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Abstract

The sampled negative energy density seen by inertial observers, in arbitrary quantum states is

limited by quantum inequalities, which take the form of an inverse relation between the magnitude

and duration of the negative energy. The quantum inequalities severely limit the utilization of

negative energy to produce gross macroscopic effects, such as violations of the second law of ther-

modynamics. The restrictions on the sampled energy density along the worldlines of accelerated

observers are much weaker than for inertial observers. Here we will illustrate this with several

explicit examples. We consider the worldline of a particle undergoing sinusoidal motion in space

in the presence of a single mode squeezed vacuum state of the electromagnetic field. We show

that it is possible for the integrated energy density along such a worldline to become arbitrarily

negative at a constant average rate. Thus the averaged weak energy condition is violated in these

examples. This can be the case even when the particle moves at non-relativistic speeds. We use

the Raychaudhuri equation to show that there can be net defocussing of a congruence of these

accelerated worldlines. This defocussing is an operational signature of the negative integrated en-

ergy density. These results in no way invalidate nor undermine either the validity or utility of the

quantum inequalities for inertial observers. In particular, they do not change previous constraints

on the production of macroscopic effects with negative energy, e.g., the maintenance of traversable

wormholes.
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I. INTRODUCTION

It is well known that quantum field theory allows for the existence of negative energy

density, which constitute local violations of the weak energy condition. For a recent review,

see Ref. [1]. Negative energy density can arise either from boundaries, as in the Casimir

effect, from background spacetime curvature, or from selected quantum states in Minkowski

spacetime. The last possibility will be the focus of the present paper. It is possible to create

states, such as a squeezed vacuum state of the quantized electromagnetic field, in which the

energy density at a given spacetime point is arbitrarily negative. However, the duration

of the negative energy is strongly constrained by quantum inequalities [2–9]. These are

restrictions on a time averaged energy density measured by an observer. (Time averaging

is essential, as there is no analogous restriction on spatial averages [10].) Let us consider

the case of inertial observers in Minkowski spacetime, with four velocity uµ. If 〈Tµν〉 is

the expectation value of the normal ordered stress tensor operator in an arbitrary quantum

state, then quantum inequalities take the form∫ ∞
−∞

f(τ) 〈Tµν〉uµuν dτ ≥ −
C0

τ0
d
. (1)

Here τ is the observer’s proper time, f(τ) is a sampling function with characteristic width

τ0, and d is the number of spacetime dimensions. The dimensionless constant C0 depends

upon the form of the sampling function, and is typically small compared to unity. In the

limit τ0 →∞, Eq. (1) becomes the averaged weak energy condition∫ ∞
−∞
〈Tµν〉uµuν dτ ≥ 0 , (2)

which states that the integrated energy density along an inertial worldline is non-negative.

The essence of a quantum inequality is that there is an inverse relation between the mag-

nitude and duration of negative energy density. These relations place strong constraints on

the effects of negative energy for violating the second law of thermodynamics [2], and for

maintaining traversable wormholes [11] or warpdrive spacetimes [12].

A more general quantum inequality for arbitrary worldlines has been proven by Few-

ster [13]. However, this inequality is often very difficult to evaluate explicitly and can be

very weak. There are some known examples where the integrated energy density along a

non-inertial world line can be arbitrarily negative. One example comes from the Fulling-

Davies moving mirror model in two spacetime dimensions [14, 15]. A mirror with increasing
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proper acceleration to the right can emit a steady flux of negative energy to the right. An

inertial observer could only see this negative energy for a finite time before being hit by the

mirror, and the integrated energy density seen will be consistent with Eq. (1). However, an

accelerated observer who stays ahead of the mirror can see an arbitrary amount of negative

energy. This example suffers from two unrealistic features: it can only be formulated in two

spacetime dimensions, and it requires an observer with ever increasing proper acceleration.

A second example was provided by Fewster and Pfenning [16], who analyzed the case of a

uniformly accelerating observer in the Rindler vacuum state. This state has negative energy

everywhere within the Rindler wedge. An observer with constant acceleration can also see

an arbitrary amount of negative energy. However, the constant acceleration requires the

observer to move arbitrarily close to the speed of light and hence have an unlimited source

of energy. It is also not clear whether the Rindler vacuum is a physically realizable state.

The main purpose of this paper is to construct some more realistic examples of accelerated

motion in which the observer can have arbitrarily negative integrated energy density. We

will consider observers who undergo sinusoidal motion in the presence of a squeezed vacuum

state of the quantum electromagnetic field. We find that even in the case of non-relativistic

motion, it is possible for the integrated energy density in such an observer’s frame to grow

negatively at a constant rate in time. In Sect. II, we consider a squeezed vacuum state for

a single plane wave mode, and motions both perpendicular and parallel to the direction

of propagation of the wave. In Sect. III, we repeat the analysis for the lowest mode in a

resonant cavity in a squeezed vacuum state. In Sect. IV, we address a possible physical

effect of accumulating negative energy density, in the form of defocussing of a congruence of

accelerated worldlines. Our results are summarized and discussed in Sect. V. In particular,

we argue that the results in this paper neither contradict, nor diminish the utility of, the

usual quantum inequalities proven for inertial observers.

Throughout this paper, units in which h̄ = c = 1 will be used. Electromagnetic quantities

are in Lorentz-Heaviside units.

II. OSCILLATIONS THROUGH A PLANE WAVE

Let us first evaluate the stress tensor components for a single mode plane wave in a

squeezed vacuum state of the electromagnetic field. The electromagnetic stress tensor is
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given in terms of the field strength tensor as

Tαβ = FαρFβ
ρ − 1

4
gαβ FµνF

µν . (3)

Its spatial components are

Tjl = −EjEl −BjBl +
1

2
δjl(E

2 + B2) , (4)

the energy density is

T tt =
1

2
(E2 + B2) , (5)

and the energy flux in the i-direction is

T ti = (E×B)i (6)

Write the electric and magnetic field operators in terms of photon creation operators â†kλ

and annihilation operators âkλ as

E =
∑
k,λ

(âkλ Ekλ + â†kλ E∗kλ) , (7)

and

B =
∑
k,λ

(âkλ Bkλ + â†kλ B∗kλ) . (8)

Assume that the excited mode is a plane wave propagating in the z-direction, with polar-

ization in the x-direction. Then its mode functions take the form Ekλ = x̂ E , and Bkλ = ŷB,

where

E = B =

√
Ω

2V
eiΩ(z−t) . (9)

Here V is the quantization volume and Ω = |k| is the angular frequency of the wave.

Quadratic operators are assumed to be normal ordered with respect to the Minkowski vac-

uum state, so

〈EjEl〉 = δjx δlx 〈E2〉 = E2〈â2〉+ (E∗)2〈(â†)2〉+ 2|E|2〈â†â〉 . (10)

where â is the annihilation operator for the excited mode. Similarly,

〈BjBl〉 = δjy δly 〈E2〉 . (11)

The quantum state is taken to be a single mode in which case

〈E2〉 = 〈B2〉 = 2Re [sinh2r |E|2 − E2 sinhr coshr eiδ)]

=
Ω

V
sinhr

{
sinhr − coshr cos[2Ω(z − t) + δ]

}
, (12)
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where r is the “squeeze parameter” and δ is a phase parameter. The nonzero components

of the stress tensor are given by

〈T tt〉 = 〈T zz〉 = 〈T tz〉 = 〈E2〉 . (13)

We see from Eqs. (12) and (13) that the energy density can be periodically negative in the

lab (i.e., inertial) observer’s frame, but the positive energy density always outweighs the

negative energy density, in accordance with the quantum inequalities.

The energy density in the inertial frame has its minimum (most negative) value when the

cosine term in Eq. (12) is one, so

〈T tt〉 ≥ −Ω

V
sinh r (cosh r − sinh r) = − Ω

2V
(1− e−2r) > − Ω

2V
. (14)

Thus the maximally negative energy density is bounded below, and occurs for large r.

However, in this limit the maximally positive energy density is unbounded and grows as e2r.

In the opposite limit, where r � 1, the energy density is approximately oscillatory

〈T tt〉 ≈ −r Ω

V
cos[2Ω(z − t) + δ] + r2 Ω

V
+O(r3) . (15)

However, there is also a positive non-oscillatory term of order r2.

A. Perpendicular Motion

Now consider a non-geodesic observer who moves on a path which is perpendicular to the

direction of propagation of the wave. Let this path be defined by

vx(t) =
dx

dt
= A sin(ωt) , (16)

where |A| < 1, and vy = vz = 0, and ω is the angular oscillation frequency of the observer’s

motion, and where we have chosen z = 0. Then

γ =
1√

1− v2
=

1√
1− A2sin2(ωt)

, (17)

and the observer’s four-velocity (as measured in the lab frame) is

uµ = γ(1, vx, 0, 0) , (18)

where ut = γ = dt/dτ .
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The integrated energy density along the accelerated observer’s worldline is

I =
∫
〈T µνuµuν〉dτ , (19)

where the integrand is

〈T µνuµuν〉dτ = γ2 〈T tt〉dτ = 〈T tt〉 dt√
1− A2sin2(ωt)

. (20)

Here we used the facts that 〈T tx〉 = 〈T xx〉 = 0 and γ2dτ = γ dt. If we expand to first order

in r, the result is

〈T µνuµuν〉dτ ≈ −
rΩ cos(2 Ω t− δ) dt
V
√

1− A2sin2(ω t)
. (21)

The numerator of this expression describes the fact that, for small squeeze parameter, the

inertial frame stress tensor components are nearly sinusoidal. The denominator describes the

effect of going to the non-inertial frame. If we can arrange that the γ factor has its maximum

value when the numerator is negative, then accelerated observer will see net negative energy.

This situation occurs when ω = Ω and when δ = π, as illustrated in Fig. 1. We will make

this choice throughout the remainder of this subsection.

In this case, the integrated energy density becomes

I =
rΩ

V

∫ dt√
1− A2sin2(Ωt)

cos(2 Ω t) . (22)

If we perform the integration on t and multiply by the quantization volume, we get

I V ≈ r [2E(Ω t, A2) + (A2 − 2)F (Ω t, A2)

A2
, (23)

where F (Ω t, A2) and E(Ω t, A2) are elliptic integrals of the first and second kind, respec-

tively.

As a specific example, let us plot I V for r = 0.01, A = 0.9, and in units where Ω = 1.

Since, strictly speaking, the energy density is inversely proportional to V , we want to make

a graph of I V as a function of τ , i.e., a graph of the integrated energy density, multiplied by

the quantization volume, seen by the accelerated observer as a function of his proper time.

The relation between τ and t is τ =
∫
dt/γ, which is

τ =
E(Ω t, A2)

Ω
. (24)

If we plot Eq. (23) against Eq. (24) for our chosen parameters, we get Fig. 2.
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FIG. 1: The figure illustrates that maximum negative energy density is obtained when we set ω = Ω

and δ = π. The dotted line represents the Lorentz factor in Eq. (21), [1− A2 sin2(Ω t)]−1/2, while

the solid line represents the cosine term, − cos(2 Ω t− δ) = cos(2 Ω t) both graphed as functions of

time. Here we have chosen A = 0.2 and Ω = 2. (The figures have been appropriately scaled to

allow easier visualization.)

Now let us examine our expression for I in the A � 1 limit. If we expand the Lorentz

factor to second-order in A, we obtain

1√
1− A2sin2(Ωt)

≈ 1 +
1

2
A2sin2(Ω t) +O(A4) . (25)

In this limit, the difference between dt and dτ will be O(A2). If we use Eq. (25) in Eq. (22)

to calculate I, we find:

I ≈ −rA
2 ΩT

8V
+
r sin(2 ΩT )

2V
+
r A2sin(2 ΩT )

8V
− r A2sin(4 ΩT )

32V
. (26)

The sinusoidal terms will eventually be dominated by the linear term, but this can take

many cycles, so we keep the O(A0) sinusoidal term, but drop the O(A2) sinusoidal terms.

Therefore, our two leading order terms are

I ≈ −rA
2 ΩT

8V
+
r sin(2 ΩT )

2V
. (27)
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FIG. 2: The integrated energy density multiplied by the quantization volume, I V , seen by an

accelerated observer who is moving perpendicularly to the direction of wave propagation, is plotted

as a function of his proper time, τ , for the parameters r = 0.01, A = 0.9, and in units where Ω = 1.

Here A2 � 1, so the oscillating term is larger in magnitude until T > 4/(A2 Ω). After

this, the linear term dominates. However, we should recall that there is positive r2 term in

Eq. (15). This term will give a contribution to I of Ω r2 T/V , and is negligible only if we

require that

8 r � A2 . (28)

Nonetheless, accumulating negative energy density, can occur for arbitrarily small velocities.

For any A 6= 0, we can find a value of r which satisfies Eq. (28). Then eventually the first

term in Eq. (27) will dominate.

B. Parallel Motion

We now consider the case of the accelerating observer moving parallel to the direction

of the propagation of the wave. In the lab frame, we have 〈T tt〉 = 〈T zz〉 = 〈T tz〉. The

accelerated observer’s three-velocity and position, respectively, are

v = vz(t) =
dz

dt
= A sin(ω t) , (29)
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z(t) = −A
ω

cos(ω t) (30)

and so

uµ = γ(1, 0, 0, v) , (31)

where ut = γ = dt/dτ . Therefore, we have that

〈T t′t′〉 = γ2
(
1− 2v + v2

)
〈T tt〉 =

(
1− v
1 + v

)
〈T tt〉 (32)

where (1− v)/(1 + v) is a linear Doppler shift factor (as opposed to the transverse Doppler

factor in the perpendicular case). As a result,

I =
∫
〈T µν〉uµuνdτ =

∫ (1− v
1 + v

)
〈T tt〉 dτ =

∫ (1− v)3/2

√
1 + v

〈T tt〉 dt , (33)

since dτ = γ−1dt =
√

1− v2dt.

Here the observer is moving in the direction of wave propagation, so we can no longer

set z = 0. Now the energy density in the inertial frame is given by Eq. (12), with z =

−(A/ω) cos(ω t), so

〈T tt〉 =
Ω

V
sinh r

{
sinh r − cosh r cos

[(
2AΩ

ω

)
cos(ωt) + 2Ωt− δ

]}
. (34)

In this case, we find accumulating negative energy density for ω = 2 Ω, and δ = −π/2. The

integral in Eq. (33) can be done analytically for small A, as will be discussed below, but

for more general A, it can only be performed numerically. As an example, let us choose the

case where r = 0.01, δ = −π/2, A = 0.9, and ω = 2, in units where Ω = 1. In Fig. 3, we

graph IV against the observer’s proper time, which will again be given by Eq. (24).

Now we wish to consider the non-relativistic limit, and work to first order in v and hence

in A. To this order, dτ ≈ dt, so

I ≈
∫
〈T t′t′〉 dt , (35)

where the energy density in the accelerating frame is

〈T t′t′〉 ≈ (1− 2v) 〈T tt〉 . (36)

If we expand Eq. (34) to first order in A, the result is

〈T tt〉 ≈ Ω

V
sinh r

{
sinh r − cosh r

[
cos(2Ωt− δ)− 2Ω

ω
A cos(ωt) sin(2Ωt− δ)

]}
, (37)
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FIG. 3: The integrated energy density multiplied by the quantization volume, I V , seen by an

accelerated observer who is moving parallel to the direction of wave propagation, is plotted as a

function of his proper time, τ , for the parameters r = 0.01, A = 0.9, and ω = 2, in units where

Ω = 1. Note that the accumulated negative energy density grows much faster than in the case of

the perpendicularly moving observer, due to the linear Doppler shift term in the energy density.

We also see extra structure in this curve as well, because the expression for the energy density is

more complicated than in the perpendicular motion case.

where we have used the fact that

cos

[(
2ΩA

ω

)
cos(ωt)

]
≈ 1 +O(A2) ,

sin

[(
2ΩA

ω

)
cos(ωt)

]
≈
(

2ΩA

ω

)
cos(ωt) +O(A3) . (38)

Next we evaluate the energy density in the accelerating frame to first order in A and set

ω = 2Ω to find

〈T t′t′〉 ≈ Ω

V
sinh r {sinh r [1− 2A sin(2Ωt)]

− cosh r
[
cos(2Ωt− δ)− 3

2
A sin(4Ωt− δ)− 1

2
A sin δ

]}
. (39)

This expression reveals that we can have growing negative energy density if δ = −π/2 and
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r � 1. In this case, we may write

〈T t′t′〉 ≈ Ω

V

[
r2 − r

(
1

2
A− sin(2Ωt)

)]
, (40)

where order A oscillatory terms have been dropped. If

r � 1

2
A , (41)

which is the analog of Eq. (28), the integrated energy density grows negatively as

I ≈ −r AΩT

2V
+

r

2V
[1− cos(2ΩT )] ∼ −r AΩT

2V
. (42)

The latter asymptotic form holds for

T � 1

ΩA
. (43)

In the parallel motion case, the rate of growth of the negative integrated energy density is

first order in A, as compared to second order in the perpendicular motion case treated in

the previous subsection. This is due to the fact that in the parallel case, there is a linear

Doppler shift, whereas in the perpendicular case the Doppler shift is transverse.

III. OSCILLATIONS IN A CAVITY

A. The Perpendicular Case

We now consider the case of a particle oscillating in a closed cavity with dimensions a, b,

and d aligned along the x, y, z axes respectively, where b < a < d. The modes in this cavity

were discussed in Ref. [17]. With the condition that b < a < d, the lowest frequency mode

is the TE mode with p = l = 1,m = 0, where the frequency of the mode is given by

Ω = π

√
1

a2
+

1

d2
, (44)

and the non-zero components of the electric and magnetic fields are

Ex = Ez = 0 ,

Ey =
Ωa

π
C sin

(π
a
x
)

sin
(π
d
z
)
e−iΩ t ,

Bx = i
a

d
C sin

(π
a
x
)

cos
(π
d
z
)
e−iΩ t ,

By = 0 ,

Bz = −i C cos
(π
a
x
)

sin
(π
d
z
)
e−iΩ t , (45)
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where the electric field is taken to be polarized in the y-direction. This mode is independent

of y. Here C is a real normalization constant, given by

C2 =
2 Ω

a b d (1 + a2/d2)
. (46)

For the case where only a single mode j is excited, the normal ordered expectation values

of the squared fields are

〈E2〉 = 2〈a† a〉 |Ej|2 + 2Re
(
〈a2〉 E2

j

)
(47)

and

〈B2〉 = 2〈a† a〉 |Bj|2 + 2Re
(
〈a2〉 B2

j

)
. (48)

where

E2
j = Ey2 =

Ω2a2

π2
C2 sin2

(π
a
x
)

sin2
(π
d
z
)
e−2iΩt

B2
j = B2

x + B2
z = −C2

[
cos2

(π
a
x
)

sin2
(π
d
z
)

+
a2

d2
sin2

(π
a
x
)

cos2
(π
d
z
)]
e−2iΩt . (49)

In this case, we can have the particle moving in the y-direction, and located in the center

of the cavity in the other directions, so that

x =
a

2
, z =

d

2
. (50)

This considerably simplifies the mode functions, leading to

Bx = Bz = 0 , Ey =
Ω a

π
C e−iΩt . (51)

The only non-zero components of the stress tensor which we will need are 〈T tt〉 and 〈T yy〉,

which become

〈T tt〉 = −〈T yy〉 = sinh r
[
sinh r |Ey|2 − cosh rRe

(
eiδ E2

y

)]
= N sinh r [sinh r − cosh r cos(2Ωt− δ)] , (52)

where

N =
(

Ω a

π
C
)2

. (53)

Because the direction of oscillation of the particle is in the y-direction,

uµ = γ(1, 0, vy, 0) , (54)
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where vy = A sinωt. The integrand of I is

〈Tµνuµuν〉dτ =
(〈Ttt〉+ (vy)2〈Tyy〉)√

1− A2sin2(ωt)
dt =

√
1− A2sin2(ωt) 〈Ttt〉 dt . (55)

Let

U =
√

1− A2sin2(ωt) 〈Ttt〉 . (56)

We will assume that A� 1, and expand to second order in A. Therefore, if we use Eq. (52)

in Eq. (55), and set ω = Ω, we have that

U ≈ N
(
1− 1

2
A2 sin2(Ωt)

)
[sinh2 r − sinh r cosh r cos(2Ωt− δ)] . (57)

If we now expand the right-hand side of Eq. (57) to second order in r, set δ = 0, integrate

from 0 to T , and drop oscillatory terms in A2, we obtain

I ≈ N

(
r2T − 1

8
A2rT − r sin(2ΩT )

2 Ω

)
, (58)

where we have also dropped a higher order A2 r2 term.

The positive first term is negligible compared to the second when

r � 1

8
A2 . (59)

The middle negative linear growing term will dominate the sinusoidal term when

T >
4

A2 Ω
(60)

In this case, the restrictions on r and T are the same as those for perpendicular motion in

the plane wave case. In these limits, we therefore have negative energy density which grows

linearly as

I ≈ −1

8
N A2rT . (61)

If we use Eqs. (46) and (53), we can write the previous equation as

I ≈ −r A
2 ΩT

4V
, (62)

where V = abd is the volume of the cavity. Compare this result with the first term in

Eq. (27), the corresponding rate for perpendicular motion in a plane wave mode. If we

identify the cavity volume in the former with the quantization volume in the latter, then

they differ only by a factor of two.
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B. The Parallel Case

In this subsection, we will consider the case of a particle oscillating in a cavity along the

z-axis, in the limit where A� 1, and work to first order in A. We take

vz = A sinωt , (63)

and

z = z0 −
A cosωt

ω
+O(A2) , (64)

where z = z0 corresponds to the equilibrium position of the particle, and the last term

corresponds to relativistic corrections. We will choose the x-position of the particle to be

x =
a

2
. (65)

The energy density in the particle’s frame is

〈T t′t′〉 = γ2 〈(T tt − 2vz T
tz + vz

2 T zz)〉 ≈ 〈T tt〉 − 2vz 〈T tz〉 . (66)

Here

〈T tz〉 = −〈Ey Bx〉 . (67)

We need to calculate 〈T tt〉 and 〈T tz〉 using the mode functions in Eq. (45), and then expand

the result to second order in r. The result for 〈T t′t′〉 may be written as

〈T t′t′〉 ≈ C2 {(F1 + 2vz F3)r2 − r [F2 cos(2Ωt− δ) + 2vz F3 sin(2Ωt− δ)]} , (68)

where

F1 = F1(z) =
Ω2 a2

π2

[
sin2

(
πz

d

)
+
a2

d2
cos2

(
πz

d

)]
, (69)

F2 = F2(z) =
Ω2 a2

π2

[
sin2

(
πz

d

)
− a2

d2
cos2

(
πz

d

)]
, (70)

and

F3 = F3(z) =
Ω a2

πd
sin

(
2πz

d

)
, (71)

and where C2 is once again given by Eq. (46).

The integrated energy density may be written as

I ≈
∫
dt 〈T t′t′〉 ≈ C2 (r2 I1 − r I2) (72)
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where

I1 =
∫ T

0
dt (F1 + 2vz F3) , (73)

and

I2 =
∫ T

0
dt [F2 cos(2Ωt− δ) + 2vz F3 sin(2Ωt− δ)] . (74)

As in the case of parallel motion in the plane wave case, with the appropriate choices for

ω, Ω, r and δ, we expect to get a linearly growing negative term, a term which is first order

in r and sinusoidal in time, and a positive r2 term. The first and second of these terms will

arise from F2 and F3, while the third term will arise from F1. We also expect that we will

find a non-trivial effect in first order in A.

Let us first examine the terms involving F3 in Eq. (68). These terms both involve the

product vz F3, and are hence already of order A. Thus we may use Eq. (64) to write

F3(z) ≈ F3(z0) =
Ω a2

π d
, (75)

where we have set z0 = d/4. (As it turns out, the linearly growing term we want will come

from the F3 term in I2, so we cannot choose z0 = d/2.)

A similar situation applies to F1, which contributes only to an order r2 term. This is a

positive, growing term which we need only to zeroth order in A. For this purpose, we may

evaluate F1 at z = z0:

F1(z) ≈ F1(z0) =
Ω2 a2

2π2

(
1 +

a2

d2

)
. (76)

Thus, for estimating the order r2 term, we may use

I1 ∼ F1 T , (77)

where F1 has the value in Eq. (76).

The negatively growing term comes from I2, which involves F2, so we need to expand the

latter to first order in A, using Eq. (64), as

F2(z) =
Ω2 a2

2π2

[(
1− a2

d2

)
−
(

1 +
a2

d2

)
cos

(
2πz

d

)]

≈ Ω2 a2

2π2

[(
1− a2

d2

)
−
(

1 +
a2

d2

) (
2πA

dω

)
cos(ωt)

]
. (78)

The I2 term will be maximally negative when ω = 2 Ω and δ = 0. In this case, a short

calculation yields

I2 ≈ A
Ω a2

4πd

(
3− a2

d2

)
T +

Ω a2

4π

(
1− a2

d2

)
sin(2ΩT ) , (79)
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where oscillatory, order A terms have been dropped. Note that 3−a2/d2 > 0 because a < d.

Therefore, the integrated energy density becomes,

I ≈ C2

[
−r AT Ω a2

4πd

(
3− a2

d2

)
− r

Ω a2

4π2

(
1− a2

d2

)
sin(2ΩT ) + r2 T

Ω2 a2

2π2

(
1 +

a2

d2

)]
.

(80)

We see that the negative linearly growing term will dominate the sinusoidal term when

T >
d

πA

(
d2 − a2

3d2 − a2

)
. (81)

and the positive, order r2 term, when

2Ωd

π

(
d2 + a2

3d2 − a2

)
r < A . (82)

In this case, we find that the integrated energy density in the particle’s frame grows nega-

tively as

I ∼ −rAΩ

2V
T

[
Ω a2

πd

(
3d2 − a2

d2 + a2

)]
, (83)

where we have used the definition of C2 and the fact that V = abd is the volume of the

cavity. Compare this result with Eq. (42), the corresponding rate for parallel motion in

a plane wave mode. If we identify the cavity volume in the former with the quantization

volume in the latter, then they differ only by the factor in the square brackets. If a and d

are of the same order of magnitude, then Eq. (44) tells us that Ω ∼ O(1/a) ∼ O(1/d), and

this factor is of order unity.

IV. EFFECTS OF THE NEGATIVE ENERGY ON FOCUSSING

In this section, we will treat one possible effect of the accumulating negative energy along a

particle’s worldline. It is well-known that the attractive character of gravity, with ordinary

matter as a source, leads to focussing of null and timelike geodesics. One expects that

negative energy densities might have the opposite effect, and produce defocussing through

repulsive gravitational effects.

A. Raychaudhuri Equation

The effect of gravity on a congruence of timelike worldlines is described by the Raychaud-

huri equation. In our case, we allow the worldlines to be non-geodesics, so the equation takes
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the form [18]

θ̇ =
dθ

dτ
= −Rαβu

αuβ + 2ωαβω
αβ − 2σαβσ

αβ − 1

3
θ2 +∇βa

β . (84)

Here uα and aβ = uα∇αu
β are the 4-velocity and 4-acceleration of the congruence, and

σαβ and ωαβ are the shear and vorticity tensors. Also, θ = ∇αu
α is the expansion, and

Rαβ is the Ricci tensor. The last term in Eq. (84) is the acceleration term, which vanishes

for geodesics. We will assume a hypersurface orthogonal congruence, in which case the

vorticity tensor vanishes, ωαβ = 0. In addition, we assume that the shear and expansion

are sufficiently small, that the terms quadratic in those quantities may be neglected. In this

case, the Raychaudhuri equation becomes

θ̇ ≈ −Rαβu
αuβ + θ̇ac , (85)

where θ̇ac = ∇βa
β is the acceleration term, and the Ricci tensor term describes the effects

of gravity.

Next we assume that an electromagnetic field is both the cause of the acceleration and

the sole source of the gravitational field. Particles with rest mass m and electric charge q

obey the equation of motion

aβ =
q

m
Fβρ u

ρ , (86)

where the field strength tensor, Fβρ, is assumed to obey the source free equation

∇α F
αβ = 0 . (87)

We can now write the acceleration term as

θ̇ac =
q

m
Fαβ(∇αuβ) . (88)

The covariant derivative of the 4-velocity may be expressed as [19]

∇αuβ = σβα +
1

2
θ(gαβ + uαuβ)− aβuα , (89)

when ωβα = 0. However, all terms on right hand side of this expression, except for the last,

are symmetric tensors which vanish when contracted into the antisymmetric field strength

tensor. Thus we obtain

θ̇ac = −aβaβ . (90)
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The electromagnetic stress tensor, given in Eq. (3) is tracefree, so the Einstein equations

become

Rαβ = 8π`p
2 Tαβ , (91)

where `p is the Planck length, and Newton’s constant is G = `p
2, in units where h̄ = c = 1.

We may write

Tαβu
αuβ = (uαFαρ)u

βFβ
ρ +

1

4
FµνF

µν =
m2

q2
aρa

ρ +
1

4
FµνF

µν , (92)

where we have used Eq. (86). We may use this expression to evaluate the Ricci tensor term

in the Raychaudhuri equation and write

θ̇ ≈ −
(

1 + 8π
`p

2m2

q2

)
aρa

ρ − 2π`p
2 FµνF

µν . (93)

B. Fields Producing Acceleration

In previous sections, we assumed a prescribed sinusoidal motion, but did not explicitly

give the electromagnetic fields which would produce this motion. Here we will concentrate

on the case of motion parallel to a plane wave mode, which was treated in Sec. II B. In

particular, we consider the case of non-relativistic motion along the z-direction, as described

by Eq. (29), with A � 1. This motion can approximately be produced by a plane wave

with polarization in the z-direction. Here we will consider a classical electromagnetic wave

propagating in the y-direction, with electric field E = Ec ẑ, and magnetic field B = Ec x̂,

where

Ec =
ω Am

q
cosω(t− y) . (94)

To order A, only the electric field determines the motion of the particle, with the magnetic

force contributing in order A2. Because the motion of the particle is only in the z-direction,

we may set y = 0. In this case, the energy density of the classical wave, in the laboratory

frame, is

T ttc = E2
c =

(
ω Am

q

)2

cos2(ωt) . (95)

In addition to this classical field, the particle is also subjected to the quantum fields asso-

ciated with the squeezed vacuum state mode. These fields potentially produce a fluctuating

force on the particle, which we wish to include. Let Eq and Bq be the terms in Eqs. (7) and
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(8), respectively, which refer to the mode in a squeezed vacuum state. That is,

Eq = x̂ (E a+ E∗ a†) , (96)

and

Bq = ŷ (E a+ E∗ a†) , (97)

where E is defined in Eq. (9). We will treat the velocity of the particle due to the quantum

electric field as an operator in the photon state space, vq = vq x̂, where vq will be evaluated

explicitly below.

There is a third effect which we will not include explicitly. This the effect of the emitted

radiation by the particle. There will be an average radiation reaction force which will slightly

change the trajectory of the particle for a given classical field. However, this is normally

very small and will be neglected. There will also be a shot noise effect, an uncertainty in the

particle’s momentum due to the statistical uncertainty in the number of photons emitted.

This effect depends primarily on the classical field driving the average motion and not upon

the quantum electric field. Hence it, and the radiation reaction force, would cancel in any

experiment which compares particle motion with and without the quantum electric field.

In addition, this momentum uncertainty grows as the square root of the mean number of

photons radiated, and hence as the square root of time. Here we are interested in effects

which grow linearly in time.

We will now compute the components of the acceleration four-vector in the lab rest frame,

taking account of both the classical and quantum parts of the electromagnetic field and of

the particle’s four-velocity. The acceleration four-vector satisfies

aρ =
q

m
F ρα uα . (98)

In the non-relativisitic limit, the four-velocity is

uα = (1, vq, 0, vc) , (99)

where vc = A sin(ωt) . The non-zero components of the field strength tensor are

F tz = F yz = Ec F tx = F zx = Eq , (100)

and those obtained by antisymmetry of F ρα. The components of aρ become

at =
q

m
(Eq vq + Ec vc)
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ax =
q

m
Eq (1− vc)

ay =
q

m
Ec vc

az =
q

m
(Eq vq + Ec) . (101)

We can now form the scalar aρaρ, expand it to first order in the velocities, dropping v2
c ,

v2
q and vcvq terms, and take its expectation value in the squeezed vacuum state. The result

is

〈aρaρ〉 ≈
q2

m2

[
〈E2

q 〉(1− 2vc) + E2
c + 2Ec〈Eqvq〉

]
. (102)

Let us examine each term on the right-hand side of this expression. The classical energy

density, which is the same to first order in velocity in the lab frame and in the particle rest

frame, is just E2
c . Because the classical wave is propagating in the y-direction, and all the

motion is in the x and z directions, this is the perpendicular motion case, with respect to

the classical wave. Thus, to order v, T t
′t′
c ≈ T ttc , since T t

′t′
c ≈ T ttc + O(v2). The expectation

value of the quantum energy density in the lab frame is 〈E2
q 〉, and is given explicitly by

Eq. (12). This quantity in the particle rest frame is 〈E2
q 〉(1 − 2vc). The final term is the

contribution of the velocity fluctuations to the acceleration.

For both the classical and quantum electromagnetic fields, we have assumed plane waves,

for which E2 = B2, and hence FµνF
µν = 0. Thus we may drop the last term in Eq. (93),

and write mean rate of change of the expansion as

〈θ̇〉 ≈ −
(

1 + 8π
`p

2m2

q2

)
〈aρaρ〉 . (103)

C. Velocity Fluctuations and Defocussing

The fluctuating part of the velocity, vq, is determined by Eq. (101):

dvq
dt

= ax =
q

m
Eq (1− vc) , (104)

where the term proportional to vc on the right hand side is due to the magnetic force

produced by By. Note that time derivative here is a total derivative, and we need to account

for both the explicit time dependence and the implicit dependence through z(t):

dvq
dt

=
∂vq
∂t

+
∂vq
∂z

vc , (105)
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recalling that vc = dz/dt. The solution to Eq. (104) becomes

vq =
iq

mΩ
(E a− E∗ a†) , (106)

where we have used Eqs. (9) and (96). Note that the effects of the magnetic force and of

the implicit time dependence cancel one another.

We may compute 〈Eqvq〉 = 〈: Eqvq :〉 in a squeezed vacuum state to find

〈Eqvq〉 =
q

mV
sinh r cosh r sin[2Ω(z − t) + δ] . (107)

Here we used

〈a2〉 = 〈(a†)2〉∗ = −eiδ sinh r cosh r (108)

in the squeezed vacuum state. We may use Eq. (94) with y = 0, and set δ = −π/2 to write

2Ec 〈Eqvq〉 = −2ω A

V
sinh r cosh r cos(ωt) cos[2Ω(z − t)] . (109)

We will work only to first order in A, which means that we can ignore the z-dependence

(see Eqs. (30) and (38)) in the above expression, which will contribute in order A2. When

we set ω = 2Ω, and drop oscillatory terms, then we have

2Ec 〈Eqvq〉 ≈ −
2ΩA

V
sinh r cosh r . (110)

In the small r limit, this becomes

2Ec 〈Eqvq〉 ≈ −
2ΩA

V
r , (111)

which is to be compared with the same limit for the squeezed state energy density in the

accelerated frame,

〈E2
q 〉(1− 2vc) ≈ −

ΩA

2V
r . (112)

The latter quantity is just the order r, non-oscillatory term in Eq. (40). We see that both

terms have the same form and same sign, and both contribute to defocussing, although the

effect of the quantum velocity fluctuations is four times that of the negative energy density

in this limit.

If we combine these terms, as well as the time average of the classical energy density,

Eq. (95), evaluated at ω = 2Ω, then Eq. (102) for the mean squared acceleration becomes

〈aρaρ〉 ≈ 2 Ω2A2 − 5q2 ΩAr

4V m2
. (113)
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The positive term is the focussing effect of the classical energy density, and the negative

term is the combined defocussing effect of the negative energy density and the velocity

fluctuations. These two terms depend upon different combinations of parameters, and it

seems possible to arrange for the defocussing effect to dominate. Note that the gravitational

effect, from the Ricci tensor, is ∝ `p
2 in Eq. (103). The part without `p

2 is a pure acceleration

effect from the acceleration term. However, both effects have the same functional form here.

We conclude that accelerated observers who see a negative integrated energy density along

their worldlines also see a net defocussing of a congruence of geodesics which includes this

worldline. This defocussing appears in the relative motion of the geodesics in the congruence

with respect to one another. This is in contrast to what will be seen by inertial observers,

who see a positive integrated energy density and hence net focussing of a congruence along

their own worldlines. It is of interest to consider how the defocussing of the non-inertial

congruence will be seen by the inertial observers. The expansion θ is a scalar, and hence has

the same value in all frames of reference. What is important here is the choice of worldline

along which the Raychaudhuri equation is integrated. In our example of a non-inertial

worldline with defocussing, both the non-inertial observer who moves on this worldline,

and any inertial observers, will agree on the defocussing. One could have a sequence of

inertial worldlines being crossed by the accelerated observer. The inertial observers on these

worldlines will agree that there is net defocussing on the accelerated worldline, despite the

fact that they see positive energy density on average, and hence mean focussing along their

own worldlines. The key point is the direction in which Raychaudhuri equation is integrated,

and the value of the acceleration term in that direction.

V. SUMMARY AND DISCUSSION

The key result of this paper is that an accelerated observer undergoing sinusoidal motion

in space can observe an average constant negative energy density, so the integrated energy

density grows negatively in time in this observer’s frame. This is contrast to an inertial

observer, in whose frame the energy density is more constrained by quantum inequalities.

We considered a squeezed vacuum state for both a plane wave and a standing wave in

a cavity. The case in which growing integrated negative energy is possible is when the

squeeze parameter is small, r � 1. In this case, the energy density in an inertial frame is
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almost sinusoidal, with the positive energy outweighing the negative energy only in order r2.

The effect of the periodic motion of the accelerated observer is to introduce Doppler shift

factors which enhance the negative energy compared to the positive energy. The accelerated

observer then sees the negative energy blueshifted and the positive energy redshifted. In

the cases of perpendicular motion treated in Sect. II A and III A, the effect is a transverse

Doppler shift, and is hence of order A2, where A is the oscillation amplitude. For the parallel

motion cases in Sects. II B and III B, the effect is a linear Doppler shift, leading to an effect of

order A. It is possible to have growing negative integrated energy density even for arbitrarily

slow motion, which means arbitrarily small A. However, for a given A, the squeeze state

parameter r is constrained by relations such as Eqs. (28) and (41), which limit the rate of

growth. Note that non-relativistic motion is not a requirement for growing negative energy,

and the numerically integrated results depicted in Figs. 1 and 3 are for relativistic motion,

but small squeeze parameter.

We studied a model which gives an operational meaning to integrated negative energy

density in the form of defocussing of bundle of worldlines. In Sect. IV, we analyzed the

Raychaudhuri equation for the expansion along a bundle of accelerated worldlines. The

motivation for this study is that positive energy leads to attractive gravitational effects and

hence focussing, so negative energy should do the opposite. This expectation was born out in

our results. However, the situation is complicated by the need to include an acceleration term

in the Raychaudhuri equation, and the effects of the fluctuating velocity of the accelerating

charged particles in a fluctuating electromagnetic field. In the cases which we examined, the

gravitational effects and the acceleration effects have the same functional form.

The effect treated in this paper bears a superficial resemblance to the effect treated in

Ref. [20], which is a linearly growing or decreasing mean squared velocity of a charged

particle undergoing sinusoidal motion near a mirror. The latter effect can be interpreted

as non-cancellation of anti-correlated quantum electric field fluctuations. A charge at rest

in the Casimir vacuum produced by the mirror is subjected to field fluctuations which can

give or take energy from the charge for a time consistent with the energy-time uncertainty

principle, but this effect will be cancelled by a subsequent anti-correlated fluctuation. The

sinusoidal motion upsets this cancellation, and allows the mean squared velocity to grow or

decrease, depending upon the phase of the oscillation. The effect discussed in the present

paper also involves linear growth, but does not have an obvious interpretation in terms of
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non-cancelling fluctuations. The natural interpretation seems to be in terms of Doppler

shifts which can be arranged to enhance negative energy and suppress positive energy. A

topic for future research is to study further the connection between these two effects.

Another topic is to understand to relation between the growing integrated negative energy

and the general worldline quantum inequality of Fewster [13]. This inequality is difficult to

evaluate explicitly for the sinusoidal worldline considered here. In this case, the inequality

must be weak enough to allow the linear growth found here, but it might provide insight

into the allowed behavior in situations more general than we have treated.

A further question of interest is the possible physical consequences of accumulating neg-

ative energy beyond those discussed in Sect. IV. A possible detection model for negative

energy was proposed in Ref. [17], in which negative energy can suppress the decay rate of

atoms in excited states. The atoms in this model are moving along inertial worldlines, but

it might be possible to devise a more general model involving non-inertial motion.

Let us also stress that our results do not in any way invalidate or diminish the implications

of the quantum inequality bounds for inertial observers. The strength of a quantum inequality

bound may depend on the particular observer chosen, but the validity of the bound does

not. As an example, suppose one is using a quantum inequality, applied to the motion

of a particular inertial observer, to determine constraints on the geometry of a traversable

wormhole. Let us further assume that in this case, the quantum inequality provides a very

strong constraint. Now suppose one looks at the same problem from the point of view

of, say, a different inertial or an accelerating observer and finds a much weaker bound.

The weakness of the latter bound does not invalidate the strength of the previous bound.

The observer whose motion provides the strongest quantum inequality bound implies the

strongest constraint on the geometry of the wormhole. The latter cases simply yield true

but weaker bounds.
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