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We study isolated and binary neutron stars in dynamical Chern-Simons gravity. This theory
modifies the Einstein-Hilbert action through the introduction of a dynamical scalar field coupled to
the Pontryagin density. We here treat this theory as an effective model, working to leading order in
the Chern-Simons coupling. We first construct isolated neutron star solutions in the slow-rotation
expansion to quadratic order in spin. We find that isolated neutron stars acquire a scalar dipole
charge that corrects its spin angular momentum to linear order in spin and corrects its mass and
quadrupole moment to quadratic order in spin, as measured by an observer at spatial infinity. We
then consider neutron stars binaries that are widely separated and solve for their orbital evolution
in this modified theory. We find that the evolution of post-Keplerian parameters is modified, with
the rate of periastron advance being the dominant correction at first post-Newtonian order. We
conclude by applying these results to observed pulsars with the aim to place constraints on dynamical
Chern-Simons gravity. We find that the modifications to the observed mass are degenerate with
the neutron star equation of state, which prevents us from testing the theory with the inferred
mass of the millisecond pulsar J1614-2230. We also find that the corrections to the post-Keplerian
parameters are too small to be observable today even with data from the double binary pulsar
J0737-3039. Our results suggest that pulsar observations are not currently capable of constraining
dynamical Chern-Simons gravity, and thus, gravitational-wave observations may be the only path
to a stringent constraint of this theory in the imminent future.

PACS numbers: 04.30.-w,04.50.Kd,04.25.-g,97.60.Jd

I. INTRODUCTION

Current astrophysical observations suggest that Gen-
eral Relativity (GR) may have to be modified on large
scales. Dark energy, dark matter and even inflation have
been suggested as natural consequences of certain mod-
ified gravity theories (see e.g. Ref. [1]). Perhaps similar
modifications will be necessary in the non-linear, dynam-
ical regime, the so-called strong-field , such as when black
holes (BHs) merge and neutron stars (NSs) collide. In
this regime, physical phenomena is not well-described by
a leading-order weak-field and slow-motion expansion of
the Einstein equations. Instead, one must either retain
high-orders in such perturbative expansion, or solve the
full set of Einstein equations numerically. The only way
to determine whether modifications to GR in the strong
field are necessary is to make observations and test GR
in this regime.

Modified gravity theories have been tested accurately
in the Solar System and with binary pulsar observa-
tions [2–4]. While the former allow for tests in the weak-
field regime only, the latter has led to tests when gravi-
tational fields are moderately strong. Binary pulsar ob-
servations, however, are still not capable of probing the
non-linear regime of GR. For example, the orbital ve-
locity of the double binary pulsar J0737-3039 [5–7] is
roughly 10−3 smaller than the speed of light, and thus,
its orbital behavior can be well-approximated by a weak-
field, slow-velocity expansion of the Einstein equations,
retaining only the leading and first subleading terms. On

the other hand, GR will soon be tested during compact
binary late coalescence through gravitational wave (GW)
observations [2, 3, 8], which will allow for a probe of the
fully non-linear and dynamical, strong-field regime.

Recently, there has been a suggestion that binary pul-
sar observations may constrain deviations from GR to
such a degree that GW tests will not be necessary in
the future [9]. Such a suggestion emerged from studies
of certain scalar-tensor theories [10], the constraints on
which indeed cannot be improved with second-generation
GW detectors, such as Advanced LIGO [11–15]. But of
course, this suggestion depends strongly on the particu-
lar modified gravity model considered. For example, the
same type of GW detectors may be able to place con-
straints on massive graviton propagation that are three
orders of magnitude stronger than current binary pulsar
constraints [16–22].

By studying NSs in dynamical Chern-Simons (CS)
gravity [23], we here find another counterexample to this
suggestion. Currently, the only constraints on this the-
ory come from Solar System observations [24], by com-
paring the CS correction to gravitomagnetic precession
to observations with Gravity Probe B, and from table
top [25] experiments, by requiring that no CS correc-
tions are present above the smallest gravitational length
scales sampled experimentally on Earth. These tests lead
to comparable constraints, namely

√
α < 108 km, where

α is the dimensional CS coupling constant. Such an in-
credibly weak constraint is perhaps not surprising, given
the weakness of the gravitational field in the Solar Sys-
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tem. Recent work has shown that future GW observa-
tions of BH binary inspirals could improve upon Solar
System constraints by as much as seven orders of mag-
nitude [26–29]. In this paper, we study whether current
isolated and binary pulsar observations can already con-
strain dynamical CS gravity. We will see that indeed
this is not possible and that only future GW observa-
tions of compact binary coalescence can place stringent
constraints on this theory.

Dynamical CS modified gravity is a parity-violating,
quadratic-curvature theory that is defined by modifying
the Einstein-Hilbert action with a term that is the prod-
uct of a dynamical scalar field and the Pontryagin den-
sity (contraction of the Riemann tensor and its dual).
The scalar field has dynamics through the addition of a
standard kinetic term and a potential to the action. The
Pontryagin term in the action is involved in anomaly can-
cellation [30]. Such a term also appears naturally in het-
erotic superstring theory [30–32] and loop quantum grav-
ity [33–35]. Dynamical CS gravity also arises naturally
in effective field theories of inflation [36]. Historically,
CS gravity was introduced without scalar field dynam-
ics, assuming the field was given a priori [37]. Such a
formulation was plagued with problems, such as metric
instability [38] and overconstrained field equations. The
modern (dynamical) incarnation of the theory restores
the dynamics of the scalar field through a standard ki-
netic term in the action [39], while treating the model as
an effective theory, thus avoiding instabilities [40].

Dynamical CS gravity has only recently begun to be
studied in detail. Non-rotating BHs are described by the
Schwarzschild metric, but rotating ones are not. Ana-
lytic slowly-rotating BH solutions have been constructed
to linear order in spin [40, 41] and to quadratic order
in spin [25] within the small-coupling approximation, i.e.
linearizing all expressions in the CS coupling. Slowly-
rotating NS solutions were first constructed in [42] to
linear order in spin and within the small-coupling ap-
proximation. This work was extended in [24], where NS
solutions were obtained still to linear order in spin, but
without imposing the small-coupling approximation.

The purpose of this paper is to investigate whether
any meaningful constraints on dynamical CS gravity can
be obtained from isolated [43] and binary pulsar obser-
vations [4]. In order to achieve this goal, one must first
study isolated NSs solutions to quadratic-order in spin,
since the latter will introduce modifications to the NS
mass as measured by an observer at spatial infinity. One
must then place such NS solutions in binary systems and
study the conservative and dissipative corrections to the
evolution of the binary. The former come from the CS
deformation of the quadrupole moment of each individual
NS, as well as from the scalar dipole-dipole interaction
of the binary components. The latter are caused by the
modification to the emitted gravitational and scalar ra-
diation. These corrections can be calculated once one
finds the scalar dipole charge induced by each individ-
ual NS and its associated CS quadrupole moment defor-

mation. The charge can be extracted by studying the
asymptotic behavior of the scalar field at spatial infinity
to linear order in spin. The quadrupole moment deforma-
tion appears at quadratic-order in spin. All throughout
this paper, we treat dynamical CS gravity as an effective
field theory. Such a treatment is definitely valid for the
systems considered here, as explained in detail in [25].
In turn, this implies that we can use the weak-coupling
approximation to linearize all expression in the CS cou-
pling constant. Such a treatment guarantees that the
field equations are second order, and the theory is ghost-
free [25].

A. Executive Summary

The first half of this paper focuses on finding iso-
lated NS solutions to quadratic order in spin in the
small-coupling approximation. We follow Hartle’s ap-
proach [44], in which one treats rotation perturbatively,
i.e. one expands in powers of the product of the NS mass
and the NS rotational angular frequency. As expected,
we find that CS corrections at quadratic order in spin
modify the NS mass monopole and quadrupole moments,
where the former can be absorbed by a redefinition of
mass. At linear order in spin, the CS corrections ap-
pear at much higher multipole order than quadrupole,
since the correction to the current dipole moment can be
absorbed by a redefinition of spin. Therefore, CS cor-
rections at quadratic order in spin can be larger than
those at linear order if NSs are spinning moderately fast,
yet sufficiently slowly for the small-rotation expansion to
hold.
Figure 1 shows the scalar dipole charge µ̄ (top left) and

the CS corrections to the mass δM (bottom left), spin
angular momentum δJ (bottom right) and quadrupole
moment Q (top right) as a function of the GR mass pa-
rameter M∗ in solar masses M⊙. In this figure, ζ is the
dimensionless coupling constant of dynamical CS grav-
ity1, Ω∗ is the NS angular velocity, Ω1ms is the angu-
lar frequency of a NS with a period of 1ms, J is the
NS spin angular momentum in GR and we used the
APR [45], SLy [46, 47], Lattimer-Swesty (LS220) [48, 49]
and Shen [49–51] equations of state (EoSs). Observe that
the CS corrections reduce the observed mass, but they in-

crease the observed angular momentum and quadrupole
moment with increasing M∗.
Such corrected NS observables can then be contrasted

with NS observations to constrain dynamical CS gravity.
Observations of the massive millisecond pulsar J1614-
2230 [43] require that one be able to construct NSs with
observed masses larger than 1.93M⊙. Unfortunately, but
perhaps not surprisingly, the allowed maximum NS mass

1 This quantity is proportional to the fourth power of the Chern-
Simons natural length scale and it is such that as ζ → 0 one
recovers GR. See Eq. (9) for a more precise definition.
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in dynamical CS gravity depends not only on the EoS but
also on the magnitude of the dimensionless CS coupling
parameter ζ ∝ ξCSM

2
∗/R6

∗. Figure 2 shows the mass-
radius relation for different EoSs with different choices of
ζ. Therefore, such a test of dynamical CS gravity cannot
be performed due to degeneracies with the EoS.

The CS corrections to the NS quadrupole moment and
the moment of inertia induce modifications to the or-
bital evolution of binary pulsars, which then can be con-
trasted with binary pulsar observations to constrain the
modified theory. Observations of the double binary pul-
sar J0737-3039 [5–7] require that the evolution of certain
Keplerian elements [2, 4, 52] agree with GR to within a
certain observational uncertainty. The CS modification
to the quadrupole moment leads to corrections to these
evolution equations, which we explicitly calculate in this
paper. We find that the rate of periastron advance ω̇ is
the best observable to constrain CS gravity, because its
CS modification enters at first PN order relative to the
GR behavior, i.e. this modification is suppressed by a
single factor of O(m/a), where m is the total mass of
the binary and a is the semi-major axis of the binary.
However, for J0737-3039, this still implies a suppression
of the CS correction of O(10−8) relative to the measured
GR ω̇. Moreover, this CS effect is even smaller than the
GR spin-orbit correction to ω̇, which enters at 0.5PN or-
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FIG. 1. (Color online) Numerical (symbols) and fitted (curve)
results as functions of NS mass with various EoSs. We plot
the dimensionless scalar dipole susceptibility µ̄ (top left), the
quadrupole correction Q (top right), the mass shift δM (bot-
tom left), and the angular momentum shift δJ (bottom right),
which are defined in Eqs. (69), (66), and (55) respectively.
The y-axis in the top-right panel is normalized by J2/M∗,
the absolute value of the NS quadrupole moment in the point
particle limit in GR, while the y-axis of the bottom-left panel
is normalized by Ω1ms, the angular frequency of a NS with
a period of 1ms defined by (Ω1ms ≡ 2π/1ms). Moreover, Q,
δM and δJ are also re-scaled to ζ = 0.1. Observe how the
mass shift is always negative, while the quadrupole moment
deformation is always positive.
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FIG. 2. (Color online) Mass-radius relations for GR (solid
curves) and CS with different coupling strengths (ζ =
0.1, 0.5, 1 curves are respectively dotted, dashed, and dot-
dashed). Each panel uses a different EoS: APR (top left),
SLy (top right), LS220 (bottom left) and Shen (bottom right).
The horizontal dashed line corresponds to the lower bound
on the NS mass, 1.93M⊙, provided by observations of PSR
J1614-2230. The mass-radius relations depend on the spin of
the NS, which we have set to match that for PSR J1614-2230.
Since APR, SLy and Shen EoSs can each produce NSs above
the mass bound for all ζ < 1, there is a clear degeneracy be-
tween EoS and the CS correction to the mass-radius relation.
Thus, one cannot constrain the theory from observations of
PSR J1614-2230.

der and depends on the NS’s moments of inertia. There-
fore, current binary pulsar observations are not accurate
enough to allow for tests of dynamical CS gravity.
Unlike for scalar-tensor theories [9], our results sug-

gest that dynamical CS gravity cannot be constrained
well with binary pulsar observations using current data.
Instead, GW observations may be the only way to place
stringent constraints. We have therefore found a con-
crete example of a modified gravity theory that cannot
be stringently constrained with current electromagnetic
observations.

B. Organization

The organization of the paper is as follows. In Sec. II,
we introduce the basics of dynamical CS gravity and ex-
plain the approximations that we use throughout the pa-
per. In Sec. III, we explain the coordinate systems that
we use and impose an ansatz on the metric and the stress-
energy momentum tensor of the matter field. In Sec. IV,
we derive both GR and CS field equations at each or-
der in spin and derive the exterior solutions, modulo in-
tegration constants, which are discussed in Sec. V. In
Sec. VI, we explain how to construct the interior solu-
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tion. This amounts to finding the matching conditions
at the NS surface and the initial conditions at the center.
Then, we explain the numerical procedure that we use
to solve these sets of differential equations. In Sec. VII,
we present the numerical results obtained by solving the
interior equations and matching the solutions to the ex-
terior ones. We derive the evolution of the NS binary
in Sec. VIII, and in Sec. IX we apply the results to the
massive millisecond pulsar J1614-2230 and to the double
binary pulsar PSR J0737-3039. We conclude in Sec. X
with a discussion of possible avenues for future work.
All throughout the paper, we mostly follow the con-

ventions of Misner, Thorne and Wheeler [53]. We use
the Greek letters (α, β, · · · ) to denote spacetime in-
dices. The metric is denoted by gµν and it has signature
(−,+,+,+). We use geometric units, with G = c = 1.

II. DYNAMICAL CHERN-SIMONS GRAVITY

A. Basics

The action in dynamical CS gravity is given by [23]

S ≡
∫

d4x
√−g

[

κgR+
α

4
ϑRνµρσ

∗Rµνρσ

−β

2
∇µϑ∇µϑ+ Lmat

]

. (1)

Here, κg ≡ (16π)−1, g denotes the determinant of the
metric gµν and Rµνρσ is the Riemann tensor. ∗Rµνρσ is
the dual of the Riemann tensor which is defined by [23]

∗Rµνρσ ≡ 1

2
ερσαβRµν

αβ , (2)

where ερσαβ is the Levi-Civita tensor. ϑ is a scalar field
while α and β are coupling constants. Lmat denotes the
matter Lagrangian density. Following Refs. [25, 40, 54],
we have neglected the potential of the scalar field for
simplicity. We take ϑ and β to be dimensionless while
we set α to have a dimension of (length)2 [40].
The field equations in dynamical CS gravity are given

by [23]

Gµν +
α

κg
Cµν =

1

2κg
(Tmat

µν + T ϑ
µν) , (3)

where Gµν is the Einstein tensor and Tmat
µν is the matter

stress-energy tensor. The C-tensor and the stress-energy
tensor for the scalar field are defined by

Cµν ≡ (∇σϑ)ǫ
σδα(µ∇αR

ν)
δ + (∇σ∇δϑ)

∗Rδ(µν)σ , (4)

T ϑ
µν ≡ β(∇µϑ)(∇νϑ)−

β

2
gµν∇δϑ∇δϑ . (5)

The evolution equation of the scalar field is given by

�ϑ = − α

4β
Rνµρσ

∗Rµνρσ . (6)

By using this equation, one can show that

∇νC
µν = −1

8
(∇µϑ)Rαβρσ

∗Rβαρσ

=
1

2κ
∇νT

µν
ϑ . (7)

Together with the Bianchi identity, if we take the diver-
gence of Eq. (3), we end up with

∇νT
µν
mat

= 0 . (8)

Thus, the equation of motion for a test particle is not
modified.
The evolution equation for the scalar field, Eq. (6), ad-

mits a flat background solution of the form ϑ = Cµx
µ,

for Cµ = const, i.e. a solution to the homogeneous equa-
tion in a flat background. The constants Cµ control the
strength of the CS modification, and thus, one would
expect them to be proportional to α/β. Although such
a solution is in principle allowed, Cµ would have to be
prescribed a priori , as some form of cosmological term.
Moreover, such a term would ruins the ϑ shift-invariance
of the equations of motion, which is a desirable prop-
erty that allows us to treat ϑ as massless. Also, such a
scalar field would have an infinite energy density, when
its stress-energy tensor is integrated over the entire man-
ifold. Finally, dynamical CS gravity with such a homo-
geneous scalar field is very similar to the non-dynamical
theory, and thus, it is already severely constrained by cos-
mological observations [55]. For the rest of this paper, we
will ignore the homogeneous solution for ϑ, and instead,
concentrate on dynamically generated scalar fields.

B. Small-Coupling, Slow-Rotation Approximations

We here work in the small-coupling and slow-rotation
approximations. The former implies that we treat the
action given in Eq. (1) as defining an effective theory,
which requires the CS quadratic term (the second term)
to be much smaller than the Einstein-Hilbert term. For
isolated NSs, the small-coupling approximation is valid
if the following inequality holds:

ζ ≡ ξCSM
2
∗

R6
∗

≪ 1 , ξCS ≡ α2

βκg
, (9)

where M∗ and R∗ are the mass and radius of the NS
respectively. ξ1/4 corresponds to the characteristic length
scale of the theory while

√

R3
∗/M∗ corresponds to the

curvature length scale of the NS. This definition of the
dimensionless small coupling constant ζ is the same as ζ2

defined in [24] modulo anO(1) numerical factor. Figure 7
of [24] shows that the small coupling approximation is
valid when ζ ≪ 1. Solar System experiments require

ξ
1/4
CS ≤ O(108)km [24]. In this paper, we work to linear
order in ζ.
Dynamical CS gravity must thus have cut-off scale be-

yond which one cannot treat it as an effective model.
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Ref. [25] estimated this scale by calculating the critical
length scale at which loop corrections to the second term
in Eq. (1) due to n-point interactions become of order
unity. Requiring that this length scale be smaller than
the smallest scales probed by table-top experiments led
to the requirement that

√
α < O(108 km). This require-

ment is of the same order as the current constraints from
Solar System experiments. For the NS systems we will
consider here, both this requirement and the small cou-
pling condition ζ ≪ 1 are satisfied.
We further assume that NSs are slowly rotating (i.e.

|χ| ≪ 1 where χ = J/M2 is the dimensionless spin pa-
rameter, with J the magnitude of the NS spin angular
momentum and M is its mass) and consider terms up to
quadratic order.
All physical quantities, A, can be expanded bivariately

as

A =
∑

m,n

χ′mα′nA(m,n) , (10)

where χ′ and α′ are book keeping parameters to label the
order of the slow-rotation and the small-coupling approx-
imations, respectively. Notice that A(m,n) ∝ χmαn. For
the spherically symmetric case, Rνµρσ

∗Rµνρσ = 0, and
thus, there is no source to the inhomogeneous equation
of motion for ϑ. Therefore, for the scalar field, ϑ(0,n) = 0
and

ϑ = α′χ′ϑ(1,1) +O(α′χ′3) . (11)

Notice that ϑ(2m,1) = 0 due to parity.

III. SPACETIME AND MATTER

DECOMPOSITION

A. Metric

Following Hartle [44], we start with the metric ansatz
given by

ds2 = −eν̄(r)
(

1 + 2h̄(r, θ)
)

dt2

+ eλ̄(r)
(

1 +
2m̄(r, θ)

r − 2M̄(r)

)

dr2 (12)

+ r2
(

1 + 2k̄(r, θ)
)

[

dθ2 + sin2 θ (dφ− ω̄(r, θ)dt)
2
]

,

where ν̄ and λ̄ are O(α′0χ′0) quantities that only depend
on r while h̄, k̄, m̄ and ω̄ refer to perturbations that
depend2 on both r and θ. M̄ is related to λ̄ by

M̄(r) ≡

(

1− e−λ̄(r)
)

r

2
. (13)

2 These quantities do not depend on t and φ because we are search-
ing for stationary and axisymmetric NS solutions.

The coordinates (t, r, θ, φ) are Hartle-Thorne coordi-
nates. In particular, (r, θ) denote ordinary polar coor-
dinates.
Since we are treating rotation perturbatively, one must

be careful with the choice of polar coordinates [44]. A
perturbative approach is valid only when the fractional
change in a quantity between rotating and non-rotating
cases is small. If one were to use (r, θ) coordinates, this
condition could not be met for the density ρ and the
pressure p near the surface. This is because the rotation
changes the shape of a star, and hence there are points
on the NS surface where these quantities vanish in the
non-rotating case while they acquire finite values in the
rotating case, leading to infinite fractional changes. In-
stead, we adopt the coordinates (R,Θ) as proposed by
Hartle [44], which are defined via

ρ [r(R,Θ),Θ] = ρ(R) = ρ(0,0)(R), Θ = θ . (14)

In other words, the new radial coordinate R is chosen
such that the density at ρ [r(R,Θ),Θ] in the rotating
configuration is the same as ρ(0,0)(R) in the non-rotating
configuration. By construction, the density and the pres-
sure in the new coordinates contain the non-rotating part
only:

ρ(R) = ρ(0,0)(R), p(R) = p(0,0)(R) . (15)

We expand r(R,Θ) as

r(R,Θ) = R+ ξ(R,Θ) , (16)

where

ξ(R,Θ) = α′2χ′2ξ(2,2)(R,Θ) +O(α′0χ′2, α′2χ′4) . (17)

Notice that we have neglected O(α′0χ′2) quantities (pure
GR, quadratic in spin effects) in Eq. (17). Since in this
work we are interested in the detectability of the CS cor-
rections, and the mentioned terms would simply add lin-
early but not modify the CS corrections at O(α′2χ′2), we
ignore the O(α′0χ′2) term henceforth.
After the coordinate transformation, the new metric is

given by

ds2 = −
[(

1 + 2h+ ξ
dν

dR

)

eν −R2ω2 sin2 Θ

]

dt2

−2R2ω sin2 Θdtdφ+
[

R2(1 + 2k) + 2Rξ
]

sin2 Θdφ2

+eλ
(

1 +
2m

R− 2M
+ ξ

dλ

dR
+ 2

∂ξ

∂R

)

dR2

+2eλ
∂ξ

∂Θ
dRdΘ+

[

R2(1 + 2k) + 2Rξ
]

dΘ2

+O(α′0χ′2, α′2χ′4) , (18)

where

M(R) ≡
(

1− e−λ(R)
)

R

2
. (19)
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Each quantity in the above equation is bivariately ex-
panded as

ν(R) = ν(0,0)(R) ,

λ(R) = λ(0,0)(R) ,

ω(R,Θ) = χ′ω(1,0)(R,Θ) + α′2χ′ω(1,2)(R,Θ)

+O(α′0χ′3, α′2χ′3) ,

h(R,Θ) = α′2χ′2h(2,2)(R,Θ) +O(α′0χ′2, α′2χ′4) ,

m(R,Θ) = α′2χ′2m(2,2)(R,Θ) +O(α′0χ′2, α′2χ′4) ,

k(R,Θ) = α′2χ′2k(2,2)(R,Θ) +O(α′0χ′2, α′2χ′4) . (20)

Due to parity, the (t, t), (R,R), (Θ,Θ), (φ, φ) and (R,Θ)
metric components only have terms proportional to even
powers of χ′ while (t, φ) component only contains terms
that are odd powers in χ′. Also, O(α′) terms do not
appear in the metric because of the structure of the field
equation and the fact that ϑ is proportional to α in the
small-coupling approximation.
Notice that the coordinate deformation ξ(R,Θ) is well

defined only inside the star. We take it to be constant
outside the star. This means that the exterior metric in
(t, r, θ, φ) coordinates can be obtained simply by replac-
ing R → r and Θ → θ in the exterior metric in (t, R,Θ, φ)
coordinates.

B. Neutron Star Stress-Energy Tensor

In this paper, we assume that the matter field inside
a NS is a perfect fluid and that the NS is rotating uni-
formly. The stress-energy tensor for the matter field Tmat

µν

is given by

Tmat

µν = (ρ+ p)uµuν + pgµν , (21)

where the four-velocity uµ is given by

uµ = (u0, 0, 0,Ω∗u
0) . (22)

Ω∗ is the constant angular velocity of the NS. By using
the normalization condition uµu

µ = −1, we obtain the
time component of the four-velocity u0 as

eν/2u0 = 1 + α′2χ′2
{

e−νR2ω(1,2)[ω(1,0) − Ω∗] sin
2(Θ)

−h(2,2) −
1

2
ξ(2,2)

dν

dR

}

+O(α′0χ′2, α′2χ′4) .

(23)

As mentioned in Eq. (8), the stress-energy tensor of
this minimally-coupled fluid is divergence free, which
contributes another equation to the system. In order to
close the system, one needs a relationship between den-
sity ρ and pressure P , an EoS. In this paper we only
consider one-parameter EoSs, i.e. P = P (ρ) without any
entropy dependence. The EoSs we use are APR [45],
SLy [46, 47], Lattimer-Swesty with nuclear incompress-
ibility of 220MeV (LS220) [48, 49] and Shen [49–51]. For

the latter two, we use a temperature of 0.01MeV and an
electron fraction of 30%. The EoS and conservation of
matter stress-energy tensor close the system. We discuss
the matter equations of motion order-by-order below.

IV. MODIFIED FIELD EQUATIONS

In this section, we derive the modified field equations
expanded in χ′ and α′.

A. Zeroth Order in Spin

First, we consider equations at O(χ′0). As mentioned
previously, in the spherically symmetric case there is no
CS correction, and hence the field equations reduce to
the Einstein equations for a non-rotating star. The only
non-vanishing components are the (t, t), (R,R), (Θ,Θ)
and (φ, φ) ones, but the last two components are linearly
dependent. The first two components yield

dM

dR
= 4πR2ρ , (24)

dν

dR
= 2

4πR3p+M

R(R− 2M)
. (25)

Together with the EoS, we need one more equation to
close the system of differential equations. Instead of using
the (Θ,Θ) or (φ, φ) component of the Einstein equations,
one can use the R component of the conservation equa-
tions of the matter stress-energy tensor [Eq. (8)] which
is given by

dν

dR
= − 2

ρ+ p

dp

dR
. (26)

By combining Eqs. (25) and (26), we obtain the Tolman-
Oppenheimer-Volkoff (TOV) equation

dp

dR
= − (4πR3p+M)(ρ+ p)

R(R− 2M)
. (27)

B. First Order in Spin

1. GR

At O(α′0χ′), the only non-vanishing component of the
Einstein equations is the (t, φ) one. By using Eqs. (24)–
(27), the associated equation can be simplified to

∂2ω̃(1,0)

∂R2
+ 4

1− πR2(ρ+ p)eλ

R

∂ω̃(1,0)

∂R

+
eλ

R2

(

∂2ω̃(1,0)

∂Θ2
+ 3 cotΘ

∂ω̃(1,0)

∂Θ

)

−16π(ρ+ p)eλω̃(1,0) = 0 , (28)
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where

ω̃(1,0) ≡ Ω∗ − ω(1,0) . (29)

We simplify the equation further by performing a Legen-
dre decomposition:

ω̃(1,0)(R,Θ) =
∑

ℓ

ω̃ℓ(R)

(

− 1

sinΘ

∂

∂Θ
Pℓ(cosΘ)

)

, (30)

where Pℓ is the ℓ-th Legendre polynomial. Then, Eq. (28)
becomes

d2ω̃ℓ

dR2
+ 4

1− πR2(ρ+ p)eλ

R

dω̃ℓ

dR

−
[

(ℓ+ 2)(ℓ − 1)

R2
+ 16π(ρ+ p)

]

eλω̃ℓ = 0 . (31)

By imposing asymptotic flatness and regularity at the
center, one can show that ω̃ℓ must vanish for all ℓ except
ℓ = 1 [44]. Thus, the above equation reduces to

d2ω̃1

dR2
+ 4

1− πR2(ρ+ p)eλ

R

dω̃1

dR
− 16π(ρ+ p)eλω̃1 = 0 .

(32)

2. CS: Scalar Evolution Equation

Next, we look at the scalar evolution equation at
O(α′χ′). By using Eqs. (24)–(27), the equation can be
written as

∂2ϑ(1,1)

∂R2
+

1 + eλ
[

1− 4πR2(ρ− p)
]

R

∂ϑ(1,1)

∂R

+
eλ

R2

(

∂2ϑ(1,1)

∂Θ2
+ cotΘ

∂ϑ(1,1)

∂Θ

)

= 8π
α

β
δ e(λ−ν)/2

(

sinΘ
∂2ω̃(1,0)

∂R∂Θ
+ 2 cosΘ

∂ω̃(1,0)

∂R

)

,

(33)

where

δ ≡ ρ− M

(4/3)πR3
(34)

denotes the density shift from the average. Since we are
only interested in stationary and axisymmetric solutions,
we consider a ϑ that only depends on the coordinates R
and θ. As in Eq. (30), we perform a Legendre decompo-
sition of ϑ:

ϑ(1,1)(R,Θ) =
∑

ℓ

ϑℓ(R)Pℓ(cosΘ) , (35)

and find that the ℓ = 1 term of Eq. (33) is the only one
with a source term. The only homogeneous solution that
satisfies both asymptotic flatness and regularity at the
center is the trivial ϑℓ = 0 for ℓ 6= 1. For ℓ = 1, Eq. (33)
becomes

d2ϑ1

dR2
+

1 + eλ
[

1− 4πR2(ρ− p)
]

R

dϑ1

dR
− 2

eλ

R2
ϑ1

= 16π
α

β
δe(λ−ν)/2 dω̃1

dR
. (36)

3. CS: Field Equation

Next, we consider the modified Einstein equation at
O(α′2χ′). As in GR, the only non-vanishing component
of the field equations is the (t, φ) one. Notice that since
ϑ is of O(α′χ′), there is no O(α′2χ′) contribution from
T ϑ
µν . The (t, φ) component of the field equations is given

by

∂2ω(1,2)

∂R2
+ 4

1− πR2(ρ+ p)eλ

R

∂ω(1,2)

∂R

+
eλ

R2

(

∂2ω(1,2)

∂Θ2
+ 3 cotΘ

∂ω(1,2)

∂Θ

)

− 16π(ρ+ p)eλω(1,2)

=
128π2αe(ν+λ)/2

R3 sinΘ

[

δR
∂2ϑ(1,1)

∂R∂Θ
+

(

R
dρ

dR
− δ

)

∂ϑ(1,1)

∂Θ

]

.

(37)
As for ω̃(1,0), we decompose ω(1,2) via

ω(1,2)(R,Θ) =
∑

ℓ

wℓ(R)

(

− 1

sinΘ

∂

∂Θ
Pℓ(cosΘ)

)

. (38)

Again, we find that Eq. (37) with ℓ 6= 1 becomes a ho-
mogeneous equation, leading to wℓ = 0 for ℓ 6= 1 after
imposing asymptotic flatness and regularity at the cen-
ter. For ℓ = 1, the equation reduces to

d2w1

dR2
+ 4

1− πR2(ρ+ p)eλ

R

dw1

dR
− 16π(ρ+ p)eλw1

= −128π2αe(ν+λ)/2

R3

[

δ R
dϑ1

dR
+

(

R
dρ

dR
− δ

)

ϑ1

]

.

(39)

Notice that Eq. (32) corresponds to the homogeneous
version of Eq. (39).

C. Second Order in Spin

In this subsection, we derive the stress-energy conser-
vation and the field equations at quadratic order in spin.
As mentioned previously, we do not consider the GR part
since O(α′0χ′2) terms do not appear in any equations at
O(α′2χ′2). Following the previous subsection, we per-
form the Legendre decompositions:

h(2,2)(R,Θ) =
∑

ℓ hℓ(R)Pℓ(cosΘ) , (40a)

m(2,2)(R,Θ) =
∑

ℓ mℓ(R)Pℓ(cosΘ) , (40b)

k(2,2)(R,Θ) =
∑

ℓ kℓ(R)Pℓ(cosΘ) , (40c)

ξ(2,2)(R,Θ) =
∑

ℓ ξℓ(R)Pℓ(cosΘ) . (40d)

We use the gauge freedom of the theory to set k0(R) =
0 [44].

1. CS: Stress-Energy Conservation

The non-vanishing components of the stress-energy
conservation equations ∇µTmat

µν = 0 are ν = R and Θ.
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First, let us look at the Θ component. By performing a
Legendre decomposition, one finds that ℓ = 2 is the only
non-vanishing mode. By using the previously obtained
results, one arrives at the algebraic condition

ξ2 = − R(R− 2M)

3(4πR3p+M)
(3h2 − 2e−νR2ω̃1w1) (41)

in the interior of the star.
Next, let us look at the R component. The only non-

vanishing modes are the ℓ = 0 and ℓ = 2 ones. For the
latter, we obtain Eq. (41) after we integrate the differ-
ential equation once with respect to R. For the former,
again by integrating once, we obtain the algebraic rela-
tion

h0 = −4πR3p+M

R(R− 2M)
ξ0 −

2

3
e−νR2ω̃1w1 + h0c , (42)

valid in the interior of the star, where h0c is an integration
constant that corresponds to h(R = 0).

2. CS: Field Equations

Let us now derive the modified field equations at
O(α′2χ′2). The only non-vanishing modes are the ℓ = 0
and ℓ = 2 ones. Let us first focus on the ℓ = 0 case, where
our dependent variables are h0, m0 and ξ0. Eq. (42) al-
ready determines h0, and thus, we are left with 2 degrees
of freedom (m0 and ξ0). Following Ref. [44], we use the
(t, t) and (R,R) components of the field equations, and
Eq. (42), to find

dm0

dR
= −4πR2 dρ

dR
ξ0 +

1

6
R2e−(ν+λ)

(

16πξCSδ
dω̃1

dR
−R2 dw1

dR

)

dω̃1

dR

− 16π

3
e−νR4(ρ+ p)ω̃1w1 +

2π

3
βe−λR2

(

dϑ1

dR

)2

+
4π

3
βϑ2

1

− 4π

3
αe−(ν+λ)/2

{

R
(

9e−λ + 1 + 8πR2p
) dϑ1

dR

dω̃1

dR
− 2

[

2e−λ + 3 + 16πR2(ρ+ p)
]

ϑ1
dω̃1

dR

− 64πR2(ρ+ p)ω̃1
dϑ1

dR
− 32πR

[

R
dρ

dR
+ (ρ+ p)

[

2− (1 + 8πR2p)eλ
]

]

ϑ1ω̃1

}

, (43)

dξ0
dR

=
1

3[1− (1 + 8πR2p)eλ]

{

6(1 + 8πR2p)

R
e2λm0 + 3

e−λ + 16πR2p− (1− 8πR2ρ)(1 + 8πR2p)eλ

R
eλξ0

+ R4e−ν dω̃1

dR

dw1

dR
+ 4R3e−ν

(

dω̃1

dR
w1 + ω̃1

dw1

dR

)

+ 4
(

3e−λ − 1− 8πR2p
)

R2e−(ν−λ)ω̃1w1 + 4πβR2

(

dϑ1

dR

)2

− 8πβeλϑ2
1 + 8παe−(ν−λ)/2

[

(

3e−λ − 1− 8πR2p
)

R

(

dϑ1

dR

dω̃1

dR
+ 16πeλ(ρ+ p)ϑ1ω̃1

)

+ 2[8πR2(ρ+ p)− 1]ϑ1
dω̃1

dR

]}

. (44)

Using Eqs. (42), (43) and (44), one can also obtain

dh0

dR
=

8πR2p+ 1

R2
e2λm0 −

4πR2(ρ+ p)

R− 2M
h0 +

1

6
R3e−ν dω̃1

dR

dw1

dR
− 8π

3

e−νR4(ρ+ p)

R(R− 2M)
ω̃1w1 −

4π

3
β
eλ

R
ϑ2
1 +

2π

3
βR

(

dϑ1

dR

)2

+
4π

3
αe(λ−ν)/2

[

(

3e−λ − 1− 8πR2p
)

(

dϑ1

dR

dω̃1

dR
+ 16πeλ(ρ+ p)ϑ1ω̃1

)

+ 2
8πR2(ρ+ p)− 1

R
ϑ1

dω̃1

dR

]

. (45)

We now focus on the ℓ = 2 mode, where we have 4 unknown functions: h2, m2, k2 and ξ2. Eq. (41) already gives
us ξ2, and thus, we need 3 more equations to close the system. We choose one of these to be the (Θ,Θ) component
of the field equations minus the (φ, φ) component. This yields

m2 = −e−λRh2 −
8π

3
βe−λRϑ2

1 −
e−(ν+λ)R5

3

(

e−λ dw1

dR

dω̃1

dR
+ 16π(ρ+ p)w1ω̃1

)

− 16π

3
αe−(ν+3λ)/2R

[

e−λR
dϑ1

dR

dω̃1

dR

−
[

e−λ + 4πR2(ρ+ p)
]

ϑ1
dω̃1

dR
− 8πR2(ρ+ p)ω̃1

dϑ1

dR
− 8π

(

R2 dρ

dR
− eλ

(

4πR3p+M
)

(ρ+ p)

)

ϑ1ω̃1

]

. (46)
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For the remaining 2 equations, we use the (R,Θ) and (R,R) components of the field equations. By using Eq. (41),
they yield

dk2
dR

= −dh2

dR
+

(

3e−λ − 1− 8πR2p
)

eλ

2R
h2 +

(

e−λ + 1 + 8πR2p
)

e2λ

2R2
m2 −

8π

3
βϑ1

dϑ1

dR

+
16π

3
αe−(ν+λ)/2

(

dϑ1

dR

dω̃1

dR
− ϑ1

R

dω̃1

dR
+ 8πeλ(ρ+ p)ϑ1ω̃1

)

(47)

and

dh2

dR
=

[3− 4πR2(ρ+ p)]eλ

R
h2 −

1 + (1 + 8πR2p)eλ

2

dk2
dR

+ 2
eλ

R
k2 +

e2λ(1 + 8πR2p)

R2
m2 +

4π

3
βR

(

dϑ1

dR

)2

+
4π

3
β
eλ

R
ϑ2
1 −

e−ν

6
R3 dω̃1

dR

dw1

dR
+

8π

3
eλ−νR3(ρ+ p)ω̃1w1 +

8π

3
αe(λ−ν)/2

(

3e−λ − 1− 8πR2p
) dϑ1

dR

dω̃1

dR

− 16π

3
αe(λ−ν)/2 1 + 4πR2(ρ+ p)

R
ϑ1

dω̃1

dR
− 64π2

3
αe(3λ−ν)/2

(

3e−λ − 1− 8πR2p
)

(ρ+ p)ϑ1ω̃1 . (48)

These equations are technically valid only inside the NS, because they were developed from the matter conservation
equations [Eqs. (41)-(42)]. However, we have checked that the field equations outside the star are identical to those
above after setting ρ = 0 = p.

V. ISOLATED NEUTRON STAR SOLUTION:

EXTERIOR FIELDS

In this section, we analytically solve the equations
derived in the previous section outside the NS, where
ρ = 0 = p. We use the superscript “ext” to refer to exte-
rior quantities. We impose asymptotic flatness at spatial
infinity as a boundary condition.

A. Exterior Solutions

1. GR

At O(α′0χ′0), we solve Eqs. (24) and (25) to obtain

(eν)
ext

=
(

e−λ
)ext

= 1− 2M∗

R
≡ f(R) , (49)

where M∗ = const. is the mass of the non-rotating NS,
which is to be determined by matching νext or λext with
νint or λint at the surface. At O(α′0χ′1), we substitute
the above equation in Eq. (32) and obtain

ω̃ext
1 = Ω∗ −

2J

R3
, (50)

where J is an integration constant that corresponds to
the spin angular momentum of the NS in GR. We define
the mass and the spin angular momentum by expanding
the metric about R = ∞ and extracting the appropriate
coefficients [24].

2. CS: First Order in Spin

Let us substitute Eqs. (49) and (50) in the equation
for ϑ1 [Eq. (36)]. The solution to this equation is

ϑext
1 =

5

8

α

β

J

M2
∗

1

R2

{

1 + 2
M∗

R
+

18

5

M2
∗

R2

+ Cϑ
R2

M2
∗

[

1 +
R

2M∗

(

1− M∗

R

)

ln f(R)

]}

, (51)

where Cϑ is an integration constant that is to be deter-
mined by matching this solution with the interior one
at the NS surface under continuous and differentiable
boundary conditions. Notice that an integration constant
has been set to 0 by asymptotic flatness.
The modified field equation at O(α′2χ′) can be solved

by substituting ϑext
1 in Eq. (39) to obtain

wext
1 =

2JCS

R3
− 5

8

ξCSJ

M∗R6

{

1 +
12

7

M∗

R
+

27

10

M2
∗

R2

− 5

32
Cϑ

R5

M5
∗

[

1 +
M∗

R
− 54

5

M3
∗

R3

+
R

2M∗

(

1− 64

5

M3
∗

R3
+

48

5

M4
∗

R4

)

ln f(R)

]}

. (52)

Here, JCS is an integration constant that corresponds to
a CS correction to the spin angular momentum (there
is also a correction to the spin angular momentum from
the log term). Eqs. (51) and (52) agree with those found
in [24].

3. CS: Second Order in Spin

Next, we find the exterior solutions at O(α′2χ′2). For
the ℓ = 0 mode, we can solve the exterior version of
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Eqs. (43) and (45) to find

hext
0 =

5

768

ξCSJ
2

M3
∗R

5f(R)

{

1 + 100
M∗

R
+ 66

M2
∗

R2
+

684

7

M3
∗

R3
− 648

M4
∗

R4
− 30Cϑ

R4

M4
∗

[

1− 2
M∗

R

− 4

3

M2
∗

R2
− 2

3

M3
∗

R3
+

24

5

M4
∗

R4
+

R

2M∗

(

1− 3
M∗

R
+

1

3

M2
∗

R2
+

1

3

M3
∗

R3
+

34

5

M4
∗

R4
− 24

5

M5
∗

R5

)

ln f(R)

]

− 15

2
C2

ϑ

R4

M4
∗

[

1 +
R

6M∗

(

1− M∗

R

)

ln f(R)− R2

12M2
∗

f(R)[ln f(R)]2
]}

+
2JJCS

R4f(R)
− MCS

Rf(R)
, (53)

mext
0 = − 25

768

ξCSJ
2

M4
∗R

3

{

1 + 3
M∗

R
+

322

5

M2
∗

R2
+

198

5

M3
∗

R3
+

6276

175

M4
∗

R4
− 17496

25

M5
∗

R5

+ 2Cϑ
R2

M2
∗

[

1 +
M∗

R
− 4

5

M2
∗

R2
− 72

5

M3
∗

R3
+

R

2M∗

(

1 +
1

5

M2
∗

R2
− 78

5

M3
∗

R3
+ 24

M4
∗

R4

)

ln f(R)

]

− 1

2
C2

ϑ

R4

M4
∗

[

1 +
R

M∗

(

1− 2
M∗

R
+

1

2

M2
∗

R2

)

ln f(R) +
R2

4M2
∗

(

1− M∗

R

)

f(R)[ln f(R)]2
]}

− 2JJCS

R3
+MCS , (54)

where MCS is an integration constant that corresponds
to a part of the correction to the mass if one expands
the above solutions about R = ∞. For the ℓ = 2
mode, we obtain similar solutions, shown in Appendix A,
but with another integration constant CQ. If one is to
deal with a BH, one needs to impose regularity at the
horizon. By setting JCS = 0, Cϑ = 0, MCS = 0 and
CQ = (3015/14336)ξCS(J

2/M8
∗ ), the exterior metric in

(t, r, θ, φ) coordinates reduces to the previously found BH
solution [25].

B. Asymptotic Behavior at Spatial Infinity:

Scalar Dipole Charge and mass

Quadrupole Moment Deformation

The asymptotic behaviors of hext
0 and wext

1 about spa-
tial infinity is

hext
0 = −δM

R
+O

(

1

R2

)

, wext
1 =

2δJ

R3
+O

(

1

R4

)

(55)

with

δM = MCS +
25

1536
ξCS

C2
ϑJ

2

M7
∗

, (56)

δJ = JCS −
25

384
ξCS

CϑJ

M4
∗

. (57)

Physically, δM and δJ correspond to the CS corrections
in the mass and the angular momentum respectively.
Let us now define the observable mass M̃ and angu-

lar momentum J̃ as measured by an observer at spatial
infinity via

M̃ ≡ M∗ + δM, J̃ ≡ J + δJ , (58)

such that

gexttt ∼ −
(

1− 2M̃∗

R

)

, gexttφ ∼ −2J̃

R
sin2 θ , (59)

near spatial infinity. The exterior metric and the scalar
field obtained in the previous subsection can be rewritten
in terms of M̃ and J̃ by replacing M∗ → M̃ − δM and
J → J̃ − δJ .
The full exterior metric can then be written as gextµν =

gext,GR

µν +gext,CS

µν , where gext,GR

µν is the Hartle-Thorne metric

with mass M̃ and angular momentum J̃ , while gext,CS

µν is
a CS correction. The latter, in (t, r, θ, φ) coordinates, has
the following asymptotic behavior about spatial infinity

gext,CS

tt =
1

3840

25ξCSCϑ(Cϑ − 8)J̃2 + 2048CQM̃
8

M̃5r3

× (3 cos2 θ − 1) +O
(

1

r4

)

(60)

gext,CS

rr =
1

3840

25ξCSCϑ(Cϑ − 8)J̃2 + 2048CQM̃
8

M̃5r3

× (3 cos2 θ − 1) +O
(

1

r4

)

(61)

gext,CS

θθ =
1

3840

25ξCSCϑ(Cϑ − 8)J̃2 + 2048CQM̃
8

M̃5r

× (3 cos2 θ − 1) +O
(

1

r2

)

(62)

gext,CS

φφ = sin2 θgext,CS

θθ (63)

gext,CS

tφ =
5

24
ξCS

(3− Cϑ)J̃

M̃r4
sin2 θ +O

(

1

r5

)

. (64)

One can read off the correction to the gravitational po-
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tential per unit mass from Eq. (60) as

δUCS = − 3

r3
QŜiŜjn<ij> (65)

with

Q ≡ 1

7680

25ξCSCϑ(Cϑ − 8)J̃2 + 2048CQM̃
8

M̃5
. (66)

Here, Ŝi is the unit spin angular momentum vector of the
NS and ni is the unit vector to the field point. Notice
that this definition of Ŝi differs from that used in [54],

because in the latter Ŝi was not a proper unit vector.
Q corresponds to the correction to the quadrupole mo-
ment3 and in the non-spinning BH case, Eq. (66) re-

duces to QBH = (201/3584)(ξCS/M̃
4)M̃3χ̃2, which agrees

with [29].
Finally, the asymptotic behavior of the scalar field is

ϑext =
5(3− Cϑ)

24

α

β
χ̃
cos θ

r2
+O

(

1

r3

)

, (67)

where χ̃ ≡ J̃/M̃2. Comparing this to ϑ = µini/r
2 +

O(r−3) (see Eq. (57) of Ref. [54]) where µi is the scalar
dipole charge, we can extract µi:

µi =
5(3− Cϑ)

24

α

β
χ̃Ŝi . (68)

For later convenience, we introduce the dimensionless
scalar charge µ̄ in terms of Cϑ and the compactness of
the NS C:

µ̄ ≡ 3− Cϑ

3

1

C3
, C ≡ M̃

R∗
. (69)

By using this µ̄, Eq. (68) can be rewritten as

µi =
5

8

α

β
C3χ̃Ŝiµ̄ . (70)

From Eq. (59) of Ref. [54], we expect µi to be propor-
tional to C3, and hence, we have factored out C3 from
the definition of µ̄ above. In the non-spinning BH case,
µ̄ reduces to µ̄BH = 8, because then C3 = 1/8, so that
µ̄BHC

3 = 1.
Notice that the difference between M̃ and M∗ (and

also between J̃ and J) in Eqs. (60)–(70) is irrelevant to
the order of approximation considered here. Hence, we
can freely set M̃ = M∗ (and J̃ = J) in these equations.

3 This definition of quadrupole moment is different from the usual
one given in e.g. [56, 57] by a factor of 2. Although somewhat
unconventional, we choose here to continue using the definitions
of Ref. [29].

VI. ISOLATED NEUTRON STAR SOLUTION:

INTERIOR FIELDS

In order to determine µ̄, Q, δM and δJ , we need to
calculate the integration constants that appear in the
definitions of these quantities. This can be achieved by
matching the interior solutions to the exterior ones at the
NS surface. In this section, we first explain the matching
conditions at the surface. We then obtain the asymptotic
behavior of the metric perturbations at the NS center to
obtain the initial conditions for the numerical integration
of the interior solution. We conclude with an explanation
of the numerical procedure adopted in this paper. We use
the superscript “int” to refer to interior quantities.

A. Boundary Conditions at the Surface

In the previous subsection, we imposed asymptotic
flatness at spatial infinity to find the exterior solutions
but 4 integration constants remain, which are to be de-
termined by the boundary conditions at the NS surface.
At O(α′0χ′0), we solve Eqs. (24), (25) and (27), together
with the EoS, for ν, λ, ρ and p. At the NS surface, we
impose the continuity condition

p(R∗) = 0, eν(R∗) = e−λ(R∗) = 1− 2M∗

R∗
. (71)

The first equation determines R∗ while the second equa-
tion determines M∗.
At O(α′0χ′), we solve Eq. (32) for ω̃1. Since this is

a second-order differential equation, we need to impose
two boundary conditions at the surface. We choose one
to be the continuity condition for ω̃1, i.e.

ω̃1(R∗) = Ω∗ −
2J

R3
∗

. (72)

The other condition can be obtained by integrating
Eq. (32) from R∗ − ǫ to R∗ + ǫ and taking the limit
as ǫ → 0:
[

dω̃1

dR
(R∗)

]

= lim
ǫ→0

{

dω̃ext
1

dR
(R∗ + ǫ)− dω̃int

1

dR
(R∗ − ǫ)

}

= lim
ǫ→0

∫ R∗+ǫ

R∗−ǫ

d2ω̃1

dR2
dR ,

= lim
ǫ→0

∫ R∗+ǫ

R∗−ǫ

{

−4
1− πR2(ρ+ p)eλ

R

dω̃1

dR

+16π(ρ+ p)eλω̃1

}

dR , (73)

where we have introduced the notation

[A(R∗)] ≡ lim
ǫ→0

[

Aext(R∗ + ǫ)−Aint(R∗ − ǫ)
]

(74)

for any quantity A(R). Since the integrand is bounded,
the right hand side of Eq. (73) vanishes, leading to

[

dω̃1

dR
(R∗)

]

= 0 . (75)
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Let us introduce the moment of inertia I, defined
by [44]

I ≡ J

Ω∗
. (76)

Equation (72) can then be rewritten as

ω̃1(R∗) = Ω∗

(

1− 2I

R3
∗

)

. (77)

By Eqs. (24), (25), (32) and (75), I can be expressed in
integral form as [44, 58]

I =
8π

3

1

Ω∗

∫ R∗

0

e−(ν+λ)/2R5(ρ+ p)ω̃1

R − 2M
dR . (78)

This expression is valid both in GR, as well as in dynam-
ical CS gravity [24].
As in the O(α′0χ′) case, the scalar evolution equation

[Eq. (36)] is a second-order differential equation. Since
all terms in this equation are bounded at the surface, we
impose the continuity and differentiability conditions

[ϑ1(R∗)] = 0 =

[

dϑ1

dR
(R∗)

]

. (79)

At O(α′2χ′), the non-vanishing component of the field
equations is given by Eq. (39), which is also a second-
order differential equation, but here the situation is
slightly different. First, we impose the continuity con-
dition at the surface

[w1(R∗)] = 0 . (80)

Next, we integrate Eq. (39) from R∗ − ǫ to R∗ + ǫ and
take the limit ǫ → 0 as
[

dw1

dR
(R∗)

]

= lim
ǫ→0

∫ R∗+ǫ

R∗−ǫ

d2w1

dR2
dR ,

= lim
ǫ→0

∫ R∗+ǫ

R∗−ǫ

{

−4
1− πR2(ρ+ p)eλ

R

dw1

dR

+16π(ρ+ p)eλw1

−128π2αe(ν+λ)/2

R3

[

δR
dϑ1

dR
+

(

R
dρ

dR
− δ

)

ϑ1

]}

dR ,

= −128π2α lim
ǫ→0

∫ R∗+ǫ

R∗−ǫ

e(ν+λ)/2ϑ1

R2

dρ

dR
dR . (81)

where in the last equality, we only kept the term in the
integrand that is not bounded4. This equation can be

4 The factor dρ/dR is not bounded since ρ is discontinuous at the
surface.

further simplified by integrating by parts:
[

dw1

dR
(R∗)

]

= −128π2α lim
ǫ→0

∫ R∗+ǫ

R∗−ǫ

{

d

dR

(

e(ν+λ)/2ϑ1

R2
ρ

)

−ρ
d

dR

(

e(ν+λ)/2ϑ1

R2

)}

dR . (82)

Since the integrand in the second term is bounded, this
term vanishes, so that one finally finds the jump condi-
tion

[

dw1

dR
(R∗)

]

= 128π2α
ϑ1(R∗)

R2
∗

ρ(R∗) . (83)

This agrees with the condition found in [24] in the limit
ǫ → 0. Since the density of the NS at the surface is typ-
ically about 7 orders of magnitude lower than the mean
density, the above jump condition shows that dw1/dR is
almost continuous at the surface [24]. Therefore, in the
numerical calculation below, we adopt the differentiabil-
ity condition [24]

[

dw1

dR
(R∗)

]

= 0 . (84)

At O(α′2χ′2), the evolution equations are first-order. We
thus impose the continuity conditions

[h0(R∗)] = 0 = [m0(R∗)] ,

[h2(R∗)] = 0 = [k2(R∗)] .
(85)

B. Asymptotic Behavior at the Stellar Center

Before we numerically integrate the interior equations,
we must understand the asymptotic behavior of the pres-
sure, density, metric perturbations, and the scalar field at
the NS center. First, let us focus on the pure GR case.
In the non-spinning sector, we can use Eqs. (24), (25)
and (27) to asymptotically expand ρ, p, M and ν about
R ≪ M via

ρ(R) = ρc + ρ2R
2 +O(R3) , (86)

p(R) = pc −
2π

3
(ρc + pc)(ρc + 3pc)R

2 +O(R3) , (87)

M(R) =
4π

3
ρcR

3 +
4π

5
ρ2R

5 +O(R6) , (88)

ν(R) = νc +
4π

3
(ρc + 3pc)R

2 +O(R3) (R → 0+) ,

(89)

where ρc, pc = p(ρc) and νc are the density, pressure and
ν at the NS center, respectively. ρ2 can be expressed in
terms of ρc and pc through Eq. (87), the TOV equation
and the EoS. νc is determined by matching the interior
solution with the exterior one at the surface. To first-
order in spin, the solution to Eq. (32) that is regular at
the center is

ω̃1(R) = ω̃c +
8π

5
(ρc + pc)ω̃cR

2 +O(R3) (R → 0+) ,

(90)
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where ω̃c is a constant that is to be determined by the
matching condition at the surface.

Let us now focus on the scalar field and the CS cor-
rections to the metric perturbation. For the former, the
solution to Eq. (36) that is regular at the center has the
asymptotic form

ϑ1(R) = ϑ′
cR+

2π

15
(5ρc− 3pc)ϑ

′
cR

3+O(R4) (R → 0+) .

(91)
ϑ′
c is a constant that corresponds to dϑ/dR at the center.

From Eq. (39), the metric perturbation at first order in
spin has the asymptotic behavior

w1(R) = wc +
8π

5

[

(ρc + pc)wc − 16παeνc/2ρ2ϑ
′
c

]

R2

+O(R3) (R → 0+) . (92)

Again, ϑ′
c and wc are to be determined by matching at

the surface. For the ℓ = 0 mode corrections at quadratic
order in spin, Eqs. (42)–(44) yield

h0(R) = h0c +
128π2

3
α(ρc + pc)(ρc + 3pc)e

−νc/2ω̃cϑ
′
cR

2

+O(R3), (93)

m0(R) =
2π

3
ϑ′
c

[

64πα(ρc + pc)e
−νc/2ω̃c + βϑ′

c

]

R3

+O(R4), (94)

ξ0(R) = − ω̃ce
−νc/2

3π(ρc + 3pc)

[

64π2α(ρc + pc)ϑ
′
c + e−νc/2wc

]

R

+O(R2) (R → 0+) . (95)

Similarly, Eqs. (41) and (46)–(48) yield the asymptotic
behaviours for the ℓ = 2 mode:

h2(R) = h′′
2cR

2 +O(R3) , (96)

k2(R) = −1

3

[

3h′′
2c − 128π2α(ρc + pc)e

−νc/2ϑ′
cω̃c

+8πβϑ′
c
2
]

R2 +O(R3) , (97)

m2(R) = −1

3

[

3h′′
2c − 128π2α(ρc + pc)e

−νc/2ϑ′
cω̃c

+8πβϑ′
c
2
]

R3 +O(R4) , (98)

ξ2(R) = −3h′′
2c − 2e−νcω̃cwc

4π(ρc + 3pc)
R+O(R2) (R → 0+) .

(99)

Here, h′′
2c is a constant that needs to be determined by

matching at the NS surface.

C. Numerical Method

Let us now explain how we solve the interior equa-
tions numerically to obtain the corresponding interior
solutions.

1. Solution to O(χ′0)

First, we must obtain the GR solutions at zeroth
order in spin. There are 4 unknown functions that
need to be determined, ν, λ [or equivalently M through
Eq. (19)], ρ and p. The 4 equations that we need to
solve are Eqs. (24), (25), (27), given the EoS. Notice
that Eqs. (24), (27) and the EoS form a closed system
for M , ρ and p. We solve these equations as an initial
value problem using an adaptive step-size, fourth-order
Runge-Kutta method (from the GSL library [59]) with an
accuracy of 10−3 on each step, starting at R = Rǫ toward
R = R∗, with the initial conditions given in Eqs. (86)
and (88), where Rǫ is the core radius Rǫ/R∗ ≪ 1. The
radius of the NS can be obtained by finding the radius
R∗ where p(R∗) = 0 and the mass of the NS is given by
M∗ = M(R∗). We repeat the calculation for various ρc
to obtain a mass-radius relation.

The remaining equation, Eq. (25), can be solved for
ν, again using an adaptive step-size, fourth-order Runge-
Kutta method with an accuracy of 10−3 per step, from
R = Rǫ to R∗ and with the initial condition given in
Eq. (89). However, one must be careful that ν(R∗) sat-
isfies the boundary condition given in Eq. (71). Suppose
we obtained the trial solution νtr(R) by using the initial
condition ν(Rǫ) = (4π/3)(ρc+3pc)R

2
ǫ (i.e. νc = 0). Since

Eq. (25) is shift-invariant, νtr(R) plus a constant Cν is
also a solution. The new solution νtr(R)+Cν will satisfy
the correct boundary condition provided

eνtr(R∗)+Cν = f(R∗) , (100)

which then yields [60]

Cν = ln f(R∗)− νtr(R∗) . (101)

2. Solution to O(χ′)

Next, we solve Eq. (32), a second-order differential
equation, for ω̃1. We take advantage of the fact that
Eq. (32) is linear and homogeneous [58] and solve this
equation with the initial condition given in Eq. (90). We
choose a specific value for ω̃c and solve the equation from
R = Rǫ to R∗ using a fourth-order Runge-Kutta method
to obtain the trial solution ω̃tr(R) and the trial moment of
inertia Itr calculated from Eq. (78). The solution we seek
is one that satisfies the boundary condition of Eq. (77).
It is improbable that ω̃tr will satisfy this boundary condi-
tion. However, due to the homogeneity of the differential
equation, the product of ω̃tr and a constant is also a solu-
tion. Hence, we can construct a new solution via Cω̃ω̃tr,
where Cω̃ is a constant, which will satisfy the boundary
condition, provided that

Cω̃ω̃tr(R∗) = Ω∗

(

1− 2Cω̃Itr
R3

∗

)

, (102)
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which then yields

Cω̃ =
Ω∗R3

∗

ω̃tr(R∗)R3
∗ + 2ItrΩ∗

. (103)

Clearly, Ω∗ (like ρc or pc) is a quantity that must be spec-
ified a priori and controls how rapidly the NS is rotating.
The scalar field satisfies Eq. (36), which is not homo-

geneous or shift-invariant. Since the differential equa-
tion is linear, we take the following approach [44]. First,
we solve Eq. (36) with arbitrary values for ϑ1(Rǫ) and
ϑ′
1(Rǫ) such that the solution satisfies regularity at the

NS center [i.e. with an arbitrary value of ϑ′
1 in Eq. (91)]

to obtain a particular solution ϑint
p (R) in the interior re-

gion. Next, we look for a homogeneous solution ϑint
h (R)

in the interior region by solving Eq. (36) with a vanishing
source term on the right-hand-side with arbitrary ϑ1(Rǫ)
and ϑ′

1(Rǫ) such that ϑint
h (R) satisfies regularity at the

NS center. The asymptotic behavior of ϑint
h (R) that is

regular at the NS center is also given by Eq. (91). With
ϑint
p (R) and ϑint

h (R) at hand, one can construct a generic
solution to Eq. (36) in the interior region that satisfies
regularity at the NS center as

ϑint
1 (R) = ϑint

p (R) + Ch
ϑϑ

int
h (R) , (104)

where Ch
ϑ is a constant. The constants Cϑ in Eq. (51)

and Ch
ϑ in Eq. (104) are determined by the matching

condition at the NS surface given in Eq. (79). One can
solve Eq. (79) for Cϑ and Ch

ϑ algebraically in terms of
ϑint
p (R∗) and ϑint

h (R∗).
The CS correction to the gravitomagnetic sector of the

metric is controlled by Eq. (39), which is a second order
differential equation for w1. Again, this equation is not
shift invariant or scale invariant, and thus, we must solve
it as we did the scalar field above. The matching condi-
tions at the NS surface are given in Eqs. (80) and (84),
while the asymptotic behavior of the solution that is reg-
ular at the NS center is given in Eq. (92). The asymptotic
behavior of the homogeneous solution is given by setting
α = 0 in Eq. (92), which is the same as Eq. (90) with ω̃c

being replaced by wc.
We have that the solutions for ϑ1 and w1 obtained in

this way are identical to solving Eqs. (36) and (39) via a
purely numerical shooting method.

3. Solution to O(χ′2)

For the ℓ = 0 mode at O(α′2χ′2), we need to solve
Eqs. (43) and (44) to obtain h0c in Eq. (42). Since these
are two coupled first-order differential equations, we can
solve them as an initial value problem with the initial
conditions given in Eqs. (94) and (95). Then, we impose
the continuity condition at the surface to obtain MCS in
Eq. (54). The interior solution for h0 can be obtained
through Eq. (42). By imposing the continuity of h0 at
the surface, one can determine h0c.

For the ℓ = 2 mode, we need to solve Eqs. (47) and (48)
for h2 and k2. We take the same steps explained above
for solving Eqs. (36) and (39). We first obtain the par-
ticular solutions hint

p and kintp with an arbitrary choice of
h′′
c in Eqs. (96) and (97). Next, we look for homogeneous

solutions hint
p and kintp . The initial conditions at the NS

center is given by setting α = 0 and β = 0 in Eqs. (96)
and (97). As in Eq. (104), one can construct generic so-
lutions for h2 and k2 that are regular at the NS center
via

hint
2 (R) = hint

p (R) + Ch
Qh

int
h (R) , (105)

kint2 (R) = kintp (R) + Ch
Qk

int
h (R) , (106)

where Ch
Q is a constant that is to be determined, to-

gether with another constant CQ in Eqs. (A1) and (A3),
with the matching condition at the NS surface given in
Eq. (85). One can solve Eq. (85) for CQ and Ch

Q al-

gebraically in terms of h2(R∗) and k2(R∗). We have
checked that the solutions obtained in this fashion are
identical to numerically solving Eqs. (47) and (48) via a
Riccati method [61–63]5.

VII. NUMERICAL SOLUTIONS

In this section, we show the numerically obtained NS
solutions using 4 different EoSs: APR [45], SLy [46, 47],
LS220 [48, 49] and Shen [49–51].
We begin by showing that the results obtained here

reproduce previously obtained results, but for a wider
range of EoSs. The left panel of Fig. 3 shows results
at zeroth order in spin, i.e. the NS mass-radius relation.
Observe that the SLy curve agrees with [47]. Notice also
that the 4 EoSs we adopt in this paper are consistent
with the existence of the recently found (1.97± 0.04)M⊙

millisecond pulsar J1614-2230 [43]. The right panel of
Fig. 3 presents results at linear order in spin, i.e. the
moment of inertia as a function of mass. The APR curve
agrees exactly with the results of [64]). The left panel
of Fig. 4 shows ϑ1/(Ω∗α/β) as a function of R/R∗ for
a NS of mass M∗ = 1.4M⊙. Observe that ϑ1 has its
maximum near the NS surface. The behavior of these
curves is consistent with Fig. 5 in [24]. The top right
panel of Fig. 4 shows ω1/Ω∗ versus R/R∗, with

ω1 ≡ Ω∗ − ω̃1 . (107)

One can see that frame-dragging is strongest near the NS
center. These curves are consistent with Fig. 6 of [24].
In the bottom right panel of the same figure, we show
w1/(ξCSΩ∗), which is also peaked in the inner region.
This behavior is also consistent with Fig. 6 of [24].

5 We had difficulty in stably carrying out the shooting method due
to the nearly scale-invariant structure of Eqs. (47) and (48) for
most of the region in parameter space.
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FIG. 3. (Color online) The mass-radius relation (left) and the moment-of-inertia [Eq. (76)] vs. mass relation (right) in GR for
NSs with various EoSs: APR (solid), SLy (dotted), LS220 (dashed), and Shen (dot-dashed).
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FIG. 4. (Color online) Left: Scalar field profile as a function of NS radius with M∗ = 1.4M⊙ and for various EoSs. The
linear behaviour of ϑ near R → 0 is smooth and differentiable, after multiplying by P1(cosΘ). Right: Correction to the metric
rotation ω as a function of radius, at linear order in spin, for various EoSs with M∗ = 1.4M⊙. The top plot shows the O(α′0)
(GR) contribution ω1/Ω∗ [Eq. (107)], while the bottom plot shows the O(α′2) (CS) contribution w1/(ξCSΩ∗) [Eq. (38)]. In all
cases, only the ℓ = 1 multipole moment survives at linear order in spin in the small coupling limit. See Sec. VIB for details on
asymptotia.

Let us now present new results, valid to quadratic or-
der in spin. Figures 5 and 6 show the metric pertur-
bations at quadratic order in spin for the ℓ = 0 and
ℓ = 2 modes respectively. The interior behavior of h0,
h2 and k2 is similar to that of ϑ1. The strange behav-
ior of m2 in the interior reflects the strange behavior of
dρ(R)/dR, plotted in Fig. 7. The oscillatory structure
in these quantities disappears for a polytropic EoS. The
oscillations in the EoS, which then propagate to m2, are
due to nuclear phase transitions [45, 46, 48, 50, 51]. We
recall that we used an adaptive step-size, fourth-order
Runge-Kutta method with an accuracy of 10−3 per step
to solve the differential equations; therefore, the strange
behavior alluded to above is not a numerical artifact and
it is well-resolved.

Figure 1 already presented µ̄, [Q/(J2/M∗)](0.1/ζ),
δM(Ω1ms/Ω∗)

2(0.1/ζ) and (δJ/J)(0.1/ζ) as a function
of M∗/M⊙ for various EoSs. This behavior can be nicely
fit by

Ai = exp
(

ai + bix+ cix
2 + dix

3 + eix
4
)

, (108)

Ai ≡
(

µ̄,
Q

J2/M∗

0.1

ζ
, − δM

M⊙

Ω2
1ms

Ω2
∗

0.1

ζ
,
δJ

J

0.1

ζ

)

,

(109)

with x ≡ M∗/M⊙. The estimated numerical coefficients
are shown in Table I, together with standard errors. Fig-
ure 1 also shows these fits as a function of M∗/M⊙.
Notice that the CS correction increases the spin angu-
lar momentum which is consistent with the result re-
ported in [24]. Moreover, the CS correction increases
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EoS a b c d e Error (%)

µ̄

APR 2.90 (0.022) -2.30 (0.067) 1.54 (0.074) -0.546 (0.036) 0.0748 (0.0062) 0.11

SLy 2.82 (0.027) -2.31 (0.087) 1.62 (0.10) -0.581 (0.052) 0.0777 (0.0095) 0.12

LS220 5.87 (0.071) -8.07 (0.25) 6.60 (0.31) -2.63 (0.17) 0.400 (0.033) 0.49

Shen 5.35 (0.049) -6.86 (0.16) 5.39 (0.20) -2.07 (0.099) 0.307 (0.018) 0.36

[Q/(J2/M∗)](0.1/ζ)

APR -0.802 (0.034) -0.675 (0.10) 0.578 (0.11) -0.192 (0.053) 0.0150 (0.0091) 0.16

SLy -1.79 (0.055) 1.51 (0.18) -1.37 (0.20) 0.675 (0.10) -0.138 (0.018) 0.23

LS220 6.72 (0.21) -16.8 (0.72) 15.6 (0.91) -6.66 (0.49) 1.06 (0.097) 1.2

Shen 5.01 (0.13) -13.0 (0.42) 11.8 (0.49) -4.94 (0.25) 0.778 (0.045) 0.67

−(δM/M⊙)(Ω1ms/Ω∗)
2(0.1/ζ)

APR -2.42 (0.046) -0.503 (0.14) 0.752 (0.15) -0.266 (0.069) 0.0234 (0.012) 0.18

SLy -3.48 (0.15) 2.18 (0.48) -2.29 (0.55) 1.33 (0.27) -0.297 (0.0487) 0.84

LS220 4.53 (0.24) -14.0 (0.85) 12.3 (1.1) -4.81 (0.58) 0.673 (0.11) 2.0

Shen 3.00 (0.16) -10.1 (0.51) 8.60 (0.61) -3.24 (0.30) 0.445 (0.055) 1.5

(δJ/J)(0.1/ζ)

APR -1.43 (0.030) -1.73 (0.088) 1.92 (0.095) -0.815 (0.044) 0.141 (0.0074) 0.13

SLy -0.242 (0.26) -6.30 (0.80) 7.80 (0.91) -3.97 (0.44) 0.766 (0.078) 1.0

LS220 5.22 (0.11) -16.1 (0.37) 15.9 (0.46) -7.27 (0.24) 1.30 (0.047) 0.56

Shen 3.94 (0.097) -12.9 (0.32) 12.1 (0.37) -5.18 (0.18) 0.869 (0.032) 0.98

TABLE I. Numerical coefficients for the fitting formula of µ̄, Q, δM , and δJ as functions of mass using the functional form in
Eq. (108). Standard errors on each coefficient are in parentheses. For definitions of dimensionless scalar dipole susceptibility
µ̄, quadrupole correction Q, mass shift δM , and angular momentum shift δJ , see Eqs. (69), (66), and (55). The last column
shows the maximum fractional error between values that are obtained numerically and from the fitting formula.
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FIG. 5. (Color online) ℓ = 0 (left) and ℓ = 2 (right) metric perturbations at second order in spin as functions of radius,
for various EoSs with M∗ = 1.4M⊙: h0/(ξCSΩ

2

∗) (top left) and m0/(ξCSΩ
2

∗) (bottom left) as defined in Eqs. (40a) and (40b);
h2/(ξCSΩ

2

∗) (top right) and k2/(ξCSΩ
2

∗) (bottom right) as defined in Eqs. (40a) and (40c).
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FIG. 7. Mass density ρ (top) and radial derivative dρ/dR
(bottom) in the NS interior, for various EoSs with M∗ =
1.4M⊙. Recall that R is defined by surfaces of constant ρ, so
there is no angular dependence to ρ. Nuclear phase transitions
are visible as sudden changes in slope. These give rise to the
features in the metric functions seen in Fig. 6.

the quadrupole moment while it decreases the observed
mass.

VIII. NEUTRON STAR BINARY EVOLUTION

Let us now study the evolution of a NS binary with
component masses mA, radii R∗A, spin angular mo-
menta χAm

2
AŜ

i
A, dimensionless scalar charges µ̄A and

quadrupole moment shifts QA. We use the subscript
A = (1, 2) to denote the Ath binary component. We also
use the subscript “12” to denote relative differences. The
binary orbit can be described by 5 intrinsic and extrinsic

parameters: semimajor axis a, eccentricity e, the angle of
periastron ω, inclination ι, and the angle of the ascend-
ing node Ω (not to be confused with the gravitomagnetic
metric perturbation ω or the NS angular velocity Ω∗).

A binary’s orbital evolution is affected by dissipative
effects and conservative effects. The former can be ob-
tained by calculating the energy flux and the angular
momentum flux radiated via gravitational and scalar ra-
diation, which we explain in detail in Appendix B. In
this section, we focus on the latter. Here, we are only
interested in CS corrections on the conservative effect
relative to the leading GR contribution, and hence, we
consider CS corrections to Newtonian dynamics. We fol-
low Gauss’ perturbation method [2, 65, 66] with the con-
ventions and notation of [2]. One must then calculate
the perturbing accelerations δaiA and from them the rel-
ative perturbing acceleration δai12 (in any convenient co-
ordinate system). This vector is then decomposed by
projecting onto a time-varying orthonormal triad with
ei1 = ni

12 and ei2 = L̂i (and e3 = e2× e1 so as to complete
the orthonormal triad). In this triad, the components of
δai12 are defined as [2]

R ≡ δai12e1,i , (110a)

W ≡ δai12e2,i , (110b)

S ≡ δai12e3,i , (110c)

where inner products are taken with a flat Euclidean met-
ric. With this decomposition, the osculating orbital ele-
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ments evolve secularly as

ω̇ = −pR

he
cosφ+

(p+ r)S

he
sinφ− Ω̇ cos ι , (111a)

ė =
1− e2

h

[

aR sinφ+
S

e

(ap

r
− r
)

]

, (111b)

ȧ =
2a2

h

(

S p

r
+ Re sinφ

)

, (111c)

d
dt ι =

W r

h
cos(ω + φ) , (111d)

Ω̇ =
W r

h
sin(ω + φ) csc ι . (111e)

Here,

p ≡ a(1− e2) (112)

is the semi-latus rectum, r and φ are the quantities re-
lated to the instantaneous orbital elements, given by

r ≡ p

1 + e cosφ
, (113)

r2
dφ

dt
≡ h ≡ √

mp , (114)

with m ≡ m1 +m2 and h is the orbital angular momen-
tum per unit mass. In all of Eqs. (111), the right-hand
sides are to be orbit averaged as defined in Eq. (B2) (this
is appropriate when the time derivatives of the osculating
elements are much smaller than the orbital timescale and
there are no resonances). Of course, all of the φ depen-
dence in R,W ,S and r must be included in the orbit
averaging.

In Sec. VIII A, we calculate the secular evolution from
the near-zone metric deformation due to the CS correc-
tion to the quadrupole. In order to calculate the secular
evolution due to the scalar field, we derive the effective
dipole interaction in Sec. VIII B. With the acceleration

due to the scalar interaction, we calculate the scalar’s
correction to the binary’s secular evolution.

A. Metric Quadrupole Correction

Since both the mass monopole and current dipole of
each body is reabsorbed into physically measured quanti-
ties, the leading order CS correction is the quadrupole de-
formation to the metric given by Eq. (66). From Eq. (65),
we can find the acceleration on body 1 due to body 2,

δaU1i = −∂iδU
CS

2 = −15Q2
n<ijk>
12

r412
Ŝj
2Ŝ

k
2 , (115)

where r12 is the separation of the binary components and
ni
12 is the unit vector from body 2 to body 1. The ac-

celeration on body 2 due to body 1 is simply the above
expression with 1 ↔ 2. This gives the relative accelera-
tion

δaU12i = −15
n<ijk>
12

r412

(

Q1Ŝ
j
1Ŝ

k
1 +Q2Ŝ

j
2Ŝ

k
2

)

. (116)

The orbit averages are performed on eccentric orbits
lying in the x—y plane with the major axis along the
x̂-axis, parametrized as [67]

xi
1 = d1(cosφ, sinφ, 0) , (117)

xi
2 = −d2(cosφ, sinφ, 0) , (118)

d1 =
m2

m
d , d2 =

m1

m
d , d =

a(1− e2)

1 + e cosφ
, (119)

φ̇ =

[

ma(1− e2)
]1/2

d2
, (120)

from which v and all other derived quantities can be cal-
culated, e.g. ni

12 = (xi
1 − xi

2)/d = (cosφ, sinφ, 0).
Taking the above expression, decomposing as in

Eqs. (110), and performing orbit averaging with the pe-
riod P = 2πa3/2/M1/2, we find

〈ω̇〉h =
3

a7/2
√
m(1− e2)2

Q1

[

−1 +
3

2

(

Ŝ2
1,x + Ŝ2

1,y

)

− Ŝ1,z cot ι
(

Ŝ1,x sinω + Ŝ1,y cosω
)

]

+ (1 ↔ 2) , (121a)

〈

d
dt ι
〉

h
=

3

a7/2
√
m(1− e2)2

Q1Ŝ1,z

(

Ŝ1,x cosω − Ŝ1,y sinω
)

+ (1 ↔ 2) , (121b)

〈

Ω̇
〉

h
=

3

a7/2
√
m(1− e2)2

Q1Ŝ1,z csc ι
(

Ŝ1,x sinω + Ŝ1,y cosω
)

+ (1 ↔ 2) , (121c)

and 〈ė〉h = 0 = 〈ȧ〉h, and where the i = x, y, z components of ŜA,i are taken in the (non-inertial) coordinate system
where the binary’s orbit is in the x—y plane, with pericenter along the +x̂ direction.

B. Dipole Interaction and Scalar Force Correction

To derive the effective dipole interaction, we start by
finding an effective interaction Lagrangian between one

of the body’s scalar dipole moments and the scalar field.
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This comes from the cross-interaction part of the kinetic
term of the scalar field in the action, i.e., by decompos-
ing the kinetic term of the scalar field in the Lagrangian
density as

Lkin = −β

2
(∂µϑ)(∂

µϑ) = Lkin,1 + Lkin,2 + Lint , (122)

where

Lkin,A ≡ −β

2
(∂µϑA)(∂

µϑA) , (123)

Lkin,int ≡ −β(∂µϑ1)(∂
µϑ2) , (124)

and Lkin,int corresponds to the dipole interaction La-
grangian density. By substituting ϑA = µi

AnA,i/r
2
A =

−µi
A∂i(1/rA) into Eq. (124), we obtain

Lkin,int = −βµj
1µ

k
2∂ij

(

1

r1

)

∂ik

(

1

r2

)

= −βµj
1µ

k
2∂

(1)
ij

(

1

r1

)

∂
(2)
ik

(

1

r2

)

, (125)

where ∂
(A)
i denotes the partial derivative with respect to

xi
A.
The dipole interaction Lagrangian can be obtained by

performing the volume integral of Lkin,int as

Lint = −βµj
1µ

k
2

∫

∂
(1)
ij

(

1

r1

)

∂
(2)
ik

(

1

r2

)

d3x

= −βµj
1µ

k
2∂

(1)
ij ∂

(2)
ik

∫

1

r1

1

r2
d3x . (126)

By applying Hadamard regularization, as explained
e.g. in Appendix B of [54], the above integration can be
performed to yield

Lint = 2πβµj
1µ

k
2∂

(1)
ij ∂

(2)
ik r12 = 12πβµj

1µ
k
2

n12〈jk〉

r312

= 4πβ
1

r312
[3(µ1 · n12)(µ2 · n12)− (µ1 · µ2)] . (127)

As there are no derivatives on particle locations, this
gives an effective pairwise interaction potential

Uint = −Lint.

This expression agrees with Eq. (5) of [29]. We can find
the acceleration with (minus) the particle derivative of
the effective pairwise interaction potential as

a
(ϑ)
A,i = −∂

(A)
i Uint . (128)

From the above we can compute the relative dipole-
dipole force

a
(ϑ)
12,i =

75

128

ξCS

m4
χ1χ2C

3
1C

3
2 µ̄1µ̄2

(

m

r12

)4
{

Ŝi
1(n12 · Ŝ2)

+
1

2
ni
12

[

(Ŝ1 · Ŝ2)− 5(n12 · Ŝ1)(n12 · Ŝ2)
]

}

− (1 ↔ 2) .

(129)

Decomposing a
(ϑ)
12 , inserting this into the Gauss equa-

tions, and averaging, we find

〈ω̇〉ϑ =
75

256

ξCS

m4

χ1χ2

(1− e2)2
C3

1C
3
2 µ̄1µ̄2

(m

a

)7/2
{

1

2

(

Ŝ1,xŜ2,x + Ŝ1,yŜ2,y

)

− Ŝ1,zŜ2,z

− cot ι
[

Ŝ1,z

(

Ŝ2,x sinω + Ŝ2,y cosω
)]}

+ (1 ↔ 2) , (130a)

〈

d
dt ι
〉

ϑ
=

75

256

ξCS

m4

χ1χ2

(1− e2)2
C3

1C
3
2 µ̄1µ̄2

(m

a

)7/2 [

Ŝ1,z

(

Ŝ2,x cosω − Ŝ2,y sinω
)]

+ (1 ↔ 2) , (130b)

〈

Ω̇
〉

ϑ
=

75

256

ξCS

m4

χ1χ2

(1− e2)2
C3

1C
3
2 µ̄1µ̄2

(m

a

)7/2

csc ι
[

Ŝ1,z

(

Ŝ2,x sinω + Ŝ2,y cosω
)]

+ (1 ↔ 2) , (130c)

and 〈ė〉ϑ = 0 = 〈ȧ〉ϑ.

IX. APPLICATIONS TO NS OBSERVATIONS

In this section, we apply the results derived in the pre-
vious sections to observed NS systems. We consider the
recently found massive millisecond pulsar J1614-2230 [43]
and the double binary pulsar system PSR J0737-3039 [5–
7]. In this section, we consider the maximum CS correc-
tions allowed within the weak coupling approximation,
i.e. ζ = 1. Clearly, such a value for ζ violates the small
coupling approximation. But as we shall see, even with

such a large ζ value, which leads to a strong GR devia-
tion, NS observations will still not be accurate enough to
allow for a bound on the theory.

A. Massive Millisecond Pulsar J1614-2230

From measurements of the Shapiro time delay, the
mass of the pulsar J1614-2230 has been determined to
be (1.97 ± 0.04)M⊙ [43]. As mentioned previously, the
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Timing parameter Pulsar A Pulsar B

Spin frequency fν (Hz) 44.054069392744(2) 0.36056035506(1)

Orbital period Pb (day) 0.10225156248(5) —

Eccentricity e 0.0877775(9) —

Projected semimajor axis (a/c) sin ι (s) 1.415032(1) 1.5161(16)

Longitude of periastron ω (◦) 87.0331(8) 87.0331 + 180.0

Advance rate of periastron 〈ω̇〉 (◦ /yr) 16.89947(68) [16.96(5)]a

Orbital decay rate Ṗb −1.252(17) × 10−12 —

Gravitational redshift γ (ms) 0.3856(26) —

Shapiro delay range r (µs) 6.21(33) —

Shapiro delay shape s 0.99974(-39,+16) —

Inclination ι (◦) 88.69(-76,+50)

Mass function (M⊙) 0.29096571(87) 0.3579(11)

Mass ratio 1.0714(11)

Mass (M⊙) 1.3381(7) 1.2489(7)

a An independent parameter fit of 〈ω̇〉 for pulsar B is consistent with the more precise result of pulsar A [7].

TABLE II. Timing parameters of the double binary pulsar PSR J0737-3039 [7]. Measurement uncertainties on last digits are
shown in parentheses.

EoS 〈ω̇〉h/〈ω̇〉GR

APR -3.7× 10−9

SLy -5.1× 10−8

LS -3.2× 10−9

Shen -3.0× 10−8

TABLE III. 〈ω̇〉h/〈ω̇〉GR for PSR J0737-3039 with various NS
EoSs, where we set ζ = 1 (this ratio is linearly proportional
to ζ).

effect of a CS modification is to reduce the magnitude
of the observed mass relative to the GR expectation. In
Fig. 2, we plotted the mass-radius relation in both GR
and dynamical CS gravity. We have set the spin pe-
riod of the NS to be the one observed for J1614-2230,
Pspin = 3.1508076534271(6)ms. When making these
plots, we did not include O(α′0χ′2) contribution, but we
have checked that such contributions only affect the re-
sults to 0.2% at most. As expected, the maximum mass
decreases as we increase the CS dimensionless coupling
constant ζ. Therefore, we can try to place bounds on the
theory by requiring that the maximum observed mass be
greater than 1.93M⊙. Of course, such a method to test
modified gravity theories is not new; it has been consid-
ered in e.g. [68] for Einstein-Aether theory and [69] for
Einstein-Dilaton-Gauss-Bonnet theory.

The horizontal dashed line in Fig. 2 is the lower bound
on the mass of PSR J1614-2230. For the LS220 EoS, the
CS maximum NS mass with ζ = 1 becomes less than
1.93M⊙. This means that we can place a meaningful
constraint on the theory assuming that this is the correct
EoS. However, the CS maximum NS mass with ζ = 1
with the APR, SLy and Shen EoSs are all above 1.93M⊙.

Therefore, whether a meaningful constraint of dynamical
CS gravity can be placed depends strongly on the EoS.
Since the EoS has not been observationally measured,
this degeneracy prevents us from constraining dynamical
CS gravity with mass-radius relations.

B. Double Pulsar Binary PSR J0737-3039

The observed timing parameters of PSR J0737-
3039 [5–7] are summarized in Table II. One can test
GR from measurements of the post-Keplerian (PK) pa-
rameters [52]: the (orbital averaged) advance rate of the

periastron 〈ω̇〉, the orbital decay rate Ṗ , gravitational
redshift parameter γ, and the range r and the shape s of
the Shapiro time delay.
Let us first look at the CS effect on 〈ω̇〉. Since the spin

of the secondary pulsar is 100 times smaller than the pri-
mary one, we only consider CS corrections that depend
on χ1, meaning we only keep 〈ω̇〉h and neglect 〈ω̇〉ϑ. By
taking the ratio of the former to the GR expression for
〈ω̇〉GR = 3(2π/P )5/3m2/3(1− e2)−1 [2, 4], we obtain

〈ω̇〉h
〈ω̇〉GR

=
Q1

m3

1

1− e2
m

a

[

−1 +
3

2

(

Ŝ2
1,x + Ŝ2

1,y

)

−Ŝ1,z cot ι
(

Ŝ1,x sinω + Ŝ1,y cosω
)]

. (131)

Since this is proportional to m/a, the CS correction to
〈ω̇〉 is of 1PN order relative to GR.

Ṗ is proportional to Ė which is given in Eqs. (B8)
and (B21) and both are proportional to (m/a)7. By
comparing this with the GR expectation, which is pro-
portional to (m/a)5, the CS correction to Ṗ is of 2PN
relative order. Similarly, one can show that the CS cor-
rection to γ, r, and s are also of relative 2PN order.
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Therefore, the dominant CS correction to the binary evo-
lution is in 〈ω̇〉 and we can neglect CS corrections to all
other PK parameters. We can also neglect the CS cor-
rections to the spin-precession equations, which appear
at 2PN relative order (see Appendix C).

In order to place constraints on dynamical CS grav-
ity, one needs to know the orientation of the spin of the
primary pulsar since Eq. (131) depends on Ŝi

1. Unfor-
tunately, this quantity is currently unconstrained. In
2004, Ref. [70] attempted to measure this quantity by
modeling the intensity variation of pulsar B caused by
the emission from pulsar A [70]. Doing so, one obtained
θS1

= 167◦ ± 10◦ and φS1
= 246◦ ± 5◦, where θS1

is the

angle between Ŝi
1 and the unit orbital angular momen-

tum vector L̂i, and φS1
is the angle between Ŝi

1 projected
onto the orbital plane and the direction of the ascending
node. However, since then, Ref. [71] found no observable
major profile changes in the emission of pulsar A, and
hence the model of Ref. [70] is ruled out. Nevertheless,

following Ref. [72], we adopt the above values for Ŝi
1 to

give an order of magnitude estimate of the possible mag-
nitude of the constraint, if this quantity were measured
in the future.

By using Kepler’s Law a3 = m(P/2π)2 and the CS
quadrupole moment deformation found in Sec. VII, we
can evaluate Eq. (131) for NSs with various EoSs. The
results for ζ = 1 are summarized in Table III. One sees
that in the small coupling approximation, the ratio of
|〈ω̇〉h/〈ω̇〉GR| is of O(10−8) at most. For other choice

of the unit vector Ŝi
1, |〈ω̇〉h/〈ω̇〉GR| increases by at most

0.075%. This means that in order to place meaningful
constraints on dynamical CS gravity from binary pul-
sar observations, we need to observe 〈ω̇〉 and at least 2
other PK parameters (or the mass functions or the mass
ratio) within 10−8 accuracy (the latter are needed to de-
termine the masses of the pulsars). With the current
observational data, we can determine the masses of the
pulsars using the mass ratio and s, and test dynamical
CS gravity with 〈ω̇〉. However, since the former only have
accuracies of O(10−3), we cannot place any constraint on
this theory from the double binary pulsar system. This
conclusion also holds for other binary pulsar systems.

Notice that |〈ω̇〉h/〈ω̇〉GR| as shown in Table III is
smaller than |〈ω̇〉SO/〈ω̇〉GR| ∼ 10−5 where 〈ω̇〉SO is the
advance rate of the periastron due to GR spin-orbit cou-
pling and it is given by [72, 73]

〈ω̇〉SO
〈ω̇〉GR

= − 1

6
√
1− e2

4m1 + 3m2

m1

I1fν1
m2

(m

a

)1/2

×(2 cos θS1
+ cot ι sin θS1

sinφS1
) , (132)

where fν1 is the spin frequency of pulsar A. Since this
ratio depends on the moment of inertia I, which encodes
information of the internal structure of the NS, it would
be difficult to test dynamical CS gravity even if the mea-
surement accuracies of the PK parameters improved, un-
less I were determined to high accuracy.

The results obtained here suggests that pulsar binaries
cannot currently be used to constrain dynamical CS grav-
ity. If so, GW observations are the only way to test dy-
namical CS gravity in the dynamical, strong-field regime,
as demonstrated in [29].

X. CONCLUSIONS AND DISCUSSIONS

In this paper, we extended the previous work in [24, 60]
to construct slowly-rotating NSs in dynamical CS gravity
in the small-coupling and slowly-rotating approximations
to quadratic order in spin. At this order, we found a neg-
ative CS mass correction and a positive CS quadrupole
moment deformation. We applied the former correction
to test the theory by requiring that the observed maxi-
mum mass be greater than the lower bound on the mass
of the massive millisecond pulsar J1614-2230. Unfortu-
nately, we could not obtain any meaningful constraint
due to degeneracies with the unknown EoS of nuclear
matter. Next, we used the quadrupole deformation to
derive the correction to the evolution of the NS binary.
Among all PK parameters, we found that the dominant
CS correction appears in the advance rate of the perias-
tron 〈ω̇〉. We applied our results to the double binary
pulsar PSR J0737-3039 [5–7] but found that the CS cor-
rection is too small to be constrained, i.e. it is of relative
1PN order. This correction is even smaller than the one
arising from GR spin-orbit coupling, which in turn de-
pends on the moment of inertia I. Hence, we would not
be able to constrain the theory unless we knew I to high
precision. The results obtained here indicate that GW
observations are the only way to test the theory in the
strong and dynamical field regime [29].
One possible way to extend our work is to construct

gravitational waveforms for NS binaries. This can be
done by following the analysis of Ref. [29]. As in the
BH binary case discussed in the reference, the correc-
tions to GR waveforms will enter at 2PN order. However,
one needs to be careful about constructing gravitational
waveforms for spinning NS binaries in GR, since the spin
of the NS induces a quadrupole deformation. This defor-
mation contains information about the internal structure
of the NS, which also enters at 2PN order [56]. In order
to obtain 2PN waveforms, one must thus first construct
slowly-rotating NS solutions in GR to quadratic-order
in spin. This spin-induced 2PN effect will be strongly
degenerate with the 2PN CS correction. However, this
degeneracy might be broken as follows. The tidally in-
duced quadrupole moment enters at 5PN order [74], but
is enhanced by a factor of O(R∗/M∗)

5. The tidal effect
may be detected using future ground-based GW inter-
ferometers [74–78]. Since the internal structure can be
determined to some extent from tides, the degeneracy
between the spin-induced term and the CS correction
might be broken. There is also a GR spin-spin interac-
tion term at 2PN order in the phase of the gravitational
waveform. Again, the degeneracies between spins and
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the CS correction term might be broken if the binaries
are precessing. However, we expect that BH binaries are
more useful in constraining the theory than NS binaries
because (i) the degeneracy with the spin-induced term
would not be broken completely, (ii) the CS deforma-
tion to the quadrupole moment for a NS is smaller than
that of a stellar-mass BH due to cancellation between the
first and the second terms in Eq. (66), and (iii) the spin
of the NS binaries just before coalescence is expected to
be rather small [76, 78, 79], making the CS correction
even smaller. Also, the radius of a NS is larger than that
of a stellar-mass BH, and hence, the latter allows tests
at smaller length scales, which means that BH binaries
have a stronger potential to constrain the theory.
Another possible avenue of future work is to study os-

cillations of NSs in dynamical CS gravity. By considering
perturbations of the gravitational, scalar and the matter
fields, one can investigate e.g. f-, p-, r- and w-modes [80].
The first two modes can be studied under the Cowling ap-
proximation, where one neglects the perturbations of the
gravitational and the scalar fields (f- and p-modes in al-
ternative theories of gravity have been studied in e.g. [81]
for scalar-tensor theory and [82] for tensor-vector-scalar
(TeVeS) theory). This amounts to solving the perturbed
matter equation ∇µδTmat

µν = 0, where δTmat
µν is the per-

turbed matter stress-energy tensor. At zeroth order in
spin, since the background is exactly the same as GR, we
expect that f- and p-modes to be identical to those in GR.
To study w-modes, one needs to include gravitational
and scalar field perturbations. W-modes in alternative
theories of gravity have been investigated in e.g. [83] for
scalar-tensor theory and [84] for TeVeS. In these theories,
one finds that axial metric perturbations decouple from
scalar and polar metric ones. Hence, w-modes can be
studied by solving the axial perturbation equation as an
eigenvalue problem. In dynamical CS gravity, we expect
that polar perturbations will decouple from the rest, as in
the case for BHs [85–87]. However, again, since the back-

ground is the same as in GR, the polar perturbation equa-
tions should be identical to those in GR. At linear order
in spin, one can look at r-modes by studying the toroidal
oscillation of the NS in the Cowling approximation. As in
GR [88, 89] and in TeVeS [90], the spectrum for toroidal
oscillations of slowly-rotating stars should also be con-
tinuous in dynamical CS gravity. However, this might
be an artifact of the slow-rotation limit, since in GR, the
spectrum becomes discrete for fast-rotating NSs [91, 92].
In principle, if the maximum and/or the minimum of the
toroidal oscillation frequencies and the moment of inertia
are independently determined, one can break the degen-
eracy between the gravitational theory and the EoS, and
hence test GR [90]. This looks challenging from an obser-
vational point of view. At quadratic order in spin, there
can be corrections to f-, p-, and w-modes, but obviously,
they are suppressed by O(ζχ2).
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Appendix A: The ℓ = 2 Mode Exterior Solutions at Second Order in Spin

We solve Eqs. (46)– (48) and obtain the ℓ = 2 mode exterior solution at O(α′2χ′2):
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where CQ is another integration constant. One might
think that the above metric components diverge at in-
finity. However, one can show that hext

2 = O(R−3),
mext

2 = O(R−2) and kext2 = O(R−3) as R → ∞.

Appendix B: Energy Flux

and Angular Momentum Flux

In this appendix, we look at the dissipative effects of
the binary evolution, i.e. the energy and angular mo-
mentum fluxes radiated via gravitational and scalar ra-
diation.

1. Energy Flux

The rate of change of the orbital binding energy Ėb

must be balanced by the energy flux F carried away
from the system by all propagating degrees of freedom.
In dynamical CS gravity, there are two such quantities,
the metric perturbation (h) and the scalar field (ϑ), and

thus Ėb = −F(h) − F(ϑ) = Ė(h) + Ė(ϑ). Each of these
contributions can be split into a GR term plus a CS

term, noting of course that Ė
(ϑ)
GR = 0, we then have

Ėb = Ė(h) + δĖ(h) + δĖ(ϑ), where the δ’s are to remind
us that these are CS corrections.
In either case, for any field ϕ with stress-energy tensor

T (ϕ), the energy flux is (see Sec. VI of [54])

Ė(ϕ) = lim
r→∞

∫

S2
r

〈

T
(ϕ)
ti ni

〉

ω
r2dΩ , (B1)

where the orbit average of any quantity Q is defined as

〈Q〉ω =
1

T

∮

Qdt =
1

T

∫ 2π

0

Q(φ)dφ

φ̇
, (B2)

where T is the orbital period, φ is the orbital phase, and
the Jacobian φ̇ must of course be included.

a. Scalar Field

Let us consider the energy flux associated with the CS
scalar field ϑ. The scalar stress-energy tensor was given
in Eq. (5). The radiative far-zone solution for the scalar
field ϑFZ is [54],

ϑFZ =
1

r
µ̈ijn

ij , (B3)

where µij is the magnetic-type quadrupole tensor of the
source,

µij ≡ x
(i
1 µ

j)
1 + x

(i
2 µ

j)
2 . (B4)

There are other contributions to ϑFZ, but they are sup-
pressed by the ratio of the orbital and radiation-reaction
or precession timescales, so we neglect them here.

Inserting this far-zone solution into T (ϑ) and this into
the energy flux formula, we obtain

δĖ(ϑ) = −4π

15
β

〈[

2
...
µ ij

...
µ ij +

(...
µ i

i

)2
]〉
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which upon expansion returns
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We have here defined
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m2

m
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1χ1Ŝ
i
1µ̄1 −

m1
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C3

2χ2Ŝ
i
2µ̄2 , (B7)

so as to agree with the definition of ∆i in [54] when the
two bodies are BHs. In the circular orbit limit, (n12 ·
v12) → 0 and our Eq. (B6) agrees with Eq. (137) of [54].
By performing the orbit average, we find that the cor-

rection to the rate of change to the orbital binding energy
due to the scalar field is

δĖ(ϑ) = − 5
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ζ
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where
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f3(e) = 1 +
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69

8
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9

16
e6 . (B11)

We could rewrite these expressions in terms of the struc-
ture constants of Eq. (B7), but the resulting expression is
rather long and unilluminating. It may seem surprising
at first that the different components of ∆i play unequal
roles, but the binary orbit sets up a preferred coordinate
system that treats components of ∆i differently.

b. Metric Perturbation

The leading-order correction to the effective GW
stress-energy tensor is given by (see [96] and Sec. VI
of [54])

T (h)
µν =

1

16π

〈

hTT

ij,(µh
ij
TT,ν)

〉

λ
, (B12)

where 〈〉λ is a short-wavelength average, hij is the metric
perturbation in GR, hij is the correction to the metric
perturbation due to CS gravity, and TT stands for the
transverse-traceless projection,

HTT

ij = Λij,klHkl , Λij,kl = PikPjl −
1

2
PijPkl , (B13)
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with Pij = δij −nij the projector onto the plane perpen-
dicular to the line from the source to a FZ field point.
The leading-order expressions for hij and hij in the far-

zone are (see Eq. (118) of [54])

hij =
2Ïij
r

, (B14)
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where Iij = m1x
1
ix

1
j + (1 ↔ 2) is the mass quadrupole

tensor.
The effective stress-energy tensor of Eq. (B12) must be

inserted into Eq. (B1) to calculate the correction to the
rate of change of the orbital binding energy due to the
CS correction to the metric perturbation. Inserting the
previous expressions and performing the integral over dΩ
gives
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Similar to the scalar field case, in the circular orbit,
Eq. (B16) divided by the GR energy flux ĖGR agrees with
Eq. (142) of [54]. Performing the orbit-averaging yields
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where
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Rewriting the energy flux in terms of the dimensionless
structure constants, we find
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2. Angular momentum flux

In this appendix, we present the rate of change of the
orbital angular momentum, as induced by the propagat-
ing scalar field and metric perturbation.

a. Scalar Field

The angular momentum flux for the scalar field ϑ,
which has stress-energy tensor T (ϑ) is [67]
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Only the parts of T
(ϑ)
kl which decay as r−3 contribute a

finite part. One can verify that the parts that decay as
r−2 actually vanish identically prior to taking the limit
to spatial infinity. Inserting the same far-zone solution as
before [Eq. (B3)] into the stress energy tensor [Eq. (5)],
and inserting this into Eq. (B22), we have

δL̇
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Expanding in terms of time derivatives of the quadrupole
tensor gives
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Finally, performing the orbit-averaging as before, with ẑ
lying perpendicular to the orbital plane, gives

δL̇
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b. Gravitational Field

The angular momentum flux associated with the met-
ric perturbation at null infinity can be written as (see
Eq. (4.22’) in [97])
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This corrects a well-known mistake in the paper of Pe-
ters [98]. If the metric perturbation consists of a GR
term plus a CS correction, we can then calculate the CS
modification to the angular momentum flux via
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As before, only the parts of the integrand that decay
as r−2 and r−3 in the first and second terms respectively
contribute a finite part. One can verify that any seem-
ingly divergent terms actually vanish prior to taking the
limit to spatial infinity. Inserting the same far-zone solu-
tion as before [Eqs. (B14)-(B15)] into the above expres-
sions, inserting the expressions for the time dependence
of µij and orbit averaging, we finally obtain
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Ŝx
1 Ŝ
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Ŝz
1 Ŝ
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One can, of course, check that in the zero eccentricity
limit δĖh = ΩδL̇h

z , where Ω = 2π/T is the orbital fre-
quency.

Appendix C: Spin Precession due to

Scalar Interaction

Using the relationship in Eq. (70), we can rewrite the
scalar dipole-dipole interaction as an additional spin-spin
interaction,

δLSS =
25

256

ξCS

m4

µ̄1µ̄2

η2
C3

1C
3
2

× 1

r312
[3(S1 · n12)(S2 · n12)− (S1 · S2)] , (C1)

where CA is the compactness of body A. Compare this
with the leading spin-spin interaction present in GR,
e.g. Eq. (5b) of [99]. It is clear that this contribution
is of the same form with only a different prefactor. This
interaction will lead to additional spin precession (to be
added to that already present from GR) of the form

δṠi
1,SS = − 25

256

ξCS

m4

µ̄1µ̄2

η2
C3

1C
3
2

× 1

r312
ǫijkS

k
1

{

1

2
Sj
2 + 3(n12 · S2)n

j
12

}

. (C2)

and similarly for body 2 with 1 ↔ 2.
The dipole-dipole interaction does not modify the spin-

orbit coupling at all, so the orbital angular momentum
Li does not appear in the above expression as it does in
GR. We expect that the O(α′2) conservative correction
to Li appears at 2PN order or higher, so the correction
to the orbit-induced precession will only appear at higher
than 2 PN order.
This effect is interesting in that it comes in at the same

PN order as in GR. However, currently, there are no bi-
nary systems with sufficiently well-modeled spin preces-
sion that could be used to measure or place constraints
on Chern-Simons gravity. Indeed, the spin precession
periods for currently known pulsar binary systems are of
the order of hundreds of years [100]. Therefore, it seems
unlikely that this phenomenon will soon be used for con-
straining modified theories.
Precession is also caused by a monopole-quadrupole

interaction [101, 102], which enters at the same PN or-
der as the spin-spin interaction [56]. Since there is a
quadrupole moment deformation in dynamical CS grav-
ity, there would be a CS correction to the monopole-
quadrupole interaction of the form

〈Ṡ1〉Q = 3
µ

m2

QCS

1

m3
1χ1

(

m

r12

)3
(

L̂ · Ŝ1

)

ǫijkL̂
jSk

1 , (C3)

and similarly for body 2. Notice that this is of the same
PN order as the correction to the spin-spin interaction
shown in Eq. (C2).
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Marugán, General Relativity and Gravitation, 41, 2415
(2009), arXiv:0807.0824 [gr-qc].

[96] L. C. Stein and N. Yunes, Phys. Rev. D, 83, 064038
(2011), arXiv:1012.3144 [gr-qc].

[97] K. S. Thorne, Rev. Mod. Phys., 52, 299 (1980).
[98] P. Peters, Phys.Rev., 136, B1224 (1964).
[99] L. E. Kidder, C. M. Will, and A. G. Wiseman,

Phys.Rev., D47, 4183 (1993), arXiv:gr-qc/9211025 [gr-
qc].

[100] T. Clifton and J. M. Weisberg, The Astrophysical Jour-
nal, 679, 687 (2008).

[101] H. Goldstein, C. Poole, and J. Safko, Classical mechan-

ics (Addison-Wesley, San Francisco, 2002).
[102] D. Lai and S. L. Shapiro, Astrophys. J., 443, 705 (1995),

arXiv:astro-ph/9408054.


