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It has been recently shown that a kinetic theory can be modified to incorporate

triangle anomalies and the chiral magnetic effect by taking into account the Berry

curvature flux through the Fermi surface. We show how such a kinetic theory can

be derived from underlying quantum field theories. Using the new kinetic theory,

we also compute the parity-odd correlation function that is found to be identical to

the result in the perturbation theory in the next-to-leading-order hard dense loop

approximation.
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I. INTRODUCTION

Kinetic theory [1] has wide applications in condensed matter physics, nuclear physics, as-

trophysics and cosmology. There is, however, a key deficiency in the conventional relativistic

kinetic framework: it misses the effect of triangle anomalies [2, 3] — an important feature

of relativistic quantum field theories. Recently it has been shown in Ref. [4]1 that a kinetic

theory for Fermi liquids can be modified to include such anomalous effects by taking into

account the Berry phase and Berry curvature [12] — the notions extensively studied and

widely applied in condensed matter physics [13]. It was shown that not only the form of the

transport equation but also the definition of the particle number current must be modified

when the Berry curvature has a nonzero flux through the Fermi surface. A consequence

of this modification is the generation of parity-violating and dissipationless current in the

presence of magnetic field, called the chiral magnetic effect [14–17]. This had been previ-

ously found in the perturbation theory [14, 17] and the gauge/gravity duality [18, 19] and

was incorporated in the framework of hydrodynamics [20] (see also Refs. [21, 22] for more

recent developments). The chiral magnetic effect may have been experimentally observed

in relativistic heavy ion collisions [17, 23] and is potentially observable in Weyl semimetals

which possess band-touching points [24–26].

On the other hand, one should be able to derive the kinetic theories from the underlying

quantum field theories by following the standard procedure: starting from the equations of

motion for the two-point function 〈ψ(x)ψ†(y)〉 and performing a derivative expansion for its

gauge-covariant Wigner transform, one arrives at the Vlasov equation (see, e.g., Ref. [27]

for a review). So far, Berry curvature corrections to the relativistic kinetic theory have been

ignored in the field theoretic derivation. Also, microscopic origin of the modification to the

particle number current is not yet clear.

In this paper, we microscopically derive the kinetic theory with Berry curvature correc-

tions from underlying quantum field theories.2 For concreteness, we consider the system of

relativistic chiral fermions at finite chemical potential µ (which is known to have a nonzero

Berry curvature flux). Our starting point is the high density effective theory [30, 31] that

describes the physics near the Fermi surface of chiral fermions. In this effective theory, one

1 See Refs. [5–9] for further investigations and applications. See also Refs. [10, 11] for different approaches

to derive kinetic equations with triangle anomalies without referring to the Berry curvature.
2 See Refs. [28, 29] for related attempts.
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decomposes two-component chiral fermions into single-component particles ψ+ with positive

energy E = |p| − µ and antiparticles ψ− with negative energy E = −|p| − µ. Then one

usually concentrates on the former with E ∼ 0 for |p| ∼ µ, while neglecting the latter with

E ∼ −2µ; picking up only ψ+ degrees of freedom leads to the conventional Vlasov equation.

As we shall demonstrate in this paper, however, if one carefully integrates out ψ− degrees of

freedom, Berry curvature corrections emerge in the kinetic theory from the mixing between

ψ+ and ψ− (or ψ− and ψ−). The modification to Liouville’s theorem on the phase space

known in the condensed matter literature [32, 33] and the modification to the current found

in Ref. [4] can be naturally understood from this deliberate integrating out procedure [see

Eqs. (71) and (76)]. Apparently, the essential ingredient in this field theoretic argument to

lead to Berry curvature corrections is a Fermi surface of chiral fermions.

We also compute the parity-violating correlation function, using the kinetic theory with

Berry curvature corrections. In the case of the conventional Vlasov equation, it is known

that the parity-even correlation function computed in the kinetic theory coincides with the

one in the perturbation theory under the hard dense loop approximation [27, 34]. In this

paper, we will see that the parity-odd correlation function derived from the new kinetic

theory is equivalent to the result in the perturbation theory beyond the leading-order hard

dense loop approximation.

The paper is organized as follows. In Sec. II, we review the kinetic theory with Berry

curvature corrections. We also derive a new relation for the spin magnetic moment of

quasiparticles in Fermi liquids. In Sec. III, we derive the new kinetic theory starting from

quantum field theories. In Sec. IV, we compute the parity-violating correlation functions

using both the new kinetic theory and perturbation theory, and confirm their agreement.

Section V is devoted to our conclusions.

Throughout the paper, we consider sufficiently low temperature regime T ≪ µ where the

Fermi surface is well-defined. We also concentrate on the collisionless limit of the kinetic

theory.

II. KINETIC THEORY WITH BERRY CURVATURE

In this section, we review the kinetic theory in the presence of the Berry curvature which

exhibits triangle anomalies [4] (see also Refs. [7, 9]) and provide the proper definitions of
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particle number density and current. We also derive the dispersion relation of quasiparticles

according to the constraints of Lorentz invariance.

A. Berry curvature and Poisson brackets

We first consider a single chiral fermion expressed by the two-component spinor up sat-

isfying the Weyl equation

(σ · p)up = ±|p|up, (1)

where the signs + and − correspond to right-handed and left-handed fermions, respectively.

The two-component spinor described above has a nonzero Berry connection defined by [12]

Ap ≡ u†p∇pup, (2)

and a nonzero Berry curvature,

Ωp ≡ ∇p ×Ap = ± p̂

2|p|2 , (3)

where p̂ = p/|p| is a unit vector. Equations (2) and (3) can be regarded as the fictitious

vector potential and magnetic field in the momentum space. This fictitious magnetic field

can be associated with the one from a “magnetic monopole” with the charge ±1/2 put in

the center of the momentum space. As a result, the motion of chiral fermions is affected by

the Berry curvature in the momentum space, in addition to the usual electromagnetic fields

in the coordinate space. In particular, the effects of the Berry curvature work oppositely

between right-handed and left-handed chiral fermions.

Let us now consider the action of a single quasiparticle in the presence of the electromag-

netic fields and Berry curvature [32, 33],

S =

∫

dt[piẋi + Ai(x)ẋi −Ai(p)ṗi − ǫp(x)− A0(x)]. (4)

Note that the quasiparticle energy ǫp is a function of x in general; indeed chiral fermions

have the magnetic moment at finite chemical potential µ and their energy depends on the

magnetic field B(x) [see Eq. (43) below]. The action (4) can be summarized in the following

form, by combining space x and momentum p into a set of variables ξa (a = 1, · · · , 6),

S =

∫

dt[−ωa(ξ)ξ̇
a −H(ξ)], (5)
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where H(ξ) = ǫp + A0 is the Hamiltonian.

The equations of motion of the action (5) read

ωabξ̇
b = −∂aH, (6)

where ωab = ∂aωb − ∂bωa and ∂a ≡ ∂/∂ξa. This equation can be rewritten as

ξ̇a = −ωab∂bH, (7)

where ωab ≡ (ω−1)ab is the inverse matrix of ωab. Here we assume the existence of the inverse

matrix, i.e., ω ≡ detωab 6= 0. Equation (7) can be interpreted as

ξ̇a = {H, ξa} = −{ξa, ξb}∂H
∂ξb

, (8)

once we define the Poisson brackets as

{ξa, ξb} = ωab. (9)

The explicit forms of the Poisson brackets for the action (5) read [33]

{pi, pj} = − ǫijkBk

1 +B ·Ω , {xi, xj} =
ǫijkΩk

1 +B ·Ω , {pi, xj} =
δij + ΩiBj

1 +B ·Ω , (10)

where Bi = ǫijk∂Ak/∂xj .

These Poisson brackets should be compared with the usual ones in the absence of the

Berry curvature and electromagnetic fields:

{pi, pj} = 0 , {xi, xj} = 0 , {pi, xj} = δij , (11)

whose invariant phase space is dpdx/(2π)3. As a consequence of the modifications to the

Poisson brackets above, the invariant phase space is modified to [32]

dΓ =
√
ω dξ = (1 +B ·Ωp)

dp dx

(2π)3
, (12)

where ω ≡ detωab.

B. Kinetic theory with Berry curvature and triangle anomalies

Let us construct the collisionless kinetic theory incorporating the effects of the Berry

curvature. If collisions between particles are negligible, each particle constitutes a closed

subsystem. According to the Liouville’s theorem which states that a volume element in the
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phase space does not change during its time evolution, the one-particle distribution function

n(ξ) would obey dn/dt = 0. However, the invariant phase space is modified as Eq. (12)

due to the Berry curvature, and the probability of finding a particle in the phase space is
√
ωn(ξ)dξ. As a result, we instead use the modified distribution function ρ(ξ) =

√
ωn(ξ)

that obeys the equation dρ/dt = 0, or equivalently,

ρ̇+ ∂a(ξ̇
aρ) = 0. (13)

Using Eq. (7), this reduces to

ṅp − ωab∂bH∂anp = 0. (14)

Setting H = ǫp +A0, we can explicitly write down the kinetic equation (see also Refs. [7, 9,

33]):

ṅp +
1

1 +B ·Ωp

[

(

Ẽ+ ṽ ×B+ (Ẽ ·B)Ωp

)

· ∂np

∂p
+
(

ṽ + Ẽ×Ωp + (ṽ ·Ωp)B
)

· ∂np

∂x

]

= 0,

(15)

where ṽ = ∂ǫp/∂p and Ẽ = E−∂ǫp/∂x. This is a general low-energy effective theory in the

presence of Berry curvature corrections that describes the evolution of np. Note that ṽ is

different from the unit vector p̂ when the quasiparticle energy ǫp has the contribution from

the magnetic moment [see Eq. (43) below]. If we turn off the Berry curvature and ignore

the x-dependence of ǫp (i.e., Ωp = 0 and ∂ǫp/∂x = 0), this reduces to the usual Vlasov

equation.

We now define the particle number density

n =

∫

d3p

(2π)3
(1 +B ·Ωp)np, (16)

where the invariant phase space is modified according to Eq. (12). Multiplying the kinetic

equation (15) by
√
ω, performing the integral over momentum p, and using Maxwell equa-

tions, ∇ ·B = 0 and ∂tB+∇× E = 0, we obtain the following identity [4]:

∂tn+∇ · j = −
∫

d3p

(2π)3

(

Ωp · ∂np

∂p

)

E ·B, (17)

where

j = −
∫

d3p

(2π)3

[

ǫp
∂np

∂p
+

(

Ωp · ∂np

∂p

)

ǫpB+ ǫpΩp × ∂np

∂x

]

+ E× σ, (18)
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is identified with the current and σ is defined as

σ =

∫

d3p

(2π)3
Ωpnp. (19)

In Eq. (17), we observe that the particle number of chiral fermions is no longer conserved

when we turn on both electric and magnetic fields. This can be evaluated, by integration by

part and using ∇p ·Ωp = 0 around the Fermi surface, np = 1 deep inside the Fermi surface

and np = 0 far outside the Fermi surface, as

∂tn +∇ · j = ± 1

4π2
E ·B, (20)

for right-handed and left-handed fermions, respectively. This is exactly the equation of

triangle anomalies in relativistic quantum field theories [2, 3], which holds independently of

interactions.

The first term in Eq. (18) is the usual particle number current of the kinetic theory, while

the remaining terms are the Berry curvature corrections. The same form of the current can

be obtained in the Hamiltonian formalism using the commutation relations postulated in

Ref. [4]. The final term in Eq. (18) is the anomalous Hall current, which vanishes for a

spherically symmetric distribution function at rest. In this case, the current is

j = −
∫

d3p

(2π)3

[

ǫp
∂np

∂p
+

(

Ωp · ∂np

∂p

)

ǫpB+ ǫpΩp × ∂np

∂x

]

. (21)

At this moment, microscopic origins of the Berry curvature corrections to the particle number

density and current in Eqs. (16) and (21) are not so clear. In Sec. III, microscopic meanings

of these corrections will be clarified in the field theoretic language.

It should be remarked that there is an ambiguity to define the number current from

the continuity equation because j̃ = j + ∇ × a with any vector a is also a solution to the

continuity equation. In order to fix this ambiguity, we look at the energy and momentum

conservations. Define the energy density and the momentum density,

ǫ =

∫

d3p

(2π)3
(1 +B ·Ωp)ǫpnp, πi =

∫

d3p

(2π)3
(1 +B ·Ωp)p

inp. (22)

Multiplying Eq. (15) by ǫp
√
ω and pi

√
ω, and performing the integral over momentum p,

we have

∂tǫ+

∫

d3p

(2π)3
ǫpF = 0, ∂tπ

i +

∫

d3p

(2π)3
piF = 0, (23)



8

where F is the piece in the square brackets of Eq. (15). The above equations can be

respectively interpreted as the energy and momentum conservation laws

∂µT
0µ = Eiji, ∂µT

iµ = nEi + ǫijkjjBk, (24)

where

T 0i = −
∫

d3p

(2π)3

[

(δij +BiΩj)
ǫ2p
2

∂np

∂pj
+ ǫijk

ǫ2p
2
Ωj ∂np

∂xk

]

, (25)

T ij = −
∫

d3p

(2π)3
pi
[

ǫp(δ
jk +BjΩk)

∂np

∂pk
+ ǫjklΩk

(

Elnp + ǫp
∂np

∂xl

)]

− δijǫ, (26)

which indicates that ji is the genuine current.

Alternatively, this ambiguity is avoided if we use the definition of the current [7, 9]

j =

∫

d3p

(2π)3
√
ωẋ. (27)

By using Eq. (7), one can actually check that this current is equal to Eq. (18).

In equilibrium where np is homogeneous, the first and third terms in the right-hand side

of Eq. (21) vanish, while the second term is nonvanishing. Using ǫp = µ at the Fermi surface

with µ the chemical potential, we find

j = −
∫

d3p

(2π)3

(

Ωp · ∂np

∂p

)

µB = ± µ

4π2
B. (28)

This is the relation of the chiral magnetic effect [14, 15, 17]: the equilibrium current induced

in the direction of the magnetic field for chiral fermions at finite chemical potential µ.

C. Lorentz invariance in Fermi liquids

Here we consider the consequences of Lorentz invariance in a system described by Lan-

dau’s Fermi liquid theory [35]. The constraint due to Lorentz invariance is that the energy

flux is equal to the momentum density, T 0i = πi. From Eqs. (22) and (25), this condition

in the homogeneous system becomes

−
∫

d3p

(2π)3
(δij +BiΩj

p)
ǫ2p
2

∂np

∂pj
=

∫

d3p

(2π)3
(1 +B ·Ωp)p

inp. (29)

We vary both hand sides of Eq. (29) as np = n0
p + δnp and ǫp = ǫ0p + δǫp, where

δǫp =

∫

d3q

(2π)3
(1 +B ·Ωq)f(p,q)δnq, (30)
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with f(p,q) being some function characterizing the interactions among quasiparticles, called

the Landau parameters. By performing the integral by parts, we have

∫

d3p

(2π)3
(δij +BiΩj

p)

[

1

2

∂(ǫ0p)
2

∂pj
δnp − ǫ0pδǫp

∂n0
p

∂pj

]

=

∫

d3p

(2π)3
(1 +B ·Ωp)p

iδnp. (31)

Using Eq. (30) and renaming variables q ↔ p, the second part of the left-hand side reduces

to

−
∫

d3p

(2π)3
(1 +B ·Ωp)

(
∫

d3q

(2π)3
(δij +BiΩj

q)f(p,q)ǫ
0
q

∂n0
q

∂qj

)

δnp. (32)

Because δnp is arbitrary, we have the relation:

(δij +BiΩj
p)ǫ

0
p

∂ǫ0p
∂pj

− (1 +B ·Ωp)

∫

d3q

(2π)3
(δij +BiΩj

q)f(p,q)ǫ
0
q

∂n0
q

∂qj
= (1 +B ·Ωp)p

i.

(33)

To proceed, we take an ansatz

ǫ0p = vf(p− pf) + µ+ γ(p)B · p, (34)

to the linear order in B, with some constants vf , pf , µ, and γ being a scalar function

of p ≡ |p|. Note that the Fermi velocity defined by ∂ǫ0p/∂p is B-dependent. Note also

that Landau parameters are functions of B; from the property f(p,q) = f(q,p), Landau

parameters are composed of two parts (to the linear order in B):

f(p,q) = fA(p,q) +
B · (p̂+ q̂)

2p2f
fB(p,q), (35)

where fA,B(p,q) are independent of B and can be expanded by the Legendre functions as

fA,B(p,q) =
∞
∑

l=0

fA,B
l Pl(cos θ), (36)

where θ is the angle between p and q both taken on the Fermi surface.

We now evaluate both hand sides of Eq. (33) to the linear order in B. Substituting

Eqs. (34) and (35), replacing p by pf , and performing the angular integral (note also that

n0
p has the B-dependence), we have

µvf

(

1 +
1

3
FA
1

)

p̂i +

[

pf

(

vfγ + µγ′ − 1

3
µvfF

′A
1

)

+
µvf
2p2f

(

1

3
FA
1 +

1

3
FB
1 +

1

5
FB
2

)

]

(B · p̂)p̂i

+µ

[

vf
2p2f

(

1 + FA
0 +

1

3
FB
0 − 1

15
FB
2

)

+ γ

]

Bi =

(

pf +
B · p̂
2pf

)

p̂i, (37)
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where γ ≡ γ(pf), γ
′ ≡ ∂

∂p
γ(pf), and we defined

∫

dq̂
∂fA(p,q)

∂qi
(B · q̂) ≡ 1

3
f ′A
1 (B · p̂)p̂i. (38)

In order to satisfy Eq. (37) for any B and p̂, we must have

vf

(

1 +
1

3
FA
1

)

=
pf
µ
, (39)

γ = − vf
2p2f

(

1 + FA
0 +

1

3
FB
0 − 1

15
FB
2

)

, (40)

pf

(

vfγ + µγ′ − 1

3
µvfF

′A
1

)

+
µvf
2p2f

(

1

3
FA
1 +

1

3
FB
1 +

1

5
FB
2

)

=
1

2pf
(41)

While Eq. (39) is the relation obtained by Baym and Chin [36], Eq. (40) is a new relation

for the anomalous spin magnetic moment. A constraint from the gauge invariance on the

anomalous angular magnetic moment in Fermi liquids was originally given by Migdal [37]

and was studied in details in Ref. [38]. Here we have provided the new constraint on the

anomalous spin magnetic moment from the viewpoint of the Berry curvature together with

the Lorentz invariance.

In particular, in the noninteracting limit where f(p,q) are turned off and pf = µ, we

obtain

vf = 1, γ(µ) = − 1

2µ2
, γ′(µ) =

1

µ3
. (42)

A solution to satisfy these relations is taken as γ(p) = −1/(2p2). In this case, we have

ǫ0p = p− B · p̂
2p

. (43)

We shall see in Sec. III [Eqs. (51) and (65)], based on the microscopic quantum field theories,

that this is actually the dispersion relation of chiral fermions near the Fermi surface.

III. FROM QUANTUM FIELD THEORIES TO KINETIC THEORY WITH

BERRY CURVATURE

In this section, we derive the kinetic theory constructed in Sec. II B from the microscopic

quantum field theories: the kinetic equation (15) and the modified number density (16) and

current (18) are reproduced microscopically. The resultant kinetic theory exhibits triangle

anomalies and the chiral magnetic effect.
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Our procedure is as follows: we first consider the high density effective theory [30, 31],

which is an effective field theory valid near the Fermi surface. The expansion parameter of

the theory is l/µ where l is the residual momentum measured from the Fermi surface. We

then derive the kinetic theory, by performing the derivative expansion for the equations of

motion of the Wigner function defined in the high density effective theory. The expansion

parameter here is the slowly varying disturbances ∂X taken to be much smaller than the

chemical potential µ and the gauge field Aµ. Note that our procedure does not rely on

the expansion in terms of the coupling constant, and hence, it is applicable even when the

interactions are strong as long as the notion of quasiparticles is well-defined.

In this and following sections, we consider the theory with right-handed chiral fermions.

A. High density effective theory

We first review the derivation of the high density effective theory [30, 31]. We start with

the Lagrangian for right-handed fermions,

L = ψ†(i6D + µ)ψ, (44)

where 6D = σµDµ with Dµ = ∂µ + iAµ and σµ = (1,σ), and Aµ is the external background

field.

In order to focus on the particles near the Fermi surface, we decompose the energy and

momentum of a particle (or a hole) near the Fermi surface as p0 = µ + l0 and p = µv + l

with l0, |l| ≪ µ, where v is a unit vector which specifies a direction to a point on the Fermi

surface. The momentum can be shifted by µv by performing a Fourier transformation

ψ(x) =
∑

v

eiµv·xψv(x), (45)

where summation is taken over v. The matrix σ · v in the momentum space can be diago-

nalized by using the projectors as

ψ±v = P±(v)ψv, P±(v) =
1± σ · v

2
. (46)

In the absence of the external electromagnetic field, ψ± satisfies the eigenvalue equations,

(σ · v)ψ± = ±ψ±.
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In terms of ψ±v, Eq. (44) reduces to

ψ†(i6D + µ)ψ =
∑

v

[ψ†
+viv ·Dψ+v + ψ†

−v(2µ+ iv̄ ·D)ψ−v + (ψ†
+vi6D⊥ψ−v + h.c.)], (47)

where vµ = (1,v), v̄µ = (1,−v), σµ
⊥ = (0,σ − v(v · σ)), Dµ

⊥ = (0,D − v(v · D)), and

6D⊥ = σµ
⊥Dµ = σµD⊥

µ . By integrating out ψ−v using the equation of motion for ψ−v,

(2µ+ iv̄ ·D)ψ−v + i6D⊥ψ+v = 0, (48)

the effective Lagrangian in terms of ψ+ can be written down order by order in 1/µ:

LEFT =
∑

n

L(n), L(n) =
∑

v

ψ†
+vD(n)ψ+v, (49)

where L(n) denotes the effective Lagrangian of the n-th order in 1/µ (n = 0, 1, 2, · · · ). The
explicit expressions for D(n) (n = 0, 1, 2) are

D(0) = iv ·D, D(1) =
6D2

⊥

2µ
, D(2) = − i

4µ2
6D⊥(v̄ ·D) 6D⊥. (50)

Using 6D2
⊥ = D2

⊥ +B · σ, ψ†
+vσψ+v = ψ†

+vvψ+v, and p = µ+ l‖ + l2⊥/(2µ) +O(1/µ2), the

dispersion relation near the Fermi surface reads

ǫp = p− B · v
2µ

+O

(

1

µ2

)

. (51)

This indeed agrees with Eq. (43) up to O(1/µ2). (The agreement will be shown to the

order of O(1/µ2) in the next subsection.) The second term in Eq. (51) originates from the

magnetic moment of chiral fermions at finite µ. This is similar in structure to the Pauli

equation that describes the magnetic moment of massive Dirac fermions in the vacuum; the

Pauli equation can be obtained by expanding the massive Dirac equation in 1/m, where m

is the mass of Dirac fermions.

B. Kinetic theory via derivative expansion

We construct the kinetic theory based on the effective theory (49) on a patch indicated

by a unit vector v. We consider the Dirac operator to the second order in 1/µ, D =

D(0) +D(1) +D(2), and introduce a two-point function for ψv,

Gv(x, y) = 〈ψv(x)ψ
†
v(y)〉. (52)
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The function Gv(x, y) satisfies equations of motion together with projection conditions,

DxGv(x, y) = 0, Gv(x, y)D†
y = 0, (53)

P−(v)Gv(x, y) = 0, Gv(x, y)P−(v) = 0. (54)

In thermal equilibrium where the system is homogeneous, Gv depends only on the relative

coordinate s = x − y. We are interested in the small deviation from the equilibrium where

Gv depends both on x and y. It is thus useful to change the coordinates from (x, y) to the

center-of-mass and relative coordinates (X, s) defined by

x = X +
s

2
, y = X − s

2
, (55)

and consider the derivative expansion with respect to X . In order to derive a quantum

analogue of the classical distribution function, we perform the Wigner transformation:

Gv(X, l) =

∫

d4s eil·sGv

(

X +
s

2
, X − s

2

)

, (56)

where lµ is the residual four-momentum. Unlike Gv(x, y), however, Gv(X, l) is not gauge

covariant. We will thus use the gauge covariant definition instead:

G̃v(X, l) =

∫

d4s eil·sU
(

X,X +
s

2

)

Gv

(

X +
s

2
, X − s

2

)

U
(

X − s

2
, X

)

, (57)

where

U(x, y) = P exp

[

−i
∫

γ

dxµAµ(x)

]

, (58)

is the Wilson line. The symbol P the path-ordering along the path γ from x to y. For

simplicity, G̃v(X, l) is renamed Gv(X, l) in what follows.

In constructing the kinetic theory, we consider the slowly varying disturbances and per-

form a gradient expansion in terms of ∂X . To this end, we assume the following counting

scheme: ∂X = O(ǫ1), ∂s = O(ǫ2), Aµ = O(ǫ3), and Fµν = O(ǫ1ǫ3). Here ∂X and ∂s are

the derivatives with respect to X and s, and ǫi (i = 1, 2, 3) are independent expansion pa-

rameters which satisfy the conditions, ǫ1 ≪ ǫ2,3 ≪ 1. The condition ǫi ≪ 1 (i = 1, 2, 3) is

necessary for the derivative expansion in the high density effective theory while ǫ1 ≪ ǫ2,3 is

necessary for the derivative expansion in the kinetic theory. In order to take into account

triangle anomalies, we consider the kinetic theory to O(ǫ21ǫ
2
3) [or the occupation number np

to O(ǫ1ǫ
2
3)].
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For simplicity, in this subsection we consider the homogeneous system where ∂Xρ Fµν = 0

and ∂Xi np = 0 (np is the distribution function which will be defined below). This is sufficient

for our purpose to understand the microscopic origin of the Berry curvature corrections. The

generalization to the inhomogeneous case should be straightforward.

Consider the equations, DxGv(x, y)± Gv(x, y)D†
y = 0. We expand them in terms of ∂X

to the second order and perform the Wigner transformation. The Wigner transform of the

equations can be written down order by order,

I
(n)
± ≡

∫

d4s

(2π)4
eil·s (D(n)

x Gv ±GvD(n)†
y ), (59)

for n = 0, 1, 2. The expansion of the gauge field Aµ in ∂X reads,

Aµ(x) ≈ Aµ(X) +
1

2
(s · ∂X)Aµ(X) +

1

8
(s · ∂X)2Aµ(X). (60)

Combined with the contributions from the Wilson loop in Eq. (57), all the terms involving

the gauge field are expressed by the gauge invariant field strength Fµν at the end. Then the

third term in the right-hand side of Eq. (60) will be irrelevant eventually when ∂Xρ Fµν = 0.

Renaming the kinetic residual momentum l̃µ = lµ −Aµ as lµ, we have

I
(0)
+ = 2(l0 − l‖)Gv, I

(0)
− = ivµ(gµ0∂t − Fµν∂

ν
l )Gv, (61a)

I
(1)
+ =

1

µ
(−l2⊥ +B · v)Gv, I

(1)
− =

i

µ
lµ⊥(gµ0∂t − Fµν∂

ν
l )Gv, (61b)

I
(2)
+ =

1

µ2
[l‖(l

2
⊥ −B · v) +B · l⊥ + (E× l) · v]Gv, (61c)

I
(2)
− = − i

2µ2

[

2l‖l
µ
⊥ − 1

2
(l2⊥ −B · v)v̄µ − ǫijkvkv̄σF

iσgµj
]

(gµ0∂t − Fµν∂
ν
l )Gv,

where ∂l is the derivative with respect to the residual momentum l, and l0 = l‖ +O(l2/µ) is

used in Eq. (61c).

From the equation DxGv(x, y) + Gv(x, y)D†
y = 0, we obtain the on-shell condition. Con-

sidering the projection conditions (54), Gv can be written as

Gv = 2πP+(v)δ

(

l0 − l‖ −
l2⊥ −B · v

2µ
+
l‖(l

2
⊥ −B · v) +B · l⊥

2µ2

)

nl, (62)

where nl(X) is the distribution function expressed by the residual momentum l. Recalling

p = µ+ l‖ +
l2⊥
2µ

− l2⊥l‖
2µ2

+O

(

1

µ3

)

, (63)

B · p̂
2p

=
B · v
2µ

+
B · l⊥ − l‖B · v

2µ2
+O

(

1

µ3

)

, (64)
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the dispersion relation in the delta function of Eq. (62) is equivalent to the condition p0 = ǫp

with

ǫp = p− B · p̂
2p

, (65)

which indeed coincides with Eq. (43). Accordingly, the distribution function nl can be

replaced by np in terms of the original momentum p.

On the other hand, from the equation DxGv(x, y) − Gv(x, y)D†
y = 0, we obtain the

transport equation for nl(X). Using

p̂ = v +
l⊥

µ
− l2⊥v + 2l‖l⊥

2µ2
+O

(

l3

µ3

)

, (66)

the transport equation can also be expressed by the original momentum p. We end up with

the transport equation:
(

1 +
B · p̂
2µ2

)

ṅp +

[

(E+ p̂×B) + (E ·B)
p̂

2µ2

]

· ∂np

∂p
= 0. (67)

Equation (67) indeed agrees with the homogeneous limit of the kinetic theory (15) to O(ǫ21ǫ
2
3)

if we identify Ωp = p̂/(2p2) at p = µ. Therefore, we have found that the Berry curvature

corrections in the kinetic theory emerge as the higher-order corrections in 1/µ to the usual

Vlasov equation. Once the kinetic equation (67) is obtained, the relation of triangle anoma-

lies (20) follows, as we have seen in Sec. II B.

C. Particle number density and current

Here we consider the particle number density and current for right-handed fermions with-

out reference to the kinetic theory derived above. To see the chiral magnetic effect, we need

to consider the number current to O(ǫ1ǫ3) in the high density effective theory. Our discussion

in this subsection is applicable to inhomogeneous electromagnetic fields.

By definition the number density of right-handed fermions consists of four parts:

n = 〈ψ†
+vψ+v〉+ 〈ψ†

+vψ−v〉+ 〈ψ†
−vψ+v〉+ 〈ψ†

−vψ−v〉

≡ n++ + n+− + n−+ + n−−, (68)

where n++ is given by

n++ =

∫

d4p

(2π)4
trGv =

∫

d3p

(2π)3
nl, (69)
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and n+− = n−+ = 0 because of the property of projectors, P+(v)P−(v) = 0. In order to

express n−− in terms of ψ+v, we use Eq. (48) which relates ψ−v to ψ+v. Then n−− is given

by

n−− =
1

4µ2

∫

d4p

(2π)4
tr( 6D⊥Gv 6D†

⊥) =

∫

d3p

(2π)3
B · v
2µ2

nl. (70)

Using the momentum p, we have in total

n =

∫

d3p

(2π)3

(

1 +
B · p̂
2µ2

)

np. (71)

This is the number density including the Berry curvature correction, Eq. (16).

Similarly the number current of right-handed fermions is decomposed as

jR = 〈ψ†
+vσψ+v〉+ 〈ψ†

+vσψ−v〉+ 〈ψ†
−vσψ+v〉+ 〈ψ†

−vσψ−v〉

≡ j++ + j+− + j−+ + j−−, (72)

where j++ is given by

j++ =

∫

d4p

(2π)4
tr(σGv) =

∫

d3p

(2π)3
vnl. (73)

Using Eq. (48), summation of j+− and j−+ can be written as

ji+− + ji−+ =
i

2µ

∫

d4p

(2π)4
tr[(Di

x⊥ + iǫijkvkDj
x)Gv −Gv(D

†i
y⊥ − iǫijkvkD†j

y )], (74)

while j−− ∼ 1/µ2 is higher order in 1/µ and is negligible to the order under consideration.

One can then rewrite Eq. (74) by changing the coordinates from (x, y) to the center-of-

mass and relative coordinates (X, s) and performing the Wigner transformation in a gauge

covariant way. One finds

ji+− + ji−+ =

∫

d3p

(2π)3
1

2µ

[

−ǫijkvj ∂nl

∂Xk
+ (B · v)∂nl

∂li
− Bi

(

v · ∂nl

∂l

)]

. (75)

Putting them together and writing in terms of the momentum p, we arrive at

jiR =

∫

d3p

(2π)3

[

∂ǫp
∂pi

np − Bi

(

p̂

2µ
· ∂np

∂p

)

− ǫijk
p̂j

2µ

∂np

∂Xk

]

, (76)

where we used the dispersion relation (51). This is the same form as the current (21), includ-

ing the chiral magnetic effect and the inhomogeneous term; the Berry curvature corrections

in Eq. (21) microscopically originate from the mixing between ψ+ and ψ−.
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IV. CORRELATION FUNCTIONS

In this section we compute the one-loop polarization tensor in the presence of chiral

fermions at finite chemical potential µ at zero temperature, using the perturbation theory

and the kinetic theory constructed in Sec. II B. We confirm that both calculations give

the same result, not only to the leading order but also to the next-to-leading order in 1/µ.

In particular, we find the kinetic theory with Berry curvature corrections reproduces the

parity-odd polarization tensor beyond the leading-order hard dense loop approximation in

the perturbation theory.

A. Perturbation theory

We first compute the parity-even and parity-odd one-loop polarization tensors in the

perturbation theory under the hard dense loop approximation.3 The time-ordered Dirac

fermion propagator at finite chemical potential µ and zero temperature is given by

S(x, y) = 〈Tψ(x)ψ̄(y)〉 =
∫

d3p

(2π)3
γ · p
2p0

[

θ(x0 − y0)(αpe
−ip(x−y) + β̄pe

ip(x−y))

−θ(y0 − x0)(βpe
−ip(x−y) + ᾱpe

ip(x−y))
]

, (77)

where αp = θ(p0 − µ), βp = θ(µ− p0), ᾱp = 1, and β̄p = 0.

The one-loop polarization tensor in the presence of chiral fermions is then

Πµν(x− y) =
1

2
tr[(1 + γ5)γ

µS(x, y)γνS(y, x)]. (78)

In the momentum space, it is given by (see Ref. [40] for the case of Dirac fermions)

Πµν(k) =
1

2

∫

d3q

(2π)3
1

2p0

1

2q0

[

T µν(p, q)

(

αpβq
p0 − q0 − k0 − iǫ

− αqβp
p0 − q0 − k0 + iη

)

+T µν(p, q̄)

(

αpᾱq

p0 + q0 − k0 − iǫ
− βpβ̄q
p0 + q0 − k0 + iη

)

+T µν(p̄, q)

(

ᾱpαq

p0 + q0 + k0 − iη
− β̄pβq
p0 + q0 + k0 + iǫ

)

+T µν(p̄, q̄)

(

ᾱpβ̄q
p0 − q0 + k0 − iη

− β̄pᾱq

p0 − q0 + k0 + iǫ

)]

, (79)

3 The parity-odd hard dense loop action is previously derived in Ref. [39].
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where p = (p0,p), p̄ = (p0,−p), q = (q0,q), q̄ = (q0,−p), p0 = |p|, q0 = |q|, p = q+ k, and

T µν(p, q) = tr[(1 + γ5)γ
µ 6pγν 6q]. An infinitesimal quantity η takes η = ǫ for the time-ordered

function Πµν
T , and η = −ǫ for the retarded function Πµν

R .

Substituting explicit expressions of the distribution functions, we find the µ-dependent

part of the retarded function (hereafter we suppress the index “R”),

Πµν
± (k) =

1

2

∫

d3q

(2π)3
1

2p0

1

2q0

[

[θ(µ− q0)− θ(µ− p0)]
T µν
± (p, q)

p0 − q0 − k0 − iǫ

−θ(µ− p0)
T µν
± (p, q̄)

p0 + q0 − k0 − iǫ
− θ(µ− q0)

T µν
± (p̄, q)

p0 + q0 + k0 + iǫ

]

, (80)

where Π± and T µν
± denote parity-even and odd parts, T µν

+ (p, q) = tr(γµ 6pγν 6q) and T µν
− (p, q) =

tr(γ5γ
µ 6pγν 6q). The parity-even part, Πµν

+ , is the leading contribution in the hard dense loop

approximation, while the parity-odd part, Πµν
− , is suppressed compared with Πµν

+ by a factor

of k/µ.

For completeness, let us first recall the computation of Πµν
+ . Under the hard dense loop

approximation (where k0, |k| ≪ µ), we end up with [34]

Πµν
+ (k) = −1

2

∫

d3q

(2π)3
δ(µ− |q|)

(

v̄µvν + vµvν − 2ω
vµvν

v · k + iǫ

)

= − µ2

2π2

[

δµ0δν0 − ω

∫

dv

4π

vµvν

v · k + iǫ

]

, (81)

where v = (1,v), v̄ = (1,−v) with v = q/|q|.
Let us now turn to the parity-odd part Πµν

− (k). Using tr(γ5γ
µγαγνγβ) = −4iǫµανβ , we

have

Πµν
− (k) = −1

2

∫

d3q

(2π)3
1

4|q|2
[

k · vδ(µ− |q|)4iǫ
µναβkαvβ|q|
k · v + iǫ

− θ(µ− |q|)2iǫµναβ(kαv̄β + k̄αvβ)

]

.

(82)

The second term is vanishing while the first term remains nonzero only when (α, β) = (0, k)

and (k, 0). Collecting both contributions, we obtain the expression:

Πij
−(k) =

µ

4π2

(

iǫijkkk + iǫijkω

∫

dv

4π

ωvk − kk

k · v + iǫ

)

, (83)

where i, j, k denote the spatial indices [Πµν
− (k) is vanishing otherwise]. Performing the an-

gular integration, we finally arrive at

Πij
−(k) =

µ

4π2
iǫijkkk

(

1− ω2

|k|2
)

[1− ωL(k)], (84)
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where

L(k) =
1

2|k| ln
ω + |k|
ω − |k| . (85)

Equation (84) reduces to a simple form in the static or long wavelength limit:

Πij
−(k) =







µ

4π2
iǫijkkk (ω ≪ |k|)

µ

12π2
iǫijkkk (ω ≫ |k|)

. (86)

That the latter, lim|k|/ω→0Π
ij
−(k), is smaller than the former, limω/|k|→0Π

ij
−(k), by a factor

of 3 is consistent with the result of the “chiral magnetic conductivity” in Ref. [42].

B. Kinetic theory with Berry curvature

We now compute the same retarded correlation function from the kinetic theory (15)

constructed in Sec. II B, through the linear response theory:

jµ(x) =

∫

d4y Πµν(x− y)Aν(y), (87)

or in the momentum space,

jµ(k) = Πµν(k)Aν(k). (88)

Here we are interested in the current induced by a linear-order deviation of the gauge field

Aµ. For definiteness, we set up the following power counting scheme: Aµ = O(ǫ) and

∂x = O(δ), where ǫ and δ are small and independent expansion parameters. Under this

counting scheme, we compute the deviation of the distribution function δnp and the current

jµ to O(ǫδ).

Remembering that ∂np/∂x or ∂ǫp/∂x can be nonvanishing at least when ∂np/∂x = O(ǫ)

or ∂ǫp/∂x = O(ǫ) in Eq. (15), it is sufficient to consider the following kinetic equation of

order O(ǫδ2) [or np to O(ǫδ)]:
(

∂

∂t
+ v · ∂

∂x

)

np +

(

E+ v ×B− ∂ǫp
∂x

)

· ∂np

∂p
= 0, (89)

in which the v×B term does not contribute since (v×B) ·v = 0. The distribution function

np is decomposed as

np = n(0)
p + n(ǫ)

p + n(ǫδ)
p + · · · , (90)
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where

n(0)
p = θ(µ− ǫp) ≃ θ(µ− |p|) + B · v

2µ
δ(µ− |p|), (91)

which follows from the dispersion relation (43). Note that the second term in Eq. (91) is

also O(ǫδ), but this is separated from n
(ǫδ)
p in our definition. In the calculations below, we

have to add both contributions at the same order of O(ǫδ) [see Eq. (93) below].

The kinetic equation can be written down at each order as
(

∂

∂t
+ v · ∂

∂x

)

n(ǫ)
p = E · vδ(µ− |p|), (92)

(

∂

∂t
+ v · ∂

∂x

)(

n(ǫδ)
p +

B · v
2µ

δ(µ− |p|)
)

− v · ∂
∂x

(

B · v
2µ

)

δ(µ− |p|) = 0. (93)

The second equation is further simplified to
(

∂

∂t
+ v · ∂

∂x

)

n(ǫδ)
p = − ∂

∂t

(

B · v
2µ

)

δ(µ− |p|). (94)

Using the method of characteristics, we can solve these equations; the operator in the

left-hand sides of equations, v · ∂x, is the time derivative along the characteristic v = dx/dt.

The solutions are given by

n(ǫ)
p = δ(µ− |p|)

∫ ∞

0

dτ e−ητv · E(x− vτ), (95)

n(ǫδ)
p = −δ(µ− |p|)

∫ ∞

0

dτ e−ητ 1

2µ
v · Ḃ(x− vτ), (96)

where η is a small positive parameter which ensures E(t → −∞,x) → 0 and B(t →
−∞,x) → 0.

Now let us compute the current defined in Eq. (18). The current can be written down at

the orders of O(ǫ) and O(ǫδ) respectively as

jµ(ǫ)(x) =

∫

d3p

(2π)3
vµn(ǫ)

p , (97)

ji(ǫδ)(x) =

∫

d3p

(2π)3

[

vin(ǫδ)
p +

Bi

2µ
δ(µ− |p|)− ǫijk

vj

2µ

∂n
(ǫ)
p

∂xk

]

, (98)

where vµ = (1,v). The zeroth component of the four-current of order O(ǫδ), i.e., the number

density n(ǫδ)(x), is found to vanish after the angular integration.

First consider the four-current jµ(ǫ). Substituting Eq. (95) into Eq. (97), the current reads

jµ(ǫ)(x) =

∫

d3p

(2π)3
vµδ(µ− |p|)

∫ ∞

0

dτ e−ητv · E(x− vτ). (99)
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Using the useful formula

∫

d4x eik·x
∫ ∞

0

dτ e−ητf(x− vτ) =
if(k)

v · k + iη
, (100)

and the linear response theory (88), we obtain the retarded parity-even polarization tensor

[41]:

Πµν
+ (k) = − µ2

2π2

[

δµ0δν0 − ω

∫

dv

4π

vµvν

v · k + iǫ

]

, (101)

which agrees with Eq. (81) derived from the perturbation theory.

We then turn to the subleading three-current ji(ǫδ). Substituting Eqs. (95) and (96) into

(98), and using the formula (100), the current reads

ji(ǫδ)(k) =

∫

d3p

(2π)3
δ(µ− |p|)

[

−iǫ
klmvivkωklAm

2µ(v · k + iǫ)
+
iǫijkkjAk

2µ
+
iǫiklvkkl [ω(v ·A)− (v · k)A0]

2µ(v · k + iǫ)

]

,

(102)

among which A0 term in the brackets vanishes after the angular integration. Using the linear

response theory (88), we obtain the parity-odd polarization tensor

Πij
−(k) =

µ

4π2

[

iǫijkkk + iω

∫

dv

4π

(ǫjklvi − ǫiklvj)vkkl

v · k + iǫ

]

. (103)

After the angular integration, this reduces to the form:

Πij
−(k) =

µ

4π2
iǫijkkk

(

1− ω2

|k|2
)

[1− ωL(k)], (104)

where L(k) is defined in Eq. (85). This is equivalent to Eq. (84) derived from the per-

turbation theory, which confirms that the physics in the next-to-leading-order hard dense

loop approximation can be described by the kinetic theory with Berry curvature corrections.

Note that contributions of the inhomogeneous term in the current (21) and the magnetic

moment in Eq. (43) are necessary for the matching of the correlation functions.

V. CONCLUSION

In this paper, we have shown a way to bridge between quantum field theories and the

kinetic theory with Berry curvature corrections that exhibits triangle anomalies and the

chiral magnetic effect. The field theoretic procedure to derive such a kinetic theory devel-

oped in this paper can, in principle, be generalized to higher order in gauge fields and/or
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derivatives. We have also computed the parity-odd correlation function using this kinetic

theory, which is found to agree with the perturbative result beyond the leading-order hard

dense loop approximation.

It should be remarked that our derivation of the kinetic theory from underlying quan-

tum field theories is limited to low temperature region T ≪ µ where the Fermi surface is

well-defined and the high density effective theory is applicable; a generalization to higher

temperature regime would be desirable. We also remark that our formulation based on the

Berry curvature is not manifestly Lorentz covariant by construction. It might be possible

to formulate the kinetic theory in a Lorentz covariant way similarly to the usual Vlasov

equation. Without referring to the Berry curvatures, such a solution of the kinetic equation

in the hydrodynamic regime is obtained in Ref. [11] which also reproduces the chiral vortical

effect [20, 43–46].

The inclusion of collision terms in the kinetic theory (15) is straightforward, which gives

the modified Boltzmann equation taking into account the anomalous effects. We hope that

our work motivates numerical applications of the new kinetic equation (15) with or without

collisions in various systems, such as dense quark matter, neutrino gas, the early Universe

at large lepton chemical potential, and doped Weyl semimetals.
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