
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Black holes, information, and Hilbert space for quantum
gravity

Yasunori Nomura, Jaime Varela, and Sean J. Weinberg
Phys. Rev. D 87, 084050 — Published 19 April 2013

DOI: 10.1103/PhysRevD.87.084050

http://dx.doi.org/10.1103/PhysRevD.87.084050


DY10906

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

MIT-CTP-4405

UCB-PTH-12/17

Black Holes, Information, and Hilbert Space
for Quantum Gravity

Yasunori Nomuraa,b, Jaime Varelaa,b, and Sean J. Weinbergb

a Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics,

Massachusetts Institute of Technology, Cambridge, MA 02139, USA

b Berkeley Center for Theoretical Physics, Department of Physics,

and Theoretical Physics Group, Lawrence Berkeley National Laboratory,

University of California, Berkeley, CA 94720, USA

Abstract

A coarse-grained description for the formation and evaporation of a black hole is given
within the framework of a unitary theory of quantum gravity preserving locality, without
dropping the information that manifests as macroscopic properties of the state at late times.
The resulting picture depends strongly on the reference frame one chooses to describe the pro-
cess. In one description based on a reference frame in which the reference point stays outside
the black hole horizon for sufficiently long time, a late black hole state becomes a superpo-
sition of black holes in different locations and with different spins, even if the back hole is
formed from collapsing matter that had a well-defined classical configuration with no angular
momentum. The information about the initial state is partly encoded in relative coefficients—
especially phases—of the terms representing macroscopically different geometries. In another
description in which the reference point enters into the black hole horizon at late times,
an S-matrix description in the asymptotically Minkowski spacetime is not applicable, but
it sill allows for an “S-matrix” description in the full quantum gravitational Hilbert space
including singularity states. Relations between different descriptions are given by unitary
transformations acting on the full Hilbert space, and they in general involve superpositions
of “distant” and “infalling” descriptions. Despite the intrinsically quantum mechanical na-
ture of the black hole state, measurements performed by a classical physical observer are
consistent with those implied by general relativity. In particular, the recently-considered fire-
wall phenomenon can occur only for an exponentially fine-tuned (and intrinsically quantum
mechanical) initial state, analogous to an entropy decreasing process in a system with large
degrees of freedom.



1 Introduction

Since its discovery [1], the process of black hole formation and evaporation has contributed tremen-

dously to our understanding of quantum aspects of gravity. Building on earlier ideas, in particular

the holographic principle [2, 3] and complementarity [4], one of the authors (Y.N.) has recently

proposed an explicit framework for formulating quantum gravity in a way that is consistent with

locality at length scales larger than the Planck (or string) length [5]. (Essentially the same idea

had been used earlier to describe the eternally inflating multiverse in Ref. [6].) This allows us

to describe a system with gravity in such a way that the picture based on conventional quantum

mechanics, including the emergence of classical worlds due to amplification in position space [7, 5],

persists without any major modification.

In the framework given in Ref. [5], quantum states allowing for spacetime interpretation repre-

sent only the limited spacetime region in and on the apparent horizon as viewed from a fixed (freely

falling) reference frame. Complementarity, as well as the observer dependence of cosmic horizons,

can then be understood—and thus precisely formulated—as a reference frame change represented

by a unitary transformation acting on the full quantum gravitational Hilbert space, which takes

the form

HQG =

(

⊕

M

HM

)

⊕Hsing. (1)

Here, HM is the Hilbert subspace containing states on a fixed semi-classical geometry M (or more

precisely, a set of semi-classical geometriesM = {Mi} having the same horizon ∂M), whileHsing is

that containing “intrinsically quantum mechanical” states associated with spacetime singularities.1

In its minimal implementation—which we assume throughout—the framework of Ref. [5] says that

a state that is an element of one of the HM’s represents a physical configuration on the past light

cone of the origin, p, of the reference frame. We call the structure of the Hilbert space in Eq. (1)

with this particular implementation the covariant Hilbert space for quantum gravity.

The purpose of this paper is to develop a complete picture of black hole formation and evapo-

ration in this framework, based on Eq. (1). Our picture says that:

• The evolution of the full quantum state is unitary.

• The state, however, is in general a superposition of macroscopically different worlds. In

particular, the final state of black hole evaporation is a superposition of macroscopically

distinguishable terms, even if the initial state forming the black hole is a classical object having

a well-defined macroscopic configuration. The information of the initial state is encoded partly

in relative coefficients, especially in phases, among these macroscopically different terms.

1Here, the geometry means that of a codimension-one hypersurface which the quantum states represent, and not

that of spacetime.
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• No physical observer can recover the initial state forming the black hole by observing final

Hawking radiation quanta. This is true even if the measurement is performed with arbitrarily

high precision using an arbitrary (in general quantum) measuring device.

• Observations each physical observer makes are well described by the semi-classical picture in

the regime it is supposed to be applicable, unless the observer (or measuring device) is in an

exponentially rare quantum state in the corresponding Hilbert space.

We note that while some of the considerations here are indeed specific to the present framework,

some are more general and apply to other theories of gravity as well, especially to the ones in

which the formation and evaporation of a black hole is described as a unitary quantum mechanical

process.

There are several key ingredients to understand the features described above, which we now

highlight:

• Quantum mechanics has a “dichotomic” nature about locality: while the dynamics, encoded in

the time evolution operator, is local, a state is generically non-local, as is clearly demonstrated

in the Einstein-Podolsky-Rosen experiment. In particular, this allows for a state to be a

superposition of terms representing macroscopically different spacetime geometries.

• The framework of Ref. [5] says that general covariance implies the quantum states must be de-

fined in a fixed (local Lorentz) reference frame; moreover, to preserve locality of the dynamics

(not of states), these states represent spacetime regions only in and on the stretched/apparent

horizon as viewed from the reference frame.2 This implies, in particular, that once a reference

frame is fixed, the location of a black hole (with respect to the reference frame) is a physically

meaningful quantity, even if there is no other object.

• The location of a black hole is highly uncertain after long time [8]. In particular, at a timescale

of evaporation ∼ M(0)3, where M(0) is the initial black hole mass, the uncertainty of the

location is of order M(0)2, which is much larger than the Schwarzschild radius of the initial

black hole, RS = 2M(0). (This is also the timescale in which the black hole loses more

than a half of its initial Bekenstein-Hawking entropy in the form of Hawking radiation [9].)

This implies that a state of a sufficiently old black hole becomes a superposition of terms

representing macroscopically distinguishable worlds [10].

As discussed in Refs. [6, 11], these ingredients, especially the first two, are also important to

understand the eternally inflating multiverse (or quantum many universes) and to give well-defined

probabilistic predictions in such a cosmology.

2Note that the apparent horizon, defined as a surface on which the expansion of the past-directed light rays
emitted from p turns from positive to negative, is in general not the same as the event horizon of the black hole. For
example, there is no apparent, or stretched, horizon associated with the black hole when the system is described in
an infalling reference frame.
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In this paper, we will first discuss the picture presented above in the case that the evolution

of a black hole is described in a distant reference frame, i.e. a freely falling frame whose origin

p stays outside the black hole horizon for all time. We will, however, also discuss in detail what

happens if we describe the system using an infalling reference frame, i.e. a frame in which p enters

into the black hole horizon at late times. Following Ref. [5], we treat this problem by performing a

unitary transformation on the state representing the black hole evolution as viewed from a distant

reference frame. We find that, because of the uncertainty of the black hole location, the resulting

state is in general a superposition of infalling and distant descriptions of the black hole, and this

effect is particularly significant when we try to describe the interior of an old black hole.

The issue of information in black hole evaporation has a long history of extensive research, with

earlier proposals including information loss [12, 13], remnants [14, 15], and baby universes [16]; see,

e.g., Refs. [17, 18] for reviews. Our picture here is that the evolution of a black hole is unitary [19],

as in the cases of the complementarity [4] and fuzzball [20] pictures, with a macroscopically non-

local nature of a black hole final state explicitly taken into account. This non-locality is especially

important for the explicit realization of complementarity as a unitary reference frame change in the

quantum gravitational Hilbert space [5]. We note that some authors have discussed non-locality at

a macroscopic level [15, 21] or an intrinsically quantum nature of black hole states [22] but in ways

different from the ones considered here. In particular, these proposals lead either to non-locality

of the dynamics (not only states), large deviations from the semi-classical picture experienced

by a macroscopic physical observer, or intrinsic quantum effects confined only to the microscopic

domain, none of which applies to the picture presented here.

The organization of this paper is as follows. In Section 2, we provide a detailed description

of the formation and evaporation of a black hole as viewed from a distant reference frame. We

elucidate the meaning of information in this context, and find that it is partly in relative coefficients

of terms representing different macroscopic configurations of Hawking quanta and/or geometries.

We also discuss what a physical observer, who should be a part of the description, will measure and

if he/she can reconstruct the initial state based on his/her measurements. In Section 3, we consider

descriptions of the system in different reference frames. In particular, we discuss how the spacetime

inside the black hole horizon appears in these descriptions and how these descriptions are related to

the distant description given in Section 2. We also elaborate on the analysis of Ref. [10], arguing

that the firewall paradox recently pointed out in Ref. [23] does not exist (although the firewall

“phenomenon” can occur if the initial state is exponentially fine-tuned). In Section 4 we give our

final discussion and conclusions. In the appendix, we provide an analysis of the “spontaneous

spin-up” phenomenon, which we find to occur for a general Schwarzschild (or very slowly rotating)

black hole. This effect makes a Schwarzschild black hole evolve into a superposition of Kerr black

holes with distinct angular momenta.
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Throughout the paper, we limit our discussions to the case of four spacetime dimensions to

avoid unnecessary complications of various expressions; but the extension to other dimensions is

straightforward. We also take the unit in which the Planck scale, G
−1/2
N ≃ 1.22× 1019 GeV, is set

to unity, so all the quantities appearing can be regarded as dimensionless.

2 Black Holes and Unitarity—A Distant View

In this section we discuss how unitarity of quantum mechanical evolution is preserved in the process

in which a black hole forms and evaporates, as viewed from a distant reference frame. We clarify the

meaning of the information in this context, and argue that it (partly) lies in relative coefficients—

especially phases—of terms representing macroscopically distinct configurations in a full quantum

state. We also elucidate the fact that a physical observer can never extract complete (quantum)

information of the initial state forming the black hole; i.e., observing final-state Hawking radiation

does not allow for him/her to infer the initial state, despite the fact that the evolution of the entire

quantum state is fully unitary.

2.1 Information paradox—what is the information?

In his famous 1976 paper, Hawking argued, based on semi-classical considerations, that a black

hole loses information [12]. Consider two objects having the same energy-momentum, represented

by pure quantum states |A〉 and |B〉, which later collapse into black holes with the same mass

M(0). According to the semi-classical picture, the evolutions of the two states after forming the

black holes are identical, leading to the same mixed state ρH , obtained by integrating the thermal

Hawking radiation states:
|A〉 → ρH ,
|B〉 → ρH .

(2)

This phenomenon is referred to as the information loss in black holes.

What is the problem of this picture? The problem is that since the final states are identical, we

cannot recover the initial state of the evolution just by knowing the final state, even in principle.

This contradicts unitarity of quantum mechanical evolution, which says that time evolution of a

state is reversible, i.e. we can always recover the initial state if we know the final state exactly by

applying the inverse time evolution operator e+iHt.

Based on various circumstantial evidence, especially AdS/CFT duality [24], we now do not

think the above picture is correct. We think that the final states obtained from different initial

states differ, and a state obtained by evolving any pure state is always pure even if the evolution
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involves formation and evaporation of a black hole. Namely, instead of Eq. (2), we have

|A〉 → |ψA〉 ,
|B〉 → |ψB〉 , (3)

where |ψA〉 6= |ψB〉 iff |A〉 6= |B〉. In this picture, quantum states representing black holes formed

by different initial states are different, even if they have the same mass. (The dimension of the

Hilbert space corresponding to a classical black hole of a fixed mass M is exp(ABH/4) according

to the Bekenstein-Hawking entropy, where ABH = 16πM2 is the area of the black hole horizon.)

These states then evolve into different final states |ψA〉 and |ψB〉, representing states for emitted

Hawking radiation quanta.

A question is in what form the information is encoded in the final state. On one hand, possible

final states of evaporation of a black hole must have a sufficient variety to encode complete informa-

tion about the initial state forming the black hole. This requires that the dimension of the Hilbert

space corresponding to these states must be of order exp(ABH(0)/4), where ABH(0) = 16πM(0)2

is the area of the black hole horizon right after the formation. On the other hand, Hawking ra-

diation quanta emitted from the black hole must have the thermal spectrum (with temperature

TH = 1/8πM when the black hole mass is M) in the regime where the semi-classical analysis is

valid, M ≫ 1. It is not clear how the state actually realizes these two features [25], although the

generalized second law of thermodynamics guarantees that it can be done. Below, we argue that a

part of the information that is necessary to recover the initial state is contained in relative coeffi-

cients of terms representing different macroscopic worlds, even if the initial state has a well-defined

classical configuration.

Our analysis does not prove unitarity of the black hole formation/evaporation process, or ad-

dress the question of how the complete information of the initial state is encoded in the emitted

Hawking quanta at the microscopic level. Rather, we assume that unitarity is preserved at the

microscopic level, and study manifestations of this assumption when we describe the process at a

semi-classical level. This will provide implications on how such a description must be constructed.

For example, in order to preserve all the information in the initial state, the description must

not be given on a fixed black hole background in an intermediate stage of the evaporation, since

it would correspond to ignoring a part of the information contained in the full quantum state

manifested as macroscopic properties of the remaining black hole. Note that we do not claim

that these macroscopic properties contain independent information beyond what is in the emitted

Hawking quanta—the two are certainly correlated by energy-momentum conservation. The anal-

ysis presented here also has implications on the complementarity picture, which will be discussed

in Section 3.
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singularity

Figure 1: The Penrose diagram representing a black hole formed from a collapsing shell of matter (rep-
resented by the thick solid curve) which then evaporates. The left panel shows the standard “global
spacetime” picture, in which Hawking radiation (denoted by wavy arrows) comes from the stretched
horizon. To obtain a consistent quantum mechanical description, we must fix a reference frame (freely
falling frame) and then describe the system from that viewpoint [5]. Quantum states then corresponds
to physical configurations in the past light cone of the origin p of that reference frame. Here we choose a
“distant” reference frame; the trajectory of its origin p is depicted by a thin solid curve. With this choice,
a complete description of the evolution of the system is obtained in the shaded region in the panel. In
other words, the conformal structure of the entire spacetime is as in the right panel, when the system is
described in this reference frame.

2.2 Where is the information in the black hole state?

Let us consider a process in which a black hole is formed from a pure state |A〉 and then evaporates.

For simplicity, we assume that the black hole formed does not have a spin or charge. We describe

this process in a distant reference frame, i.e. a freely falling (local Lorentz) frame whose origin p

is outside the black hole horizon all the time; see the left panel of Fig. 1. In its minimal imple-

mentation, the framework of Ref. [5] says that quantum states represent physical configurations

on the past light cone of p in and on the stretched/apparent horizon.3 This description, therefore,

represents evolution of the system in the shaded spacetime region in the left panel of Fig. 1.

An important point is that this provides a complete description of the entire system [19, 4]—it

is not that we describe only a part of the system corresponding to the shaded region; physics is

complete in that spacetime region. The picture describing the infalling matter inside the horizon

3The stretched horizon is defined as a time-like hypersurface on which the local Hawking temperature becomes
of order the Planck scale and thus short-distance quantum gravity effects become important (where we have not
discriminated between the string and Planck scales). In the Schwarzschild coordinates, it is located at r−2M ≈ 1/M .
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can be obtained only after performing a unitary transformation on the state corresponding to a

change of the reference frame to an infalling one [5] (which in general leads to a superposition of

infalling and distant views, as will be explained in Section 3). In this sense, the entire spacetime is

better represented by a Penrose diagram in the right panel of Fig. 1 when the system is described

in a distant reference frame. As is clear from the figure, this allows for an S-matrix description of

the process in Hilbert space representing Minkowski space HMinkowski, which is a subspace of the

whole covariant Hilbert space for quantum gravity: HMinkowski ⊂ HQG. This is the case despite

the fact that in general quantum mechanics requires only that the evolution of a state is unitary

in the whole Hilbert space HQG; see Section 3 for more discussions on this point.

What does the evolution of a quantum state look like in this description? Let us denote the

black hole state right after the collapse of the matter by
∣

∣BH0
A

〉

. Since the subsequent evolution

is unitary, the state can be written in the form
∑

i a
t
i

∣

∣BHt
i

〉

⊗ |ψt
i〉. Here,

∣

∣BHt
i

〉

represent states

of the black hole (i.e. the horizon degrees of freedom) when time t is passed since the formation,

while |ψt
i〉 those of the rest of the world at the same time, where t is the proper time measured

at the origin of the reference frame p. (The dimension of the Hilbert space for
∣

∣BHt
i

〉

, Ht
BH, is

exp(ABH(t)/4) with ABH(t) = 16πM(t)2, where M(t) is the mass of the black hole at time t; the

state
∣

∣BH0
A

〉

is an element of H0
BH.) The entire state then evolves into a state representing the

final Hawking radiation quanta, which can be written as
∑

i a
∞
i |ψ∞

i 〉. Summarizing, the evolution

of the system is described as

|A〉 −→
∣

∣BH0
A

〉

−→
∑

i

ati
∣

∣BHt
i

〉

⊗
∣

∣ψt
i

〉

−→
∑

i

a∞i |ψ∞
i 〉 . (4)

The complete information about the initial state is contained in the state at any time t in the set

of complex coefficients when the state is expanded in fixed basis states. In particular, after the

evaporation it is contained in {a∞i } showing how the radiation states are superposed.

2.3 Black hole drifting: a macroscopic uncertainty of the black hole
location after a long time

What actually are the states |ψt
i〉? Namely, what does the intermediate stage of the evaporation

look like when it is described from a distant reference frame? Here we argue that |ψt
i〉 for different

i span macroscopically different worlds. In particular, the state of the black hole becomes a

superposition of macroscopically different geometries (in the sense that they represent different

spacetimes as viewed from the reference frame) throughout the course of the evaporation. The

analysis here builds upon an earlier suggestion by Page, who noted a large backreaction of Hawking

emissions to the location of an evaporating black hole [8].

To analyze the issue, let us take a semi-classical picture of the evaporation but in which the

backreaction of the Hawking emission to the black hole energy-momentum is explicitly taken into
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account. Specifically, we model it by a process in which the black hole emits a massless quantum

with energy ∼M2
Pl/M in a random direction in each time interval ∼ (M/MPl)lPl, in the rest frame

of the black hole. Here, M is the mass of the black hole at the time of the emission, and we have

restored the Planck scale GN = 1/M2
Pl = l2Pl, which we keep until our final result in Eq. (11).

Suppose that the velocity of the black hole is v before an emission; then the emission of a Hawking

quantum will change the four-momentum of the black hole as

pµBH =

(

Mγ
Mγv

)

−→
(

Mγ − γM2

Pl

M
(1− n · v)

Mγv +
M2

Pl

M
n− (1−γ)M2

Pl

M
n·v
|v|2

v− γM2

Pl

M
v

)

, (5)

where γ ≡ 1/
√

1− |v|2 and n is a unit vector pointing to a random direction. The mass and the

velocity of the black hole, therefore, change by

∆M =
√

M2 − 2M2
Pl −M ≈ −M

2
Pl

M
, (6)

∆v =
M2

Pl

γ{M2 −M2
Pl(1− n · v)}

{

n−
(

1− 1

γ

)

n · v
|v|2 v

}

≈ M2
Pl

M2
n− M2

Pl

2M2
(n · v)v, (7)

in each time interval

∆t =
Mγ

MPl
lPl ≈

M

MPl
lPl, (8)

where we have taken the approximation that M ≫MPl and |v| ≪ 1 in the rightmost expressions.

In general, the emission of a Hawking quantum can also change the black hole angular momentum J.

We consider this effect in the appendix, where we find that the black hole accumulates macroscopic

angular momentum, |J| ≫ 1, after long time. This, however, does not affect the essential part of

the discussion below, so we will suppress it in most part.

Now, suppose that a (non-spinning) black hole is formed at t = 0 with the initial mass M0 ≡
M(0). Then, in timescales of orderM3

0 /M
4
Pl or shorter, the black hole mass is still of orderM0 until

the very last moment of the evaporation. (For example, at the Page time tPage ∼M3
0 /M

4
Pl, at which

the black hole loses a half of its initial entropy, the black hole mass is still M ≈ M0/
√
2.) The

above process, therefore, can be well approximated by a process in which the black hole receives a

velocity kick of |∆v| ≈ M2
Pl/M

2
0 in each time interval ∆t ≈ (M0/MPl)lPl, which after time t leads

to black hole velocity

|vBH| ≈ |∆v|
√

t

∆t
∼ M3

Pl

M
5/2
0

√
t, (9)

whose direction does not change appreciably in each kick (and so is almost constant throughout

the process). This implies that after time t (M0/M
2
Pl ≪ t <∼ M3

0 /M
4
Pl), the location of the black

hole drifts in a random direction by an amount

|xBH| ≈ |vBH|t ∼
M3

Pl

M
5/2
0

t3/2. (10)
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Figure 2: Typical paths of the black hole drifting in the three dimensional space xBH = (xBH, yBH, zBH),
normalized by M2

0 .

For t ∼M3
0 /M

4
Pl, this gives |vBH|t∼M3

0
/M4

Pl
∼MPl/M0 and

|xBH|t∼M3
0
∼
(

M0

MPl

)2

lPl, (11)

which is much larger than the Schwarzschild radius of the initial black hole RS = 2(M0/MPl)lPl.

By the time of the final evaporation, the velocity is further accelerated to |vBH| ∼ 1, but the final

displacement is still of the order of Eq. (11).

To appreciate how large the value of Eq. (11) is, consider a black hole whose lifetime is of the

order of the current age of the universe, tevap ∼ 1010 years. It has the initial mass of M0 ∼ 1012 kg,

implying the initial Schwarzschild radius of RS ∼ 1 fm. The result in Eq. (11) says that the

displacement of such a black hole is |xBH| ∼ 100 km at the time of evaporation! The origin of

this surprisingly large effect is the longevity of the black hole lifetime, tevap ∼ M3
0 . For example,

for a black hole of the solar mass M = M⊙ ∼ 1030 kg (i.e. RS ∼ 1 km), the evaporation time is

tevap ∼ 1062 years—52 orders of magnitude longer than the age of the universe.

The probability distribution of |xBH| has the form

dP (|xBH|) ∝ |xBH|2 exp
(

−c |xBH|2
M4

0

)

d|xBH|, (12)

where c is a constant of O(1), as implied by the central limit theorem, i.e. each component of xBH

having the Gaussian distribution centered at zero with a width ∼ M2
0 . In Fig. 2, we show typical

paths of the black hole drift in three spatial dimensions. We see that the direction of the velocity

stays nearly constant along a path, as suggested by the general analysis.

Quantum mechanically, the result described above implies that the state of the black hole be-

comes a superposition of terms in which the black hole exists in macroscopically different locations,

9



BH
BH

BH
BH

Figure 3: A schematic depiction of the evolution of a black hole state formed by a collapse of matter.
After long time, the state will evolve into a superposition of terms representing the black hole to be in
macroscopically different locations, even if the initial collapsing matter has a well-defined macroscopic
configuration. The variation of the final locations in the evaporation timescale, t ∼ M3

0 , is of order M
2
0 ,

which is much larger than the Schwarzschild radius of the initial black hole, RS = 2M0.

even if the initial state forming the black hole is a classical object having a well-defined macroscopic

configuration. At time t ∼ M
7/3
0 after the formation (where t is the proper time measured at p),

the uncertainty of the black hole location becomes of order M0, comparable to the Schwarzschild

radius of the original black hole. At the timescale of evaporation, t ∼ M3
0 , the uncertainty is of

order M2
0 , much larger than the initial Schwarzschild radius. This is illustrated schematically in

Fig. 3. Note that each term in the figure still represents a superposition of terms having different

phase space configurations of emitted Hawking quanta. Also, as shown in the appendix, each black

hole at a fixed location is a superposition of black holes having macroscopically different angular

momenta.

The evolution of the state depicted in Fig. 3 is obviously physical if we consider, for example, a

super-Planckian scattering experiment. In this case, we will find that Hawking quanta emitted at

the last stage of the evaporation will come from ∼M2
0 away from the interaction point, according

to the distribution in Eq. (12); and we can certainly measure this because the wavelengths of these

quanta are much smaller thanM2
0 , and the interaction point is defined clearly with respect to, e.g.,

the beam pipe. An important point here, however, is that the superposition nature of the black

hole state is physical even if there is no physical object other than the black hole, e.g., the beam

pipe. This is because the location of an object with respect to the origin p of the reference frame

is a physically meaningful quantity in the framework of Ref. [5]. In other words, the superposition

nature discussed here is an intrinsic property of the black hole state, not one arising only in relation

to other physical objects.

While relative values of the moduli of coefficients in front of terms representing different black

hole locations, e.g. |c1/c2| in Fig. 3, are determined by the statistical analysis leading to Eq. (12),

their relative phases are unconstrained by the analysis. Moreover, it is possible that there are

higher order corrections to the moduli that are not determined by any semi-classical analysis.
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These quantities, therefore, can contain the information about the initial state; i.e., they can

reflect the details of the initial configuration of matter that has collapsed into the black hole.

(This actually should be the case because a particular initial state leads to particular values for

the relative phases because the Schrödinger equation is deterministic.) Together with the relative

coefficients of terms representing different phase space configurations of emitted Hawking quanta

for each black hole location (more precisely, their parts that are not fixed by semi-classical analyses,

e.g. the relative phases), these quantities must be able to reproduce the initial state of the evolution

by solving the appropriate Schrödinger equation backward in time.

2.4 Evolution in the covariant Hilbert space for quantum gravity

Let us now formulate more precisely how the black hole state, formed by a collapse of matter,

evolves in the covariant Hilbert space for quantum gravity, Eq. (1). Recall that a Hilbert subspace

HM in Eq. (1) corresponds to the states realized on a fixed semi-classical three-geometry M (more

precisely, a set of three-geometries M = {Mi} having the same boundary ∂M). In our context,

the relevant M’s for spacetime with the black hole are specified by the location of the black hole

xBH (which can be parameterized, e.g., by the direction {θ, φ} and the affine length λ of the past-

directed light ray connecting reference point p to the closest point on the stretched horizon) and

the size of the black hole (which can be parameterized, e.g., by its mass M or area A = 16πM2).

Here and below, we ignore the angular momentum of the black hole, for simplicity. We also need

to consider the Hilbert subspace corresponding spacetime without the black hole, H0.

The part of HQG relevant to our problem here is then

H =

(

⊕

xBH,M

HxBH,M

)

⊕H0, (13)

where 0 < M ≤ M0, and we have used the notation in which xBH and M are discretized. The

Hilbert subspace HxBH,M consists of the factor associated with the black hole horizon Hhorizon
xBH,M and

that with the rest Hbulk
xBH,M (which represents the region outside the horizon):

HxBH,M = Hhorizon
xBH,M ⊗Hbulk

xBH,M . (14)

According to the Bekenstein-Hawking entropy, the size of the horizon factor is given by

dimHhorizon
xBH,M = e

ABH

4 = e4πM
2

, (15)

regardless of xBH. Because of this, Hilbert space factorsHhorizon
xBH,M for different xBH are all isomorphic

with each other, which allows us to view Hhorizon
xBH,M for any fixed xBH as the intrinsic structure of the

black hole.
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Now, right after the formation of the black hole, which we assume to have happened at xBH,0

at t = 0, the system is in a state that is an element of HxBH,0,M0
. In the case of Eq. (4)

|Ψ(0)〉 ≡
∣

∣BH0
A

〉

∈ HxBH,0,M0
. (16)

This state then evolves into a superposition of states in different HM’s.4 At time t, the state of

the system can be written as

|Ψ(t)〉 =
∑

xBH

αt
xBH

∣

∣φt
xBH

〉

, (17)

where
∣

∣φt
xBH

〉

∈ HxBH,M(t), and we have ignored possible fluctuations of the black hole mass at

a fixed time t, for simplicity. (Including this effect is straightforward; we simply have to add

terms corresponding to HxBH,M with M 6=M(t).) The state
∣

∣φt
xBH

〉

contains the horizon and other

degrees of freedom, according to Eq. (14). We can expand it in some basis inHhorizon
xBH,M(t) (e.g. the one

spanned by states having well-defined numbers of Hawking quanta emitted afterward) or in some

basis in Hbulk
xBH,M(t) (e.g. the one spanned by states having well-defined phase space configurations

of already emitted Hawking quanta). In either case, it takes the form

∣

∣φt
xBH

〉

=
∑

n

βt
n

∣

∣BHt
xBH,n

〉

⊗
∣

∣ψt
xBH,n

〉

, (18)

where
∣

∣BHt
xBH,n

〉

∈ Hhorizon
xBH,M(t) and

∣

∣ψt
xBH,n

〉

∈ Hbulk
xBH,M(t). Plugging this into Eq. (17) and defining

ati ≡ αt
xBH

βt
n, (19)

where i ≡ {xBH, n}, we reproduce the third expression in Eq. (4). In this formulation, the statement

that the black hole state is a superposition of macroscopically different geometries refers to the

fact that coefficients |αt
xBH

| have a significant support in a wide range of xBH extending beyond

the original Schwarzschild radius M0.

2.5 What does a physical observer actually see?

We have found that a late black hole state is far from a semi-classical state in which the spacetime

has a fixed geometry; rather, it involves a superposition of macroscopically different geometries.

Does this mean that a physical observer sees something very different from what the usual picture

based on general relativity predicts?

The answer is no. To understand this, let us consider a physical observer watching the evap-

oration process from a distance by measuring (all or parts of) the emitted Hawking quanta. For

4This is precisely analogous to the case of e+e− scattering, in which the initial state |e+e−〉 ∈ H2 evolves into
a superposition of states in different Hn’s, e.g. |e+e−〉 → ce |e+e−〉 + · · · + cee |e+e−e+e−〉 + · · · , where Hn is the
n-particle subspace of the entire Fock space: H =

⊕

n
Hn.
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simplicity, we consider that he/she does that using usual measuring devices, e.g. by locating pho-

tomultipliers around the black hole from which he/she collects the data. This leads to an entangle-

ment between the system and the observer (or his/her brain states). And because the interactions

leading to it are local, the observer is entangled with the basis in Hbulk
xBH,M spanned by the states

that have well-defined phase space configurations of emitted Hawking quanta (within the errors

dictated by the uncertainty principle) and well-defined locations for the black hole (since the black

hole location can be inferred from the momenta of the Hawking quanta) [5]. Namely, the combined

state of the black hole and the observer evolves as

∣

∣BH0
A

〉

⊗
∣

∣

· 〉 −→
∑

xBH, n

at
xBH,n

∣

∣BHt
xBH,n

〉

⊗
∣

∣ψt
xBH,n

〉

⊗
∣

∣

· xBH

n

〉

, (20)

where
∣

∣ψt
xBH,n

〉

represents the state in which the black hole is in a well-defined location xBH and

Hawking quanta have a well-defined phase space configuration n. The last factor in the right-hand

side implies that the observer recognized that the black hole is at xBH and the configuration of

emitted Hawking quanta is n.

Since terms in the right-hand side of Eq. (20) have macroscopically different configurations,

e.g. the brain state of the observer differs, their mutual overlaps are exponentially suppressed

(e.g. by ∼
∏N

i=1 ǫi, where ǫi < 1 is the overlap of each atom and N the total number of atoms).

The observer in each term (or branch), therefore, sees his/her own universe; i.e., the interferences

between different terms are negligible. For any of these observers, the behavior of the black hole is

controlled by semi-classical physics (but with the backreaction of the emission taken into account).

For instance, they all see that the black hole keeps emitting Hawking quanta consistent with the

thermal spectrum with temperature TH(t) = 1/8πM(t), and that it drifts in a fixed direction as a

result of backreactions, eventually evaporating at a location ∼M2
0 away from that of the formation.

A single observer cannot predict the direction to which the black hole will drift, reflecting the fact

that the entire state is a superposition of terms having different (xBH − xBH,0)/|(xBH − xBH,0)|,
but all these observers find a set of common properties for the black hole, including the relation

between TH and M .5

It is these “intrinsic properties” of the black hole that the semi-classical gravity on a fixed

Schwarzschild geometry (in which the black hole is located at the “center”) really describes. A

physical observer watching the evolution does not see anything contradicting what is implied by

the semi-classical analysis about these intrinsic properties. This is true despite the fact that

the full quantum state obtained by evolving collapsing matter that initially had a well-defined

configuration takes the form in Eqs. (17, 18), which involves a superposition of macroscopically

5More precisely, there are rare observers who find deviations from these relations, but the probability for that
to happen is exponentially suppressed.
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different geometries and is very different at late times from a “semi-classical state” having a fixed

geometry.

2.6 Can a physical observer recover the information?

The black hole evaporation process is often compared with burning a book in classical physics: if

we measure all the details of the emitted Hawking quanta, we can recover the initial state from

these data by solving the Schrödinger equation backward in time. Is this correct?

It is true that if we know the coefficients of all the terms in a state when it is expanded in a fixed

basis, e.g. {a∞i } in Eq. (4), then unitarity must allow us to recover the initial state unambiguously.

However, a physical observer measuring Hawking radiation from black hole evaporation can never

obtain the complete information about these coefficients, even if he/she measures all the radiation

quanta. In the state in Eq. (20), for example, a physical observer “lives” in one of the terms

in the right-hand side and, therefore, cannot have the information about the coefficients of the

other terms. The other terms are already decohered—or “decoupled”—so that they are other

worlds/universes for the observer.

In fact, the situation is exactly the same in usual scattering experiments. Consider two initial

states |e+e−〉 and |µ+µ−〉 with the same
√
s (> 2mτ ) and angular momentum. They evolve as

∣

∣e+e−
〉

−→ a1
∣

∣e+e−
〉

+ a2
∣

∣µ+µ−
〉

+ a3
∣

∣τ+τ−
〉

+ · · · , (21)
∣

∣µ+µ−
〉

−→ b1
∣

∣e+e−
〉

+ b2
∣

∣µ+µ−
〉

+ b3
∣

∣τ+τ−
〉

+ · · · , (22)

where we have ignored the momenta and spins of the final particles. The information about an

initial state is in the complete set of coefficients in the final superposition state; i.e., if we know

the entire {ai} (or {bi}), then we can recover the initial state by solving the evolution equation

backward. However, if a physical observer measures a final state, e.g., as τ+τ−, how can he/she

know that it has arisen from e+e− or µ+µ− scattering? In general, if an observer measures the

final outcome of a process, he/she will be entangled with one of the terms in the final state (in the

above case, |τ+τ−〉), so there is no way that he/she can learn all the coefficients in the final state.

The situation does not change even if the observer uses a carefully-crafted quantum device

which, upon interacting with the radiation, is entangled not with a well-defined phase space con-

figuration of the radiation quanta but with a macroscopic superposition of those configurations.

In this case, the basis of the final state to which the observer is entangled may be changed, but it

still cannot change the fact that he/she will be entangled with one of the terms in the final state,

i.e., he/she will measure a possible outcome among all the possibilities.

Therefore, in quantum mechanics, an observer can never recover the initial state by observing

the final state. The statement that the final state of an evolution contains all the information

about the initial state is not the same as the statement that a physical observer measuring the
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final state can recover the initial state if he/she measures a system with high enough (or even

infinite) precision. The only way that an observer can test the relation between the initial and

final states is to create the same initial state many times and perform multiple (including quantum)

measurements on the final states. (Note that creating many initial states in this context differs

from producing a copy of a generic unknown state, which is prohibited by the quantum no-cloning

theorem [26].) A single system does not allow for doing this, no matter how high the precision of

the measurement is, and no matter how clever the measurement device is.

3 Complementarity as a Reference Frame Change

So far, we have been describing the formation and evaporation of a black hole from a distant

reference frame. In this reference frame, the complete description of the process is obtained in

the spacetime region outside and on the (time-like) stretched horizon, where intrinsically quantum

gravitational—presumably stringy (such as fuzzball [20])—effects become important. What then

is the significance of the interior of the black hole horizon, where we expect to have regular low-

curvature spacetime according to general relativity?

As discussed in Ref. [5], and implied by the original complementarity picture [4], a description

of the internal spacetime is obtained (only) after changing the reference frame. An important

point is that the reference frame change is represented as a unitary transformation acting on a

quantum state, so if we want to discuss the precise mapping between the pictures based on different

reference frames, then we need to keep all the terms in the state. In this section, we carefully study

issues associated with the reference frame changes, especially in describing an old black hole. We

also elucidate the analysis in Ref. [10], demonstrating that the framework does not suffer from the

firewall paradox discussed in Ref. [23].

3.1 Describing the black hole interior

Suppose collapsing matter, which initially had a well-defined classical configuration, forms a black

hole, which then eventually evaporates. In a distant reference frame, this process is described as

in Eq. (4), which we denote by |Ψ(t)〉. How does the process look from a different reference frame?

Since a reference frame can be any freely falling (locally Lorentz) frame, the new description

can be obtained by performing a translation, rotation, or boost on a quantum state at fixed t [5].

In general, the state on which these transformations act, however, contains the horizon degrees of

freedom as well as the bulk ones. How do they transform under the transformations?

We do not know the microscopic description of the horizon degrees of freedom or their explicit

transformations under the reference frame changes. Nevertheless, we can know which spacetime

regions are transformed to which horizon degrees of freedom, and vice versa, by assuming that
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the global spacetime picture in semi-classical gravity is consistent with the one obtained by a

succession of these reference frame changes. Here we phrase this in the form of a hypothesis:

Complementarity Hypothesis: The transformation laws of a quantum state under the

reference frame changes are consistent with those obtained in the global spacetime picture

based on general relativity. In particular, the transformation laws between the horizon and

bulk degrees of freedom are constrained by this requirement.

As discussed in Refs. [5, 6], this hypothesis is fully consistent with the holographic principle

formulated in the form of the covariant entropy conjecture [3]. Specifically, the dimension of

the Hilbert space representing horizon degrees of freedom and that representing the corresponding

spacetime region before (or after) a transformation are the same for general spacetimes, including

the cosmological ones, as it should be. Alternatively, we can take a view that if we require that the

above hypothesis is true in the covariant Hilbert space HQG, then the covariant entropy conjecture

is obtained as a consequence.

Let us now consider a reference frame change induced by a boost performed at some early time

tboost < 0 (before the black hole forms at t = 0) in such a way that the origin p of the reference

frame enters the black hole horizon at some late time tenter > 0. In this subsection, we focus on

the case

tenter ≪M
7/3
0 , (23)

so that the uncertainty of the black hole location at the time when p enters the horizon is negligible,

and we ignore the (exponentially) small probability that p misses the horizon. (The possibility

of p missing the horizon becomes important when we discuss the description of the interior of an

older black hole.)

Recall that quantum states in the present framework represent physical configurations on the

past light cone of p (in and on the apparent horizon) when they allow for spacetime interpretation,

i.e. when the curvature at p is smaller than the Planck scale. Therefore, the spacetime region

represented by the state of the system after the reference frame change

|Ψ′(t)〉 = e−iH(t−tboost)Ubooste
iH(t−tboost) |Ψ(t)〉 , (24)

where Uboost is the boost operator represented in HQG, corresponds to the shaded region in the

left panel of Fig. 4. Specifically, |Ψ′(t)〉 at

t < tenter + tfall (25)

describes this region, with tfall ≈ O(M0) being the time needed for p to reach the singularity

after it passes the horizon. After t = tenter + tfall, the state evolves in the Hilbert subspace Hsing,

which consists of states that are associated with spacetime singularities and thus do not allow for
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singularity

Figure 4: The left panel shows the standard global spacetime picture for the formation and evaporation of
a black hole, with the shaded region representing the spacetime region described by an infalling reference
frame. (The trajectory of the origin, p, of the reference frame is also depicted.) As discussed in the text,
this is the entire spacetime when the system is described in this reference frame, so its conformal structure
is in fact as in the right panel. Here, the wavy line with a solid core represents singularity states.

spacetime interpretation. The detailed properties of these “intrinsically quantum gravitational”

states are unknown, except that dimHsing = ∞, implying that generic singularity states do not

evolve back to the usual spacetime states [5].

In the right panel of Fig. 4, we depict the causal structure of the spacetime as viewed from the

new reference frame. Because of the lack of the spherical symmetry, we have depicted the region

swept by two past-directed light rays emitted from p in the opposite directions (while in the left

panel we have depicted only the region with fixed angular variables with respect to the center of

mass of the system). The singularity states are represented by the wavy line with a solid core at

the top. Note that, as in the case of the description in the distant reference frame (depicted in

Fig. 1), this is the entire spacetime region when the system is described in this infalling reference

frame—the non-shaded region in the left panel simply does not exist. (Including the non-shaded

region, indeed, is overcounting as indicated by the standard argument of information cloning in

black hole physics.) A part of the non-shaded region appears if we change the reference frame,

but only at the cost of losing some of the shaded region. The global spacetime picture in the left

panel appears only if we “patch” the views from different reference frames, which, however, grossly

overcounts the correct quantum degrees of freedom.

There are two comments. First, the reference frame change considered here is (obviously)

only a reference frame change among possible (continuously many) reference frame changes, all of

which lead to different descriptions of the same physical process. Second, a unitary transformation
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representing this reference frame change,

U(t) = e−iH(t−tboost)Ubooste
iH(t−tboost), (26)

does not close in the Hilbert space H in Eq. (13), although it closes in the whole covariant Hilbert

space HQG. Before the reference frame change, the evolution of the state is given by a trajectory

in H = (⊕xBH,MHxBH,M)⊕H0. The action of U(t) maps this into a trajectory in

H′ = H0 ⊕Hsing, (27)

with |Ψ′(−∞)〉 ∈ H0 and |Ψ′(+∞)〉 ∈ Hsing.
6 As a result, in this new reference frame, the evolution

of the system does not allow for an S-matrix description in H0 (or HMinkowski), although it still

allows for an “S-matrix” description in the whole HQG (or in HMinkowski ⊕Hsing), which contains

the singularity states in Hsing.

3.2 Complementarity for an old black hole

Let us now try to describe the interior of an older black hole, specifically the spacetime inside

the black hole horizon after a time > O(M
7/3
0 ) is passed since the formation. To do this, we can

consider performing a boost at time tboost < 0 on |Ψ(t)〉 in such a way that p enters the black hole

horizon at time tenter ≫M
7/3
0 . What does the resultant state |Ψ′(t)〉 look like?

As discussed in the previous subsection, this can be done by applying an operator of the form of

Eq. (26) on |Ψ(t)〉, where Uboost now represents a different amount of boost than the one considered

before. In general, the relation between the states before and after a reference frame change is

highly nontrivial. For example, time t is measured by the proper time at p, but relations between

the proper times of the two frames depend on the geometries as well as the paths of p therein.

Therefore, various terms in |Ψ′(t)〉 for a fixed t may correspond to terms in |Ψ(t)〉 of different t’s.
Without knowing the explicit form of H and Uboost represented in the whole HQG, which includes

the horizon degrees of freedom, how can we know the form of the state after the transformation?

According to our complementarity hypothesis, the probability of finding a certain history for

the evolution of geometry must agree in the two pictures before and after the reference frame

change if the geometries are appropriately transformed, i.e. according to the global spacetime

picture in general relativity. To elucidate this, let us consider the black hole evolution described

in Eqs. (17, 18) in a distant reference frame, and ask what is the probability that the black hole

follows a particular path r(t) in a time interval between tI and tF within the error |∆r| < ǫ(t). For

simplicity, we do this by requiring that the black hole satisfies the above conditions at discretized

6Note that H0 contains a set of states that represent three-geometries whose boundary (at an infinity) is that of
the flat space, i.e. a two-dimensional section of J −.
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times ti; i = 0, · · · , N (≫ 1), with t0 ≡ tI and tN ≡ tF . The probability is then given by

P =

N
∏

i=0





∑

|∆r|<ǫi

|αti
ri+∆r

|2


 , (28)

where ri ≡ r(ti) and ǫi ≡ ǫ(ti). This provides the probability of a particular semi-classical history

to appear, given the state |Ψ(t)〉. We can now ask a similar question for the state |Ψ′(t)〉: what is
the probability of having the black hole to follow the trajectory r′(t) between t′I and t

′
F within the

error ǫ′(t)? The resulting probability is

P ′ =

N
∏

i=0





∑

|∆r
′|<ǫ′i

|αti
r
′
i+∆r

′|2


 , (29)

where t0 = t′I and tN = t′F . The complementarity hypothesis in the previous subsection asserts

that the two probabilities are the same

P = P ′, (30)

if the relation between {r(t), ǫ(t), tI , tF} and {r′(t), ǫ′(t), t′I , t′F} is the one obtained by performing

the corresponding transformation in general relativity on the semi-classical background selected

by Eq. (28).

The above analysis implies that when we perform a boost on |Ψ(t)〉 at an early time tboost < 0,

trying to describe the interior of an old black hole with tenter ≫ M
7/3
0 , then the resultant state

can only be a superposition of infalling and distant descriptions of the process, since in most of

the semi-classical histories represented by |Ψ(t)〉, the trajectory of p obtained by the boost will

miss the black hole horizon because of the large uncertainty of the black hole location. Namely,

complementarity obtained by this reference frame change is the one between the distant description

and the superposition of the infalling and distant descriptions specified by the state |Ψ′(t)〉. This
is illustrated schematically in Fig. 5.

Is it possible to obtain a direct correspondence between the interior and exterior of an old black

hole, without involving a superposition? This can be done if we focus only on a term in |Ψ(t)〉 in
which p just misses the black hole horizon, with the smallest distance between p and the horizon

achieved at some time tmin ≫ M
7/3
0 . We can then evolve this term slightly backward in time,

to tboost = tmin − ǫ (ǫ ≪ M
7/3
0 ), and perform a boost there so that p enters into the horizon at

some time after tboost. In this way, the correspondence between the terms representing the interior

and exterior can be obtained. An important point, however, is that neither of these terms can be

obtained by evolving initial collapsing matter that had a well-defined classical configuration (which

would lead to a superposition of the black hole in vastly different locations). Rather, by evolving

the state further back beyond tboost, we would obtain a superposition of states each of which
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Figure 5: A schematic picture of a relation between the two descriptions based on two different refer-
ence frames of an old black hole formed by collapsing matter that initially had a well-defined classical
configuration. In one reference frame, the black hole is viewed from outside, and the state becomes a
superposition of black holes in different locations at late times (depicted schematically in the left-hand
side). In the other reference frame, obtained by acting Uboost on the state at tboost, the reference point p

enters the black hole horizon at late time tenter ≫ M
7/3
0 , allowing for a description of internal spacetime

(in the right-hand side). This, however, happens only for some of the terms, depicted in the second line,
since p misses the horizon in most of the terms because of the large uncertainty of the black hole location,
i.e.

∑

i |d′i|2 ≪
∑

i |c′i|2.

represents collapsing matter with a well-defined classical configuration. (This state would have

finely-adjusted coefficients so that after evolving to tboost ∼ tmin, the black hole is in a well-defined

location with respect to p.) This situation is illustrated in Fig. 6.

The discussion above implies that there is no well-defined complementarity map between the

interior and exterior of an old black hole throughout the course of the black hole evolution within the

purely semi-classical picture. Such a map must involve a superposition of semi-classical geometries

at some point in the evolution. We note that while the state in the intermediate stage of the

evolution can be a superposition of elements in H0, HxBH,M , and Hsing, it becomes a superposition

of elements in H0 and Hsing at t → ∞. Therefore, the “S-matrix” description discussed in the

previous subsection is still available in this case in the Hilbert space of HMinkowski ⊕Hsing.
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Figure 6: A complementarity relation between the internal and external descriptions of an old black hole
can be obtained if we consider a state in which the black hole has a well-defined semi-classical configuration
at late time tenter. Such a state, however, can arise through evolution only if we consider a special initial
state in which coefficients ai of the terms representing well-defined configurations of collapsing matter are
finely-adjusted so that the state represents a black hole in a well-defined location at late time ∼ tenter.
(The regions with wavy white lines indicate superpositions of classical geometries.)

3.3 On firewalls (or firewall as an exponentially unlikely phenomenon)

The complementarity picture has recently been challenged by the “firewall paradox” posed by

Almheiri, Marolf, Polchinski, and Sully (AMPS) in Ref. [23]. Here we elucidate the discussion of

Ref. [10], refuting one of the AMPS arguments based on measurements of early Hawking radiation.

AMPS also has another argument using entropy relations, building on an earlier discussion by

Mathur [18]. Here we focus only on the first AMPS argument based on measurements. Addressing

the second one requires an additional assumption about the decoherence structure of microscopic

degrees of freedom of the horizon, beyond what we have postulated in this paper [27].

In essence, the argument by AMPS goes as follows. Consider an old black hole with t > tPage

that has formed from collapse of some pure state. Because of the purity of the state, the system

as viewed from a distant reference frame can be written as

|Ψ〉 =
∑

i

ci |i〉 ⊗ |ψi〉 , (31)

where |i〉 ∈ Hhorizon and |ψi〉 ∈ Hrad represent degrees of freedom associated with the horizon region

and the emitted Hawking quanta. (For simplicity we have suppressed the time index, which is not
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essential for the discussion here.) For a black hole older than tPage, the dimensions of the Hilbert

space factors satisfy dimHhorizon ≪ dimHrad. Therefore, states |ψi〉 for different i are expected to

be nearly orthogonal, and one can construct a projection operator Pi that acts only on Hrad (not

on Hhorizon) but selects a term in Eq. (31) corresponding to a specific state |i〉 in Hhorizon when

operated on |Ψ〉:
Pi |Ψ〉 ∝ |i〉 ⊗ |ψi〉 . (32)

The point is that one can construct such an operator for an arbitrary state |i〉 in Hhorizon.

AMPS argue that since the infalling observer can access the early radiation, he/she can select

a particular term in Eq. (31) by making a measurement on those degrees of freedom. In particular,

they imagine that such a measurement would select a term in which |i〉 in Hhorizon is an eigenstate,

|̃ı〉, of the number operator, b†b, of a Hawking radiation mode that will escape from the horizon

region:

b†b |̃ı〉 ∝ |̃ı〉 . (33)

If this were true, then the infalling observer must find physics represented by |̃ı〉 near the horizon,

and since an eigenstate of b†b cannot be a vacuum for the infalling modes aω, related to b by

b =

∫ ∞

0

dω
(

B(ω)aω + C(ω)a†ω
)

(34)

with some functions B(ω) and C(ω), the infalling observer must experience nontrivial physics at

the horizon (i.e. aω |̃ı〉 6= 0 for infalling modes with the frequencies much larger than the inverse

horizon size). This obviously contradicts what is expected from general relativity.

As discussed in Ref. [10], this argument misses the fact that the emergence of a classical world in

the underlying quantum world is a dynamical process dictated by unitary evolution of a state, and

not something we can impose from outside by acting with some projection operator on the state.

In particular, the existence of the projection operator Pi for an arbitrary i does not imply that a

measurement performed by a classical observer, which general relativity is supposed to describe,

can pick up the corresponding state |i〉. To understand this point, consider a state representing

a superposition of upward and downward chairs (relative to some other object, e.g. the ground,

which we omit):

|Ψchair〉 =
∣

∣

〉

+
∣

∣

〉

. (35)

An observer interacting with this system evolves following the unitary, deterministic Schrödinger

equation; in particular, the combined chair and observer state becomes

|Ψchair+observer〉 =
∣

∣

〉

⊗
∣

∣

· 〉

+
∣

∣

〉

⊗
∣

∣

· 〉

. (36)

This does not lead to a classical world in which the chair is in a superposition state but to two dif-

ferent worlds in which the chair is upward and downward, respectively. Namely, the measurement
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is performed in the particular basis
{∣

∣

〉

,
∣

∣

〉}

, which is determined by the dynamics—the exis-

tence of an operator projecting onto a superposition chair state does not mean that a measurement

is performed in that basis. For sufficiently macroscopic object/observer, the appropriate basis for

measurements is almost always (see below) the one in which they have well-defined configurations

in classical phase space (within some errors, which must exist because of the uncertainty principle).

This is because the Hamiltonian has the form that is local in spacetime [5].

In the specific context of the firewall argument, a measurement of the early radiation by an

infalling, classical observer will select a state in Hrad that has a well-defined classical configuration

of Hawking radiation quanta |ψI〉, because interactions between him/her and the quanta are local.

As shown in Ref. [10], the state |ψI〉 selected in this way is expected not to be a state that is

maximally entangled with |̃ı〉, i.e. |ψı̃〉. In other words, the basis in Hrad selected by entanglement

with the eigenstates of b†b is different from the one selected by entanglement with the infalling

classical observer. This implies that in the world described by the infalling observer, i.e. in a term

of the entire state in which the observer has a well-defined classical configuration, the state in Hrad

is always in a superposition of |ψı̃〉’s for different ı̃’s, so that the corresponding state in Hhorizon

is not an eigenstate of b†b. In particular, there is no contradiction if the state is a simultaneous

eigenstate of aω’s with the eigenvalue zero (up to exponentially small corrections) as implied by

general relativity.7

One might ask what happens if we prepare a carefully-crafted quantum device that will be

entangled with one of the |ψı̃〉’s and then send a signal, e.g. a particle, toward the horizon. Wouldn’t

that particle see a firewall at the horizon? Yes, that particle does see a firewall, but it is not a

phenomenon described by general relativity, a theory for a classical world. First of all, in order

for the device to be entangled with |ψı̃〉, it must collect the information in the Hawking quanta to

learn that they are in the |ψı̃〉 state, and since the information is encoded in a highly scrambled

form, it must be very large collecting many quanta spread in space without losing their coherence.

This implies that the device must have been in an extremely carefully-chosen superposition state of

different classical configurations at the beginning of the evolution (which is also clear from the fact

that dimHhorizon ≪ dimHrad <∼ dimHdevice, where Hdevice is the Hilbert space factor associated

with the device). Now, we know that if the initial state is extremely fine-tuned, an extremely

unlikely event can happen. For example, if the initial locations and velocities of the molecules

are finely tuned, ink dissolved in a water tank can spontaneously come to a corner. The firewall

phenomenon is analogous to this kind of phenomena.

More specifically, we can ask what is the degree of fine-tuning needed to see firewalls. The

7Of course, we are only showing here that the argument of AMPS breaks down, i.e. the complementarity picture—
or the semi-classical picture in the infalling reference frame—is consistent. Proving it, e.g. showing that the state
is indeed a simultaneous eigenstate of aω’s, would require an understanding of the underlying theory of quantum
gravity. As stated explicitly in Section 3.1, complementarity is a hypothesis, which we argue is a consistent one [10].
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amount of fine-tuning, i.e. the probability for a randomly-chosen device state to see the firewall,

is estimated as

pfw ∼ dimHhorizon

√

dimHrad ǫ
dimHrad , ǫ < 1, (37)

which is obtained by asking the probability of a randomly-chosen basis state for measuring Hawking

radiation to agree with one of the |ψı̃〉’s; see the appendix of Ref. [10] for a similar calculation. Since

dimHrad >∼ e2πM
2
0 after the Page time, this is double-exponentially suppressed in a macroscopic

number M2
0 ≫ 1:

pfw <∼ ǫe
2πM2

0

≪ 1, (38)

analogous to the case of having an entropy decreasing process in a system with large degrees of

freedom.

Note that if we ask the amount of fine-tuning needed for ink dissolved in a water tank to

come to a corner in the context of classical physics, we would find it to be suppressed single-

exponentially by a large number, ∼ ǫNA where NA is Avogadro’s number. This is because states

having classically well-defined configurations are already exponentially rare in the whole Hilbert

space, although they are dynamically selected—if we instead ask the fraction of the whole quantum

states (including arbitrary superposition states) leading to ink in the corner, we would obtain a

number with double-exponential suppression as in Eq. (38). In the context of the firewall, the

initial device state is intrinsically quantum mechanical, so we must fine-tune the initial condition

at the level of Eq. (38), i.e. we cannot use dynamical selection to reduce the fine-tuning. In this

sense, the amount of fine-tuning needed to see the firewall phenomenon is even worse than that

needed to see an entropy decreasing phenomenon in usual classical systems.

4 Discussion and Conclusions

In this paper, we have described a complete evolution—the formation and evaporation—of a black

hole in the framework of quantum gravity preserving locality, given in Ref. [5]. While some of

the results obtained are indeed specific to this context, some are more general applying to other

theories of gravity as well, especially to the ones in which the formation and evaporation of a black

hole is described as a unitary quantum mechanical process. Key ingredients to understand these

results are

(i) The system must be described in a fixed reference frame. Moreover, the complete physical

description of a process is obtained in the spacetime region in and on the stretched/apparent

horizon as viewed from that reference frame. In particular, in the minimal implementation of

the framework of Ref. [5], quantum states correspond to physical configurations on the past

light cone of a fixed reference point p in and on the horizon.
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(ii) A quantum state is in general a superposition of terms representing macroscopically different

configurations/geometries. This is true despite the fact that the dynamics, represented by

the time evolution operator, is local. In fact, interactions between degrees of freedom generi-

cally lead to such a superposition because of a distinct feature of quantum mechanics: rapid

amplification of information to a more macroscopic level. (Measurements are a special case

of this more general phenomenon.)

The element in (i) implies that the global spacetime picture of general relativity is an “illusion”

in the sense that the internal and future asymptotically-flat spacetimes do not exist simultaneously.

In one description based on a distant reference frame, there is only external spacetime and the

process can be described by a unitary S-matrix in HMinkowski, as depicted in Fig. 1. In another

description based on an infalling frame, the interior spacetime does exist but there is no future

asymptotic Minkowski region, so the process should be described in the whole covariant Hilbert

space HQG containing both HMinkowski and Hsing; see Fig. 4. The global spacetime in general

relativity provides a picture in which these and other equivalent descriptions are all represented at

the same time, so it grossly overcounts the true quantum degrees of freedom.

A virtue of the general relativistic description, however, lies in the fact that it correctly repre-

sents observations made by a classical observer traveling in spacetime. In particular, the equiva-

lence principle correctly captures the fact that the infalling classical observer does not see anything

unusual at the horizon. An important point here is that the classical observer—or more generally

a classical world—emerges through unitary evolution of a full quantum state as a basis state in

which the information is amplified [7, 5]. Observations made by any observer, detector, etc. in

such a world are well described by general relativity. While a phenomenon contradicting a generic

prediction of general relativity could in principle occur [23], such a situation requires an exponen-

tially fine-tuned initial condition [10], analogous to an (exponentially unlikely) entropy decreasing

process in a system with large degrees of freedom.

The element in (ii) is important at least for two reasons. First, this provides an additional

place in which the information about the initial state is encoded in a black hole final state, in

particular in relative phases of the coefficients of the terms representing macroscopically different

black hole configurations. Indeed, a late black hole state becomes a superposition of black holes

with different spins and in different locations, even if the back hole is formed from collapsing

matter that had a well-defined classical configuration without an angular momentum. Second, this

aspect of the evolution also affects the way in which a complementarity map between interior and

exterior spacetimes works for an old black hole. Because of the branching of the black hole state

described above, such a map must involve a superposition of semi-classical geometries at some

point in the evolution. Namely, there is no simple correspondence between the two semi-classical

regions/geometries for an old black hole that is applicable throughout the entire history of the
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evolution (even if we focus on time before the reference point hits the singularity).

In treating a system with gravity, it is often assumed that there is a fixed semi-classical back-

ground geometry. For example, this is the case in the original complementarity argument [4] and

in most treatments of defining probabilities in the eternally inflating multiverse [28]. At first sight,

this does not lead to any problem because the relevant systems are large—we usually do not need

to keep track of the whole quantum nature of the state in those cases, including a superposition

of possible outcomes, entanglement with the observer, and so on. These intrinsically quantum

properties, however, are crucial when we discuss the fundamental structure of the theory such as

unitarity and information. As discussed in Section 2.6, by focusing on a particular outcome—which

is a completely legitimate procedure in discussing the outcome of a particular experiment—we will

never be able to see the correct unitary structure of the underlying quantum theory. Committing

to a specific semi-classical geometry is precisely such a treatment. An important message is that

avoiding these treatments, i.e. keeping the full superposition—or many worlds—of the state, is

a key to evade many apparent problems/paradoxes in black hole physics [10] and in eternally-

inflating multiverse cosmology [6, 5]. Hopefully, the present paper adds further clarifications on

this issue, and provides a useful framework for further studies of fundamental issues in black hole

physics.
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A Spontaneous Spin-up of a Schwarzschild Black Hole

Just as a black hole accumulates momentum over its lifetime through randomly recoiling from

Hawking emissions, we can ask if a black hole also accumulates angular momentum due to the

spin and orbital angular momentum of emitted particles. In this appendix, we argue that the

answer is yes: non-rotating black holes with initial mass M0 spontaneously spin up to angular

momentum J ≡ |J| ∼ M0 at a time of order M3
0 . This implies that a Schwarzschild black hole

evolves into a superposition of Kerr black holes with different values of J, although the resulting

angular momenta will be small enough, J/M2 ≪ 1, that the geometry of each term is still well

approximated by the Schwarzschild one.

To begin with, let us consider how many Hawking quanta are emitted by the time at which an

26



initial black hole loses some fixed fraction of its mass, e.g. the Page time at which the black hole

mass becomes M =M0/
√
2. The number of emitted quanta is

N ∼ M0

TH
∼M2

0 , (39)

where TH ∼ 1/M0 is the Hawking temperature. If the emitted quanta consist of a particle with

spin s > 0, then each emission changes the angular momentum of the black hole by ∆J ∼ s,

depending on the direction of the spin. Assuming that the emission is unbiased in the direction of

angular momentum (see below), we find that the black hole accumulates the angular momentum

J ∼ s
√
N ∼M0, (40)

at a time of order M3
0 , where we have taken s ∼ O(1) in the last expression.

If the Hawking quanta consist of a scalar (s = 0), then most of the emissions do not affect the

black hole angular momentum since the emissions are dominated by s-wave. However, there is a

small probability that a quantum is emitted in a higher angular momentum mode. The probability

is dominated by p-wave (l = 1), which can be calculated for small J/M2 as p ≃ 0.002+O(J/M2),

independent of M [29, 30]. Therefore, the number of Hawking quanta that affect the black hole

angular momentum is pN , and the accumulated angular momentum of the black hole is

J ∼
√

pN ∼M0, (41)

which is parametrically the same as in the case of a particle with spin.

One might think that once the accumulated angular momentum becomes macroscopic, J ≫ 1,

the black hole becomes a Kerr black hole, so that there is a bias in the Hawking spectrum that

preferentially selects emissions that reduce J [1], preventing a further accumulation of J . We now

argue, however, that until the time t ∼ M3
0 when the mass of the black hole starts decreasing

significantly, the evolution of J is well approximated by a random walk process as described above.

To see this, at a given time t, let us call the direction of J the z-axis. Suppose an emission of a

particle with spin s changes J = Jz, which occurs with O(p) and O(1) probabilities for s = 0 and

s > 0, respectively. For small J/M2, the probability ρ+ (ρ−) that the emission increases (reduces)

J is [30]:

ρ± =
1

2
∓ c

J

M2
, (42)

where J and M are the magnitude of angular momentum and the mass before the emission takes

place, and c is an O(1) coefficient which depends on the type of a particle emitted and is inde-

pendent of J and M to first order in J/M2. Numerical simulations of this process indicate that

this bias is not strong enough to prevent a black hole from spinning up to J ∼ M0 by the Page
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Figure 7: Plot of σJ , the square root of the variance of J at the Page time, as a function of the initial
mass M0. Each data point represents σJ obtained by 100 simulations. The different colors correspond
to different values of coefficient c in Eq. (42), which measures the strength of the angular momentum
emission bias from a Kerr black.

time, tPage. Results of these simulations are shown in Fig. 7, where we have assumed a change of

J according to Eq. (42) in each time interval M0. The results indicate that

J ∼ f(c)M0 ∼M0 (43)

at t ∼ tPage, where f is a monotonically decreasing function of c; in fact, our simulations suggest

that f(c) ∝ 1/
√
c for c >∼ 1.

The results obtained above can be understood by the following simple argument. Imagine that

at some late time t >∼M3
0 , the probability distribution of the black hole angular momentum reaches

some “equilibrium” distribution P (J), in which the random walk effect increasing J is balanced

with the bias of the emission reducing J . According to Eq. (42), this implies

ρ+P (J) = ρ−P (J + 1), (44)

leading to
P (J + 1)

P (J)
=

1− 2c J
M2

1 + 2cJ+1
M2

≈ 1− 4c
J

M2
. (45)

Here, we have used 1 ≪ J ≪M2 in the last expression. This has the solution

P (J) ∼ e−2c J2

M2 . (46)

Namely, the black hole angular momentum has a characteristic size

J ∼ 1√
c
M, (47)
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consistent with the result obtained in Eq. (43).

In summary, we conclude that a Schwarzschild black hole with initial mass M0 will spon-

taneously spin up to J ∼ M0 by a timescale of order M3
0 . When the black hole mass starts

decreasing significantly, its angular momentum will also start decreasing, following Eq. (47). The

combination J/M2 keeps increasing as 1/M but is still (much) smaller than 1, as long as M ≫ 1

where our analysis is valid. What happens at the real end of the evaporation is unclear, but we

can say that while the evolution of a Schwarzschild black hole leads to a superposition of Kerr

black holes with distinct angular momenta, the probability of it becoming a macroscopic extremal

black hole (J =M2 ≫ 1) is, most likely, exponentially suppressed.

References

[1] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)].

[2] G. ’t Hooft, arXiv:gr-qc/9310026; L. Susskind, J. Math. Phys. 36, 6377 (1995) [arXiv:hep-

th/9409089].

[3] R. Bousso, JHEP 07, 004 (1999) [arXiv:hep-th/9905177].

[4] L. Susskind, L. Thorlacius and J. Uglum, Phys. Rev. D 48, 3743 (1993) [arXiv:hep-

th/9306069]; C. R. Stephens, G. ’t Hooft and B. F. Whiting, Class. Quant. Grav. 11, 621

(1994) [arXiv:gr-qc/9310006].

[5] Y. Nomura, arXiv:1110.4630 [hep-th].

[6] Y. Nomura, JHEP 11, 063 (2011) [arXiv:1104.2324 [hep-th]].

[7] H. Ollivier, D. Poulin and W. H. Zurek, Phys. Rev. Lett. 93, 220401 (2004) [arXiv:quant-

ph/0307229]; R. Blume-Kohout and W. H. Zurek, Phys. Rev. A 73, 062310 (2006)

[arXiv:quant-ph/0505031].

[8] D. N. Page, Phys. Rev. Lett. 44, 301 (1980).

[9] D. N. Page, Phys. Rev. Lett. 71, 3743 (1993) [hep-th/9306083].

[10] Y. Nomura, J. Varela and S. J. Weinberg, arXiv:1207.6626 [hep-th].

[11] Y. Nomura, Phys. Rev. D 86, 083505 (2012) [arXiv:1205.5550 [hep-th]].

[12] S. W. Hawking, Phys. Rev. D 14, 2460 (1976).

[13] R. M. Wald, Phys. Rev. D 21, 2742 (1980).

[14] Y. Aharonov, A. Casher and S. Nussinov, Phys. Lett. B 191, 51 (1987); T. Banks, A. Dab-

holkar, M. R. Douglas and M. O’Loughlin, Phys. Rev. D 45, 3607 (1992) [hep-th/9201061].

[15] S. B. Giddings, Phys. Rev. D 46, 1347 (1992) [hep-th/9203059].

29



[16] F. Dyson, Institute for Advanced Study report (1976), unpublished.

[17] J. Preskill, in Blackholes, Membranes, Wormholes and Superstrings, ed. S. Kalara and

D. V. Nanopoulos (World Scientific, Singapore, 1993) p. 22 [hep-th/9209058]; S. B. Gid-

dings, in Particles, Strings and Cosmology, ed. J. Bagger et al. (World Scientific, Singapore,

1996) p. 415 [hep-th/9508151].

[18] S. D. Mathur, Class. Quant. Grav. 26, 224001 (2009) [arXiv:0909.1038 [hep-th]].

[19] See, e.g., G. ’t Hooft, Nucl. Phys. B 335, 138 (1990), and references therein.

[20] O. Lunin and S. D. Mathur, Nucl. Phys. B 623, 342 (2002) [hep-th/0109154].

[21] S. B. Giddings, Class. Quant. Grav. 28, 025002 (2011) [arXiv:0911.3395 [hep-th]]; Phys. Rev.

D 85, 124063 (2012) [arXiv:1201.1037 [hep-th]].

[22] R. Brustein, arXiv:1209.2686 [hep-th].

[23] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, arXiv:1207.3123 [hep-th].

[24] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)]

[arXiv:hep-th/9711200].

[25] See, e.g., D. N. Page, hep-th/9305040, and references therein.

[26] W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).

[27] Y. Nomura and J. Varela, arXiv:1211.7033 [hep-th].

[28] For reviews, see e.g. A. H. Guth, Phys. Rept. 333, 555 (2000) [arXiv:astro-ph/0002156];

A. Vilenkin, J. Phys. A 40, 6777 (2007) [arXiv:hep-th/0609193]; S. Winitzki, Lect. Notes

Phys. 738, 157 (2008) [arXiv:gr-qc/0612164]; A. Linde, Lect. Notes Phys. 738, 1 (2008)

[arXiv:0705.0164 [hep-th]].
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