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for gravity.
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1 Introduction

The question of observables in quantum gravity has a long history; for reviews see [1, 2, 3, 4].
The problem is that, as emphasized by Dirac [5], only gauge-invariant quantities can be
assigned a physical meaning. In gravity this rules out the existence of local observables.
Indeed in the AdS/CFT context a complete set of observables lives at the boundary, so one
must be able to express any definition of a bulk observable in terms of CFT data. In the
limit of free scalar fields in the bulk (i.e. zero Planck length, N — oo) the construction was
made in the early days of AdS/CFT [6, 7, 8, 9]. It has been recast in the form of a smearing
function [10, 11]

o(z,x) = /dz'KA(z,:dx')OA(z') (1)

where the kernel K has support only on boundary points 2’ which are space-like separated
from the bulk point (z,z). The dimension of the boundary operator A is determined by
the mass of the bulk field. It turns out that using complex boundary coordinates is a very
convenient computational tool [11, 12]. These constructions were carried out in the free field
limit, and it was shown that the CFT expectation value of two such operators reproduces
the free bulk two point function.

Building on these works, the construction of interacting bulk observables in terms of
smeared CFT operators has been developed. Two approaches have been worked out, both
relying on perturbation theory in 1/N. One approach is based on the bulk equations of
motion, while the other uses bulk micro-causality as a guiding principle.

The first approach was introduced in [13] and further developed in [14]. The basic
idea is to solve the bulk equations of motion perturbatively. This can be done in a fixed
gauge (holographic gauge), using the radial supergravity Hamiltonian on a fixed background.
This procedure gives a bulk operator written in terms of smeared CFT operators, whose
correlation functions in the CF'T reproduce bulk correlators. This construction can be carried
out independently of holography. It is just a rewriting of bulk correlation functions in terms
of boundary correlators, in the same way that one could have computed a bulk correlator in
terms of correlation functions on some initial time slice by solving time evolution equations.
The only difference is that in AdS/CFT it is convenient to evolve in a spacelike direction,
using a spacelike Green’s function [13, 14]. It is an extra condition, that the boundary
correlation functions are those of a unitary CFT, which makes the relationship holographic.
But in the approach of solving bulk equations of motion, the role played by holography is
not so clear.

In the second approach, more intrinsic to the CF'T, one tries to build up the bulk operator
by requiring that it satisfy bulk micro-causality [13].! This program was carried out for

For a discussion of micro-causality in curved space see [15].



scalar fields in [13], where the requirement of micro-causality is just that bulk operators
commute at space-like separation. The basic point is that, if one inserts the smeared CFT
operator (1) inside a CFT three point function, there are in general singularities at bulk
space like separation. These singularities lead to a non-zero commutator which spoils micro-
causality. However these singularities can be suppressed (in a precise sense) by redefining
the bulk operator to include an infinite tower of appropriately smeared higher dimension
scalar primaries (these are the multi-trace operators also discussed in [16]),

o(z,x) = /d:B'KA(z,x|x')(9A(x’) +Zal/d:B'KAL(z,xW)OAI(z'). (2)

Order-by-order in 1/N one has the required spectrum of higher dimension operators, and one
can choose the coefficients q; in such a way that the bulk operator satisfies micro-causality.
The resulting bulk observable agrees with what one would construct in the 1/N expansion
by solving the bulk equations of motion perturbatively.

The CF'T approach gives a different perspective from the approach based on bulk equa-
tions of motion, and gives a glimpse of the non-locality which is expected when the boundary
theory is a finite- N unitary CF'T. More specifically, the CF'T construction requires the exis-
tence of an infinite tower of higher-dimension primary operators with prescribed properties.
Such operators can be constructed in 1/N perturbation theory as multi-trace operators, but
these operators do not actually exist in a unitary CFT at finite N. Thus at finite N we can
see how bulk locality breaks down in a non-perturbative way.

In extending the CFT construction of interacting bulk observables to include gravity we
face the difficulty mentioned at the start of the introduction, that in gravity there are no
local physical observables (see [14, 17, 18] for discussions of this in the context of AdS/CFT).
There is, however, clearly some sense in which local observables are available even in a theory
of gravity. To address this we need to deal with the underlying gauge symmetry. There are
two approaches we could take: either construct a set of gauge-invariant observables, or carry
out the construction in a fixed gauge. We will adopt the gauge-fixed approach, which may
not seem so elegant but is in fact natural in AdS/CFT.

Of course the two approaches are related. To be concrete, consider a charged scalar field
in the bulk ¢(z, z), coupled to an abelian gauge field A. Here x = (¢, %) are coordinates in
the CFT and z is a radial coordinate. We work in holographic gauge which sets A, = 0. In
holographic gauge ¢(z, z) is (by definition) a gauge-invariant observable. It can be identified
with the manifestly gauge-invariant quantity

exp [z /(::)0) Azdz} o(x, z)

where we have attached a Wilson line running from the bulk point to the boundary of
AdS in the z direction. But now one sees the difficulty, that although a bulk scalar field



in holographic gauge is an observable quantity, it is secretly non-local, with a Wilson line
extending in the z direction. So there is no reason to expect our gauge-fixed operators to
commute at spacelike separation, and indeed in axial gauge there are non-local commutators

[19].

In gauge theory it’s tempting to avoid this issue by working in terms of local gauge-
invariant quantities, such as Tr F2 or ¢'¢, but in gravity this is not an option. So let’s work
directly with the scalar field in holographic gauge, and see if there is a useful sense in which
we can discuss bulk locality.?

A key observation is that in holographic gauge non-local commutators are indeed present,
but only to the extent required by the constraints. For example consider a charged scalar field
¢(z, z) and the electric flux observable

By = ]{F

Since charge can be measured by a surface integral arbitrarily far away, it’s clear that ¢(z, 2)
and &g will in general not commute at equal times. But there’s no obstacle to having ¢
commute with itself at equal times. We will make this more precise in section 2, where we
consider scalar electrodynamics in holographic gauge and show that the scalar field indeed
commutes with itself at spacelike separation. There are some non-local commutators in
holographic gauge. However at equal times the only non-local commutators involve either
the time component of the gauge field Ay or the z component of the electric field E.. This
behavior is exactly what’s required by the Gauss constraint, and it can be understood as
due to the Wilson lines extending in the z direction.?

Our conclusion is that we can construct bulk observables in holographic gauge by de-
manding that, for example, charged bulk scalar fields commute at spacelike separation. Of
course gauge-invariant combinations such as a field strength in the bulk and a scalar field
on the boundary will also commute at spacelike separation. The remainder of this paper is
devoted to showing that these requirements, which we view as encoding bulk micro-causality,

suffice to uniquely determine the way in which boundary CFT correlators can be lifted into
the bulk.

2An alternative approach would be to work in some type of covariant gauge in the bulk, where locality
is manifest but there are additional unphysical degrees of freedom. It’s not clear to us how this could be
represented in the CFT.

3The extension to gravity seems clear: scalar fields will commute with each other at spacelike separation,
but they will have non-zero commutators with hgy and with certain components of the curvature.




2 Bulk micro-causality

In this section we consider scalar electrodynamics in holographic gauge and show that the
scalar field commutes with itself at spacelike separation. Our treatment of the canonical
formalism for scalar electrodynamics in holographic gauge closely follows section 5.C of [19].

We work in AdSy,; with metric

2_R2

22

ds (=dt® + |dZ)* + d=*)

and consider scalar electrodynamics with action (Dy; = Oy + igAn)
1
S = / dHey/—g <—DM¢*DM¢ — ZFMNFMN> (3)
The canonical momenta are

7T0:O

d—1
-2 "n

Thus we have the primary constraint
X1 =m=0
and the secondary constraint (Gauss’ law)
Xz = Oimi +iq (msp — m56") = 0
Conjugate to these we impose the two gauge-fixing conditions
xs=A.=0

d—3
X4 =T, + (E) 0,A,=0

z

The first condition fixes holographic gauge, while the second condition enforces the usual
relation between the z component of the electric field and the gauge field.



The matrix of Poisson brackets is (setting x = (Z, 2))

0 0 0 —(£)4730,6%(x — x/)
d I
Cab = {Xa(X), Xb(X/>} = 8 azéd()(() —x/) 9:0 (}8 x) _5d(£_ x')
—(g)d_3825d(x —x') 0 54 (x —x') 0
This has an inverse
(0 | g9(x,x’) f(O | (%)3 f(x, %)
1 —g(x,x’ 0 —f(x,x' 0
Car = 0 —f(x,x) 0 0 (4)
(}%)d_?’f(x, x') 0 0 0
where
fx,x) = 64z — 2")0(2 - 2) (5)
(Z/)d—2 _ Zd_2

g(x,x') = 6"z — 2O — Z)W

The inverse is not unique; our explicit choice for f and g corresponds to introducing a Wilson
line towards the boundary of AdS, as opposed to towards the Poincaré horizon. Also note
that the case d = 2 is special as it corresponds to Chern-Simons theory in the bulk [20]. For
the canonical formalism in this case see appendix B of [18].

Given the structure of the constraint algebra — in particular the fact that Cs,' = 0 — it
follows that the physical degrees of freedom have canonical Dirac brackets at equal times.
{m(x),Aj(x')} :5gj5d(X—X/) ’Z,j: 1,...,d—1
{ms(x), 6(x')} = (x — x')
{m5(x), 0" (x)} = 6%(x — X)

However these fields have non-local Dirac brackets with Ay and 7., namely

{Ao(x), Ai(xX)} = Dig(x, %)
{Ao(x), 9(x')} = iqg(x, X" )p(X)
{Ao(x), ms(x')} = —iqg(x, x")ms(x)

{r(x), Ai(x')} = 8if (x,x')
{m.(x), o(x)} = iqf(x, x)p(x)
{m(x), mo(x)} = —iq f(x, X )my(xX)

along with the complex conjugates. These brackets reflect the fact that the field ¢(x, 2)
produces a tube of electric flux extending towards z = 0.

bt



This shows that, as promised, the scalar field commutes with itself at equal times. How-
ever we'd like to make a stronger statement, that the scalar field commutes with itself at
spacelike separation. This can be argued based on the results obtained above. Imagine
inserting the scalar field at two spacelike separated points (z,z) and (2/,2'), with Wilson
lines secretly extending off in the z direction. By acting with an AdS isometry the two bulk
points can be brought to equal times. However the isometry will act on the Wilson lines,
so they will no longer extend in the z direction. We could perform a compensating gauge
transformation to restore holographic gauge A, = 0, but it’s simpler to leave the Wilson lines
pointing in whatever direction is implied by the isometry. How would this affect the above
calculation? The brackets with Ay and 7; will clearly be different, because the electric flux
tubes now go in a different direction, but the bracket of ¢ with itself will still be zero. This
means that in holographic gauge the scalar field commutes with itself at arbitrary spacelike
separation.

3 Bulk construction of local operators

Although it won’t be the main emphasis of this paper, one can construct local bulk observ-
ables from the bulk point of view, by solving the bulk equations of motion perturbatively
[13, 14]. Here we sketch the construction for scalar electrodynamics.

The equations of motion which follow from (3) are
1
L Duv=gD"6 =0 ()

N
Oy = )

V=9

where Dy = Oy +iqAy and JM = iq(DM¢*¢ — ¢* DM p). We wish to solve these equations
perturbatively in ¢ (which we identify as being O(1/N)), in the gauge A, = 0.

We begin with the scalar equation of motion (6), which in terms of a Christoffel connection
V on AdS reads

Vi VYo +iqg(VirAM)¢ + 2igAY 0r¢ — *A%¢ = 0
We can solve this perturbatively, setting

¢:¢(0)+¢(1)+...
A= AD 4 AD 4 -



where

VuVMe® = 0 (8)
Vu VYo = —ig(Vy AM g —2igAM 09,40 (9)

The first equation can be solved — with suitable boundary conditions that match on to the
CFT as z — 0 — using the scalar smearing function constructed in [11, 12]. The second
equation can be solved using a spacelike Green’s function as in [13, 14].

Next we look at the z component of the gauge field equation of motion (7), which reduces

to?

R2
0.(0,4) =~ .
This fixes
z R2
0, A  (x,2) = —/ dz’ﬁjz(:z, 2') (10)
0

In the absence of a source note that 9,4* = 0 as in [18], so that in fact V; AY(© = 0 in

(9).

The remaining components of the gauge field equations of motion reduce to

-1 2

—8 \/_g N8N¢A+ 22 o) = <J)\—|—R28 (a“A“)) (11)

N
where we've introduced ¢, = zA,. This is convenient because the left hand side of (11) is
the wave equation for a scalar field of mass m?R? = 1 — d. Expanding in powers of the
coupling, we have the tower of equations

¢—_8MF 9" o) + R21¢&°’:0 (12)

—1 /
\/—_0 /=99 Oy gb)\ R2 gb&l):zJ)(\l)—zga)\/ dz' Z,2JZ1)(:E,Z)

where the first-order current J® is expressed in terms of the lowest-order field ¢, and
where we've used (10) to express 9,A" in terms of the bulk current. Just as for the scalar
field, the first equation can be solved using an appropriate scalar smearing function, while
the second equation can be solved using a spacelike Green’s function.

In the rest of this paper we will see how this structure emerges directly from the CFT,
without using bulk equations of motion.

4Indices tangent to the boundary are raised and lowered with the Minkowski metric Now -

7



4 CFT construction: bulk scalars

In this section, as a warm-up illustrative example, we will see how things work for an in-
teracting scalar field. This extends the construction of [13] to d + 1 dimensions and gives
results which will be useful later. Similarly to what was done in the AdSs case one expects
the 3-point function of a bulk scalar and two boundary scalars to have the form

. . INEENEY:
< ¢i(7,2)Oj(y1)Ok(y2) > = ciji (gr — go) B Bn 2 Lz o yl)z]
- (Ap+Ai—Aj)/2
- 13
Errerd T ”

where
[(x —y1)* + 2%|[(x — 90)? + #°]

22(y2 — y1)?
To compute f(x) we look at the limit of large 3o, where the CFT 3-point function reduces
to

X = (14)

1 1
(yo) 22k 2280

Here 22 = |Z]? — t* and Ag = (A; + A; — Ag)/2. We now define ¢;(z, z) by smearing O; into
the bulk using the appropriate scalar smearing function

< Oi(2)0;(0)Ok(y2) >— cij (15)

L T(A—d2+) it (2= P\ o
¢(z’t’x)_wd/ZF(A—aH—l)/t,erw,FSngtd Yy . Ot+t,7+1iy").
(16)
This gives
1
< ¢i(x, 2)0;(0)Ok(y2) >— Cz’jkmg(%z) (17)
where
T A’L _d 1 2 42 2 A;—d 1
sloe) =g [ g (BEEEEY
7T§F(Ai —d—+ 1) t24y2<22 < (([L’ + Zy) - (t + t) ) 0
(18)

The integral can be done by setting all but one of the x components to zero, doing the
integral, and then restoring Lorentz invariance. The result is

A 2

z z

9(z,2) = —xQAOF(A()?AO_d/2+1?Ai_d/2+]‘7_ﬁ) (19)
Comparing to the large-y, behavior of (13) one finds
A
X 0 d d 1
= F(Ag,Ag— =+ 1,0 — = +1, —— 2
f(X) (X_l) ( 0, =0 2+a 7 2+a1_x) (0)



x = 0 corresponds to the bulk point being lightlike to one of the boundary points. The
dangerous region is 0 < y < 1 where all points are spacelike to each other. We will see that
the 3-point function is not analytic in this region so the operators will not commute.

The analytic structure depends on whether d/2 is integer or half-integer. If d/2 is half-
integer one can use the transformation formula

Flabcz) — (—z)—a%p’(a,a—cﬂ,a—b+1,%)
+ (—z)‘bll:gg)f(;)l:(jg}?(b,b—c+1,b—a+1é) (21)

This gives the scalar 3-point function a non-analytic term (near xy = 1) of the form
1
— S a - (22)
(x—1)% nz:%
Thus we have square root singularities, which will give a non-zero commutator for 0 < y < 1.

If d/2 is an integer then the above formula is not correct since either (a — b) or (b — a)
are negative integers. Instead the correct formula to use is

Flaatnes)— LA S~ @—k= D@1 =cta)

I(c—a)l(a+n) & k! (=)

[(c)(=2)"" X=(a+n)(l—c+a+n)
T TTe—a—n) ; (n + k)IK!

— Ylat+n+k)—yY(c—a—n—k)+In(—2)z"* (23)

[W(k+1)+d(n+k+1)

where ¢ (x) = 1;(%) and (n); = % We see that for the scalar 3-point function the terms

contributing to the commutator are of the form

d/2 00
S b1 - )T (- 1)) a1 - x)* (24)
k=0 k=0

To summarize, for even d one gets logarithmic singularities in regions where the points
are space-like separated and for odd d one gets square root singularities.

The region where there is a non-vanishing commutator between the bulk scalar and one
of the boundary scalars, while still having all three points at bulk spacelike separation, is
0 < x < 1. From the above formulas we see that the non-zero commutator in this region has
the form of a power series in (y — 1). We also see that the singularity structure is the same



regardless of the dimension of the operators involved. We wish to define a bulk operator
¢i(z,2z) in such a way as to have the smallest possible commutator with the boundary
operators at spacelike separation, transform as a bulk scalar under AdS isometries, and have
the correct boundary behavior

¢i(z, 2) 0 LA O;. (25)

If we have higher dimension primary scalar operators with dimensions 4;, whose 3-point
functions with O; and Oy, are non-zero, we can redefine the bulk operator ¢;(z, z) to have
the form

bi(z,2) = /dz/KAi(z,ﬂx')Oi(x') +Zal/dz/KAl(z,xW)Ol(x') (26)
I

Since the singularity structure is the same for any O;, we can choose the coefficients
a; in such a way as to make the commutator of order (y — 1)Amax where A is as large
as we wish. If we have an infinite number of suitable higher dimension operators, with
conformal dimensions that are unbounded above, we can make the bulk scalar commute at
bulk spacelike separation. This is how we define the bulk scalar field. Clearly for any two
different O; and Oy, we will need a different tower of higher dimension primaries. Fortunately
in the large N limit the required operators can be built up from operator products of O;
and Oy, with derivatives. If O; and O}, are single trace operators this procedure begins with
a double trace operator and thus a; ~ 1/N.5

5 CFT construction: bulk scalars coupled to vectors

In this section we consider charged scalar fields in the bulk and study the corrections we need
to add to the definition of a bulk observable to take into account interactions with currents
in the CF'T. There are two cases we consider. First, in section 5.1, we consider corrections
due to interactions with a non-conserved current in the CFT (dual to a massive vector field
in the bulk). Then in section 5.2 we consider interactions with a conserved current in the
CFT (dual to a bulk gauge field). We carry out the construction from the CET perspective,
by adding an infinite tower of higher-dimension operators and requiring bulk micro-causality.
Thus we extend the program of [13] to include scalars which couple to boundary currents,
conserved or not.

°For a general discussion of large-N counting in this context see p. 26 of [13].
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5.1 Coupling to non-conserved currents

Following the approach of [13, 18] we look at the three point function of a non-conserved
current of dimension A and two primary scalars of dimension A; and A,. Up to an overall
normalization factor

< Ju()O01(y1) O2(y2) >
_ 1 ((?h — 7)) (ya— :c)“)

- (yl _ yz)A1+A2‘A+1(y1 _ $)A+A1_A2_1(y2 _ x)A+A2—A1—1

(y1 —2)*  (y2 —2)?

(27)
This can be written as
( 1 0 1 0 )
Do+1-A1=Ad(y1 —2)y  Ar+1—-2—A0(y2 — ),
1
[(yl — y2)A1+A2_A+1(y1 _ x)A+A1—A2_1(y2 — l')A+A2_A1_1:|
(28)

where the partial derivative with respect to (y3 — «), means we are keeping |y; — y»| and
lyo — x| fixed (and similarly with y; <> y2). The term in square brackets in (28) can be
written as

(y2 — 2)* < O1(2)O2(y1) O3(y2) > (29)

where the expectation value is that of three primary scalars of dimensions A, Ay, Ay + 1
respectively. Thus one gets

1 0 1 0
]M(I)gbl(z’yl) 2(y2) (AQ—I—l _Al —Aa(yl _l')u Al‘l‘l —AQ—Aa(y2 _[L’)u)
1 P (A+A1—A2—1)/2 P (Ax+1+A1-A)/2
(x — yp)Btae—l=t [22 + (- 93)2} [Zz + (1 — yz)z}
Ao
X d d 1
(X—l) F(Bo, M= 5+ LA =5+ 13— (30)
where

[(z = y1)* + 2%)[(y2 — 1) + 27
22(312 - x)z

and AO = %(Al +A - Ag - 1)

We know the singularity structure of the scalar three point function (13), and we know
we can cancel the non-causal singularities in it by adding higher dimension smeared scalar
primaries. Thus when smearing O; into the bulk we can cancel the non-causal singularities

11



in (27) by adding a tower of higher dimension smeared scalar primaries to our definition of
a bulk scalar. This should come as no surprise since from the bulk point of view a theory of
a massive vector coupled to scalars is a conventional local theory. Thus there should be no
obstacle to constructing a local bulk scalar field.

However the question remains, where do these higher dimension scalars come from? In
the large N limit we can construct them as double trace operators. For example the first
higher dimension operator we can construct (starting from the case A; = Ay) is

a0,j3" Oy + B3"0,0, (32)

With the choice a = A%dH and § = —Aiz this is a primary scalar. This reproduces the bulk
result, where for a massive vector field the first correction is sourced by terms proportional
to AM9y,¢, since the near boundary behavior of this bulk quantity is exactly the operator
above.% Additional higher dimension operators can be constructed by inserting derivatives
in various fashions.

5.2 Coupling to conserved currents

Let’s see how things change when we have a conserved current in the CFT, dual to a gauge
field in the bulk. From the CFT point of view the only difference is that now there is a Ward
identity which restricts correlation functions involving the current, e.g.

9 (3" (2)O(y1)O(y2)) = —ig(O(y1)O(y2)) (6(z — y1) — 0(x — y2)) (33)
Here ¢ is the charge of the scalar operator and an overbar denotes complex conjugation.

We start with the three point function of a conserved current (which necessarily has
dimension d — 1) and two primary scalars having the same dimension A;.

1 ((y1 — ), (y2— fc)u)

(y1 — y2) 22172 (yy — 2)2(y; — )2 \ (11 — 7)? - (y2 — x)?
(34)

< Gu(2)O(y1) O () >=

As we saw before in (28) this can be written as

( Y1—)u Yy2—x [,L) 2

and the term in the square bracket is just

(o —x)* < @1(55)@2(?/1)@3(.@2) > (36)

®The 2 component of AM )¢ gives rise to the 9,,j#Os term, while the 4 components give rise to j*9, 0.
This follows from the massive vector smearing function given below in (73), (74).

12



where the three primary scalars are of dimension
Al=d—1 Ay=A; A;j=A+1 (37)

One can use the result (13) to find

. _ 1 0 0
<)ol )Om) = 5 ( - 8@2_@) ><
1 |: e :| (d—2)/2 |: e :| (Al—d/2+1) ( X )(d—2)/2
(yo — )42 | 224 (x — 11)? 22+ (y1 — y2)? x—1
(38)
where now ) ) ) )
L= = g+ )

Z*(y2 — x)?
However at this point we cannot proceed as we did for a non-conserved current: the Ward
identity (33) forbids a non-zero three point function of a conserved current with two scalars
of unequal dimension, which means we cannot correct our definition of a bulk scalar by
adding higher-dimension primaries. This can also be seen from the results of the previous
section, where the higher-dimension primary we had to add in the non-conserved case (32)
involved the divergence of the current.”

More specifically in the limit of large y, the leading term in (34) is

ySlAl ((Zi - 33 (40)

Upon smearing O(y;) into the bulk this generates some non-causal terms we would like
to cancel. We could try to correct our definition of the bulk scalar by adding a smeared
Jp0°O(y1), but this won’t work since by large- N factorization

(u(2) 1,07 O(y1) O(y2)) = (ju() o(y1)) (9°O(y1)O(y2))
and thus as y, — oo the leading dependence on g, that such a correction would produce is

y2p
2A14+2
2

(41)
y

This means there is no way to cancel the unwanted terms. A term like (40) could be canceled

in the non-conserved case, by adding a correction of the form 0°5,0(y;); with no derivatives

acting on O the leading y» — oo dependence would be 1/ ygAl. But for conserved currents

"One could try to take a limit where the current is conserved, with A — d — 1, but then in (32) we’d
have ae — oo while the divergence of the current goes to zero. It does not seem to make sense to take such
a limit at the operator level.

13



this operator is not available. From this perspective this is the only difference (though a
crucial one) between conserved and non-conserved currents.

This failure to restore bulk locality is actually desirable, since as we will show in section 5.4
the resulting non-commutativity is exactly what one needs in order to satisfy the bulk Gauss
constraint. But it raises a question, how should we go about determining the appropriate
higher-dimension operators to add to our bulk scalar? To find the answer we make a strategic
retreat, and study causality for correlators involving the field strength of a massive vector.

Causality for massive vector field strengths
Consider the 3-point function of two scalars and one field strength F),, = d,j, — 0,j, built
from a non-conserved current. From (27) this is

< Bl (2)01(y1)Oa(y2) >~
1
(y1 — yg)BaFB2=AF1 () — g)A+A1=Do+1 () — 7)A+A2—Ar+] (= 2)ulyp =)y —pp V]

(42)

As shown in section 5.1, when lifted into the bulk this correlator has non-causal singularities
which can be canceled by adding higher-dimension operators.

For example, when the higher dimension operator (32) is inserted in place of O; in
the original 3-point function, the resulting CF'T correlator can be computed by large-N
factorization as a product of two-point functions. From the current - current correlator®

. . 22,7, 1
< n(@u0) 2= (= 252 ) (43
it follows that
< Fu(x)0°j, >=0 (44)
and therefore at leading order in 1/N
< Fu (%) 075,04 (y1) Oa(y2) > = 0 (45)

To leading order in 1/N the terms that are missing for conserved currents do not contribute
in the non-conserved case, at least for a 3-point function involving F),,. Since we know the
massive vector can be made local in the bulk, this means the cancellation must come from
the j,0°O, term. To leading order in 1/N this term gives

< B (1) j,(y1) >< 0°Oa(y1) Oa(y2) > (46)

and indeed after some algebra this has the same form as (42), with Ay = A+ Ay + 1 as
appropriate for this operator. This result is valid even in the limit A — d — 1 where the

8Some useful formulas are recorded in section 4.1 of [18].
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current is conserved, since no property of the non-conserved current was used (i.e. having a
divergence of the current 0"j, # 0 played no role).

Lessons for massless vectors

For massive vectors we found that the operator which is absent in the conserved case, namely
077,0, played no role in restoring causality for correlators involving the boundary field
strength F),,. Thus we expect that in a three point function of the type (F, WO(’_)) locality
can be respected even for conserved currents, just by adding smeared operators which are
scalars but not primary. For example, given the operator (32), we would correct the bulk
scalar by just smearing the j,0°O term. As shown below (46) this suffices to restore causality
for correlators involving a massless boundary field strength.

So for conserved currents, even though one cannot build a primary scalar out of the
available ingredients (the current, other primary scalars, derivative operators), one can still
build an operator which can be treated as though it were a primary scalar, at least when
inserted in three point functions involving F),, rather than j,. By taking this non-primary
operator and smearing it as though it were primary we can cancel the non-local terms in
(F,,00), just as we did for non-conserved currents. In this way the bulk scalar can be
corrected so that it is local with respect to the field strength F),, on the boundary.® This
fits with the bulk perspective developed in section 2, where at equal times the bulk scalar
commuted with the field strengths 7;, F}; on the boundary. This requirement is what captures
the appropriate notion of micro-causality when there are conserved currents.

Presumably all of the required higher-dimension non-primary scalar operators can be
constructed in the 1/N expansion. For example, let’s look at the next correction to (32),
involving an operator of dimension d + A, + 2. To determine its form we first build a scalar
primary out of a non-conserved current of dimension A, then we drop terms involving the
divergence of the current and take the limit A — d — 1 with A; = Ay. Denoting the scalar
operators O and O, this leads to

(V)00 + Bj,0"V>O + 1y, P O (47)
with ) ) )
=32 UTaacneAte—d )T B ) (48)

Adding these higher-dimension non-primary operators cancels the unwanted non-analyticity
and restores locality in correlators involving F),,. This means the corrected bulk scalar will
commute at spacelike separation with F},, on the boundary. It also means that two scalar
fields will commute at spacelike separation, even in the presence of a spectator F),,,.

9We do not expect it to be local with respect to F,. ~ j, near the boundary.
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5.3 AdS covariance

The procedure we have outlined restores bulk locality, at least in correlators involving F),,,
but it seems dangerous. We have added to the original scalar field an operator which is
smeared like a primary scalar but is not actually a primary scalar. This means the resulting
bulk field will not transform as a bulk scalar under AdS isometries. At first this sounds
problematic, but we now show that it’s the expected result: in holographic gauge charged
scalar fields acquire an anomalous transformation rule under AdS isometries which do not
preserve the gauge-fixing condition.

First let’s study this from the bulk point of view. We are working in holographic gauge,
A, = 0. This completely fixes the gauge, so all our bulk fields are physical. In this gauge a
charged scalar ¢(z,x) can be identified with the manifestly gauge-invariant observable

¢phys(za ZE') = 6ideAz¢(Z> [L’) (49)

As such, under an isometry which does not preserve the condition A, = 0 the field will not
transform like a scalar: rather a compensating gauge transformation will be required. Indeed
under a special conformal transformation

Prnys(7, @) = 2D (2, 2) (50)

where A(z, x) is given to first order in the parameter of the special conformal transformation
by by [18]

= —ﬁ /ddz/e(az')%-j (51)
We will be interested in the boundary behavior
Az z) 2 292 (52)
from which we find that to first order in b, and as z — 0
Boys (25 2) = bphys (2, 2) + 20257 - jO () (53)

Now let’s see how the CF'T reproduces this behavior. We saw that to leading order in
1/N and as z — 0 the correction to the bulk scalar field in the CFT has the form

o(es5) = [ Kalraly)OWw) + [ Karalzaly)9,00) (54)
We use the behavior under infinitesimal special conformal transformations acting on y
d%' = (1+2db-y)d%y
Ky = Ka(1+2(A—d)b-y)
O'(y) = (1-2Ab-y)

) = (=25 ) (55)
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The right hand side of (54) transforms to

/KA z,x|y)O /KA—i—d z,z|y) 70,0y /KA+d z,z|y)20 - jO(y) (56)

The last term as z — 0 behaves like
221 50(x) (57)

which matches what one expects from the bulk perspective. So the inability to construct a
higher-dimension primary scalar from a conserved current in the CFT, translates in a nice
way to the anomalous behavior under AdS isometries of a charged scalar field in the bulk.

5.4 Gauss constraint

Although we have been able to correct our definition of a bulk scalar field so as to achieve
locality in correlators involving the boundary field strength F),,, correlators involving the
conserved current j, itself will still be non-local. We now show that this was to be expected,
since the non-locality which is present is exactly the bulk non-locality required by the Gauss
constraint.

We start with the 3-point function (38) of a bulk scalar, a boundary conserved current
and an additional boundary scalar

< Omia)On) >= o (o = ) (59

[(yz iAxl)d‘Q <22 + (yi - y2)2>A1_% (ZQ Ho—a) - 2221(?21_—2;2) ¥]

We assume the points x and y are spacelike to each other. We compute the commutator
of the current and the bulk operator inside the 3-point function as the difference of two e
prescriptions, one where the time component of x has a +7¢ and one where it has a —ie. The
only singularities that can contribute to the commutator arise when the derivatives act on
the third factor in (58). These derivatives give

CRURE RS e R e e B
Note that
2 — )2 2*(ya — @) _ (1 — y2)? — _22(?/1_?/2) ?
SR e ity v Rl ( L .Y ) (60)
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and that the delta function in d — 1 dimensions can be written as

5(7) = lim L\9/2) ‘

0 72 (|2 + )42

(61)

In the simple case (one can generalize this) that the time components of x, y;, y, are equal,
then taking the difference of (59) with +ie and —ie prescriptions gives zero for p # 0, while
for p =0 we get

[(d/2) [22+ (y1 — v2 (Y1 — 12)?

To find the commutator with the charge operator ) we restore the first two factors in (58)
and integrate over the spatial coordinates #. This gives

/2 L— )2 ] 2y, — o
2 { (y1 —y2) )2] 5z — gy — (y1 — y2) (62)

z
224 (1 — y2

A
< (650, 9). QIO(a) > ~ [ )2] ~ < ()0 > (63)
which is the expected commutator of the charge operator with a charged scalar field. This
shows that the bulk Gauss constraint is obeyed, at least when the lowest-order smearing
function is used. It would be interesting to show that (63) continues to hold when higher-
dimension operators are added to the definition of the bulk scalar field.

5.5 Scalar commutator

Adding a higher dimension non-primary operator to our definition of a bulk scalar field had
some desirable properties: it made correlators with £}, local, and it gave the scalar field
the correct behavior under AdS isometries. However one might wonder: does the resulting
scalar field commute with its complex conjugate at bulk spacelike separation? From the bulk
perspective developed in section 2 we would expect this to happen even in the presence of
interactions. Here we give some evidence for this from the CFT point of view.

As shown in section 5.2, our bulk scalars still commute inside a 3-point function with
a boundary field strength F),, so let’s examine what happens in a 3-point function with
a gauge field. This was given in (34). The leading y, — oo singularity of this expression
cannot be canceled, but in order to isolate the commutator between the bulk scalar and the
boundary scalar, we instead look at the limit z — oco. In this limit

1 2x,1, 1

< Gu(@)O0)O(2) > "X~ (e LAY e (64)

22
Smearing the first scalar operator into the bulk we find
1 2$uzu ZAl (yl - y2)y

. A T—r00
< ]M(x)QS(Z) yl)o(yQ) >~ W(TIMV - 1'2 (yl - yQ)d((yl - y2)2 —I— ZQ)Al_d_;’_l
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The leading singularity of this expression as (y; — y2)? — 0 is

)I/ZQd—Q—Al

1 i 2xuxl/) (yl — Y2

—— (N 66
72d—2 (nﬂ 72 (yl _ y2)d ( )

Now let’s examine the leading behavior as x — oo when we insert a non-primary operator
of the type we talked about. We consider operators of the form!°

30" (V*)"O(y1) (67)
Inserting this operator instead of O(y;) in the 3-point function gives the leading x — oo

behavior of the CFT correlator

1 22,7, 1

72d—2 (77!“/ o )851 (y1 — y2)2A1+2n (68)

T2

Smearing y; into the bulk with a scalar smearing function of dimension Ay + d + 2n gives
the large-x behavior

1 23:“:6” SA1+d+2n d d 22
- v oY F(A y A —— 17 A 12 17 T o\2
7202 (" 22 ) (g — yg)201H20 (Ar+n, Ar+n 2+ 1+2+ " (11 —92)2)
(69)
Using the identity
d
T
this can be rewritten as
1 2,1, | (y1 — y) 21 TR d d 2
W(nul/_ $2 ) (yl —y2)2A1+2”+2 F(Al‘l'n—l-l,A1+n—§+1>A1+§+27’L—|—1,_(yl _y(z)Q;
71

The leading singularity of this expression as (y; — y2)* — 0 matches (66). With enough

such higher dimension operators one can cancel the non-analyticity to any order in @1;%)2

(Note that in this limit the problematic regime is —1 < @1;%)2 < 0.) While this is not a
complete proof that adding higher dimension non-primary operators makes the bulk scalar
field commute with itself inside a 3-point function with a gauge field, it is a strong indication

of it.

0These are not the only corrections, but these are the operators which contribute to the leading behavior
as & — oo.
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6 CFT construction: bulk vectors

In this section we look at the correction, from the CFT perspective, that one needs to add
to lift a boundary current to an interacting local vector field in the bulk. We first consider
non-conserved currents in the CF'T, dual to massive vectors in the bulk, then treat conserved
currents.

6.1 Bulk massive vectors

We begin by computing the three-point function of a massive vector in the bulk with two
scalars on the boundary. Then we look at the higher-dimension operators we need to add to
cancel the unwanted singularities in this expression.

Our starting point is the three-point function of a boundary current of dimension A with
two scalar operators of dimension A; in a d-dimensional CFT.

< Ju()O(y1)O(y2) >
_ 1 <(yl —T), _ (y2 — x)u)

(1 —y2)?2 2 (g —2)2 My — )2 N\ —2)* (g2 —2)?

(72)
For AY(z) = —x—=0"j,(z) the correlator is
1

(y1 — yo)221= 841 (g — 2)AF1 (yy — z)A1
1

(yl _ y2)2A1—A+1(y1 _ [L’)A_l(yg _ I)A—i—l

The two terms on the right are the three-point functions of scalar operators of dimensions
(A, A +1,A;) and (A, Ay, A + 1) respectively.!?

< Az)O(y1)O(y2) > = —

+

In [18] the smearing function for uplifting a non-conserved primary current of dimension
A to a massive vector field in the bulk was found to be

ZA#(va) = /KA(z,x,:c’)jH(:c) (A d/2+1 /KA—I—I Z,T I)a AO( )

(73)

for the p components and

Az, 1) = /KA(z,x,x')Ag(z') (74)

"This is a simplification that only occurs when the two scalar operators are of the same dimension, but
since this is the interesting case for a conserved current we only treat this case.
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for the z component. Here A%(z) = 7——=0"j,(z) and Ka(z,2,2’) is the scalar smearing

function appropriate for a scalar primary of dimension A. Since A, is smeared into the bulk
with a scalar smearing function, we can borrow our scalar result (13), (20) to get

< A(2,2)0(5)O(ys) >

A+41
-1 X 2 A4+1 A—-d+3 d 1
T (g1 — )2 itA (X—1> F( 5 5 ,A—§+1,—1_X)
A+l A1 A1 A+l
z 2 A 2 A 2 z 2
<22+(w—y1)2 <22+($—y2)2) - <22+(93—y1)2) <22+($—y2)2) ]
where ) ) ) )
22(y1 —y2)2

is invariant under conformal transformations. After some algebra and using
F(a,b,c,x) = (1 —2)" " F(c—a,c—b,c,z) (76)

this can be written as the z component of the quantity

< An(z, 2)O(11)O(y) > (77)
—1 A—1 A—d+1 d 1 — 2 2
_ _pAolAzdrl d b e @) e
2y — )M (x — 1)z 2 2 2 I—x (x —y2)? + 2

where M is a vector index in the bulk.

Although we’ve only calculated the z component, this must be the complete result, since
(77) has the correct behavior under conformal transformations to represent the three-point
function of a bulk massive vector with two boundary scalars. But as a check of this result,
and to develop some formulas that will be useful in the sequel, we now show that (77) gives
the correct yo — oo asymptotic behavior for the p components of the bulk vector.

The leading behavior of (72) as y» — oo is
1 1 1

< BOOO) > ~ s b (78)
We will also need the leading behavior
_ 1 1
< AY(2)0(0)O(y2) > (79)

~
2A1 . A+1
Yo o T

Using the massive vector smearing function (73) one finds in the large yo limit

_ 1 D(A—d/2+1) L 21,
< s )0000) > ~ s g o (s b))
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where

2 _ 42 2\ A—d
— 2 - 1
I = / d"ydt! (M) e
H2 1 y2< 2 Z ((f+ Zg’)2 _ (t + t/)2) 3

22 A—d+1 1
L = / d*yar' (M) =
124y2< 52 z (F+iy)? = (t+1)?) =

These integrals give

(ST IEN(A —d+1) 224  A—-1 A—d+1
1 e VO( )(2)(d2)( +)Z_F( ) d_l_ 7A_C_l+17 Z_)
2I(A =5+ 1) xA-l 2 2 2 x?
(ST TEAT(A —d+2) 22T A+1 A— 2
L - vol( )(2)(d2)( +)ZA1F( + | d—|—3’A_gl+2’ z_)
2IA - § +2) xAT 2 2 2 x?
(81)
Putting this all together we find
_ 1 1 24 A—1 A—d+3 d 22
< zA,(2z,2)0(0)O(ys) > 25T Aa“ IA—1F( 5 5 JA — 3 +1,——)
(82)
Using the hypergeometric identity
d
z —F(a,b,c,x) =a(F(a+1,b,c,x) — F(a,b,c,x)) (83)
x
this can be written as
_ 1 2,22 A+1 A—d+3 d 22
< ZAH(Zux)O(O)O(y2) > y;Al [L’Z—H ( 9 ) 9 7A - 5 + 17 _?)
(84)
Finally using the identity
F(a,b,c,z) = (1 — ) F(c—a,c—b,c,x) (85)

we find agreement with the yo — oo limit of (77). This shows that (77) has the correct
asymptotic behavior for the ;1 components of the bulk vector.

For later use we record the 3-point function of a massive vector field strength with two
boundary scalars. It follows from (77) that

< Fun(z,2)0(y1)O0(y2) >

A—1
a-l 1 A+l A—d+1 d 1
= 4 F P )A__+17
(1 = y2)%2 (y — 1) (= 2 2 1—><)
2
x |9%,x0% In ¥—M<—>N (86)

( - y2)
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Now let’s look at the singularity structure of these correlators, and see if there are higher-
dimension vector operators we can add to cancel any unwanted singularities. As in the scalar
case [13] a non-zero commutator is generated between the bulk field and the boundary
operators in the region 0 < y < 1, corresponding to bulk spacelike separation. Near y =1
the 3-point function (77) has an expansion for even d of the form (we present only the
non-analytic terms)

dj2—1

Z bea(l — —ath In(x i apa (1 (87)
k=0 k=0
while for odd d the expansion has the form
1 - k
= 1F ; aka(l = x) (88)

For any non-conserved primary current the expansion has the same form, just with dif-
ferent coefficients apa and bpa. For 0 < y < 1 this gives a non-zero commutator which is a
power series in (1 — ). Thus if we re-define our bulk massive vector field to include a sum
of smeared non-conserved primary currents with arbitrarily high dimension, we can cancel
the commutator to whatever order in (1 — x) we choose. In this way we can make the bulk
massive vector obey micro-causality to an arbitrarily good approximation.

At leading order in 1/N the higher dimension non-conserved currents we add are double-
trace operators built from the two scalars appearing in the 3-point function and their deriva-
tives. For instance the lowest-dimension primary current built in this way is

00,0 — 09,0 (89)

In the large N limit this operator has dimension 2A; + 1. The next operator one can write
is

a(V2@)8uO + 5@0MV2(9 + 7(8”@)8,@,(9 — (0 < 0) (90)

This will be a primary current of dimension 2A; + 3 if

“ = 4A§(A1+1)(d—m1—2)
b= (A1+1)(d—2A1—2)
1
7T AA(A, 1) (91)

A similar construction can be carried out at leading order in the 1/N expansion to build
primary non-conserved currents of dimension 2A; + 1 + 2n for any n.
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6.2 Bulk gauge fields

Finally we turn to massless gauge fields in the bulk, where the smearing function in holo-
graphic gauge is [18]

1

ZAM(t, Zl_ﬁ", Z) = W

dt'd*y Gt + 1, F+if) (92)
t12+‘g‘/‘2222
We wish to determine the higher-dimension operators which are necessary to achieve bulk

locality. We first discuss correlators involving the field strength, then consider the gauge
field itself.

The three-point function of a bulk field strength F;ny with two boundary scalars can be
obtained from the 3-point function of a massive field strength with two scalars by analytically
continuing A — d — 1. From (86) this gives

d—2 2 2

e 1 (x—y)*+2
4 O In ) T~
(11— 12)%20 (y — 1)% MXON (7 — y2)2 + 22

< FMN(SL’,Z)O(yl)@(yQ) >= — M < N

(93)
This has the same singularity structure as the 3-point function for a massive field strength,
so it can be made local in the bulk in exactly the same way, by adding appropriate smeared
higher-dimension field strengths to our definition of the bulk Fy/n. [The justification for this
analytic continuation is somewhat subtle, since the massive vector smearing function (73),
(74) does not smoothly go over to the massless result (92). The first term in (73), after
integrating against a CFT correlator, can be analytically continued to A = d — 1 to get the
same result one would obtain from (92).'? The second term in (73), in the limit A =d — 1,
can be eliminated by a gauge transformation with gauge parameter

T2
T 9pd/2

[ vy (94)
t’2+|ﬂ’|2<22

This gauge transformation also has the effect of setting A, in (74) to zero, i.e. it’s exactly
what’s needed to impose holographic gauge. |

Now consider correlators involving the bulk gauge field itself. For simplicity we work in
the limit y» — oo. In this limit the CFT 3-point function can be obtained from (78) by
setting A = d — 1. Up to an overall constant this gives

4 ~ 1 1
2

12As an example of this sort of continuation, up to an overall normalization the result I; for a massive
vector (81) can be analytically continued to A = d — 1 to reproduce the massless vector result (98) obtained
below.
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Smearing the current into the bulk using (92) gives
~ 1
< 2A,(2,2)0(0)O(y2) > ~ Fﬁuh(z,x) (96)
2

where . )
— d*ydt’
VOl(Sd_l) /tl2+|g‘]2222 ((i»’+ Zy_’)2 _ (t + t1)2)

Doing the integral in the same way as before we find

h(z,z) = 2 (97)

Hd—1
h(z,z) = g (98)
Thus as ys — oo we have the asymptotic behavior
< Fu(@)0(0)0(y) > ~ 0
_ x,273
< FMZ(I)O(O)O(:I/Q) >~ yzAla:d (99)
2

This agrees with the O(1/y**1) asymptotic behavior of (93) for y; = 0. Since (93) is AdS
covariant and has the correct asymptotic behavior, it must be the exact result. This is
another way of seeing that the analytic continuation we made to obtain (93) is legitimate.

Now let’s see what we can achieve by adding higher-dimension operators to our definition
of a bulk gauge field. We already saw that for correlators involving the field strength we
could achieve bulk locality by adding suitable higher-dimension currents to our definition of
a bulk vector; the massive and massless cases proceeded in an identical manner. However
the singularity in a gauge field correlator is not the same as for a massive vector. This can
be seen in the results above. In the limit y, — 0o, the gauge field correlator (96) has singular
behavior near z = 0, namely

< 24, (2, 2)0(0)O(ys) > ~ — 118 (100)

2Aq d
Yo x

In contrast, for y» — 0o and x ~ 0 the massive vector correlator (84) behaves as

~ 1 3 X
< 2A,(2,2)0(0)O(ya) > ~ ey 24 3:):dﬁ2 (101)
2

(The difference can be traced back to a cancellation between I, and I in (80).) This means
that for a gauge field one cannot hope to cancel the boundary light-cone singularity which
is present in (100) by adding massive vector fields.

This is surprising because, from the bulk point of view, we’d expect a gauge field in the
bulk to commute at spacelike separation with a charged scalar on the boundary.!® Fortu-
nately the requirement of having Fj;n be local with scalars on the boundary, together with

13Note the step functions in (5), reflecting the fact that the Wilson lines extend towards z = 0.
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the gauge condition A, = 0, is enough to uniquely define the bulk gauge field in terms of
smeared CFT operators. Suppose we add a higher-dimension (hence non-conserved) primary
current jZ to our definition of a bulk gauge field, with a coefficient chosen to make F);y local.
Acting with the smearing function (73), (74) it would seem we generate a non-zero A, in the
bulk. We can restore holographic gauge by making a gauge transformation with parameter

)\:/ dz’/dx'KAi(z’,ﬂx’)Ai’o(x') (102)
0

Here A; is the dimension of the current and A%’ = — Ali_lauj;. So in order to build a
bulk massless vector field from boundary operators, where the three-point function of Fjy,y
is local, one has to add to the free-field definition of A, an infinite tower of contributions
coming from primary currents of increasing dimensions built from O, O and their derivatives,

of the form

1 -4 1 1,0 : / 4,0
zi:al |:;/KAJ;L+8M (2(Ai—d/2—|—1)/KAi+1AZ /0 dz /KA'LAZ ):| (103)

The same structure appeared in (12). Overall the correction (103) should make A, commute
with boundary scalars at spacelike separation.
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