available in the lattice calculations.
The hadron resonance gas model can describe the lattice
results on the renormalized Polyakov loop up to temper-
ature 140 MeV, however, clearly fails above that temper-
ature. All the excited states included in the analysis are
not sufficient to explain the rapid decrease of the static
quark free energy. This result agrees qualitatively with
the findings of Ref. [16] if the stout data for T < 140
MeV are used to normalize the static free energy in their
analysis (c.f. Fig. 4 of Ref. [16]). More work is needed to
understand the discrepancy between the lattice data and
the hadron resonance gas model. It is possible that ex-
otic hadron states can explain the discrepancy between
the lattice results and hadron resonance gas model for
T > 140 MeV. Another possibility could be the partial
restoration of the chiral symmetry and the corresponding
change in the static-light hadron masses, as indicated in
a recent lattice study [41].

IV. CONCLUSIONS

We studied the renormalized Polyakov loop in lat-
tice QCD using the HISQ action and obtained results
in the continuum limit for temperatures 120 MeV < T <
210 MeV. Results obtained with the HISQ action are in

the a2 scaling regime for Nτ ≥ 6. Our continuum results
agree well with the earlier findings obtained using the
stout action [14]. We also revisited the temperature de-
pendence of the quark condensates and find that in the
temperature region, where the light quark condensates
shows a rapid decrease the renormalized Polyakov loop
changes very smoothly. We do not see an obvious con-
nection between the chiral and deconfinement transition
described in terms of these quantities.
We studied the question of the physics origin behind

the increase in the Polyakov loop, or equivalently, the
decrease in the free energy of a static quark FQ. At suffi-
ciently high temperatures the decrease in FQ is associated
with onset of color screening which also leads to the same
decrease in the energy of a static quark at leading order
[42]. For temperatures T < 140 MeV the decrease in
FQ could be explained in terms of hadron resonance gas
model. For larger temperatures the decrease in FQ ap-
pears to be significantly larger and cannot be explained in
terms of conventional static-light(strange) hadron states.
It remains to be seen whether this rapid decrease is due to
the contribution from exotic static-light hadrons or some
other mechanism. In the latter case its implication for
color screening is not clear, especially in view of recent
lattice results on the static energy of QQ̄ pair which do
not indicate large significant screening effects for T < 200
MeV [43, 44]. Currently one of the largest uncertainties
in the Polyakov loop calculations within the hadron res-
onance gas model comes from the excited baryon states.
Clearly an improved lattice calculation of static baryon
spectrum would be very helpful in this regard. Another
open issue is the contribution of exotic static-light hadron
states.

Appendix: Temperature dependence of the quark

condensates

In this appendix we discuss the calculation of the
renormalized quark condensates. The quark condensate
〈ψ̄ψ〉q needs a multiplicative renormalization, and for
non-zero quark masses also an additive renormalization.
It is easy to see that the leading additive divergence is
proportional to the quark mass and is quadratic in the
cutoff (inverse lattice spacing). Therefore it was proposed
to study the following combination, called the subtracted
quark condensate [12]

∆l,s(T ) =
〈ψ̄ψ〉l,τ − ml

ms

〈ψ̄ψ〉s,τ

〈ψ̄ψ〉l,0 −
ml

ms

〈ψ̄ψ〉s,0
. (9)

Here q = l and s corresponds to light and strange quarks,
while the subscript x = 0, τ refers to zero and finite
temperature expectation values. The expectation val-
ues 〈ψ̄ψ〉q,x are normalized per single flavor. Sub-leading
divergences proportional to the quark mass cubed and
the logarithm of the cutoff are expected to be small for
the physical values of the light quark masses. We cal-
culated ∆l,s on Nτ = 10 lattices. Combining this with



8

 0

 0.2

 0.4

 0.6

 0.8

 1

 120  130  140  150  160  170  180  190  200

T [MeV]

∆l,s

Nτ=6
Nτ=8

Nτ=10
Nτ=12

cont.

FIG. 6: The subtracted chiral condensate calculated with the
HISQ action. The open diamonds correspond to the Nτ = 12
results obtained using the fK scale [8] (see text).

the published results of the HotQCD collaboration ob-
tained on Nτ = 8 and 12 lattices [8] we performed a con-
tinuum extrapolation. First we interpolated the lattice
data for each Nτ using a smooth spline and estimated
the error of the spline by bootstrap analysis. Next we
performed a continuum extrapolation at selected values
of temperature separated by 5 MeV within the interval
120 MeV ≤ T ≤ 200 MeV assuming a 1/N2

τ behavior.
We studied the variation of the extrapolated result with
varying the fit range in Nτ . These variations have been
included in our final error estimate. For T < 170 MeV
the Nτ = 6 data have not been included in the analy-
sis as they are incompatible with a 1/N2

τ behavior. For
T ≤ 140 MeV no Nτ = 12 data are available so the
extrapolation had to rely on Nτ = 8 and Nτ = 10 data
only. The numerical results for different Nτ as well as the
continuum extrapolations are shown in Fig. 6. The con-
tinuum extrapolated results are slightly above the con-
tinuum results obtained with the stout action [14]. This
difference is expected due to the slight difference in the
light quark masses used in the two calculations, namely
ml = ms/20 versus ml = ms/27 in Ref. [14]. In Fig.
6 we also show the Nτ = 12 HISQ data obtained using
the lattice spacing determined from the kaon decay con-
stant fK [8]. These data are systematically above our
continuum estimate.
Alternatively, we can get rid of the ultraviolet diver-

gences in the quark condensate by considering the follow-
ing combination, which is called the renormalized quark
condensate [8]

∆R
q = d+ 2msr

4
1(〈ψ̄ψ〉q,τ − 〈ψ̄ψ〉q,0), q = l, s. (10)

Here d is a normalization constant that is related to the
light quark condensate in the chiral limit. More precisely,
d = 2msr

4
1〈ψ̄ψ〉l,0(ml → 0). With the values of ms and

〈ψ̄ψ〉l,0(ml → 0) from Ref. [45] we get d = 0.0232244.

The quantity defined in Eq. (10) is closely related to
the renormalized quark condensate 〈ψ̄ψ〉R introduced in
Ref. [13]. Using our Nτ = 10 results and the published
HotQCD results for Nτ = 6, 8 and 12 we perform a
continuum extrapolation for ∆R

q . As for ∆l,s we first
perform a smooth spline interpolation and estimate the
errors of the spline by bootstrap analysis. Then we per-
form a 1/N2

τ continuum extrapolation for selected values
of the temperature separated by 5 MeV in the interval
120MeV ≤ T ≤ 200 MeV based on the interpolation and
its errors. We performed extrapolations using subsets
of the available Nτ values and the differences in the ob-
tained fit values for ∆R

q were treated as systematic errors
and entered into our final error estimate. For T ≤ 140
MeV the continuum extrapolations is based on Nτ = 8
and 10 data only.
The lattice QCD results for ∆R

l and ∆R
s are shown

in Fig. 7 along with the continuum extrapolations. We
also show the HISQ Nτ = 8 data obtained using the lat-
tice spacing from fK in this figure which seem to agree
quite well with our continuum result, except for T > 180
MeV, where they are systematically lower. Our contin-
uum results for ∆R

l are slightly larger than the continuum
results obtained with the stout action [14]. This is again
expected to be due to the difference in the light quark
masses (see discussion in Ref. [8]). Finally we would like
to note the large difference in the temperature depen-
dence of ∆R

l and ∆R
s . The decrease of the renormalized

strange quark condensate is much more gradual than of
the light and ∆R

s reaches half of its vacuum value only
at T ≃ 200 MeV.
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