
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Hybrid r-vacua in N=2 supersymmetric QCD: Universal
condensate formula

M. Shifman and A. Yung
Phys. Rev. D 87, 085044 — Published 30 April 2013

DOI: 10.1103/PhysRevD.87.085044

http://dx.doi.org/10.1103/PhysRevD.87.085044


REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

FTPI-MINN-13/07, UMN-TH-3139/13

Hybrid r-Vacua in N = 2 Supersymmetric
QCD: Universal Condensate Formula

M. Shifman a and A. Yung a,b

aWilliam I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN

55455, USA
bPetersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia

Abstract

We derive an exact unified formula for all condensates (quark and monopole) in the hybrid
r vacua in N = 2 supersymmetric QCD slightly deformed by a µA2 term. The gauge group
is assumed to be U(N) and the number of the quark flavors Nf subject to the condition
N < Nf < 2N . In the r vacua r quarks and N − r − 1 monopoles from non-overlapping
subgroups of U(N) develop vacuum expectation values (VEVs) (r < N). We then briefly
review possible dynamical regimes (confinement, screening, and “instead of confinement”)
in the hybrid r vacua in µ-deformed N = 2 SQCD (the small-µ limit).



1 Introduction

The main goal of this paper is to derive a unified formula for the quark and monopole
vacuum condensates in an arbitrary r vacuum in N = 2 supersymmetric QCD (SQCD) in
terms of the roots of the Seiberg-Witten curve [1]. Following Seiberg and Witten we deform
N = 2 SQCD by a small mass term µ for the adjoint field. We will show that all the
condensates reduce to effective parameters ξP ,

ξP = −2
√
2µ
√

(eP − e+N)(eP − e−N) (1.1)

where the subscript P = 1, ..., N−1 marks the appropriate condensates (quark or monopole),
e1, e2, ..., eN−1 are the double roots of the Seiberg-Witten curve corresponding to the quark
and monopole condensation, while e±N are two unpaired roots present in any r < N vacuum
in the case of the µTrA2 perturbation. If P lies in the interval [1, r], Eq. (1.1) describes
the quark vacuum expectation values (VEVs) [2], while for r + 1 ≤ P ≤ N − 1 it gives the
monopole VEVs.

For generic values of the quark masses the theories we discuss support BPS-saturated
non-Abelian magnetic strings [3, 4, 5, 6]. These strings confine monopoles. The tensions of
these strings are [7, 8]

TP = 2π|ξP | , P = 1, ..., r . (1.2)

For r+1 ≤ P ≤ N −1 the same expression gives the tensions of the Abelian electric strings,
which confine quarks. The value of the P -th condensate is ξP/2 (see below for a more precise
definition).

Let us briefly outline our basic model (a more detailed description and all relevant nota-
tion can be found in our previous original publications [5, 8] and the review papers [7]).

The gauge group of N = 2 SQCD under consideration is U(N). We introduce Nf quark
flavors (N < Nf < 2N) endowed with mass terms and then perturb N = 2 SQCD by a
small mass term µA2 for the adjoint matter (part of the N = 2 gauge supermultiplet).

At generic quark masses this theory has a number of isolated vacua where r flavors of
(s)quarks condense, r ≤ N (the so called r vacua). The r = N vacuum, with the maximal
possible number of condensed quarks, was studied more than others (for a review see [7]).
Non-Abelian flux tubes (strings) confining monopoles were shown to exist [3, 4, 5, 6] in this
vacuum, see [9, 10, 7] for extensive reviews. Massless r-vacua with r < N were studied in
[11, 12] in the SU(N) version of the theory.1

Extensions to U(N) were discussed recently for the r > Nf/2 and, in particular, r = N−1
and r = N cases [13, 14, 2]. Confinement of monopoles at weak coupling was demonstrated to
survive in the strong coupling regime at small values of the quark VEVs given by ξ/2 ∼ µm
where m is a typical quark mass. The latter was described in terms of the so-called r-duality

1If quark mass terms vanish certain r vacua coalesce, and the Higgs branches develop from the common
roots. The r < N vacua correspond to roots of the nonbaryonic Higgs branches, while the r = N vacuum to
a root of the baryonic Higgs branch in the SU(N) theory [11]. We consider nonvanishing, nondegenerative
quark masses.
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and was found to be an “instead-of-confinement” phase: the screened quarks decay into
monopole-antimonopole pairs with the monopoles confined by non-Abelian strings. One of
the results of [2] was the expression for the quark condensates in the low-energy theory in
terms of the roots of the Seiberg-Witten curve, see Eq. (1.1). In this paper we continue this
line of research and consider the monopole r = 0 as well as hybrid r vacua with r quarks
and (N −r−1) monopoles (from the orthogonal subgroups of U(N)) condensing.2 Equation
(1.1) proves to be valid for all condensates in all vacua. Although our derivation will be
carried out in particular examples the assertion is universal.

The paper is organized as follows. In Sec. 2 we discuss the r-vacuum structure and
review Eq. (1.1) for r > Nf/2. In Sec. 3 we present a detailed analysis of the monopole
(r = 0) vacuum and derive Eq. (1.1) in this case. As a byproduct we observe that Eq. (1.1)
reproduces the famous sine formula for the string tensions [15] in the limit of large quark
masses, when the theory under consideration reduces to pure gauge theory.3 Section 4 is
devoted to the hybrid r-vacua with r < Nf/2. Equation (1.1) for the quark and monopole
condensates is derived in certain examples. Finally, Section 5.1 presents an overall picture
of confinement and screening in the hybrid r vacua. In Sec. 5 we also summarize various
phases exhibiting themselves in different r vacua. Appendix contains details pertinent to
the VEVs calculation in a hybrid vacuum.

2 µ-Deformed SQCD: vacuum structure

2.1 The model

In the absence of deformation the model under consideration is N = 2 SQCD with Nf

massive quark hypermultiplets. We assume that Nf > N but Nf < 2N where N refers
to the gauge group, U(N). The latter inequality ensures our theory to be asymptotically
free. In addition, we will introduce a small mass term µA2 for the adjoint matter breaking
N = 2 supersymmetry down to N = 1 .

The field content is as follows. In addition to the SU(N) and U(1) N = 2 gauge su-
permultiplets we have Nf quark multiplets consisting of the complex scalar fields qkA and
q̃Ak (squarks) and their fermion superpartners — all in the fundamental representation of
the SU(N) gauge group. Here k = 1, ..., N is the color index while A is the flavor index,
A = 1, ..., Nf . We will treat qkA and q̃Ak as rectangular matrices with N rows and Nf

columns.
The superpotential of the undeformed theory is

WN=2 =
√
2

Nf
∑

A=1

(

1

2
q̃AAqA + q̃AAa T aqA +mA q̃Aq

A

)

, (2.1)

2A certain aspect of the large-µ limit was not quite adequately treated in [2]. This will be corrected in a
separate publication. In the present paper we limit ourselves to the small-µ limit.

3For a related discussion see [16].
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where A and Aa are chiral N = 1 superfields, the N = 2 superpartners of the gauge bosons,
while mA are the quark mass terms. Then we add a single trace deformation

Wbr = µTrΦ2, (2.2)

where

Φ =
1

2
A+ T aAa , (2.3)

and T a stand for the SU(N) generators. Generally speaking, (2.2) breaks4 N = 2 supersymmetry
down to N = 1 . We assume the deformation (2.2) to be weak,

|µ| ≪ Λ , (2.4)

where Λ is the scale of the N = 2 theory. Thus, we consider the theory close to its N =
2 limit.

2.2 Vacua

The number of isolated r = N vacua is

Nr=N = CN
Nf

=
Nf !

N !(Nf −N)!
. (2.5)

This is the maximal number of quark fields that can develop VEVs, see [7]. All gauge bosons
are completely Higgsed and the theory is in the color-flavor locking phase (assuming quark
masses to be close to each other). The quark VEVs are determined by ξP ’s (P = 1, ..., N)
of the order of µmP . For large values of ξ the theory is at weak coupling and can be
studied semiclassically. In particular, non-Abelian strings are known to exist which confine
monopoles [3, 4, 5, 6].

If we reduce ξ the theory undergoes a crossover transition from weak to strong coupling
regime, described in terms of a weakly coupled infrared-free dual theory [13] with the U(Ñ)
gauge group and Nf light quark-like dyon flavors, Ñ = Nf − N . The dyon condensation
leads to confinement of monopoles too. The quarks and gauge bosons of the original theory
are in the “instead-of-confinement” phase [13, 2].

The number of the r vacua5 with r < N is [12]

Nr<N =
N−1
∑

r=0

(N − r)Cr
Nf

=
N−1
∑

r=0

(N − r)
Nf !

r!(Nf − r)!
, (2.6)

representing the number of choices one can pick up r condensing quarks out of Nf quarks
times the Witten index in the classically unbroken SU(N − r) pure gauge theory.

4For small µ and equal quark masses (2.2) reduces to the Fayet-Iliopoulos F -term [17] which does not
break N = 2 supersymmetry, see [18, 19, 8].

5Our definition of r refers to the large quark mass domain. In fact, effectively r depends on the quark
masses, see [20].
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Consider a particular vacuum in which the first r quarks develop VEVs. We denote it as
(1, ..., r). Quasiclassically, at large masses, the adjoint scalar VEVs are

〈Φ〉 ≈ − 1√
2
diag [m1, ..., mr, 0, ..., 0] , (2.7)

where the last (N − r) entries classically vanish. In quantum theory the vanishing entries
become of the order of Λ, generally speaking. The classically unbroken U(N − r) gauge
sector gets Higgsed through the Seiberg–Witten mechanism [1], first down to U(1)N−r and
then almost completely by condensation of (N − r − 1) monopoles. A single U(1) factor
remains unbroken, as the monopoles are charged with respect to the Cartan generators of
the SU(N − r) group.

The presence of the unbroken U(1)unbr symmetry makes the r < N vacua qualitatively
different from the r = N vacuum: the latter has no massless gauge bosons. According to
[21], these sets of vacua belong to two different “branches.”

The low-energy theory in the r vacuum has the gauge group

U(r)× U(1)N−r , (2.8)

with Nf quark flavors charged under the U(r) factor and (N − r − 1) monopoles charged
under the U(1) factors.

2.3 r > Nf/2

For r > Nf/2 and large ξ the SU(r) non-Abelian quark sector is at weak coupling since it is
asymptotically free.6 The action of this theory is presented in [2] for a particular example,
the r = N − 1 vacuum. The quark condensates can be read-off from the superpotentials
(2.1) and (2.2) using (2.7). They are

〈qkA〉 = 〈 ¯̃qkA〉 = 1√
2





√
ξ1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 . . .

√
ξr 0 . . . 0



 ,

k = 1, ..., r , A = 1, ..., Nf . (2.9)

The first r parameters ξ in the quasiclassical approximation are

ξP ≈ 2 µmP , P = 1, ..., r. (2.10)

In quantum theory the parameters ξP determining the quark condensates are connected with
the roots of the Seiberg-Witten curve [8, 14, 2] which in the theory at hand takes the form
[11]

y2 =
N
∏

P=1

(x− φP )
2 − 4

(

Λ√
2

)2N−Nf
Nf
∏

A=1

(

x+
mA√
2

)

. (2.11)

6The opposite case r < Nf/2 is discussed in Sec. 4.
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Here φP are gauge invariant parameters on the Coulomb branch. Semiclassically,

Φ ≈ diag [φ1, ..., φN ] . (2.12)

In the r < N vacuum (more exactly, in the (1, ..., r) vacuum) we have

φP ≈ −mP√
2
, P = 1, ..., r , φP ∼ ΛN=2, P = r + 1, ..., N (2.13)

in the large mA limit, see (2.7).
To identify the r < N vacuum in terms of the curve (2.11) it is necessary to find such

values of φP which ensure the Seiberg-Witten curve to have N − 1 double roots, with r
parameters φP determined by the quark masses in the semiclassical limit, see (2.13). The
above N − 1 double roots will be associated with the r condensed quarks and (N − r − 1)
condensed monopoles – altogether N − 1 condensed states.

In contrast, in the r = N vacuum the maximal possible number of condensed states
(quarks) in the U(N) theory is N . As was mentioned, this difference is related to the the
unbroken U(1)unbr gauge group in the r < N vacua [21]. In the classically unbroken (after
the quark condensation) U(N−r) gauge group, N−r−1 monopoles condense at a quantum
level, breaking the non-Abelian SU(N − r) subgroup. One U(1) factor remains unbroken
because the monopoles are not coupled to this U(1).

Thus in the r < N vacua with the quadratic deformation superpotential (2.2) the Seiberg–
Witten curve factorizes [22],

y2 =

r
∏

P=1

(x− eP )
2

N−1
∏

K=r+1

(x− eK)
2 (x− e+N)(x− e−N ) . (2.14)

The first r double roots in the large mass limit are given by the mass parameters,
√
2eP ≈

−mP , P = 1, ..., r. Other (N −r−1) double roots associated with light monopoles are much
smaller and determined by Λ. The last two roots are also much smaller.

For the single-trace deformation superpotential (2.2) the sum of the unpaired roots van-
ishes [22],

e+N + e−N = 0 . (2.15)

The root e+N determines the value of the gaugino condensate [21].
Now, Eq. (1.1) was derived in one of our previous papers [2] for the case of the quark

condensate namely, for P = 1, ..., r.
In the remainder of this paper we demonstrate that the monopole condensates in the

monopole vacuum (r = 0) or hybrid r vacua are also determined by the same formula
with the replacement of the quark double roots by the monopole double roots, so that the
subscript P in (1.1) can run over monopole double roots P = (r + 1), ..., (N − 1) too. Thus
Eq. (1.1) is very general and determines VEVs of any condensed field independently of its
nature.
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3 r = 0: the monopole vacuum

In this section we consider the monopole vacuum with r = 0 and show that the monopole
condensates are still given by Eq. (1.1). Then, we demonstrate that for the above monopole
vacuum (in the limit of large quark masses, i.e. when the theory at hand reduces to pure
gauge theory) Eq. (1.1) gives the famous sine formula for the monopole VEVs and, hence,
the electric string tensions [15].

3.1 Monopole VEVs

Consider the simplest example: the r = 0 vacuum in U(2) SQCD with Nf quark flavors. It
is a straightforward generalization of the SU(2) theory studied in [1, 23]. The low-energy
gauge group is U(1)× U(1) where the first U(1) factor is associated with, say, the τ3 generator
of SU(2). In this case the light matter sector consists of one monopole singlet M and M̃
charged with respect to the first U(1) factor [1]. The relevant F -terms in the scalar potential
are

V (M, M̃, aD3 , a) = 2g2D

∣

∣

∣

∣

M̃M +
µ√
2

∂u2

∂aD3

∣

∣

∣

∣

2

+ g21

∣

∣

∣

∣

µ
∂u2

∂a

∣

∣

∣

∣

2

+ 2
∣

∣aD3 M
∣

∣

2
+ 2

∣

∣

∣
aD3

¯̃M
∣

∣

∣

2

+ · · · , (3.1)

where we denote the light adjoint scalar of the dual gauge multiplet associated with τ3 by aD3 ,
while a stands for the neutral scalar in the U(1) gauge multiplet of U(2). The corresponding
coupling constants are gD and g1, respectively. We also define

uk =

〈

Tr

(

1

2
a+ T a aa

)k
〉

, k = 1, ..., N . (3.2)

Thus, the deformation superpotential (2.2) is proportional to u2. From the potential (3.1)
it is easy to derive for the monopole vacuum

〈M̃M〉 = − µ√
2

∂u2

∂aD3
;

∂u2

∂a
= 0, aD3 = 0 . (3.3)

The Seiberg-Witten curve in this case factorizes as follows:

y2 = (x− e1)
2 (x− e+2 )(x− e−2 ), (3.4)

see (2.14). Here the double root at x = e1 corresponds to a single condensed monopole in
the r = 0 vacuum, while two other roots (subject to the condition (2.15)) determine the
gaugino condensate.
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Figure 1: β1 and C-contours in the x plane in the U(2) theory. Solid straight lines denote cuts.

The exact solution of the theory on the Coulomb branch relates the fields aD3 and a to
contour integrals running along the contours β1 in the x plane encircling the double root e1
and the contour C at infinity, see Fig 1.

Using explicit the expressions from [24, 25, 26, 27] and their generalizations to the U(N)
case [8] we arrive at

∂aD3
∂u2

=
1

2

1

2πi

∮

β1

dx

y
,

∂aD3
∂u1

=
1

2πi

∮

βi

dx

y
[x− (e1 + e2)] ,

∂a

∂u2
=

1

2

1

2πi

∮

C

dx

y
,

∂a

∂u1
=

1

2πi

∮

C

dx

y
[x− (e1 + e2)] , (3.5)

where the variables u1 and u2 are given in Eq. (3.2), while

e2 =
1

2

(

e+2 + e−2
)

. (3.6)

In fact, e2 should vanish due to the condition (2.15). We will see shortly that this is indeed
the case.

For the factorized curve (3.4) the integrals (3.5) can be easily evaluated. In particular,
the integral along the β1 contour is given by its pole contributions. This gives

∂aD3
∂u2

=
1

2

1
√

(e1 − e+2 )(e1 − e−2 )
,

∂a

∂u2
= 0,

∂aD3
∂u1

= − e2
√

(e1 − e+2 )(e1 − e−2 )
,

∂a

∂u1

= 1 . (3.7)

Inverting this matrix we get

∂u2

∂aD3
= 2
√

(e1 − e+2 )(e1 − e−2 ),
∂u2

∂a
= 2e2. (3.8)
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Now from (3.3) we see that indeed
e2 = 0 , (3.9)

i.e. the condition (2.15) is automatically met. The monopole VEV is 7

〈M〉 = 〈 ¯̃M〉 =
√

ξ1
2

(3.10)

with

ξ1 = −2
√
2µ
√

(e1 − e+2 )(e1 − e−2 ). (3.11)

We see that the monopole condensate in the r = 0 vacuum is determined by the same
Eq. (1.1) in much the same way as the quark condensates, see (2.9). Straightforward
generalization of this result to arbitrary N gives for for elementary monopole condensates

〈MP (P+1)〉 = 〈 ¯̃MP (P+1)〉 =
√

ξP
2
, (3.12)

where the parameters ξP are again determined by the general formula (1.1) (P = 1, ..., (N −
1)). Here MPP ′ denotes the monopole with the charge given by the root αPP ′ = wP − wP ′

of the SU(N) algebra with weights wP , P < P ′.

3.2 The sine formula

The famous sine formula for the k-string tensions (and, hence, condensates) was derived in
[15] in the N = 2 limit of pure gluodynamics. The latter can be obtained from our model
by tending the quark masses to infinity, where they decouple.

Consider the r = 0 monopole vacuum in the U(N) gauge theory with heavy quarks,
mA → ∞. The Seiberg-Witten curve in this case takes the form

y2 =
N
∏

P=1

(x− φP )
2 − 4

(

Λ0√
2

)2N

, (3.13)

where the scale Λ0 is

Λ2N
0 = Λ2N−Nf

Nf
∏

A=1

mA . (3.14)

The corresponding expressions for φP ’s, double monopole roots eP and two unpaired roots

7Here we also use the D-term condition requiring |M | = |M̃ |.
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e±N are [15]

φP = 2 cos
π(P − 1

2
)

N

Λ0√
2
, P = 1, ..., N,

eP = 2 cos
πP

N

Λ0√
2
, P = 1, ..., (N − 1),

e±N = ± 2
Λ0√
2
. (3.15)

Substituting these roots in the formula (1.1) we arrive at the following monopole VEVs:

〈M̃P (P+1)MP (P+1)〉 =
ξP
2

= −2iµΛ0 sin
πP

N
, (3.16)

The same monopole VEVs determine the tensions of the Abelian electric strings,

TP = 2π|ξP | , P = 1, ..., N − 1 . (3.17)

Our general expression (1.1) reproduces the sign formula! The string described by (3.16)
can be viewed [18] as the so-called “k strings,” see [16] and references therein.

In much the same way as the magnetic non-Abelian strings appearing upon the quark
condensation in the r vacua, these strings are BPS to the leading order in µ [18, 19]. These
Abelian electric strings confine quarks.

4 Hybrid r vacua

As was already mentioned, the low-energy gauge group in the hybrid r vacuum is (2.8), while
the light matter sector consist of Nf quark flavors charged under the U(r) gauge subgroup,
plus (N − r − 1) singlet Abelian monopoles. The quarks and monopoles are charged with
respect to orthogonal subgroups of U(N). Hence, they are mutually local (i.e. can be
described by a local Lagrangian). If in Sec. 2.3 we discussed the case r > Nf/2, now we
turn to the opposite case r < Nf/2.

In these vacua the low-energy theory is infrared free and it is at weak coupling once the
quark and monopole VEVs are small. To ensure this condition we assume all parameters ξP
given by (1.1) to be small enough.

For example, for large and (almost) equal quark masses the effective scale of the non-
Abelian SU(r) subgroup of (2.8) is

Λ
Nf−2r

SU(r) =
m2(N−r)

Λ2N−Nf
(4.1)

where m is the common mass, and |ξP | ≪ Λ2
SU(r), P = 1, ..., r. For simplicity here and in

Sec. 5.1 we assume m to be large and hence quarks have only electric color charges. For a
discussion of the small mass limit see Sec. 5.3.
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As an example we choose for our analysis the r = 1 vacuum in the U(3) gauge theory
with Nf quark flavors. The light matter sector consists of a single color component of Nf

quark flavors and a monopole singlet. We can choose color charges of quarks and monopole
as follows (see (2.7)):

~nq1A =

(

1

2
, 0;

1

2
, 0;

1

2
√
3
, 0

)

, ~nM23
=

(

0, 0; 0,−1

2
; 0,

√
3

2

)

, (4.2)

respectively, where we use the notation

~n =
(

ne, nm; n
3
e, n

3
m; n

8
e, n

8
m

)

, (4.3)

and ne and nm denote the electric and magnetic charges of a given state with respect to the
U(1) gauge group. Moreover, n3

e, n
3
m and n8

e, n
8
e stand for the electric and magnetic charges

with respect to the Cartan generators of the SU(3) gauge group. The charges chosen in (4.2)
correspond to taking the quark charge equal to the weight w1 and monopole charge equal to
the orthogonal root α23 = w2 − w3 of SU(3) subgroup of U(3), see Fig. 2.

1/2 1

11

M
23

q

Figure 2: Projection of charges (4.2) of the condensed quark and monopole states onto SU(3)
subalgebra of U(3).

From Eq. (4.2) we see that the quarks interact with U(1) gauge field

Aq
µ =

√

3

7

(

Aµ + A3
µ +

1√
3
A8

µ

)

(4.4)

with the charge

nq ≡
1

2

√

7

3
. (4.5)
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At the same time, the monopoles interact with the U(1) gauge field

AD
µ =

1

2

(

AD3
µ +

√
3AD8

µ

)

(4.6)

with the charge nM = 1, while the orthogonal combination

Aunbr
µ =

3

2
√
7

(

−4

3
Aµ + A3

µ +
1√
3
A8

µ

)

(4.7)

is the gauge field of the unbroken U(1)unbr always present in all r < N vacua. Here ADa
µ

denote dual gauge potentials associated with the Cartan generators of SU(3).
Relevant F -terms in the scalar potential of the low-energy theory are

V = 2g2q

∣

∣

∣

∣

nq q̃A1q
1A +

µ√
2

∂u2

∂aq

∣

∣

∣

∣

2

+ 2g2M

∣

∣

∣

∣

M̃23M23 +
µ√
2

∂u2

∂aD

∣

∣

∣

∣

2

+ g2unbr

∣

∣

∣

∣

µ
∂u2

∂aunbr

∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

(

nq aq +
mA√
2

)

q1A
∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

(

nq aq +
mA√
2

)

¯̃q1A
∣

∣

∣

∣

2

+ 2
∣

∣aDM
∣

∣

2
+ 2

∣

∣

∣
aD ¯̃M

∣

∣

∣

2

+ · · · , (4.8)

where aq, a
D and aunbr are scalar superpartners of the gauge potentials in (4.4), (4.6) and

(4.7), while gq, gM and gunbr are the corresponding U(1) gauge couplings. The dots represent
the D terms. From Eq. (4.8) we learn that

nq 〈 q̃A1q
1A〉 = − µ√

2

∂u2

∂aq
,

〈M̃23M23〉 = − µ√
2

∂u2

∂aD
,

∂u2

∂aunbr
= 0, (4.9)

while aD = 0 and
√
2nq aq = −m1. All derivatives in Eqs. (4.9) can be calculated from the

Seiberg-Witten curve which factorizes in the r = 1 vacuum at hand as follows:

y2 = (x− e1)
2 (x− e2)

2 (x− e+3 )(x− e−3 ). (4.10)

Double roots at x = e1 and x = e2 are associated with the light quark q11 and light monopole
M23, respectively. Details of this calculation can be found in Appendix. The result is

〈q̃11q11〉 =
ξ1
2
, 〈M̃23M23〉 =

ξ2
2
, (4.11)
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while the last equation in (4.9) ensures that e+3 +e−3 = 0, see (2.15). Here ξ1 and ξ2 are given
by (1.1).

Again we see that all condensates, independently on their nature, are determined by the
same universal formula (1.1). Above we analyzed only a few particular examples. Extension
to the general case is straightforward, however.

5 Dynamical regimes and dualities in

the r vacua

5.1 Confinement and screening

In the hybrid r vacua both quarks and monopoles charged with respect to orthogonal sub-
groups of U(N) condense. As a result, both the non-Abelian magnetic strings [3, 4, 5, 6] and
the Abelian Abrikosov-Nielsen-Olesen electric strings develop supported by the quark and
monopole condensates, respectively. Clearly, the magnetic strings confine monopoles while
the electric strings confine quarks. Now we focus on large quark masses, with the quarks
possessing pure color-electric charges.8

Let us turn again to the simplest example of the r = 1 vacuum in the U(3) gauge theory
and show how confinement and screening of different states work in this case. A similar
discussion for the r = 1 vacuum in the SU(3) gauge theory can be found in [28].

All charges of condensed quark q11 and monopole M23 are given in Eq. (4.2). Now we
calculate the fluxes of the strings formed due to condensation of these states. Consider first
the magnetic strings.

Since we have only one condensed quark q11 in r = 1 vacuum we deal with a single
Abelian magnetic string, to be referred to as Sm. Suppose the q11 quark has a winding

q11 ∼
√

ξ1
2
eiα, M23 ∼

√

ξ2
2

(5.1)

at r → ∞ (see (4.11)), where r and α are the polar coordinates in the plane i = 1, 2
orthogonal to the string axis. Equations (5.1) imply the following behavior of the gauge
potentials at r → ∞:

1

2
Ai +

1

2
A3

i +
1

2
√
3
A8

i ∼ ∂iα ,

−1

2
A3

i +

√
3

2
A8

i ∼ 0 , (5.2)

as follows from the quark and monopole charges in (4.2). In the r = 1 vacuum we have to
supplement these conditions with one extra condition ensuring that the combination (4.7)

8The string formation and confinement in the r dual theories at small quark masses due to the quark-like
dyon condensation was studied in [13, 2], see Sec. 5.3.
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of the gauge potentials, which interacts neither with the quark nor monopole, is not excited,
namely,

−4

3
Ai + A3

i +
1√
3
A8

i ∼ 0 . (5.3)

The solution to these equations is

Ai ∼
6

7
∂iα , A3

i ∼
6

7
∂iα , A8

i ∼
6

7
√
3
∂iα . (5.4)

It determines the gauge fluxes
∫

dxiAi,
∫

dxiA
3
i and

∫

dxiA
8
i of the string Sm, respectively.

The integration above is performed over a large circle in the (1, 2) plane.
Next, we define the string charges [13] as

∫

dxi(A
D
i , Ai; A

3D
i , A3

i ; A
8D
i , A8

i ) ≡ 4π (−ne, nm; −n3
e , n

3
m;−n8

e, n
8
m) .

(5.5)

This definition guarantees that the string has the same charge as a probe monopole which can
be attached to the string endpoint. In other words, the flux of the given string is the flux of
the probe monopole sitting on string’s end with the charge defined by (5.5). Note, that this
probe monopole does not necessarily exist in the theory under consideration. For example,
the monopoles from the SU(r) sector are rather string junctions, so they are attached to two
strings, [5, 13]. We will see below that the charges of the physical monopoles confined in the
hybrid vacuum differ from the charge of the probe monopoles.

In particular, according to this definition, the charge of the string with the fluxes (5.4) is

~nSm
=

(

0,
3

7
; 0,

3

7
; 0,

3

7
√
3

)

. (5.6)

Since this string is associated with the quark winding, it is magnetic.
Now let us consider the electric string existing due to the winding of the monopole M23.

In the vacuum at hand we have

q11 ∼
√

ξ1
2
, M23 ∼

√

ξ2
2
eiα (5.7)

at r → ∞. Therefore,

−1

2
A3D

i +

√
3

2
A8D

i ∼ ∂iα ,
1

2
A3D

i +
1

2
√
3
A8D

i ∼ 0 . (5.8)

Solution to these equation is

A3D
i ∼ −1

2
∂iα , A8D

i ∼
√
3

2
∂iα . (5.9)
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13

11
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12

Figure 3: Projection of charges of different quark and monopole states to SU(3) subalgebra of
U(3). Charges of condensed states are shown by solid arrows, while charges of confined states are
shown by dashed arrows.

The gauge potential AD
i is not excited. This gives the charge of the Se string,

~nSe
=

(

0, 0;
1

4
, 0; −

√
3

4
, 0

)

. (5.10)

Since this string is associated with the monopole winding, it is electric.
It is instructive to check that all quarks and elementary monopoles are either screened or

confined in the hybrid vacuum under consideration. Clearly the quarks q1A and monopoles
M23 are screened. Let us analyze other quarks q

2A, q3A as well as monopoles M12, M13. The
SU(3) projections of the charges of these states are shown in Fig. 3. Note, that these states
are heavy and are not included in the low-energy theory.

Start with the quark q2A. It should be confined by the electric sting Se. It is not difficult
to verify this. Indeed, the charge of this quark can be represented as

~nq2A =

(

1

2
, 0; −1

2
, 0;

1

2
√
3
, 0

)

= −~nSe
+

1

7
~nq11 +

9

7
~ne
unbr, (5.11)

where

~ne
unbr =

(

1

3
, 0; −1

4
, 0; − 1

4
√
3
, 0

)

(5.12)

is the source for the electric U(1)unbr gauge field (4.7). This U(1) is unbroken.
We see that the q2A quark is confined. Part of its electric flux is confined by the electric

string (5.10). Another part is screened by the q11 condensate. What is left is precisely the
flux of the unbroken gauge field U(1)unbr.
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Figure 4: Stringy mesons made of quarks and monopoles.

Of course, any three-dimensional vector of the quark q2A charges can always be written as
a linear combination of three orthogonal vectors. What is nontrivial in Eq. (5.11), however,
is the coefficient in front of the string charge: it should be integer to ensure confinement.

As a result of confinement and screening stringy mesons made of quarks and antiquarks
q2A connected by strings Se are formed, see Fig. 4. The string endpoints emit electric fluxes
of the unbroken U(1)unbr. This makes this meson a dipole-like configuration, cf. [2]. All
other color fluxes are either confined or screened inside the meson.

Analogously we can convince ourselves that the quark q3A is confined too. To check this
we represent the charge of this quark as

~nq3A =

(

1

2
, 0; 0, 0; − 1√

3
, 0

)

= ~nSe
+

1

7
~nq11 +

9

7
~ne
unbr . (5.13)

Thus, the q3A quark is obviously confined by the electric string Se. The unconfined part
of its flux is screened by the q11 condensate while the remainder coincides with the flux of
unbroken U(1)unbr.

Now we will pass to confinement of the monopoles. Decomposing

~nM12
= (0, 0; 0, 1; 0, 0 ) = ~nSm

− 1

2
~nM23

− 9

7
~nm
unbr (5.14)

we see that the part of the monopole M12 flux is confined by the magnetic string Sm (see
(5.6)), while the the second term is screened by the M23 condensate. The remainder of the
flux is proportional to

~nm
unbr =

(

0,
1

3
; 0, −1

4
; 0, − 1

4
√
3

)

, (5.15)

which is the source for the unbroken magnetic gauge field U(1)unbr.
As a result, a meson formed by the magnetic string Sm with the M12 monopole and its

antimonopole attached to the endpoints appears in the physical spectrum. This meson is a
dipole-like configuration emitting magnetic fluxes of the unbroken gauge field U(1)unbr, see
Fig. 4.
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For the M13 monopole we have

~nM13
=

(

0, 0; 0,
1

2
; 0,

√
3

2

)

= ~nSm
+

1

2
~nM23

− 9

7
~nm
unbr , (5.16)

This monopole is apparently confined by the same Sm magnetic string.
Note, that in the simple case at hand (r = 1) we have a single condensed quark and

a single condensed monopole (N − r − 1 = 1). Therefore other (confined) quarks and
monopoles play a role of the endpoints of electric and magnetic strings, respectively. In
the case of generic r, with r condensed quarks, we have r elementary magnetic non-Abelian
strings. Hence, the confined elementary monopoles of the SU(r) subgroup become junctions
of two “neighboring” strings [5, 2]. Similarly, for a generic value of (N−r−1) (i.e. N−r−1
condensed monopoles) we have (N − r − 1) Abelian electric strings, thus certain confined
quarks become junctions of two different elementary electric strings [18].

5.2 r Duality in N = 2

In Sec. 5.3 we will briefly analyze various phases attainable in N = 2 SQCD in the limit of
small quark masses. It is instructive to discuss now the transition to this limit.

From Sec. 2.3 we know that the low-energy theory in the r vacuum with r > Nf/2 is at
weak coupling because the quark masses are large and hence

√
ξ ≫ Λ. However, if we reduce

the quark masses making the parameters ξ small the quark sector runs to strong coupling,
and the theory undergoes a crossover transition.

At small values of ξ low-energy physics can be described by a dual weakly coupled infrared
free r-dual theory [2]. The gauge group of the r-dual theory is

U(ν)× U(1)N−ν , ν =

{

r, r ≤ Nf

2

Nf − r, r >
Nf

2

. (5.17)

The light matter sector of the r-dual theory is represented by Nf flavors of non-Abelian
quark-like dyons charged with respect to the gauge group SU(ν) (as well as a combination of
Abelian factors in (5.17)), plus (r−ν) singlet quarks and (N−r−1) monopoles charged with
respect to different Abelian factors in (5.17). The color charges of the non-Abelian quark-like
dyons are identical to those of quarks.9 However, they belong to a different representation of
the global color-flavor locked group. VEVs of both non-Abelian quark-like dyons and quark
singlets are still given by Eq. (1.1) with P = 1, ..., r [2].

Upon condensation of the quark-like dyons in the U(ν) sector of the r-dual theory non-
Abelian string are formed. These strings still confine monopoles, rather than quarks [13, 2].
Thus, r duality is not electromagnetic.

9Because of monodromies, the quarks (preserving their weight-like electric charges) pick up certain root-
like magnetic charges at strong coupling.
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At strong coupling where the dual description is applicable, the quarks and gauge bosons
of the original theory from the U(ν) sector are in the “instead-of-confinement” phase.
Namely, the Higgs-screened quarks and gauge bosons decay into monopole-antimonopole
pairs on the curves of marginal stability (CMS) [13, 29]. The (anti)monopoles pair is con-
fined. In other words, the original quarks and gauge bosons evolve at small ξ into monopole-
antimonopole stringy mesons (presumably forming the Regge trajectories).

Note, that the presence of the SU(ν)×U(1)Nf−ν gauge groups at the roots of the Higgs
branches in massless (ξ = 0) N = 2 SU(N) SQCD was first recognized long ago in [11], see
also [12].

5.3 Phases of N = 2 SQCD at small masses

In this section we summarize for completeness the phases of µ-deformed N = 2 QCD with
small quark masses (and small µ). First, we will discuss the small -r vacua, namely, r < Nf/2.

As we reduce the quark masses, the quantum numbers of the light states change due to
monodromies [1, 23, 30]. In particular, the quarks pick up root-like color-magnetic charges
in addition to their weight-like color-electric charges. Still (in the r < Nf/2 vacua) there
is no crossover, the low-energy theory remains the same: infrared free U(r)×U(1)N−r gauge
theory with Nf quarks (or, more exactly, what becomes of quarks) and N − r − 1 singlet
monopoles [31]. It is at weak coupling provided the parameters ξP are small enough.

The quarks from the U(r) sector and monopoles form the orthogonal U(1)N−r still develop
VEVs determined by Eq. (1.1). Physics of screening and confinement also remains intact
at small mA. Say, if a given monopole state (charged with respect to the Cartan generators
of SU(r)) is confined by the quark condensation at large masses, this confinement property
does not change when we follow this given state to the small mass domain, although the
quark color charges change [31]. If quarks are screened in the r vacuum at large masses
they (or what becomes of quarks) are still screened in the same vacuum in the limit of small
masses. Monodromies are nothing other than the relabeling of states, they do not change
physics.

In the r vacua with r > Nf/2 physics is quite different, see [13, 2] and Sec. 2.3 above.
With decreasing ξ the theory undergoes a crossover transition. At small ξ physics can be
described by weakly coupled infrared free r-dual theory with the gauge group U(ν)×U(1)N−ν

and ν = Nf − r. The quarks from U(ν) sector are in the “instead-of-confinement” phase:
the Higgs-screened quarks decay into the monopole-antimonopole pairs confined by the non-
Abelian strings. The singlet quarks from the U(1)r−ν sector and the monopoles from U(1)N−r

sector are Higgs-screened. Other monopoles charged with respect to Cartan generators of
SU(r) and heavy quarks charged with respect to the orthogonal U(1)N−r are confined.

17



6 Conclusions

Our main result is the demonstration of the fact that VEVs of all condensates – quark and
monopole – in the hybrid r vacua of N = 2 SQCD are given by the unified exact formula
(1.1). In the limit of infinitely heavy quarks, when the theory under consideration becomes
pure glue, this formula implies the will-known sine formula for the string tensions. (The P
strings appearing in (3.16) are usually referred to as k strings.)

In Sec. 5 we briefly discuss dynamical regimes and dualities in the hybrid r vacua. Due
to the condensation of r quarks and (N − r−1) monopoles we have r non-Abelian magnetic
and (N − r − 1) Abelian Abrikosov-Nielsen-Olesen electric strings in such vacua. Magnetic
strings confine monopoles, while electric strings confine quarks. We calculate the fluxes of
the confining strings. A similar discussion in the SU(N) theory was presented in [28].

Dynamical regimes and their change crucially depend on the value of r. In the r < Nf/2
vacua the small quark mass domain does not qualitatively differ from the large quark mass
domain: confinement and screening are essentially the same. In r > Nf/2 vacua the physics
is rather different. With decreasing mA (and hence decreasing ξ) the theory undergoes a
crossover transition and at small ξ can be described using r duality.
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Appendix: The r = 1 vacuum in U(3)

In this Appendix we calculate the derivatives ∂u2/∂aq and ∂u2/∂aD which appear in the
right-hand sides of Eqs. (4.9) for the quark and monopole condensates in the r = 1 vacuum
of the U(3) theory. This calculation is quite similar to the calculation in the r = 0 vacuum
in the U(2) theory in Sect. 3 and in the r = 3 vacuum in the U(3) theory in [8]. Therefore,
we will be brief.

Explicit expressions from [24, 25, 26, 27] generalized to the U(N) case [8] imply

∂Φ1

∂uk

=
1

2πi

∮

α1

dx

y
Pk(x) + δk1,

∂aD

∂uk

=
1

2πi

∮

β2

dx

y
Pk(x) + δk1,

∂ (Φ1 + Φ2 + Φ3)

∂uk

=
1

2πi

∮

C

dx

y
Pk(x) + 3δk1, (A.1)
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Figure 5: α1, β2 and C-contours in x-plane for the U(3) theory. Solid straight lines denote cuts.

where Φ1, Φ2 and Φ3 are diagonal elements of the matrix Φ, see (2.3), while the polynomials
Pk(x), k = 1, 2, 3 are given by

P3(x) =
1

3

P2(x) =
1

2

[

x− 1

3
(e1 + e2 + e3)

]

,

P1(x) = −2

[

x2 − 1

2
x (e1 + e2 + e3) +

1

9
(e1 + e2 + e3)

2

]

(A.2)

and e3 = (e+3 + e−3 )/2. Here the contours α1 and β2 encircle the double roots e1 and e2 of
the Seiberg-Witten curve (4.10) associated with the light quark q11 and the light monopole
M23, respectively, while C is the contour at infinity, see Fig. 5.

The contour integrals in (A.1) can be readily calculated, in particular the integrals along
the contours α1 and β2 are given by their pole contributions. These integrals determine
the derivatives of aq and aunbr with respect to uk since Φ1 = nq aq, while aunbr is a linear
combination of of aq and (Φ1 + Φ2 + Φ3) = 3a/2, see Eq. (4.7). Inverting the matrix
∂(aq, a

D, aunbr)/∂uk we get the desired expressions for ∂u2/∂aq, ∂u2/∂a
D and ∂u2/∂aunbr in

terms of the roots of the Seiberg-Witten curve.
Ommiting details presented in Sect. 3 and [8] for similar cases we arrive at the results

for the quark and monopole VEVs quoted in Eq. (4.11). Also, the last equation in (4.9)
gives e3 = 0, in accordance with (2.15).
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