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I. INTRODUCTION

This paper completes the study of the next-to-leading order (NLO) QCD corrections to the production of massive
vector color-octet bosons at the LHC and Tevatron begun in [1]. In this analysis, we use the generic name “colorons”
to refer to massive color-octet vector bosons, regardless of the details of their couplings to fermions. Colorons are a
feature of a variety of models, including axigluon models [2, 3], topcolor models [4–7], technicolor models with colored
technifermions [8], flavor-universal [9, 10] and chiral [11] coloron models, and extra-dimensional models with KK
gluons [12, 13]. The tree-level hadron-collider phenomenology of colorons has been discussed extensively in various
experimental and theoretical contexts, see [14–21] and references therein. Searches for resonances in the dijet mass
spectrum at the LHC are now, depending on the details of how the coloron couples, sensitive up to coloron masses
of order 4-5 TeV [22, 23].1 If there are color-octet vector bosons associated with the electroweak symmetry breaking
sector, as suggested by several of the models mentioned above, their presence should be uncovered by the LHC.

In particular, in this paper we provide a complete and consistent calculation of the gluon fusion contribution to
coloron production. This amplitude vanishes at tree level [24], and therefore occurs initially at one-loop and is finite.
Despite the large gluon parton luminosity at the Tevatron and the LHC, we show that the gluon-fusion contribution
to coloron production is typically four orders of magnitude smaller than the contribution from quark annihilation.2

Coloron production via gluon fusion is therefore only relevant if the colorons are (nearly) fermiophobic, with quark
couplings of order 10−2gs or smaller.

We also update previous results on the NLO K-factor for coloron production using more modern structure functions
(CT10 [25]) and present extensive plots and tables of our results for NLO coloron production at the Tevatron and at
the LHC for energies of

√
s = 7, 8, and 14 TeV.

Following [1], we compute the gauge-, quark-, and self-couplings of the coloron from a theory with an extended
SU(3)1c×SU(3)2c → SU(3)c gauge structure, where SU(3)c is identified with QCD. As noted there, the self-couplings
of KK gluons in extra-dimensional models, or of colored technivector mesons in technicolor models, will not precisely
follow this pattern. Our calculations continue to apply approximately to these cases, however, to the extent that
the SU(3)1c × SU(3)2c model is a good low-energy effective theory for the extra dimensional model (a “two-site”
approximation in the language of deconstruction [27, 28]) or for the technicolor theory (a hidden local symmetry
approximation for the effective technivector meson sector [29, 30]).

Our calculation of the gluon fusion contribution to coloron production uses the “pinch” technique [26] to simplify
the calculation and demonstrate the gauge-invariance of our result. Previous considerations of this process were
either incomplete [31], ignoring the contribution from vector-boson loops, or assumed color gauge-invariance without
explicitly checking the consistency of the calculation [32]. While our results confirm that the contribution of gluon
fusion to coloron production is small, we find that the contribution is typically an order of magnitude smaller than
reported in [32].

The paper is structured as follows. In Sec. II we describe the SU(3)1c×SU(3)2c model and establish our notation.
Our conventions follow those introduced in [1] and, for convenience, the Feynman rules for the model are noted
in Appendix A. In Sec. III we describe the calculation of the one-loop partonic amplitude for the gluon fusion
contribution to coloron production in detail. In Sec. IV we compute the size of the gluon fusion contribution to
coloron production at the Tevatron and LHC. In Sec. V we provide the update of the NLO K-factors for coloron
production originally reported in [1], extending that work to the Tevatron and to the LHC at

√
s = 7, 8, and 14 TeV.

Tables of the numerical values of the K-factors are provided in Appendix B. Finally, Sec. VI presents our conclusions.

II. FORMALISM

We consider color-octet vector bosons, which arise from an extended color gauge group SU(3)1c × SU(3)2c, spon-
taneously broken to the diagonal subgroup, SU(3)c.

3 The latter is identified with the ordinary QCD. The symmetry
breaking produces, in addition to the massless color-octet of gluons, a massive color-octet of vector bosons, which we
generically refer to as colorons. We model the symmetry breaking sector minimally, using a non-linear sigma model.4

The Lagrangian of the SU(3)1c × SU(3)2c model, with the couplings gs1 and gs2 respectively, is given by

Lcolor = −1

2
Tr [G1µνG

µν
1 ]− 1

2
Tr [G2µνG

µν
2 ] +

f2

4
TrDµΣDµΣ† + Lgauge−fixing + Lghost + Lquark . (1)

1 At least for the fermion charge assignments considered, and in the case where the resonance is narrow compared to the djiet mass
resolution of the detector

2 In the special case of the axigluon [2, 3], the gluon fusion contribution to coloron production is forbidden by a discrete symmetry of the
theory. See Sec. IV.

3 Throughout this paper, we closely follow the formalism and notation introduced in [1].
4 The additional particles present in a more complete theory, e.g. additional scalars arising from a linear sigma model, will not funda-

mentally change the calculations presented here.
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Here, Σ is the non-linear sigma field inducing the symmetry breaking,

Σ = exp

(
2iπata

f

)
, a = 1, . . . , 8 , (2)

where πa are the Nambu-Goldstone bosons ‘eaten’ by the colorons, and f is the corresponding ‘decay-constant’. The
Σ field transforms as the bi-fundamental of SU(3)1c × SU(3)2c,

Σ→ u1Σu†2 , ui = exp (iαai t
a) , (3)

where the αai are the parameters of the original SU(3)ic transformations. We have then the covariant derivative

DµΣ = ∂µΣ− igs1Ga1µtaΣ + igs2ΣGa2µt
a , ta =

λa

2
, (4)

with λa the Gell-Mann matrices, and Tr tatb = δab/2.
Using the procedure outlined in [1], one may diagonalize the mass term in the quadratic Lagrangian by means of

an orthogonal rotation, S.5 This leads to the following definitions in the mass eigenstate basis
(
Ga1µ
Ga2µ

)
= S

(
Gaµ
Caµ

)
, (5)

with the mixing defined by the angle θc and

S ≡
(

cos θc − sin θc
sin θc cos θc

)
, sin θc ≡

gs1√
g2
s1 + g2

s2

. (6)

In (5), Gaµ is defined as the gluon field and Caµ represents the coloron. The gluon is massless, whereas the coloron
acquires a mass

MC =

√
g2
s1 + g2

s2 f

2
≡ gs f

sin 2θc
, (7)

with gs the QCD SU(3)c coupling,

1

g2
s

=
1

g2
s1

+
1

g2
s2

. (8)

In order to keep the current description applicable to a wide variety of the available models, we assign arbitrary
matter couplings to the extended gauge group, SU(3)1c × SU(3)2c, in accordance with the treatment in [1]. As a
consequence, in the mass eigenstate basis, we may write

Lquark = q̄ki
[
/∂ − igs /Gata − i /Cata (gLPL + gRPR)

]
qk , (9)

where PL and PR are the helicity projection operators,

PL,R ≡
1∓ γ5

2
, (10)

and k is a flavor index (implicit summation assumed).6 The coupling of the quarks to the gluon is, as usual, dictated
by charge universality. The quark couplings to the coloron, on the other hand, may be chosen to be chiral, and is in
general parametrized by the gL and gR couplings, representing respectively the couplings of the left- and right-handed
quarks to the coloron. These couplings depend on how one decides to charge the quarks under the original extended
gauge group. In general, each of the gL and gR parameters in any specific model can take on the values7

gL, gR ∈ {−gs tan θc, gs cot θc} . (11)

For example, if both left-handed and right-handed quarks are only charged under SU(3)2c, then gL = gR = gs cot θc,
resulting in a vector-like theory. A chiral example would be the axigluon (with the maximal mixing, θc = π/4) [2, 3],
which corresponds to gL = −gR = gs. For later convenience, we introduce the coefficients

rL ≡
gL
gs

, rR ≡
gR
gs

, rL, rR ∈ {− tan θc, cot θc} . (12)

The interaction vertices and the corresponding Feynman rules are presented in the Appendix A.

5 The Lgauge−fixing and Lghost terms are also constructed in [1]. We merely employ the results found in there, and ultimately perform
the calculations in the ’t Hooft-Feynman gauge, ξ = 1.

6 Here we work in the broken electroweak phase, and only employ fermion mass eigenstates.
7 Generally speaking, both gL and gR should be matrices in flavor space. For simplicity, in what follows, we assume that the coloron

couplings are flavor-universal – the generalization to the flavor-dependent case is straightforward. Flavor-changing couplings are, however,
strongly constrained [33].
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FIG. 1. The vertex contributions to the gluon-initiated coloron production. The diamond represents the amputated vertex
diagrams, and the coloron is illustrated by the zigzag line. The explicit kinematics for the external legs with the corresponding
Lorentz (Greek) and color (Latin) indices are displayed.

III. COLORON PRODUCTION VIA GLUON FUSION

Gluon-initiated production of colorons cannot proceed at tree-level, as there are no gauge-invariant dimension-four
operators accommodating such interaction (see the Feynman rules in the Appendix A): in general, there are no
dimension-four terms with two gauge bosons of an unbroken symmetry and a vector field charged under the same
symmetry.8 At one-loop, however, a coloron can be produced by fusing two initial-state gluons. Naively, one might
expect the cross section of this process to be negligible as compared with the tree-level quark-initiated production
channel and its higher-order contributions. However, at a high-CM energy hadron collider, such as the LHC, there
are many more gluons available to facilitate this fusion process. It is, therefore, important to investigate the rate of
this production channel, and draw quantitative comparisons with the tree-level induced process which proceeds via
the quark-antiquark pair annihilation.

In this section, we compute the leading order amplitude for coloron production via gluon fusion, which is induced
at one-loop. We employ the narrow-width approximation for the coloron, take all the external gauge bosons to be
on-shell, and set the quark masses to zero: given the current TeV lower bounds on the coloron mass [22, 23] these
approximations are justified even for the top-quark.

Let us define the amplitude of this process (see Fig. 1 for the explicit kinematics) as

iMgg→C ≡ (iS + iV + iSferm + iVferm)× ε∗a (λC)
C ν (r) ε

m (λg1
)

g α (p) ε
n (λg2

)

g β (p̄) , (13)

where λC(g) is the coloron (gluon) polarization, and Greek (Latin) letters denote Lorentz (color) indices. iV and iVferm

are the amputated one-loop vertices (Fig. 1) originating from the gauge and matter sectors of the theory, respectively,
whereas iS and iSferm form the corresponding contributions from the (mixed) vacuum polarization amplitude diagrams
(Fig. 2). The calculations are performed in ’t Hooft-Feynman gauge, ξ = 1, using dimensional regularization, and, as
we shall demonstrate, construct a UV- and IR-finite one-loop amplitude. In the final result, we employ the on-shell
identities

r2 = M2
C , r · εC(r) = (p+ p̄) · εC(r) = 0 ,

p2 = p̄2 = 0 , p · εg(p) = p̄ · εg(p̄) = 0 .
(14)

Furthermore, we utilize the Pinch Technique [26] to demonstrate that the full gluon-fusion to coloron amplitude
satisfies QED-like Ward identities, and is therefore gauge invariant and finite at one-loop. In the context of our work,
the pinch technique amounts to decomposing an arbitrary non-Abelian triple-gauge boson vertex (Fig. 3) with the
Lorentz structure

Γαµν(q, k1, k2) ≡ gµν(k1 − k2)α + gαν(k2 − q)µ + gαµ(q − k1)ν , (15)

into two parts

Γαµν(q, k1, k2) = ΓFαµν(q, k1, k2) + ΓPαµν(q, k1, k2) , (16)

8 The lowest available operators accounting for such a process are of dimension six [24].
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FIG. 2. Gluon-fusion to coloron via the one-particle irreducible mixed vacuum polarization amplitudes (VPA).
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FIG. 3. Kinematics of a generic triple-gauge boson vertex, with the Lorentz structure given by Γαµν(q, k1, k2) (15). Each leg
could be either a gluon or a coloron, depending on the specific vertex (see the Feynman rules in Appendix A). All momenta
flow towards the vertex.

where

ΓFαµν(q, k1, k2) ≡ (k1 − k2)αgµν + 2qνgαµ − 2qµgαν ,

ΓPαµν(q, k1, k2) ≡ k2νgαµ − k1µgαν .
(17)

Unlike Γαµν(q, k1, k2), the ΓFαµν(q, k1, k2) vertex satisfies a QED-like Ward identity

qαΓFαµν(q, k1, k2) = (k2
2 − k2

1)gµν . (18)

In what follows, we study the calculation of one-loop diagrams containing gauge boson trilinear vertices such
as (15). We will illustrate how replacing Γαµν(q, k1, k2) by ΓFαµν(q, k1, k2) corresponds to identifying ‘unpinched’
Feynman diagrams. The virtue lies in the observation that these diagrams satisfy QED-like Ward identities, a la (18),
and are kept as part of the original calculation. The remaining piece of the vertex, ΓPαµν(q, k1, k2), will remove an
internal propagator from the original diagram, giving rise to ‘pinched’ Feynman diagrams. These pinched structures,
possessing a different topology than their primitive diagrams, may then be removed from the original calculation
and reassigned to the computation of diagrams elsewhere in the theory that share the same topology. This leaves
behind only the gauge-invariant unpinched contribution in the original calculation. As such, employing the pinch
technique allows one to exhibit the consistent renormalization and gauge-invariance of the one-loop amplitude in a
non-Abelian theory, by recovering QED-like Ward identities through a systematic reshuffling of different terms within
the amplitude.9 Throughout the paper, we denote the unpinched and pinched diagrams symbolically by inserting a
black disk over their relevant vertices, in order to distinguish them from their primitive diagrams.

9 See [26] and references therein for a thorough review of the pinch technique and its applications.
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FIG. 4. The gauge sector 1PI gluon-coloron mixing at one-loop. The curly lines represent gluons, the zig-zag lines represent
colorons, the heavy dots are the coloron ghosts, while the eaten Nambu-Goldstone boson is represented by dashed lines.

A. Vacuum Polarization Amplitudes a la Pinch Technique: Gauge Sector

The gluon fusion to coloron process facilitated by the vacuum polarization amplitudes that mix colorons with gluons
(henceforth called mixed-VPA) is shown in Fig. 2. It is of the form

iS = gs

{
fdmnΓραβ(−r, p, p̄) Πad

νρ(r)

r2
+ fadnΓνρβ(−r, p, p̄) Πmd

αρ (p)

p2 −M2
C

+ famdΓναρ(−r, p, p̄)
Πnd
βρ(p̄)

p̄2 −M2
C

}
, (19)

with the definition (15) assumed. Notice the presence of the internal gauge boson propagators in this expression:
1/r2 associated with an internal gluon exchange, 1/(p2 −M2

C) and 1/(p̄2 −M2
C) associated with an internal coloron

exchange. The symbol fabc represents the SU(3)c antisymmetric structure constant.
The iΠab

µν(q) term denotes the sum of the gauge sector one-particle irreducible (1PI) mixed-VPA diagrams with
external momentum q (Fig. 4); in d = 4− 2ε dimensions it reads

iΠab
µν(q) = g2

s cot(2θc)C2(G)δab µ4−d
∫

ddk

(2π)d

{
Γ1Γ2 − 2kµ(k + q)ν + 1

2 (2k + q)µ(2k + q)ν

[k2 −M2
C + iη] [(k + q)2 −M2

C + iη]
+

(1− 2d)gµν
k2 −M2

C + iη

}
, (20)

where the parameter µ is the mass scale introduced by the loop integral in d dimensions, η is the positive infinitesimal
parameter giving the appropriate prescription for computing the integral in momentum space, and C2(G) = 3 is the
Casimir of the adjoint representation. Here, k represents the momentum running in the loop, and we have employed
the color product identity

facdf bcd = C2(G)δab . (21)

In addition, we have defined the two non-Abelian vertices contained in the first diagram of Fig. 4 as Γ1 and Γ2

(suppressing the Lorentz indices),

Γ1 ≡ Γ λρ
ν (q,−(k + q), k) , Γ2 ≡ Γµλρ(q,−(k + q), k) , (22)

with again the definition (15) implied.
A straightforward calculation of (20), however, reveals an overall non-transverse structure for the mixed-VPA,

which might raise concerns since it obscures the gauge invariance of the theory.10 This issue can be elegantly avoided
by using the pinch technique as follows.

Taking the two non-Abelian vertices of the first diagram, defined in (22), we may apply the decomposition (16) to
express their product as

Γ1Γ2 = ΓF1 ΓF2 + ΓP1 Γ2 + ΓP2 Γ1 − ΓP1 ΓP2 . (23)

The reason for expressing the product in this particular form is that the terms containing one factor of ΓP trigger
Ward identities a la (18), albeit in a more complicated form, and this yields convenient simplifications. The pinch
technique, therefore, allows the product of vertices to be rewritten as

Γ1Γ2 = ΓF1 ΓF2 + 2kµ(k + q)ν − 2 (2k + q)µ(2k + q)ν +
[
k2 −M2

C

]
gµν +

[
(k + q)2 −M2

C

]
gµν

− 2
[
q2gµν − qµqν

]
− 2

[
(q2 −M2

C)gµν − qµqν
]
.

(24)

10 To be specific, the overall form of the mixed-VPA (20) has a transverse momentum-dependent part augmented by a term proportional
to M2

C g
µν (see Eq. (52) in [1] for details). The latter arises due to the presence of massive states in the loop. Since the momentum-

dependent part of the mixed-VPA is transverse, the corresponding counterterm is also transverse in structure, as required by the original
gauge-invariant Lagrangian.
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Inserting (24) back into (20), we can decompose the mixed-VPA

iΠab
µν(q) = iΠ̂ab

µν(q) + iΠP ab
µν (q) , (25)

where

iΠ̂ab
µν(q) ≡ g2

s cot(2θc)C2(G) δabµ4−d
∫

ddk

(2π)d

{
ΓF1 ΓF2 − 3

2 (2k + q)µ(2k + q)ν

[k2 −M2
C + iη] [(k + q)2 −M2

C + iη]
+

(3− 2d)gµν
k2 −M2

C + iη

}
, (26)

iΠP ab
µν (q) ≡− 2g2

s cot(2θc)C2(G) δabµ4−d
∫

ddk

(2π)d

{
q2gµν − qµqν

[k2 −M2
C + iη] [(k + q)2 −M2

C + iη]

+
(q2 −M2

C)gµν − qµqν
[k2 −M2

C + iη] [(k + q)2 −M2
C + iη]

}
, (27)

and

ΓF1 ΓF2 = d (2k + q)µ(2k + q)ν + 8
(
q2gµν − qµqν

)
. (28)

Explicit calculation of iΠ̂ab
µν(q) (26) using standard methods in d = 4− 2ε reveals its transverse structure

iΠ̂ab
µν(q) =

iαs
4π

cot(2θc)C2(G)δab
[

43

6
E +G(RC)

] (
q2gµν − qµqν

)
, (29)

with αs =
g2
s

4π
, and where we have defined

E ≡ 1

ε
− γ + log 4π − log

M2
C

µ2
, (30)

G(RC) ≡ 10

9
(6RC + 13)− 1

3
(20RC + 43)

√
4RC − 1 arccot

√
4RC − 1 , RC ≡

M2
C

q2
. (31)

In (30), γ is the Euler-Mascheroni constant. Note that the function G(RC) in (31) is a finite well-defined function of
RC that has the following values in the useful limiting cases

G(∞) =
2

3
(gluon on-shell) , G(1) =

190

9
− 7
√

3

2
π (coloron on-shell) . (32)

The expression (29) should be kept as the gauge-invariant mixed-VPA contribution in this part of the calculation.
Its transversality, as exposed by the pinch technique, exhibits the gauge-invariance of the theory, which is ordinarily
obscured by its spontaneously broken non-Abelian nature. We will clarify below how to deal further with the leftover
piece (27) properly.

Inserting (25) into (19), we obtain

iS = iŜ + iSP . (33)

The iŜ structure, containing iΠ̂ab
µν(q) (29), forms the gauge-invariant mixed-VPA contribution to the gluon-initiated

production of a coloron. Note that in the case of phenomenological interest to us, the external gluon legs will be
on-shell; however, the fact that (29) is transverse means that the second and third diagrams of Fig. 2 will vanish
in this situation.11 Only the first diagram of Fig. 2, where the mixed-VPA is within the external coloron line, will
contribute to the amplitude

iŜ =
gsαs
4π

cot(2θc)C2(G)famn
[

43

6
E +G(RC)

]{
Γναβ(−r, p, p̄) + . . .

}
. (34)

11 In case the gluons are off-shell their (UV-divergent) mixed-VPA is removed by the same counterterm as the non-mixed gluon VPA,
as expected from gauge invariance. The latter must be also pinch-technique massaged into a transverse form, due to the presence of
massive states in its loop. The second counterterm in the theory is used for the non-mixed coloron VPA renormalization, as explained
in [1].



8

+

+=
(pinch technique)

=
(pinch technique)

FIG. 5. Schematics of the decomposed non-Abelian mixed-VPA contribution to the coloron production amplitude, according
to the pinch technique. The unpinched part contributes together with the remaining diagrams (Fig. 4) to iŜ (34), whereas the
pinched diagram, corresponding to iSP (35), is added to the vertex structures sharing the same topology. Similar structures
arise for the other two external leg permutations.

where the 1/r2 term of the internal coloron propagator is cancelled by the r2gνρ part of (29), and the ellipses denote,

collectively, the terms that can be discarded (including the rνrρ terms).12

Of course, we still need to consider iSP , containing the leftover piece iΠP ab
µν (q) of the mixed-VPA (27). This may

be written as

iSP = 2i g3
s cot(2θc)C2(G)famn Γναβ(−r, p, p̄)µ4−d

∫
ddk

(2π)d

{
1

[k2 −M2
C + iη] [(k + r)2 −M2

C + iη]

+
1

[k2 −M2
C + iη] [(k + p)2 −M2

C + iη]
+

1

[k2 −M2
C + iη] [(k + p̄)2 −M2

C + iη]

}
+ . . . .

(35)

Note the disappearance of the internal propagators (originally present in (19)) in this expression, as they are cancelled
against the numerators of (27). It is of central importance to recognize that this cancellation of the internal propagators
occurs prior to performing any loop-momentum integral. Therefore, the disappearance of the internal propagators
generates pinched Feynman diagrams, as depicted in Fig. 5, which possess an altered topology as compared with
the original diagrams. We will see in the next section that these pinched structures need to be added to the vertex
diagrams of similar form, and hence, should be removed altogether from the current discussion, leaving us only with
the gauge-invariant mixed-VPA contribution (34).

B. Vertex Contributions a la Pinch Technique: Gauge Sector

The gauge sector one-loop vertex contributions are given by the diagrams of Fig. 6, with the first diagram containing
three non-Abelian vertices. By analogy with the previous section, let us define these as

Γ1 ≡ Γνλρ(−r, k + p̄,−(k − p)) , Γ2 ≡ Γαµρ(p,−k, k − p) , Γ3 ≡ Γβλµ(p̄,−(k + p̄), k) , (36)

where k is again the loop momentum, and we have used the definition (15). Employing the color product identity

faedfmdhfnhe = −iTrF aFmFn =
1

2
C2(G)famn , (F a)bc ≡ −ifabc , (37)

we get the following expression for the gauge vertex contributions

iV = ig3
s cot(2θc)C2(G)famn µ4−d

∫
ddk

(2π)d

{
Nναβ

[k2 −M2
C + iη] [(k − p)2 −M2

C + iη] [(k + p̄)2 −M2
C + iη]

+Bναβ
}
,

(38)

12 In the on-shell case, these terms are zero. In the case where the external gauge boson is off-shell, these terms may still be discarded,
as they give rise to (pinched) structures which, in light of the generality of the pinch technique, need to be reassigned to the external
vertices connected to that off-shell propagator and, hence, removed from the current discussion. This is sometimes referred to as the
intrinsic pinch technique [26].
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FIG. 6. The gauge sector one-loop vertex contributions to coloron production via gluon fusion. The particle definitions are as
in Fig. 4. The last two diagrams on the second row are proportional to M2

C and are finite by powercounting. Those in the final
row vanish, as they contain the product of symmetric and antisymmetric color factors.

with

Nναβ ≡Γ1Γ2Γ3 − (k − p)ν kα (k + p̄)β − (k + p̄)ν kβ (k − p)α +
1

2
(2k − p+ p̄)ν (2k − p)α (2k + p̄)β

−M2
C g

α
ρ g

β
λ Γ1 −

1

2
M2
C g

αβ(2k − p+ p̄)ν , (39)

Bναβ ≡ 9

2

{
rα gβν − rβ gαν

[k2 −M2
C + iη] [(k + r)2 −M2

C + iη]
+

pν gαβ − pβ gαν
[k2 −M2

C + iη] [(k + p)2 −M2
C + iη]

+
p̄α gβν − p̄ν gαβ

[k2 −M2
C + iη] [(k + p̄)2 −M2

C + iη]

}
. (40)

Here, Nναβ is the summed Lorentz structure of the diagrams in the first two rows of Fig. 6, while Bναβ is that of the
third row. The diagrams in the last row of the same figure vanish due to the presence of the product of symmetric
and antisymmetric color factors.

At this stage, let us apply the pinch technique to the vertex contribution; namely, to the first diagram of Fig. 6.
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+

+=
(pinch technique)

=
(pinch technique)

FIG. 7. Schematics of the decomposed non-Abelian vertex contribution to the coloron production amplitude, according to the
pinch technique. The pinched structures, originating from Nναβ part of the amplitude (39), are reassigned to Bναβ (40) due
to their common topology, while the unpinched structures remain in Nναβ . Similar structures arise for the other two vertex
permutations.

Decomposing its non-Abelian vertices (36) according to (16) as before, we may write for their product

Γ1Γ2Γ3 = ΓF1 ΓF2 ΓF3 + ΓP1 Γ2Γ3 + Γ1ΓP2 Γ3 + Γ1Γ2ΓP3 − ΓP1 ΓP2 Γ3 − ΓP1 Γ2ΓP3 − Γ1ΓP2 ΓP3 + ΓP1 ΓP2 ΓP3 . (41)

Terms containing one or two factors of ΓP can be expressed in convenient forms using more complicated Ward
identities a la (18), as in the previous section. This allows for significant simplifications, and we obtain for the final
pinch-technique rearranged product

Γ1Γ2Γ3 = ΓN123 + ΓB123 , (42)

with

ΓN123 ≡ΓF1 ΓF2 ΓF3 + (k − p)ν kα (k + p̄)β + (k + p̄)ν kβ (k − p)α − 2 (2k − p+ p̄)ν (2k − p)α (2k + p̄)β

+M2
C

[
(3k − p+ 2p̄)νgαβ − (k + p+ 2p̄)αgβν − (k − 2p− p̄)βgαν

]
+ . . . , (43)

ΓB123 ≡ [k2 −M2
C ]
[
−2gαβ(p− p̄)ν + gαν(k − p̄)β + gβν(k + p)α

]

+ [(k + p̄)2 −M2
C ]
[
gαβ(k + p+ 2p̄)ν + gαν(k + 2p̄)β − 2gβν(p+ 2p̄)α

]

+ [(k − p)2 −M2
C ]
[
gαβ(k − 2p− p̄)ν + 2gαν(2p+ p̄)β + gβν(k − 2p)α

]
, (44)

where ellipses again denote the terms that may be discarded (see footnote 12). The terms in (44) cancel an internal
propagator, furnishing pinched diagrams with the same topology as those in the third row of Fig. 6. Consequently,
certain structures are reassigned from Nναβ (39) to Bναβ (40), as prescribed by the pinch technique. This has been
diagrammatically illustrated in Fig. 7.

There is, however, one more contribution that must be considered in this discussion. Recalling the pinched structures
from the mixed-VPA, iSP (35), we observe that they share the same topology as the diagrams containing Bναβ (40),
and should be added to them as well. This turns out to be an essential operation, in order to recover a consistent
QED-like Ward identity. We obtain the full pinch-technique constructed vertex contribution

iV̂ = iV + iSP (45)

= ig3
s cot(2θc)C2(G)famn µ4−d

∫
ddk

(2π)d

{
N̂ναβ

[k2 −M2
C + iη] [(k − p)2 −M2

C + iη] [(k + p̄)2 −M2
C + iη]

+ B̂ναβ

}
,

where

N̂ναβ ≡ΓF1 ΓF2 ΓF3 −
3

2
(2k − p+ p̄)ν (2k − p)α (2k + p̄)β + . . . ,

B̂ναβ ≡ 8

{
rα gβν − rβ gαν

[k2 −M2
C + iη] [(k + r)2 −M2

C + iη]
+

pν gαβ − pβ gαν
[k2 −M2

C + iη] [(k + p)2 −M2
C + iη]

+
p̄α gβν − p̄ν gαβ

[k2 −M2
C + iη] [(k + p̄)2 −M2

C + iη]

}
, (46)

and

ΓF1 ΓF2 ΓF3 = d (2k − p+ p̄)ν (2k − p)α (2k + p̄)β + 8M2
C

(
kαgβν + kβgαν − kνgαβ

)

+ 8
[
(2k − p+ p̄)νpβ p̄α − (2k − p)αrβ p̄ν − (2k + p̄)βrαpν + rβpν p̄α − rαpβ p̄ν

]
+ . . . .

(47)
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FIG. 8. Triangle diagrams with the chiral massless quarks in the loop.

The coefficient of the divergent part of (45) can be calculated for the general case in a closed form. In d = 4− 2ε
dimensions, we obtain

iV̂infinite = −gsαs
4π

cot(2θc)C2(G)famn
(

43

6
E

)
Γναβ(−r, p, p̄) , (48)

with E given in (30) and using the definition in (15). The remaining finite piece of (45) can be evaluated for the
on-shell external gauge bosons (14) using standard methods, and leads to

iV̂finite = − gsαs
4π

cot(2θc)C2(G)famn
[(

380

9
− 7
√

3π

)(
p̄αgβν − pβgαν

)
+

5− 3
√

3π + 5π2

18
(p− p̄)ν gαβ

+
5
(
75− 12

√
3π − π2

)

9M2
C

(p− p̄)ν pβ p̄α
]
.

(49)

At this point, let us pause and reflect on the implemented procedure in the gauge sector of the theory. Applying
the pinch technique, we have shuffled around terms within the vertex contribution and classified them into two
intrinsically irreducible topologies. In addition, we have removed certain structures from the mixed-VPA contributions
and reassigned them to vertices with similar topology. The full generality of this procedure should be appreciated, as
it has been carried out prior to performing any loop-momentum integration. Moreover, this process has enabled us
to construct a transverse mixed-VPA, manifestly exhibiting the gauge invariance of the theory. Furthermore, one can
show that, unlike the conventional one-loop vertex (38), the pinch-technique constructed iV̂ (45) satisfies a simple
QED-like Ward identity, as illustrated in [26].

Interestingly, one observes that the UV divergence of the vertex (48) exactly cancels that of the mixed-VPA (34).
This cancellation is, however, not a coincidence, but a consequence of the above mentioned recovered QED-like Ward
identity. The amplitude for coloron production via gluon fusion is, thus, finite!13

C. Vertex Contributions: Matter Sector

Having explored the structure of the gauge sector of the theory, we now examine the contributions to the production
amplitude originating from fermion loops. The vertex contributions with quarks running in the loop are depicted
in Fig. 8. The gluon coupling is vectorial, whereas the quark coupling to the coloron is assumed to be chiral in
general (c.f. (9)). It is well known that these triangle diagrams can generally be anomalous; thereby, endangering the
consistency of the theory.

In order to preserve formal consistency, the full coloron theory must, therefore, include additional fermions whose
contributions cancel the potential anomalies of the ordinary quarks. We will estimate these contributions by using
the simplest set of spectator fermions that cancels the anomalies. This consists of a heavy replica of each quark flavor
with the opposite chirality. For simplicity, we assume a degenerate mass scale for all the spectator flavors, MQ, above
the lower bound presently set by collider limits, while the ordinary quarks are set to be massless (see Appendix A for
the Feynman rules). The triangle diagrams containing the spectators are illustrated in Fig. 9.

13 This is expected, as there are no available counterterms possessing the form of this one-loop amplitude in the Lagrangian.
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FIG. 9. Triangle diagrams with massive spectator fermions in the loop. The spectators are represented by the continuous
double lines. As described in the text, each spectator has chirality opposite to that of its corresponding ordinary quark.

The fermionic one-loop vertex contribution, now containing both the massless quarks and the heavy spectators, is
of the form

iVferm = iV Vferm + iV Aferm , (50)

where14

iV Vferm ≡ −
ig3
s(rL + rR)

4
Nff

amn µ4−d
∫

ddk

(2π)d
(51)

{
Tr
[
γν(/k + /̄p)γβ/kγα(/k − /p)

]

[(k + p̄)2 + iη] [k2 + iη] [(k − p)2 + iη]
+

Tr
[
γν(/k + /̄p+MQ)γβ(/k +MQ)γα(/k − /p+MQ)

]

[(k + p̄)2 −M2
Q + iη] [k2 −M2

Q + iη] [(k − p)2 −M2
Q + iη]

}
,

iV Aferm ≡ −
g3
s(rL − rR)

4
Nfd

amn µ4−d
∫

ddk

(2π)d
(52)

{
Tr
[
γνγ5(/k + /̄p)γβ/kγα(/k − /p)

]

[(k + p̄)2 + iη] [k2 + iη] [(k − p)2 + iη]
− Tr

[
γνγ5(/k + /̄p+MQ)γβ(/k +MQ)γα(/k − /p+MQ)

]

[(k + p̄)2 −M2
Q + iη] [k2 −M2

Q + iη] [(k − p)2 −M2
Q + iη]

}
.

Here, iV Vferm denotes the vectorial part of this amplitude, whereas iV Aferm is the axial contribution. The Nf is the
number of fermion flavors in the loop, which is chosen to be equal for the quarks and the spectators. In addition, we
have employed the definitions (10) and (12), along with the fundamental color trace

Tr [tatmtn] =
1

4
(damn + ifamn) , (53)

with damn symmetric under the interchange of any two indices.
By dotting the external gauge bosons’ momenta, it can be demonstrated that the one-loop fermionic vertex (50)

satisfies the usual Ward identities for massive and massless fermions, with the cancellation of the anomaly occurring
specifically between the quarks and the spectators.15 This proves that the theory is anomaly-free once the spectator
fermions are included.

Given the anomaly-free nature of (50), one may compute this one-loop fermionic vertex unambiguously. As was the
case with the gauge sector, the divergent contribution can be calculated for the general case in a closed form. Again
using standard methods in d = 4− 2ε dimensions, one obtains

iVferm, infinite =
gsαs
4π

(rL + rR)Nff
amn

(
2

3
E

)
Γναβ(−r, p, p̄) , (54)

where E is given in (30) and definition (15) is implied.
Defining the spectator to coloron mass ratio as

R ≡
M2
Q

M2
C

, (55)

14 As in the case with the quarks, we assume that the coloron coupling to spectators is flavor-universal – the generalization to the
flavor-dependent case is straightforward (see footnote 7).

15 Defining γ5 in d dimensions is ambiguous. In order to compute the anomaly and demonstrate its cancellation in dimensional regulariza-
tion, one must employ the Veltman-’t Hooft definition of γ5, as the ‘naive’ prescription will not reproduce the anomaly. Alternatively,
one might choose a different regularization scheme, such as the Pauli-Villars, to calculate the anomaly and exhibit its cancellation.
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the finite piece of (50) can be evaluated by setting the external gauge bosons on-shell (14); it yields the expression16

iVferm, finite =
gsαs
4π

(rL + rR)Nff
amn

[
F (R)

(
p̄αgβν − pβgαν

)
+ F ′(R) (p− p̄)ν gαβ +

F ′′(R)

M2
C

(p− p̄)ν pβ p̄α
]
, (56)

with the functions

F (R) ≡ 2

9

[
10− 3πi+ 12R− 3 logR− 6(2R+ 1)

√
4R− 1 arccot

√
4R− 1

]
,

F ′(R) ≡ 1

9

[
7− 3πi− 24R− 3 logR+ 6(4R− 1)3/2 arccot

√
4R− 1

]
+ FA(R) ,

F ′′(R) ≡ 2

3

[
1 + 12R− 12R

√
4R− 1 arccot

√
4R− 1

]
− 2FA(R) ,

FA(R) ≡R
[
Li2

(
2

1 +
√

1− 4R

)
+ Li2

(
2

1−
√

1− 4R

)]
.

(57)

Here, Li2(z) is the Jonquière’s dilogarithm. The functions in (57) are constructed for the R > 1
4 region, which defines

the kinematic threshold for coloron decay into a pair of the spectator fermions.17

D. Vacuum Polarization Amplitudes: Matter Sector

The final piece of this calculation involves computing the fermionic mixed-VPA contributions to the production
amplitude. The quark and spectator one-loop diagrams are illustrated in Fig. 10. In analogy with the gauge sector
(19), these contributions may be written as

iSferm = gs

{
fdmnΓραβ(−r, p, p̄)

Πad
ferm νρ(r)

r2
+ fadnΓνρβ(−r, p, p̄)

Πmd
ferm αρ(p)

p2 −M2
C

+ famdΓναρ(−r, p, p̄)
Πnd

ferm βρ(p̄)

p̄2 −M2
C

}
,

(58)
with

iΠab
ferm µν(q) = −g

2
s (rL + rR)

4
Nfδ

abµ4−d
∫

ddk

(2π)d

{
Tr
[
γµ/kγν(/k + /q)

]

[k2 + iη] [(k + q)2 + iη]
+

Tr
[
γµ(/k +MQ)γν(/k + /q +MQ)

]

[k2 −M2
Q + iη] [(k + q)2 −M2

Q + iη]

}
.

(59)
The expression iΠab

ferm µν(q) is the fermionic mixed-VPA, containing both the quarks and the spectators, which can
be evaluated using standard methods. It yields the expected transverse structure

iΠab
ferm µν(q) = − iαs (rL + rR)

4π
Nfδ

ab

[
2

3
E +

1

2
F (RQ)

] (
q2gµν − qµqν

)
, (60)

where F (RQ) is given in (57) with the definition (c.f. RC in (31))

RQ ≡
M2
Q

q2
. (61)

Inserting the fermionic mixed-VPA (60) into (58), and recalling that the on-shell external gluon legs do not con-
tribute (see the explanation below (33)), we obtain the following amplitude for the portion of the gluon-gluon to
coloron process that is facilitated by the gauge-invariant, fermionic mixed-VPA

iSferm = −gsαs
4π

(rL + rR)Nff
amn

[
2

3
E +

1

2
F (RQ)

]{
Γναβ(−r, p, p̄) + . . .

}
, (62)

where ellipses denote terms that may be discarded, as before (see below (34)).

16 Technically, the fermionic vertex contains also a finite anomaly-free axial contribution, a remnant of the non-exact cancellation among
the quarks and spectators in (52), due to their non-degenerate masses. By Yang’s theorem [34], this axial part, being proportional to
the symmetric color factor damn, does not contribute to the cross section for the on-shell external states, and is omitted henceforth.

17 In the current analysis, we restrict our attention to the R > 1
4

regime, as a study of the direct production of the spectator fermions,
although very interesting, is outside the scope of this treatment.
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FIG. 10. Gluon fusion to coloron via the mixed-VPA containing fermions in the loop. The top row illustrates the quark
contribution, while the bottom row represents that of the spectators.

It is evident, once more, that the UV divergences of the fermionic one-loop vertices (54) and the mixed-VPA
contributions (62) cancel one-another, yielding a finite amplitude. Furthermore, a comparison between (34), (49),
(56), and (62) establishes that the matter sector and the pinch-technique treated gauge sector consistently share the
same formal structure, and may be readily combined. By virtue of the pinch technique, we have been able to make
the gauge-invariant nature of the gauge sector transparent, which mimics the matter sector; a fact that, otherwise,
might not have been easy to reveal.

E. Production Amplitude of Coloron Via Gluon-Fusion

We now possess all the pieces of the puzzle for constructing the leading order amplitude of the gluon-initiated
coloron production (13), which now takes the form

iMgg→C = (iŜ + iV̂ + iSferm + iVferm)× ε∗a (λC)
C ν (r) ε

m (λg1 )
g α (p) ε

n (λg2 )

g β (p̄) . (63)

Applying the on-shell identities (14), we note that RC = 1 (see (31)) and RQ = R (see (61) and (55)). We may then
insert the corresponding on-shell expressions of (34), (48), (49), (54), (56), and (62) into (63) to obtain the final form
of the amplitude, containing both matter and gauge contributions

iMgg→C =
αs
4π

(TG + TM ) iT , (64)

with

TG ≡ cot(2θc)C2(G)
5

18

(
75− 12

√
3π − π2

)
, (65)

TM ≡ −
1

2
(rL + rR)Nf F

′′(R) , (66)

iT ≡ gs famn
[
gαβ − 2pβ p̄α

M2
C

]
(p− p̄)ν × ε∗a (λC)

C ν (r) ε
m (λg1

)
g α (p) ε

n (λg2
)

g β (p̄) , (67)

and F ′′(R) is given in (57). The quantities TG and TM correspond to the gauge and matter sectors, respectively. The
production amplitude (64) is manifestly finite, as anticipated, with all the UV divergences canceling among the vertex
and mixed-VPA contributions in their corresponding sectors, as enforced by gauge invariance.
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IV. GLUON-FUSION COLORON PRODUCTION RATES AT HADRON COLLIDERS

A. Production Cross Section of Coloron Via Gluon-Fusion

The leading order partonic cross section for coloron production via gluon fusion is given by

σ̂gg→C =
π

ŝ
|Mgg→C |2 δ(ŝ−M2

C) =
π

ŝ2
|Mgg→C |2 δ(1− χ) , (68)

with ŝ the partonic CM energy, and |Mgg→C |2 the squared amplitude (64), averaged over initial and summed over
final colors and spins. In addition, we have defined the parametrization

χ ≡ M2
C

ŝ
. (69)

In d = 4− 2ε dimensions, |Mgg→C |2 takes the form

|Mgg→C |2 =

(
1

dim(G)

)2(
1

2(1− ε)

)2 ∑

spin & color

|Mgg→C |2 =
α3
s

4π

C2(G)

2 dim(G)
|TG + TM |2 ŝ , (70)

where dim(G) = 8 is the dimension of the adjoint representation, and the gluon polarization is modified in d dimen-
sions. In evaluating (70), we used the color identity (famn)2 = dim(G) · C2(G), which follows from (21).

Inserting (70) into (68), the partonic cross section for the process takes the form

σ̂gg→C =
α3
s

ŝ
D |T |2 δ(1− χ) , (71)

where we have defined

D ≡ C2(G)

8 dim(G)
, (72)

T ≡TG + TM = cot(2θc)C2(G)
5

18

(
75− 12

√
3π − π2

)
+Nf F

′′(R)H(θc) . (73)

The function F ′′(R) is given in (57), while H(θc) is determined by the chiral couplings of the quarks to the coloron,
which depend on how we choose to make the quarks transform under the original SU(3)1c × SU(3)2c symmetry,

H(θc) =





tan θc rL = rR = − tan θc
− cot(2θc) rL 6= rR
− cot θc rL = rR = cot θc

. (74)

The full leading order hadronic cross section for coloron production via gluon fusion at the LHC is determined by
convolving the partonic cross section (71) with the gluon parton distribution functions (PDF) within the protons

σgg→C =

∫
dx1

∫
dx2 fg(x1, µF )fg(x2, µF ) σ̂gg→C , (75)

where fg(xi, µF ) is the PDF of the ith gluon, xi its carried momentum fraction, and µF is the factorization scale.
Taking the collision axis to be the 3-axis, the four-momenta of the gluons are

p =

√
s

2
(x1, 0, 0, x1) , p̄ =

√
s

2
(x2, 0, 0,−x2) , (76)

with s the CM energy of the colliding protons. This leads to (c.f. (69))

ŝ = x1x2 s , χ =
M2
C

x1x2 s
. (77)

Trading the partonic CM energy, ŝ, for the hadronic one by means of (77), we obtain the final production cross section

σgg→C =
α3
s

s
D

∫
dx1

x1

∫
dx2

x2
fg(x1, µF )fg(x2, µF ) |T |2 δ(1− χ) , (78)
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with D and T as defined in (72) and (73), respectively.
Expression (78) establishes the leading order cross section for the coloron production via gluon-fusion at the LHC.

It has a formal dependence on the ratio of the spectator and coloron masses, as parametrized by R (55). As the
leading order expression for the gluon fusion amplitude, it is also expected to be highly dependent on the factorization
scale, µF . As we will see, however, this overall contribution is very small when compared to the quark annhilation
contributions, so this dependence is of little phenomenological consequence. This concludes our formal treatment of
the gluon-initiated coloron production.

B. Hadron Collider Production Rates from Gluon-Fusion

With the formal expression for the production cross section at our disposal, we now present some numerical results.
For this purpose, we employ CT10 [25] to evaluate the relevant PDFs. Furthermore, we note that the coloron
coupling contains, in addition to the strong coupling constant, the mixing angle (θc), which is a free parameter (see
the Feynman rules in Appendix A). We will define θc by identifying gs in (11) with the value determined by αs(MZ).
In the cross section, therefore, we make a distinction between the values of the renormalized strong coupling (αs(µ))
associated with the gluons and those originating from the colorons. Setting the renormalization scale at the coloron
mass, we evaluate the renormalized gluon strong coupling at MC , while that associated with the coloron is chosen
to be evaluated at the Z-pole mass, MZ . Also, the PDF factorization scale has been set equal to the coloron mass,
µF = MC .

Fig. 11 illustrates the inclusive cross section for gluon-initiated coloron production (78) as a function of the coloron
mass at the LHC for two CM energies. The top row, corresponding to

√
s = 8 TeV, shows the cross section curves

with various (flavor universal) fermion charge assignments (c.f. (74)) and three different values of the mixing angle, for
a coloron mass range of 1 ≤MC ≤ 4 TeV. As mentioned, this cross section also depends on the ratio of the spectator
mass to the coloron mass via the R parameter (55). This dependence is, however, quite mild and is represented
by the thickness of each curve for the chosen range 1/2 ≤ R ≤ 2. The bottom row of the same figure displays the
corresponding results for

√
s = 14 TeV and a coloron mass range of 1 ≤ MC ≤ 8 TeV. Note the enhancement in the

production cross section, due to the higher gluon content of the protons at this CM energy.
It is worthwhile to note the absence of the maximal mixing curve (θc = π/4) in the center plot that displays the

case of unequal fermion charge assignment, rL 6= rR. This curve is associated with the axigluon [2, 3], which posseses
a parity symmetry exchanging SU(3)1c and SU(3)2c, under which the gluon is even and the coloron is odd. The gluon
fusion amplitude to produce a coloron, (64), therefore vanishes identically to all orders in perturbation theory.

In order to put the analysis of this production process into perspective, let us compare it with the dominant (tree-
level) production channel, involving quarks. A comprehensive study of the latter at the next-to-leading order (NLO)
is presented in [1], where, in addition to the qq̄ → C one-loop virtual corrections, the (soft and collinear) real emission
processes qq̄ → gC, qg → qC and q̄g → q̄C are also taken into account. Fig. 12 illustrates the ratio between the
coloron production cross section via gluon-fusion and the NLO cross section for the quark-initiated channel at the
LHC with two CM energies.18 As before, three values of the mixing angle are displayed with various fermion charge
assignments, and we have set R = 1 for convenience. Once again, the curve for axigluon production is absent, due to
the parity symmetry explained above. It is evident that the gluon-fusion production process is subdominant by four
orders of magnitude by comparison with the quark-initiated production, even for the highest CM energy.

We conclude that the gluon fusion contribution to coloron production is phenomenologically irrelevant except in
the case of a fermiophobic coloron with a coupling of order O(10−2gs) or smaller.

V. UPDATED NLO COLORON PRODUCTION RATES AT HADRON COLLIDERS

Finally, having shown that the gluon fusion contribution to coloron production is numerically insignificant (except
in the case of fermiophobic colorons), we present an update of the NLO cross section for coloron production, as given
in Eq. (81) of [1]. As in that reference, we compute the ‘K-factor’ for coloron production, defined as

K ≡
σNLO
qq̄→C

σLO
qq̄→C

, (79)

18 For brevity, in Fig. 12 we have used the subscript qq̄ → C to indicate collectively all the mentioned NLO production processes containing
one or more quarks in the initial state.
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FIG. 11. Inclusive cross section foxr the gluon-gluon fusion to coloron process as a function of coloron mass at the LHC for
CM energies of 8 TeV (top row) and 14 TeV (bottom row) with various (flavor universal) fermion charge assignments. Three
representative values of the mixing angle have been plotted. The thickness of each curve reflects its (moderate) dependence on
the R parameter (55) with 1/2 ≤ R ≤ 2, and the factorization scale, µF , has been set equal to the coloron mass, MC . Note the
absence of a curve for the axigluon [2, 3], corresponding to the maximal mixing sin2 θc = 0.5 and rL 6= rR, as the gluon fusion
production of the coloron is forbidden by symmetry in this case and the production amplitude is identically zero (c.f. (64)).

s = 8 TeV

sin2
Θc = 0.1

sin2
Θc = 0.25

sin2
Θc = 0.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.000100

0.000050

0.000020

0.000030

0.000015

0.000070

MC HTeVL

Σ
gg

®
C

�
Σ

q
q®

C
N

L
O

rL = rR = cotΘc

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.000010

0.000050

0.000020

0.000030

0.000015

MC HTeVL

rL ¹ rR

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.000010

0.000100

0.000050

0.000020

0.000030

0.000015

0.000070

MC HTeVL

rL = rR = -tanΘc

s = 14 TeV

1 2 3 4 5 6 7 8
0.000010

0.000100

0.000050

0.000020

0.000200

0.000030

0.000015

0.000150

0.000070

MC HTeVL

Σ
gg

®
C

�
Σ

q
q®

C
N

L
O

rL = rR = cotΘc

1 2 3 4 5 6 7 8

0.000010

0.000100

0.000050

0.000020
0.000030

0.000015

0.000070

MC HTeVL

rL ¹ rR

1 2 3 4 5 6 7 8

0.000010

0.000100

0.000050

0.000020

0.000200

0.000030

0.000015

0.000150

0.000070

MC HTeVL

rL = rR = -tanΘc

FIG. 12. Ratio of the coloron production cross section via gluon fusion with respect to the quark-initiated production channel,
where the latter is evaluated at next-to-leading order [1]. Again, three representative values of the mixing angle have been
plotted for the LHC CM energies of 8 TeV (top row) and 14 TeV (bottom row) with various fermion charge assignments. The
factorization scale, µF , has been set equal to the coloron mass as before, and we have chosen R = 1 for illustration. Note, once
more, the absence of the axigluon curve.
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FIG. 13. The K-factor values (79) for two CM energies of the LHC,
√
s = 8 TeV (top row) and

√
s = 14 TeV (bottom row).

Different fermion charge assignments with three values of the mixing angle have been plotted, for µF = MC . See also the tables
of K-factors in Appendix B.

where, σNLO
qq̄→C is the NLO quark-initiated coloron production cross section and σLO

qq̄→C is that for tree-level production,

as given in [3]. The K-factors computed here differ slightly from those previously reported in [1], largely due to the
fact that here we use the modern CT10 [25] PDFs while the previously reported K-factors were calculated using the
Mathematica package for CTEQ5 [35].19

The K-factor values (79) have been plotted in Fig. 13 for the LHC with
√
s = 8 and 14 TeV,20 with the three

mixing angle values for different fermion charge assignments as before. We see that, as in [1], the K-factor can be
as large as 30%. The numerical values of the K-factor associated with different choices of various parameters are
tabulated in Appendix B for the LHC at beam energies of

√
s = 7, 8, and 14 TeV and also at the Tevatron for a beam

energy of
√
s = 1.96 TeV.

VI. CONCLUSIONS

In this paper we have presented results that complete the study of the next-to-leading order (NLO) QCD corrections
to coloron production at the LHC and Tevatron begun in [1]. Our calculations apply directly to any model with an
SU(3)1c × SU(3)2c gauge structure. They also apply approximately to the production of KK gluons and colored
technivector mesons to the extent that the SU(3)1c×SU(3)2c model is a good low-energy effective theory for models
which incorporate these particles. We used the pinch technique to investigate coloron production via gluon fusion. We
demonstrated that this one-loop production amplitude is finite, and found that its numerical contribution to coloron
production is typically four orders of magnitude smaller than the contribution from quark annihilation. Hence, the
production of colorons via gluon-fusion is only relevant for (nearly) fermiophobic colorons. In addition, we have
updated the results for the NLO QCD corrections to coloron production, and have presented plots and tables of our
results for a range of coloron masses, mixing angles, and fermion charges at the Tevatron, the low-energy LHC and
the high-energy LHC

19 In addition, here we consistently apply the definition of θc in the coloron coupling in terms of gs extracted from αs(MZ), as described
in Sec.IV B.

20 Plots of the K-factor for the LHC at 7 TeV may be found in [1].
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FIG. 14. Feynman rules for the trilinear vertices. In each diagram the momenta are toward the vertex.
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FIG. 15. Feynman rules for the quartic vertices.
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FIG. 16. LHC K-factor tables for colorons of various masses and mixing angles with
√
s = 7 TeV. Each table corresponds to a

different charge assignment of the fermions. These values update those listed in [1], and the differences are largely due to our
use here of updated CT10 structure functions [25].

Appendix A: Feynman Rules21

The Feynman rules for the trilinear and quartic vertices are shown in Figs. 14 and 15, respectively. The coloron is
represented by a zigzag line, the coloron ghost by a sequence of filled circles, and the eaten Nambu-Goldstone bosons
by dashed lines. The spectator is depicted as a continuous double-line. All other particles are denoted as in QCD
standard notation.

21 The Feynman rules presented here are derived in [1].
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FIG. 17. LHC K-factor tables for colorons of various masses and mixing angles with
√
s = 8 TeV. Each table corresponds to a

different charge assignment of the fermions.
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FIG. 18. LHC K-factor tables for colorons of various masses and mixing angles with
√
s = 14 TeV. Each table corresponds to

a different charge assignment of the fermions.

Appendix B: Numerical Values of the K-Factor at the Tevatron and LHC

In this Appendix, we report the numerical values of the K-factor for the LHC and the Tevatron as a function of
the coloron mass. The three LHC CM energies of

√
s = 7, 8 and 14 TeV have been presented in Figs. 16, 17 and

18, respectively, while the Tevatron
√
s = 1.96 TeV results are given in Fig. 19. The figures correspond to various

fermion charge assignments, each containing three different mixing angles.
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FIG. 19. Tevatron K-factor tables for colorons of various masses and mixing angles with
√
s = 1.96 TeV. Each table corresponds

to a different charge assignment of the fermions.
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