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The ghost-free theory of massive gravity has exact solutions where the effective stress energy gen-
erated by the graviton mass term is a cosmological constant for any isotropic metric. Since they are
exact, these solutions mimic a cosmological constant in the presence of any matter-induced isotropic
metric perturbation. In the Stückelberg formulation, this stress energy is carried entirely by the
spatial Stückelberg field. We show that any stress energy carried by fluctuations in the spatial field
away from the exact solution always decays away in an expanding universe. However, the dynamics
of the spatial Stückelberg field perturbation depend on the background temporal Stückelberg field,
which is equivalent to the unitary gauge time coordinate. This dependence resolves an apparent
conflict in the existing literature by showing that there is a special unitary time choice for which the
field dynamics and energy density perturbations vanish identically. In general, the isotropic system
has a single dynamical degree of freedom requiring two sets of initial data; however, only one of these
initial data choices will affect the observable metric. Finally, we construct cosmological solutions
with a well-defined perturbative initial value formulation and comment on alternate solutions that
evolve to singularities.

I. INTRODUCTION

Constructed to remove the Boulware-Deser ghost [1],
the theory of massive gravity [2–5] also possesses solu-
tions that accelerate the cosmological expansion in the
absence of a true cosmological constant [6–16]. In a pre-
vious paper [13], we demonstrated that all of these ap-
parently distinct solutions are part of a single class of
isotropic solutions in the Stückelberg formulation of the
theory. This class possesses several key features. The
spatial Stückelberg fields follow the radial coordinate of
the metric itself and produce the same effective cosmolog-
ical constant in the presences of any isotropic metric. The
temporal Stückelberg field is inhomogeneous in isotropic
coordinates but does not play a direct role in establish-
ing the effective cosmological constant. Solutions for this
field are not uniquely specified, leading to seemingly dis-
tinct versions of self-acceleration.
Once the Stückelberg fields are set on a self-

accelerating solution, they remain on it for any evolu-
tion of the matter fields that remains isotropic, includ-
ing cosmological expansion and radial collapse of mat-
ter perturbations. Given the inherent interest of self-
accelerating cosmological solutions, it is important to un-
derstand whether Stückelberg field perturbations around
them are themselves stable and healthy. This question
has now been widely studied, with different authors us-
ing different approaches. Confusingly, these different ap-
proaches seem to give different conclusions. Study of
perturbations in a decoupling limit showed a potentially
healthy scalar degree of freedom but potentially prob-
lematic (strongly coupled or ghost-like) vector degrees of
freedom [6, 17, 18]. A local patch expansion approach,
which one might expect to be qualitatively similar to a
decoupling limit, found no propagating Stückelberg de-
grees of freedom at all [19]. Finally, study of perturba-

tions in the full theory around a particular solution for
the temporal Stückelberg field similarly found no propa-
gating degrees of freedom [20][21].

To resolve this issue, we study spherically symmetric
Stückelberg perturbations around the full theory for the
whole class of solutions. We find that in general the
spatial Stückelberg field fluctuation does possess dynam-
ics and carries stress-energy fluctuations in addition to
the background constant. There are special choices of
the temporal Stückelberg field background that elimi-
nate the dynamics but also eliminate the possibility of
energy density fluctuations. In all cases, isotropic energy
density fluctuations are stable and from general initial
conditions decay back to the cosmological constant in an
expanding universe. Our approach allows us to show that
the decoupling limit findings [6, 17] and specific temporal
solutions in the full theory [20] are not, after all, in con-
flict. We have not been able to harmonize our findings
with Ref. [19], who finds no dynamics for either temporal
Stückelberg field choice. Because we restrict ourselves
to isotropic perturbations, we are not able to address
the generality of recent calculations [22, 23] that demon-
strate that at least some of these solutions are unstable
to anisotropic perturbations.

The structure of this paper is as follows. In §II, we
briefly review the theory of massive gravity [5] and the
class of isotropic self-accelerating solutions [13]. We
then consider the equations of motion and action gov-
erning spherically symmetric field perturbations around
this class of solutions in §III. Finally in §IV we show
how the choice of the temporal Stückelberg field in the
background affects the dynamics of the perturbations and
their contribution to stress energy. We close with a dis-
cussion and summary of these results in §V.



2

II. SELF-ACCELERATION

In the section, we review the action, equations of mo-
tion, and stress energy for the massive gravity model
[4, 5]. We specialize these quantities for the class of exact
isotropic self-accelerating solutions [13] which will form
the basis of the perturbation studies that follow.

A. Massive Stress Energy

The Lagrangian density [4, 5]

LG =
M2

pl

2

√
−g

[

R− m2

4
U(gµν ,Σµν)

]

, (1)

represents a covariant theory of massive gravity con-
structed so as to eliminate the Boulware-Deser ghost
[1, 24, 25]. Here m is the graviton mass and Mpl is the
reduced Planck mass. The potential U is constructed in a
covariant manner by making it a function of the so-called
fiducial metric Σµν

Σµν = ∂µφ
a∂νφ

bηab, (2)

where φa are the 4 Stückelberg fields. These fields trans-
form as spacetime scalars and hence maintain general
covariance.
The potential U can now be written in terms of the

matrix

Σµ
ν ≡ gµαΣαν , (3)

as

U
4

= −12 + 6[
√
Σ] + [Σ]− [

√
Σ]2

+ α3

(

−24 + 18[
√
Σ]− 6[

√
Σ]2 + [

√
Σ]3

− 3[Σ]([
√
Σ]− 2) + 2[Σ3/2]

)

+ α4

(

−24 + 24[
√
Σ]− 12[

√
Σ]2 − 12[

√
Σ][Σ]

+ 6[
√
Σ]2[Σ] + 4[

√
Σ]3 + 12[Σ]− 3[Σ]2

− 8[Σ3/2]([
√
Σ]− 1) + 6[Σ2]− [

√
Σ]4
)

, (4)

where brackets denote traces, [A] ≡ Aµ
µ, and α3, α4 are

free parameters.
Variation of the action with respect to the metric yields

the modified Einstein equations

Gµν = m2Tµν +
1

M2
pl

T (m)
µν , (5)

where Gµν is the usual Einstein tensor and T
(m)
µν is the

matter stress energy tensor. Here

Tµν =
1√−g

δ

δgµν
√
−g

U
4

(6)

is the dimensionless effective stress energy tensor pro-
vided by the mass term. An explicit expression in terms
of Σ is given in Ref. [13].

B. Effective Cosmological Constant

A constant stress energy is an exact solution of massive
gravity for any spatially isotropic metric [13],

ds2 = −b2(r, t)dt2 + a2(r, t)(dr2 + r2dΩ2). (7)

To see this fact, consider that an isotropic parameteriza-
tion of the Stückelberg fields

φ0 = f(t, r),

φi = g(t, r)
xi

r
, (8)

enables the potential to be written more compactly as

U
4

= P0

( g

ar

)

+
√
XP1

( g

ar

)

+WP2

( g

ar

)

, (9)

where

X ≡
( ḟ

b
+ µ

g′

a

)2

−
( ġ

b
+ µ

f ′

a

)2

,

W ≡ µ

ab

(

ḟg′ − ġf ′

)

, (10)

and µ ≡ sgn(ḟ g′ − ġf ′). Here and below overdots denote
derivatives with respect to t and primes denote deriva-
tives with respect to r when acting on Stückelberg or
metric fields. Note that W is related to the determinant
of Σ1/2 which we assume is never zero. Correspondingly
µ must be either +1 or −1 throughout the spacetime.
This will be an important consideration in §IV.
The Pn polynomials are

P0(x) = −12− 2x(x− 6)− 12(x− 1)(x− 2)α3

− 24(x− 1)2α4,

P1(x) = 2(3− 2x) + 6(x− 1)(x− 3)α3 + 24(x− 1)2α4,

P2(x) = −2 + 12(x− 1)α3 − 24(x− 1)2α4, (11)

and satisfy the recursion

P ′

n = 2Pn+1 − xP ′

n+1, (12)

where here and throughout P ′

n(x) ≡ dPn/dx and should
not be confused with radial derivatives.
Varying the action with respect to f and g yields the

Stückelberg field equations

∂t

[

a3r2√
X

( ḟ

b
+ µ

g′

a

)

P1 + µa2r2g′P2

]

(13)

− ∂r

[

a2br2√
X

(

µ
ġ

b
+

f ′

a

)

P1 + µa2r2ġP2

]

= 0,

and

−∂t

[

a3r2√
X

( ġ

b
+ µ

f ′

a

)

P1 + µa2r2f ′P2

]

+ ∂r

[

a2br2√
X

(

µ
ḟ

b
+

g′

a

)

P1 + µa2r2ḟP2

]

= a2br
[

P ′

0 +
√
XP ′

1 +WP ′

2

]

. (14)
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Eq. (13) has an exact solution given by P1(x0) = 0. Here

x0 =
1 + 6α3 + 12α4 ±

√

1 + 3α3 + 9α2
3 − 12α4

3(α3 + 4α4)
(15)

unless α3 = α4 = 0 in which case x0 = 3/2. Given
g = x0ar, Eq. (14) reduces to

√
X =

W

x0
+ x0, (16)

and can be used to define solutions for f (see §IV).
For any such solution, the stress energy tensor takes

the cosmological constant form

T µ
ν = −ρδµν , (17)

where

ρ = −p =
1

2
P0(x0). (18)

To restore physical units to the dimensionless stress ten-
sor multiply by m2M2

pl. The Einstein equations (5) then
determine the metric functions a and b jointly in the pres-
ence of matter in a manner independent of the solution
for f . The self-accelerating stress energy depends only
on the universal form for the spatial Stückelberg field,
g = x0ar, common to the whole class of isotropic solu-
tions.

III. FIELD FLUCTUATIONS

In this section we derive a complete set of equations of
motion for the observable properties of Stückelberg field
fluctuations or equivalently the field equation for spatial
Stückelberg fluctuations. We then relate these results
to the second order action and its dependence on the
temporal Stückelberg background solution and massive
gravity parameters.

A. Equations of Motion

Now let us consider spherically symmetric Stückelberg
perturbations. Hereafter f and g represent the back-
ground solution for the Stückelberg fields, a and b the
background metric, while δf and

δΓ = δg − x0rδa, (19)

δa and δb quantify the perturbations. Because our so-
lutions are exact for any a(r, t), the metric can have
perturbations away from a given background, e.g. the
Friedmann-Robertson-Walker background, due to per-
turbations in the matter sector and still be on the ex-
act self-accelerating solution in the Stückelberg sector.
δΓ therefore is the fluctuation in g away from the self-
accelerating solution.

Linearizing Eq. (13) in the fluctuations, we obtain a
closed-form equation for δΓ

0 = δΓeom

= ∂t

[

a2r√
X

(

ḟ

b
+ µ

g′

a

)

δΓ

]

− ∂r

[

abr√
X

(

µ
ġ

b
+

f ′

a

)

δΓ

]

−µa2r2
[

(ar)′

ar
˙δΓ− ȧ

a
δΓ′

]

. (20)

This equation for δΓ contains no reference to matter
or metric perturbations. It is also decoupled from the
Stückelberg fluctuation δf . The coefficients in this equa-
tion do however depend explicitly on the background so-
lution for the metric and both Stückelberg fields.
This equation is first order in time and requires one set

of initial data δΓ(r, t = 0) to solve. However, note that if
we choose initial values of δΓ(r, 0) = 0, δΓ will stay zero
regardless of matter-driven perturbations in the metric.
In this sense, the Stückelberg fluctuations are decoupled
from the matter.
As was the case for the background, the perturbed

Eq. (14) defines the evolution of δf and depends ex-
plicitly on δΓ as well as on the metric fluctuations
(see Appendix A). Thus to characterize the complete
Stückelberg sector requires a second set of initial data
δf(r, 0). Considered together, the amount of initial data
and the two coupled first order systems are indicative of
a single propagating degree of freedom. However, these
fields are not interdependent in the usual way of a field
and its conjugate momentum and in particular do not
combine to form a single wave equation: δΓ does not de-
pend on δf . We will return to the interpretation of these
facts in §III B.
Even though the Stückelberg fluctuations are decou-

pled from the matter, a finite δΓ generates a metric per-
turbation, and hence a matter perturbation, due to the
effective stress energy it carries. By explicitly evaluating
Eq. (6), we can write down the energy density perturba-
tion

δρ = −δT 0
0 =

(

g′2 − f ′2 + a2W

a2
√
X

− x0

)

P ′

1δΓ

2ar
, (21)

and the radial momentum density perturbation

δq = T r
0 = − ḟf ′ − ġg′

a2
√
X

P ′

1δΓ

2ar
. (22)

Here and below the polynomials Pi = Pi(x0) are assumed
to be evaluated on the background. Note that both quan-
tities are directly proportional to P ′

1. Furthermore δρ and
δq depend only on δΓ and not its derivatives, in contrast
to the energy and momentum of usual fields, which typi-
cally also get contributions from the their kinetic energy.
The energy and momentum density suffice to define the

impact of the Stückelberg fields on matter through the
two associated Einstein equations. To define the whole
stress tensor or use all of the Einstein equations, we can
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also derive the radial pressure

δT r
r = −

(

ḟ2 − ġ2 + b2W

b2
√
X

− x0

)

P ′

1δΓ

2ar
. (23)

The other components of the stress energy tensor can
then be found through conservation of energy

δ̇ρ = −3
ȧ

a
(δρ+ δp) +

(ba3)′

ba3
δq +

(r2δq)′

r2
= 0. (24)

Given δρ and δq, this equation defines δp. Since by defi-
nition

δp =
1

3
(δT r

r + δT θ
θ + δT φ

φ) (25)

and δT θ
θ = δT φ

φ, the energy equation defines the remain-
ing components. We have verified that direct evaluation
of the stress components in Eq. (6) gives the same result
once combined with the equations of motion. With the
stress tensor fully defined, any two of the Einstein equa-
tions completes the dynamics as usual and define δa and
δb jointly with the matter stress energy.

Momentum conservation provides another useful aux-
iliary equation

δ̇q = −
(

5
ȧ

a
− ḃ

b

)

δq +
b2

a2

[

b′

b

(

δρ+ δT r
r

)

(26)

+(δT r
r)

′ +
(ar)′

ar

(

2δT r
r − δT θ

θ − δT φ
φ

)

]

.

With an anisotropic stress tensor, balancing radial gradi-
ents with the different T i

j components can result in static
conditions if

(δT r
r)

′ = − (ar)′

ar

(

2δT r
r − δT θ

θ − δT φ
φ

)

. (27)

Whereas for an isotropic stress tensor, the right hand
side vanishes and (δT r

r)
′ = δp′, whose finite value would

generate a momentum density unless balanced by the b′/b
gravitational term. The impact of anisotropic equations
of state on hydrostatic equilibrium and stability has been
studied in a related neutron star context (e.g. [26, 27]).

In summary, similar to what we found for the back-
ground solution, the stress energy tensor for the fluc-
tuations depends on the perturbation to the spatial
Stückelberg field (δΓ) and not the perturbation to the
temporal Stückelberg field (δf). Hence even though the
Stückelberg fields require two sets of initial data obeying
coupled first order equations, reminiscent of a field and
its conjugate momentum, only one of these has any ob-
servable impact on the matter. Moreover, the coupling is
unidirectional, as δΓ forms its own autonomous first or-
der system. It can be consistently set to zero by a choice
of initial condition.

B. Action

In order to make contact with the literature on
Stückelberg field dynamics, it is useful to see how these
results arise from the second order action. In particular,
apparent differences concerning the sign and value of the
time derivative terms in this action have led to seemingly
conflicting results about the presence of strongly coupled
or ghost-like modes [6, 17, 20].
We expand the action of Eq. (9) to second order in

both Stückelberg and metric perturbations around our
background solution in the Appendix. It is sufficient here
to examine the Stückelberg sector:

SSS =
P ′

1

2
M2

plm
2

∫

drdΩ
[

δfδΓeom − ab

2
δΓ2

− a2brδΓ(δΓ′∂g′ + ˙δΓ∂ġ)
√
X
]

, (28)

where δΓeom was defined in Eq. (20) and note that this
is the only term that depends on δf in the whole sec-
ond order action (see Eq. A5). Furthermore since δΓeom

depends only on δΓ, there are no terms quadratic in δf
fluctuations. Varying the action with respect to δf re-
produces the perturbed equation of motion δΓeom = 0
with no dependence on other perturbations.
With the help of Eq. (16), we can see that the coeffi-

cient of the δf ˙δΓ term in the action is proportional to

P ′

1

[

x0ḟ

bW
− µ

(ar)′

a

]

, (29)

and determines the dynamics of δΓ through its equation
of motion. The quantity in brackets is determined by
the background solution for f and there is a special case
where it vanishes identically. Note that if we assume
that the time dependence of f ∝ ap, then ḟ ∝ f ȧ/a and
bW ∝ f ȧ/a so this condition becomes independent of
time. We shall see that this very special f -g symmetry
is exploited in open universe solutions (see §IVC) and
explains their lack of Stückelberg dynamics [20].
While P ′

1 in Eq. (29) drops out of the equation of mo-
tion, it does determine the sign of all Stückelberg coeffi-
cients in the action. For the self-accelerating solutions

P ′

1(x0) = ±4
√

1 + 3α3 + 9α2
3 − 12α4, (30)

for the two x0 solutions. If α3 = α4 = 0 there is only one
solution, P ′

1 = −4 and the sign of the coefficient is fixed
entirely by the background solution. There is a special
choice

α4 =
1

12
(1 + 3α3 + 9α2

3), (31)

where P ′

1 = 0. In this case the whole Stückelberg
quadratic action vanishes as do all of the stress-energy
components. This is the same special choice that was
made in Refs. [9, 10], who similarly found that the
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quadratic action for fluctuations around solutions with
this parameter choice vanished.
For general α3 and α4, P

′

1 and hence the action may
have either sign. This is consistent with the decoupling
limit analysis of the kinetic term where α3 6= 0 or α4 6= 0
was necessary to ensure that the helicity 0 scalar fluctua-
tion is not a ghost [6, 17]. In this limit, the scalar, δπ, de-
termines the two Stückelberg field fluctuations δΓ → δπ′,
δf → − ˙δπ and hence the δf ˙δΓ term acts as a kinetic term
for δπ after integration by parts (see also Eq. 41).
The decoupling limit form suggests a partial way to

interpret the first order nature of the coupled δf -δΓ sys-
tem. There δf appear in the action in a way similar to
a canonical momentum for the field δπ, which is itself
related to δΓ [28]. This viewpoint suggests an interpre-
tation of δf and δΓ as a pair of “half” degrees of freedom.
This counting is related to the absence of the Boulware-
Deser ghost: of our original 4 Stückelberg fields, there
is one constraint by construction and there are two an-
gular modes that are absent in our analysis because of
spherical symmetry.
However, interpreting δf and δΓ as a simple single

propagating scalar does not carry over to the full the-
ory, where the fields are not directly related. This is of
course not in itself a contradiction, as the structure of
this theory makes a global helicity decomposition gener-
ically impossible [29]. In particular δf has no necessary
relationship to δΓ as any choice that solves its equation
of motion yields the same solution for δΓ. Furthermore,
the dynamics of δΓ depends on the choice of background
solution for f , as we shall see in the next section.

IV. TIME DYNAMICS

The detailed dynamics of Stückelberg field fluctuations
depend on the choice of solution for f , the Stückelberg
field related to the time coordinate. There are even spe-
cial cases where the fluctuations have no dynamics. All
such choices have the same background metric and self-
acceleration. In this section we systematically construct
explicit solutions for f and study their implications for
the dynamics of field fluctuations and the associated ini-
tial value problem. We also generalize many solutions
in the literature [6–9, 12, 17] as well as introduce new
classes.

A. Unitary Gauges

Since the Stückelberg fields are spacetime scalars, their
values, once mapped to the same spacetime point, are
coordinate independent. Unitary gauges are defined so
their time tu and radial ru coordinates are

tu = f(r, t), ru = g(r, t). (32)

The Stückelberg fields are therefore just the unitary
gauge coordinates and their functional form in isotropic

coordinates (r, t) is simply the map itself. In unitary
gauges, the fiducial metric Σµν = ηµν and this simplifi-
cation has been crucial for finding most solutions existing
in the literature. While we do not utilize a unitary gauge
construction in our solution, we will categorize solutions
by their unitary gauge correspondence.

All self-accelerating solutions have the common prop-
erty that g = x0ar, implying that the radial coordi-
nate of any unitary gauge is simply the same conformally
rescaled version of the isotropic radial coordinate, similar
to the distinction between physical and comoving coor-
dinates in cosmology.

The different solutions are thus characterized by the
choice of time coordinate for the unitary gauge. Each
of these choices solves Eq. (16) for the same g; written
explicitly,

b2f ′2 + 2ar(a′ḟ2 − ȧḟ f ′) + r2(a′ḟ − ȧf ′)2 =

x2
0(a

′2b2r2 + 2a′ab2r − ȧ2a2r2). (33)

Recall that the metric functions a and b do not depend
on the solution for f and so may be considered external
functions in solving this equation.

There are several properties of this equations that are
useful to note. It is a nonlinear partial differential equa-
tion in space and time. Its solutions can be characterized
by the boundary conditions f(0, t) and f(r, 0). The for-
mer is equivalent to the local r = 0 relationship between
t and unitary time f and is our primary classification
criterion. The latter allows a family of such solutions as-
sociated with a time integration constant. The equation
does not guarantee that the map in Eq. (32) is free from
singularities everywhere in the spacetime. A singularity
corresponds to a change in the sign of the Jacobian de-
terminant ḟ g′ − ġf ′ and hence a change in the sign of
µ (see Eq. 10). Solutions should be checked against sin-
gularities developed in the course of radial or temporal
integration as they signal a breakdown in our treatment
of the square roots in the action.

Finally given a solution for the α3 = α4 = 0 case where
x0 = 3/2,

f(r, t;α3, α4) =
2x0

3
f(r, t; 0, 0) (34)

is the solution for the full parameter space. One may
similarly scale any other specific α3 and α4 case to the
general case by use of the ratios of the respective values
of x0. This relationship makes it trivial to generalize
special solutions in the literature (cf. [8]).

In our examples, we seek cosmological solutions where

b(r, t) = 1, a(r, t) =
aF (t)

1 +Kr2/4
, (35)

where K is the spatial curvature and aF (t) is the scale
factor of a Friedmann-Robertson-Walker metric. Note
that in a flat K = 0 geometry a(r, t) = a(t) = aF (t).



6

B. Unitary Time t

Perhaps the most natural choice of solution is to take
unitary time f to be linearly related to t

f(0, t) =
x0

C
t, (36)

where C is a constant. For a flat universe K = 0 and we
can solve Eq. (33) with this ansatz to O(r4)

f(r, t) =
x0

CH

(

Ht+
1−

√
1− C2

2
(aHr)2

)

, (37)

where H = ȧ/a. Note that on cosmological scales where
aHr & 1, this temporal field becomes spatially inhomo-
geneous.

1. de Sitter

The special case that H = const. is of course the late
time limit of the self-accelerating solution where the mat-
ter becomes subdominant to the effective cosmological
constant

H =

√

1

6
P0m, (38)

and we can normalize a = eHt. Solving Eq. (33) for this
case with the ansatz

f(r, t) =
x0

CH
[Ht+ F (aHr)] (39)

gives

f(r, t) =
x0

CH

[

Ht− y + ln
1 + y

1− (aHr)2

]

,

y =
√

1 + C2(a2H2r2 − 1). (40)

These relations are equivalent to the de Sitter solutions
of Refs. [7, 8] up to an overall constant and generalizes
them to arbitrary α3, α4.
Note that if C = 1, f ∝ t and g ∝ ar ≡ rp near r = 0

and can be thought of deriving from a Lorentz scalar in
physical coordinates

π =
1

2
x0(r

2
p − t2) (41)

with f ≈ −π̇ and g ≈ ∂rpπ. Hence C 6= 1 may be said
to have a “vector” in the background [8] even though the
Stückelberg fields are spacetime scalars.
Given the solution in Eq. (40), the evolution equation

for δΓ becomes

(y2 + y)
˙δΓ

H
=

[

y +
y2

(aHr)2

]

rδΓ′

+

[

2y2

(aHr)2
− 3y2 + 1

]

δΓ, (42)

and the energy density, momentum density and pressure
are given by

δρ = − (aHr)2C3

(1 + C)(1 − y)2
x0P

′

1δΓ

2ar
,

δq =
y + C2 − 1

C2a2Hr
δρ, δp =

1

3
δρ . (43)

The pressure follows a radiation-like equation of state but
itself is composed of anisotropic contributions

δT r
r =

(

y + C2 − 1

C2aHr

)2

δρ 6= δp. (44)

It is instructive to consider the simplest C = 1 case
further. Here y = aHr, and given an initial value for
δΓ(r, 0), the general solution is

δΓ(r, t) =
1

a3

(

1 +
a− 1

aHr

)3

δΓ

(

r +
a− 1

aH
, 0

)

, (45)

which then defines the stress components

δρ = − (aHr)2

2(1− aHr)2
x0P

′

1δΓ

2ar
,

δq =
1

a
δρ, δT r

r = 3δp = δρ. (46)

The angular stresses vanish and the total pressure is
given by the radial component. These components have
poles in their expressions at the horizon r = 1/aH corre-
sponding to the coordinate singularity in Eq. (40) for
unitary time. However, since the solution for δΓ al-
ways maps the initial horizon onto the horizon at a later
epoch, if the energy density is finite in the initial condi-
tions there, it remains so. Furthermore for large scales
r ≫ 1/H , which were outside the horizon at the initial
epoch, δρ ∝ a−4; this is consistent with expansion effects
and the radiation-like equation of state.

2. Matter and Radiation Domination

While we have solved the initial value problem for fluc-
tuations in the de Sitter limit for f(0, t) ∝ t, in a cos-
mological solution these would themselves originate from
the dynamics in the preceding radiation and matter dom-
inated epochs.
To construct solutions where f(0, t) ∝ t during the

matter and radiation epochs, we first try

f(r, t) =
x0t

C
F (ar/t), (47)

with the assumption that H ∝ a−3(1+w)/2 for a constant
w and C. For any such choice, we can solve differential
equation for F implied by Eq. (33). While this construc-
tion would seem to admit many solutions, for finite C, µ
changes sign between +1 for r → 0 and −1 for r → ∞



7

indicating a singularity in the map between isotropic and
unitary coordinates.
On the other hand, the C → ∞ limit does not suffer

this problem and yields

f(r, t) = x0

√

τ2(t) + r2a(t)2, (48)

where

τ =

√

9(1 + w)2

4(2 + 3w)
t (49)

for w > −2/3. Eq. (49) is now easy to generalize to an
arbitrary expansion history by matching

τ2(t) = a(t)

∫ t dt̃

ȧ(t̃)
(50)

for ȧ > 0. This solution includes a universe that evolves
from radiation domination through matter domination
to self-acceleration. Note that since w = −1 during self-
acceleration, τ is no longer directly related to t and so
this solution is distinct from the solutions of the previous
section.
The fluctuation δΓ evolves under

2r2a3ȧ ˙δΓ + [ȧ2τ2 − a2]rδΓ′ = −2
A

B
δΓ, (51)

where

A = ȧ4τ4r + 2aȧ3τ3r + r2a2ȧ4τ2r − 2a3ȧτr(1− r2ȧ2)

+2r2a5ä− a4(1− ȧ2r2 + 2ȧ4r4 − 2ȧär2τr),

B = (a+ ȧτr)
2 − r2a2ȧ2, (52)

with τ2r = τ2 + r2a2 and the stress energy components
are

δρ = −a2ȧr

B

x0P
′

1δΓ

τr
, δq =

a2 − ȧ2τ2

2ra3ȧ
δρ,

δp =
aä

3ȧ2
δρ, δT r

r =

(

a2 − ȧ2τ2

2ra2ȧ

)2

δρ. (53)

Note that for a constant background equation of state
w, δp/δρ = −(1 + 3w)/6. For w > −1/9 expansion thus
makes the energy density redshift more slowly than the
dominant matter but always faster than the constant
background Stückelberg contributions. Thus in linear
theory starting from some arbitrary field configuration,
we expect that δρ/ρ will be driven rapidly to zero for
any matter content leaving just the cosmological constant
background.

C. Unitary Time a

Unitary time can also be made proportional to
a(0, t) = aF (t)

f(0, t) =
x0

C
aF (t), (54)

where, again, C is a constant. In this case both f and
g share the same temporal dependence at the origin and
hence provide the ingredients necessary for static solu-
tions. To order O(r4)

f(r, t) ≈ x0

C
aF

[

1 +
ȧ2F ±

√

(ȧ2F − C2)(ȧ2F +K)

2
r2

]

.

(55)
Here we have kept the possibility that K 6= 0 since it
allows a special class of solutions.

1. Open Solution

If K < 0 then Eq. (55) has a simple solution for C2 =
−K. Taking this ansatz, the full solution is [12, 20]

f(r, t) = x0aF (t)

√

1

−K
+

r2

(1 +Kr2/4)2
. (56)

Note that the open solution for f , like other solutions, is
inhomogeneous in isotropic coordinates. There is nothing
special about the open solution with regards to homoge-
neous and isotropic Stückelberg fields (cf. [12]).
On the other hand, the common separable aF (t) factor

in f , g and a allows this solution to satisfy the static
condition for the δΓ field, Eq. (29). Correspondingly,
Eq. (20) becomes

(4 +Kr2)rδΓ′ + 2(4−Kr2)δΓ = 0. (57)

Note that µ = sgn(ȧF ) and so is +1 for an expanding
universe. Interestingly the determinant goes to zero if
the expansion turns around, e.g. because of a negative
true cosmological constant, signaling a breakdown of the
solution. We therefore consider only expanding solutions
here.
The general solution to this equation is

δΓ(r) ∝
(

4 +Kr2

r

)2

. (58)

This static Stückelberg field produces no energy density,
momentum density or pressure; i.e.,

δp = δq = δp = 0. (59)

These static conditions are maintained by a delicate bal-
ance of the radial and anisotropic stress gradients

δT r
r =

(

1− ȧF√
−K

)

x0P
′

1δΓ

2ar
, (60)

which satisfy the static condition for Eq. (27).
Even though δp = δq = 0, anisotropic stress still has

an impact on the metric through the Einstein equations.
Moreover, these types of solutions are potentially unsta-
ble to anisotropic perturbations [22, 23].
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2. Flat Solution

If K = 0, then there is still one simple solution to
Eq. (55) where C2 ≪ ȧ2F . In that case

f(r, t) ≈ x0

C
a(t). (61)

To promote this to an exact solution we follow Ref. [11]
and generalize their approach to arbitrary α3, α4

f(r, t) =
x0

C
a(t)

[

1 +
C2

4
r2 +

C2

4

τ2(t)

a2(t)

]

, (62)

which recovers the approximate scaling for r ≪ 1/C and
t ≪ a/C. Eq. (20) becomes

−2C2r2aȧ ˙δΓ + [C2 + (C2r2 − 4)ȧ2]rδΓ′ = 2
A

B
δΓ (63)

with

A = µC4 + 4C3ȧ− 16Cȧ3 − µ(16− C4r4)ȧ4

−2C3r2a(Cµ+ 2ȧ)ä,

B = −µC2 − 4Cȧ− µ(4− C2r2)ȧ2. (64)

Despite solving Eq. (33), there is a problem with this
form as a global solution since

µ =

{

1 aHr <
√

1 + 4H2/C2

−1 aHr >
√

1 + 4H2/C2
. (65)

The sign change in µ indicates the mapping to unitary
gauge is singular unless C → 0.
In this limit we are again left with a static equation

−rδΓ′ = 2δΓ, (66)

whose solution is δΓ ∝ 1/r2. Thus the K → 0 flat limit
of the open solution is the same as the C → 0 solution
of the flat solution. More generally, the stress-energy
components become

δρ =
C3r2ȧ

B

x0P
′

1δΓ

2ar
, δq =

C2 − (4− C2r2)ȧ2

2C2raȧ
δρ,

δp =
aä

3ȧ2
δρ, δT r

r =

[

C2 − (4− C2r2)ȧ2

2C2rȧ

]2

δρ. (67)

Again for the C → 0 case, δρ, δq, δp are all suppressed

whereas δT r
r, δT

θ
θ, δT

φ
φ are unsuppressed and contain

radial gradients that delicately balance each other.

D. Unitary Time
√

a

While f(0, t) ∝ t or a are obvious choices for solutions,
they do not exhaust the possibilities. We have seen that
the former generally require dynamical Stückelberg fluc-
tuations whereas the latter admit static ones. However

those static cases are only formally well-defined as global
solutions for K < 0.
To see whether there exists a well-defined static solu-

tion for K = 0 we construct solutions where f(0, t) ∝ √
a

is the limiting form. Similarly to the flat ∝ a case, we
find an exact flat solution

f(t, r) = x0

√

a(t)

C2
+ τ2(t) + a2(t)r2 (68)

for any constant C. Note that if C2 ≫ τ2/a, this solution
recovers the general f(0, t) ∝ t solution of §IVB 2. Since
we have already considered the general case of this limit,
it is interesting to consider the opposite one. Note that
in a cosmological solution, once self acceleration sets in
τ2/a → const. of orderH−2. Thus taking C ≪ m ensures
that this limit is satisfied for all time.
In this C ≪ m and a = eHt case, to leading order δΓ

obeys

2ar2C2
˙δΓ

H
+ rδΓ′ = −2δΓ, (69)

which is a stiff equation as r → 0 with an equilibrium
static solution of δΓ ∝ 1/r2. The stress components

δρ = −r2C3

H

x0P
′

1δΓ√
ar

, δq = − H

2arC2
δρ,

δp =
1

3
δρ, δT r

r =
H2

4r2C4
δρ. (70)

Since C ≪ H , δT r
r ≫ δp and again involves a delicate

balance of anisotropic stresses. This case is very similar
to the C → 0 case of the previous section but has the
benefit that µ = 1 everywhere and so C can be set to a
finite number.

V. DISCUSSION

We have presented a general analysis of isotropic
Stückelberg field perturbations around the full class of
self-accelerating solutions [13] of the massive gravity the-
ory. These background solutions are defined by two
fields, one spatial g(r, t) and one temporal f(r, t), where
only the spatial one is responsible for the stress-energy
of the effective cosmological constant.
Likewise Stückelberg field perturbations come in two

classes, spatial (δΓ) and temporal (δf). Spatial pertur-
bations can be consistently set to zero by a choice of ini-
tial conditions. They are not generated by any matter-
induced metric perturbations as was already apparent
in that the self-accelerating solution is exact and non-
perturbative for isotropic metrics [13]. With an arbitrary
choice of initial conditions, spatial Stückelberg fluctua-
tions generically possess stress energy. This stress en-
ergy produces metric fluctuations to which the matter
responds. Temporal Stückelberg fluctuations carry no
stress energy and have no effect on metric fluctuations at
this order in perturbation theory.
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Importantly, the dynamics of spatial Stückelberg fluc-
tuations make energy density deviations from the con-
stant background always decay with the expansion in
cosmological solutions, implying that the background so-
lution is stable. There are special choices where the
Stückelberg fields perturbations are static, but in those
cases the fields carry no energy density. In the general
case, the decay rate depends on the equation of state in
the background.
Different behaviors of the spatial Stückelberg fluctua-

tion are related to the background temporal Stückelberg
field. This difference is the source of apparently conflict-
ing claims in the literature regarding Stückelberg per-
turbation dynamics. The temporal Stückelberg field in
the background is itself the choice of the time coordi-
nate in which the massive gravity theory appears locally
as the linearized Fierz-Pauli theory, i.e. it is a choice of
unitary gauge for the covariant theory. For unitary time
coinciding locally with isotropic time, the single propa-
gating degree of freedom found in the decoupling limit
[6, 17] appears in the exact theory as well. For unitary
time that scales with the spatial scale factor, there are
no Stückelberg dynamics, consistent with the open uni-
verse solutions [20]. Furthermore these solutions remain
static not by possessing a vanishing stress tensor pertur-
bation but rather by a potentially unstable balance of
anisotropic stresses.
The sign of the energy density carried by the

Stückelberg field δΓ, as well as the sign of the prefac-
tor of the term in the quadratic action that generates
the δΓ dynamics, are both determined by the quantity
P ′

1, a constant determined by the parameters of the the-
ory (α3 and α4, see Eq. 30). P

′

1 = −4 when α3 = α4 = 0,
but can be either positive or negative for general α3 and
α4. This is consistent with decoupling limit findings that
perturbations around self-accelerating solutions generi-
cally are ghost-like for α3 = α4 = 0, but can be made
healthy in more general circumstances [6, 17]. P ′

1 can be
also be set to zero by a special choice. These models have
no quadratic Stückelberg contributions to the action and
no linearized stress energy perturbations, consistent with
the findings of Ref. [9, 10], who also made this parameter
choice.
In the exact theory, the dynamical system represented

by the Stückelberg fields exhibits some peculiar proper-
ties that are obscured in decoupling limit analyses. The
two Stückelberg field perturbations require two sets of
initial data – δf(r, 0) and δΓ(r, 0) – and each obey cou-

pled first order differential equations of motion. This
is the amount of initial data and dynamics that we
would expect for a single propagating degree of freedom.
This situation might have been anticipated at the outset
from a counting argument. Starting with 4 Stückelberg
scalar degrees of freedom, we remove two by restriction
to spherical symmetry, and a third (the Boulware-Deser
ghost) is removed by construction in this theory.

However, these two “half” degrees of freedom are un-
usual in their interrelation. As indicated above, the δΓ
field has a first order equation of motion that is indepen-
dent of the δf field. The δf dynamics do depend on the
δΓ field, but they carry no stress energy at this order in
perturbation theory. In addition to this, we find that the
time derivatives of δΓ do not actually contribute energy
or momentum density either, so that there is no obvi-
ous classical instability associated with these fields even
when they are apparently ghost-like.

Finally, we uncovered a potential physical problem
with certain background configurations for the temporal
Stückelberg field. The structure of the theory itself does
not prevent the determinant of the fiducial metric from
vanishing when solving the temporal or spatial boundary
value problem. Some solutions for f pass through a zero
determinant at finite radius (e.g. [11]) or time from well-
posed initial values. At this point, the mapping between
unitary and isotropic coordinates becomes singular.

Since such a choice may have physical pathologies, we
also constructed a new solution for f that passes from
radiation domination through matter domination to self-
acceleration without exhibiting this potential problem or
resorting to static fields. We leave the larger question
of the theoretical implications for the existence of poten-
tially pathological solutions to a future work.
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Appendix A: Second Order Action

The quadratic Lagrangian for the perturbations (δΓ, δf , δa, δb) can be separated out as

δ2Ug = δ2SSUg + δ2STUg + δ2TTUg, (A1)
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where Ug =
√−gU/(4 sin θ) = a3br2U/4 carries the relevant pieces of the metric determinant, S refers to pieces

involving Stückelberg fluctuations and T those involving metric fluctuations. The Stückelberg-Stückelberg terms are

δ2SSUg =
1

2
δΓ2ab

(

P ′′

0 + P ′′

1

√
X + P ′′

2 W
)

+ a2brP ′

2δΓ
(

δΓ′∂g′W + ˙δΓ∂ġW
)

+a2brP ′

1δΓ
[

δΓ′∂g′ + ˙δΓ∂ġ + δḟ∂ḟ + δf ′∂f ′

]√
X + µar(2P2 − x0P

′

2)δf(
˙δΓ∂r − δΓ′∂t)(ar)

= P ′

1

[

−δfδΓeom +
ab

2
δΓ2 + a2brδΓ(δΓ′∂g′ + ˙δΓ∂ġ)

√
X

]

, (A2)

where we have used the background solution g = x0ar, the polynomial recursion Eq. (12), and the relationship between

W and
√
X on the background from Eq. (16). Note that equality here means equality up to total derivative terms.

Here

δΓeom ≡ ∂t[a
2rbδΓ∂ḟ

√
X] + ∂r[a

2rbδΓ∂f ′

√
X]− µar[(ar)′ ˙δΓ− ȧrδΓ′]. (A3)

and its correspondence to Eq. (20) can be established by noting

∂ḟ
√
X =

1

b
√
X

(

ḟ

b
+ µ

g′

a

)

, ∂f ′

√
X = − 1

a
√
X

(

µ
ġ

b
+

f ′

a

)

. (A4)

Next, the mixing between the Stückelberg fields and the metric fluctuations is given by

δ2STUg = abr
[

2P ′

0 + P ′

1(2 + a∂a + ax0∂g′)
√
X + P ′

2(1 + ax0∂g′)W
]

δaδΓ

+a2br2x0

[

(P ′

2∂ġW + P ′

1∂ġ
√
X)δ̇a+ (P ′

2∂g′W + P ′

1∂g′

√
X)δa′

]

δΓ

+2a2br2P2δa( ˙δΓ∂ġ + δΓ′∂g′)W + a2r
[

P ′

0 + P ′

1(1 + b∂b)
√
X
]

δbδΓ (A5)

= a2brP ′

1

{[

(1 + a∂a)
√
X − x0

] δa

a
+
[

(δa r)′∂g′ + δ̇a r∂ġ

]

(x0

√
X −W ) +

[

(1 + b∂b)
√
X − x0

] δb

b

}

δΓ.

Both the SS and ST pieces are directly proportional to P ′

1. Note that

(1 + a∂a)
√
X =

ḟ2 − ġ2 + b2W

b2
√
X

, (1 + b∂b)
√
X =

g′2 − f ′2 + a2W

a2
√
X

, (A6)

and these factors appear also in the perturbed energy and radial pressure relations, Eqs. (21) and (23), since functional
variation of the action with the metric must return these components. Note that there is no mixing between the δf and
metric fluctuations, as anticipated from our direct calculation of the stress energy tensor. On the other hand, variation
of the action with respect to δΓ yields an equation of motion for δf that depends on all of the other perturbations.
Finally, the metric-metric part is

δ2TTUg =3ar2P0

(

bδa2 + aδaδb
)

. (A7)

As expected, it represents the perturbation to
√−g multiplying the effective background cosmological constant.
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