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Gravitational perturbations of neutron stars and black holes are well known sources of gravi-
tational radiation. If the compact object is immersed in or endowed with a magnetic field, the
gravitational perturbations would couple to electromagnetic perturbations and potentially trigger
synergistic electromagnetic signatures. We present a detailed analytic calculation of the dynamics of
coupled gravitational and electromagnetic perturbations for both neutron stars and black holes. We
discuss the prospects for detecting the electromagnetic waves in these scenarios and the potential
that these waves have for providing information about their source.
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I. INTRODUCTION

Multi-messenger astronomy has arrived. Already astro-particle observations (neutrinos and cosmic rays) are comple-
menting traditional electromagnetic observations. The third pillar is almost ready with near future gravitational-wave
observations by interferometric detectors like LIGO, Virgo, GEO600 and LCGT [1, 2]. This new astronomy will en-
able multi-channel observations of astrophysical phenomena such as γ-ray bursts, supernovae, or flaring magnetars,
unveiling an unprecedented view of the nature of the source and its environment.
An important component in many astrophysical phenomena is strong magnetic fields, as demonstrated by the active

role they play in the accretion processes of low-mass X-ray binaries and GRBs [3]. The presence of strong magnetic
fields opens up the possibility for interesting effects. Among them, which is the central topic of this work, is the coupling
between electromagnetic and gravitational emissions that could yield synergistic multi-messenger observations. In
particular, it is important to assess the conditions in which electromagnetic and gravitational emissions influence
each other. There are already hints for such scenario. It is believed that the flare activity of magnetars seems to be
associated with starquakes [4]. These quakes are responsible not only for dramatic perturbations and rearrangements
of the magnetic field, but also for the breaking of the neutron star crust and internal motions, possibly resulting in
the emission of gravitational waves. Detailed studies of magnetar flare activity have revealed a number of features in
the afterglow, which can be associated with the crust oscillations as well as with Alfvén waves propagating from the
core towards the surface [5–17].
The link or coupling between electromagnetic radiation and gravitational waves have been investigated for some

cases. One of them looked at the propagation of gravitational waves linearly coupled to an external magnetic field [18].
It was shown that this configuration triggers magneto-hydrodynamics waves in the plasma [19–23]. Furthermore, the
linear nature of the coupling limits the electromagnetic waves to low frequencies, in the best case a few tenths of
kHz, which will be easily absorbed by the interstellar medium or plasma. In order to produce high frequency and
detectable electromagnetic waves, non-linear couplings are needed, requiring much stronger gravitational waves. In
most of these studies, the gravitational waves were assumed to propagate on a flat space-time background. This is
a reasonable assumption when the interaction between the gravitational and electromagnetic waves takes place far
from the source. There have been only very few attempts to treat the electromagnetic-gravity coupling in the strong
field regime [24].
The aim of this work is to study the interaction of electromagnetic and gravitational waves in the vicinity of mag-

netized neutron stars or black holes immersed in strong magnetic fields using perturbation theory, paying particular
attention to how gravitational modes drive the excitation of electromagnetic perturbations. Our work also includes
estimates of the energy transferred between the gravitational and electromagnetic sectors. As expected, we find that
the excited electromagnetic waves have roughly the same frequency as the driving gravitational waves, i.e., of the
order of a few kHz. Electromagnetic waves at these low frequencies can be easily absorbed by the interstellar medium.
As a consequence, one needs to associate them with secondary emission mechanisms (e.g., synchrotron radiation) in
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order to be able to trace the effects of gravitational waves on the strong magnetic fields. The later process can be
studied following the mechanisms described in [19–23], and there is work in progress for the special case of strong
gravitational fields.
This article is organized as follows: Section II gives details of the space-time background configuration. In Sec. III,

we review the general form of the perturbation equations, their couplings, and the angular dependences of the various
types of electromagnetic and gravitational perturbations. In Sec. IV, we reduce the equations to the particular case
of dipole electromagnetic perturbations driven by the quadrupole gravitational mode for the case of a neutron star
background. In Sec. V, we do the same as in Sec. IV but for the case of a black hole and consider both the case of
axial and polar gravitational perturbations. In Sec. VI we show numerical results or dipole electromagnetic waves
driven by quadrupole gravitational waves with axial parity for both neutron stars and black holes. Conclusions are
given in Sec. VII. We adopt geometric units, c = G = 1, where c and G denote the speed of light and the gravitational
constant, respectively, and the metric signature is (−,+,+,+).

II. EQUATIONS FOR THE BACKGROUND

The background space-times we are considering (neutron stars and black holes) are governed by the Einstein-
Maxwell equations, which read:

Gµν = 8π (Tµν + Eµν) , (2.1)

(T µν + Eµν);ν = 0 , (2.2)

Fµν
;ν = 4πJµ , (2.3)

Fµν,λ + Fλµ,ν + Fνλ,µ = 0 , (2.4)

The tensors that appear in these equations are: The Einstein tensor Gµν , the Faraday antisymmetric tensor Fµν , the
electromagnetic four-current Jµ, the energy-momentum tensor of the matter fluid Tµν , and the energy-momentum
tensor of the electromagnetic field is Eµν . The energy-momentum tensors are explicitly given by

Tµν = (ρ+ p)uµuν + pgµν , (2.5)

Eµν =
1

4π

(

gρσFρµFσν − 1

4
gµνFρσF

ρσ

)

, (2.6)

where ρ stands for the energy-density, p for the pressure, and uµ for the four-velocity of the matter fluid.
The presence of a magnetic field could in principle induced deformations to the neutron star or black hole we are

considering. However, even for astrophysically strong magnetic fields, B ∼ 1016G, as in the case of magnetars, the
energy of the magnetic field EB is much smaller than the gravitational energy EG, by several orders of magnitude.
In fact, EB/EG ∼ 10−4(B/1016[G])2. Therefore, in setting up the background space-time metric, one can ignore the
magnetic field. That is, the background metric has the form

ds2 = −eνdt2 + eλdr2 + r2(dθ2 + sin2 θdφ2) , (2.7)

where the functions ν(r) and λ(r), in the interior of a neutron star, are determined by the well-known Tolman-
Oppenheimer-Volkoff (TOV) equations (see, e.g. [25]) and the matter fluid four-velocity uµ = (e−ν/2, 0, 0, 0). In the
exterior of a neutron star, and in the case of a black hole, they are determined by the standard Schwarzschild solution:
e−λ = eν = 1− 2M/r.

A. A Dipole Background Magnetic Field: Exterior region

Next, we compute the magnetic field for both the neutron star and the black hole. We consider first the exterior
(vacuum) solution. In this case, the component of Maxwell equations given by Eq. (2.4) is automatically satisfied.
The magnetic field is then obtained by solving the remaining Maxwell equations, Eqs. (2.3), which in vacuum reads

Fµν
;ν = 0 , (2.8)

with Fµν = Aν,µ −Aµ,ν . Since the background space-time is static, it is natural to assume that the magnetic field is
also static. In addition, we require the magnetic field to be axisymmetric and poloidal,

Bµ(ex) =
(

0, e−λ/2B
(ex)
1 (r) cos θ, e−λ/2B

(ex)
2 (r) sin θ, 0

)

, (2.9)
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which has a dependence on the polar coordinate, θ. From the relation between the magnetic field, the matter fluid
velocity uµ, and the field strength

Bµ = ǫµναβu
νFαβ/2 = ǫµναβu

νAα,β , (2.10)

where ǫµναβ is the complete antisymmetric tensor, determined by the convention ǫ0123 =
√−g. It is not difficult to

show that the only non-vanishing component of the vector potential Aµ is the φ-component, which we will denote as

A
(ex)
φ . Therefore, the vacuum Maxwell equation (2.8) in the Schwarzschild background becomes

r2
∂

∂r

[

(

1− 2M

r

)

∂A
(ex)
φ

∂r

]

+ sin θ
∂

∂θ

[

1

sin θ

∂A
(ex)
φ

∂θ

]

= 0 . (2.11)

Expanding A
(ex)
φ in vector spherical harmonics as

A
(ex)
φ = a

(ex)
lM

(r) sin θ ∂θPlM (cos θ) , (2.12)

we rewrite Eq. (2.11) as

r2
d

dr

[

(

1− 2M

r

)

da
(ex)
lM

dr

]

− l(l + 1)a
(ex)
lM

= 0 . (2.13)

The solution of this equation for the dipole case (lM = 1) has the form [26]

a
(ex)
1 = − 3µd

8M3
r2

[

ln

(

1− 2M

r

)

+
2M

r
+

2M2

r2

]

, (2.14)

where µd is the magnetic dipole moment for an observer at infinity. With the solution of Eq. (2.14) and Eq. (2.10),
the coefficients of the magnetic field in Eq. (2.9) are given by:

B
(ex)
1 (r) =

2a
(ex)
1

r2
= − 3µd

4M3

[

ln

(

1− 2M

r

)

+
2M

r
+

2M2

r2

]

, (2.15)

B
(ex)
2 (r) = −

a
(ex)
1,r

r2
=

3µd

4M3r

[

ln

(

1− 2M

r

)

+
M

r
+

M

r − 2M

]

. (2.16)

Notice that in the limit r → ∞,

B
(ex)
1 (r) ≈ 2µd

r3
and B

(ex)
2 (r) ≈ µd

r4
. (2.17)

B. A Dipole Background Magnetic Field: Interior region

We assume that the magnetic field inside the star is also axisymmetric and poloidal, with current Jµ =
(0, 0, 0, Jφ) [27, 28]. The ideal MHD approximation is also adopted, i.e. infinite conductivity σ, which leads to
Eµ = Fµνu

ν = 0, as follows from the relativistic Ohm’s law

Fµνu
ν =

4π

σ
(Jµ + uµJ

νuν) . (2.18)

Therefore, the vector potential Aµ is similar to that for the exterior magnetic field, i.e. Aµ = (0, 0, 0, A
(in)
φ ). The

counterpart equation to Eq. (2.11) but for the interior is

e−λ
∂2A

(in)
φ

∂r2
+

1

r2
∂2A

(in)
φ

∂θ2
+ (ν′ − λ′)

e−λ

2

∂A
(in)
φ

∂r
− 1

r2
cos θ

sin θ

∂A
(in)
φ

∂θ
= −4πJφ . (2.19)

Expanding both, the vector potential A
(in)
φ and the current Jφ, in vector spherical harmonics, one gets

A
(in)
φ (r, θ) = a

(in)
lM

(r) sin θ ∂θPlM (cos θ) , (2.20)

Jφ(r, θ) = jlM (r) sin θ ∂θPlM (cos θ) , (2.21)
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which can be use to rewrite Eq. (2.19) as

e−λ
d2a

(in)
lM

dr2
+ (ν′ − λ′)

e−λ

2

da
(in)
lM

dr
− lM (lM + 1)

r2
a
(in)
lM

= −4πjlM . (2.22)

It is only feasible to obtain numerical solutions to Eq. (2.22), even for the dipole case (lM = 1), since among other
things the coefficients are also computed numerically from the TOV equations. In addition, when prescribing j1(r),
it must satisfy an integrability condition (see [29, 30] for details). We adopt a current with a functional form [28]:

j1(r) = f0r
2(ρ+ p) , (2.23)

where f0 is an arbitrary constant. In addition, we should impose the following regularity condition at center of the
neutron star,

a
(in)
1 = αcr

2 +O(r4) , (2.24)

where αc is also an arbitrary constant. These arbitrary constants, f0 and αc, are determined by from the matching
conditions at the surface of the star, namely that a1 and a1,r are continuous across the stellar surface. Finally, once
we have the numerical solution for a1(r), the magnetic field is obtained from

Bµ(in) =
(

0, e−λ/2B
(in)
1 (r) cos θ, e−λ/2B

(in)
2 (r) sin θ, 0

)

(2.25)

with

B
(in)
1 (r) =

2a
(in)
1

r2
and B

(in)
2 (r) = −

a
(in)
1,r

r2
. (2.26)

With the magnetic field determined both in the interior and exterior regions, the Faraday tensor for the background
field becomes

Fµν = ǫµναβB
αuβ = r2 sin θ







0 0 0 0
0 0 0 B2 sin θ
0 0 0 −B1 cos θ
0 −B2 sin θ B1 cos θ 0






. (2.27)

III. PERTURBATION EQUATIONS

We consider small perturbations of both the gravitational and electromagnetic fields, which can be described as

g̃µν = gµν + hµν , (3.1)

F̃µν = Fµν + fµν , (3.2)

where gµν and Fµν are the background quantities derived in the previous section. The tensors hµν and fµν denote
small perturbations, i.e. hµν = δgµν and fµν = δFµν . Linearization of the Einstein-Maxwell equations yields

δGµν = 8πδ (Tµν + Eµν) , (3.3)

δ
(

T µν
;ν + Eµν

;ν

)

= 0 , (3.4)

∂ν

[

(−g)1/2fµν
]

= 4πδ
[

(−g)1/2Jµ
]

− ∂ν

[

Fµνδ(−g)1/2
]

, (3.5)

fµν,λ + fλµ,ν + fνλ,µ = 0 . (3.6)

From Eq. (3.5), we find that the electromagnetic perturbations are driven by the gravitational perturbations via
the term containing δ(−g)1/2 in the right hand side. On the other hand, for simplicity, we omit the back reaction of
the electromagnetic perturbations on the gravitational perturbations, i.e. we set δEµν = δ(Eµν

;ν) = 0 in Eqs. (3.3)
and (3.4). This simplification is based on the assumption that the energy stored in gravitational perturbations is
considerably larger than that in electromagnetic perturbations, which are typically driven by the former. On the
other hand, in the giant flares of SGR 1806-20 and SGR 1900+14 [31–33], whose peak luminosities are in the range of
1044 − 1046 ergs s−1, the dramatic rearrangement of the magnetic field might lead to emission of gravitational waves.
Nevertheless, recent non-linear MHD simulations [34–38] do not support these expectations.
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The first two perturbative equations, Eq. (3.3) and Eq. (3.4), have been studied extensively in the past, in the
absence of magnetic fields, both for stellar and black hole backgrounds (see, e.g. [39–44]). Thus, in this article we use
the perturbation equations derived in earlier works, and we derive the analytic form of the perturbation equations for
the electromagnetic field together with their coupling to the gravitational perturbations.
The metric perturbations hµν , in the Regge-Wheeler gauge [39], can be decomposed into tensor spherical harmonics

in the following way

hµν =
∞
∑

l=2

l
∑

m=−l









eνH0,lm H1,lm −h0,lmsin−1 θ∂φ h0,lm sin θ ∂θ
∗ eλH2,lm −h1,lmsin−1 θ∂φ h1,lm sin θ ∂θ
∗ ∗ r2Klm 0
∗ ∗ 0 r2 sin2 θKlm









Ylm , (3.7)

where H0,lm, H1,lm, H2,lm and Klm are the functions of (t, r) describing the polar perturbations, while h0,lm and h1,lm

describe the axial ones. On the other hand, the tensor harmonic expansion of the electromagnetic perturbations, fµν ,
for the Magnetic multipoles (or axial parity) are given by

f (M)
µν =

∞
∑

l=2

l
∑

m=−l











0 0 f
(M)
02,lmsin−1 θ∂φ −f

(M)
02,lm sin θ ∂θ

0 0 f
(M)
12,lmsin−1 θ∂φ −f

(M)
12,lm sin θ ∂θ

∗ ∗ 0 f
(M)
23,lm sin θ

∗ ∗ ∗ 0











Ylm , (3.8)

while the expansion for the Electric multipoles (or polar parity) can be written as

f (E)
µν =

∞
∑

l=2

l
∑

m=−l









0 f
(E)
01,lm f

(E)
02,lm∂θ f

(E)
02,lm∂φ

∗ 0 f
(E)
12,lm∂θ f

(E)
12,lm∂φ

∗ ∗ 0 0
∗ ∗ 0 0









Ylm . (3.9)

Hereafter, the quantities describing the magnetic- and electric-type electromagnetic perturbations will be denoted

with the indices (M) and (E), respectively. We point out that hµν is a symmetric tensor, while both f
(M)
µν and f

(E)
µν

are anti-symmetric tensors, i.e. f
(M)
µν = −f

(M)
νµ and f

(E)
µν = −f

(E)
νµ . From the perturbed Maxwell equations, Eqs. (3.6),

we can obtain the following relations connecting the above perturbative functions:

f
(M)
12,lm =

1

Λ

∂f
(M)
23,lm

∂r
and f

(M)
02,lm =

1

Λ

∂f
(M)
23,lm

∂t
, (3.10)

f
(E)
01,lm =

∂f
(E)
02,lm

∂r
−

∂f
(E)
12,lm

∂t
, (3.11)

where Λ ≡ l(l + 1). Notice that f
(M)
23,lm and Ψ̃, defined as

Ψ̃ = −r2

Λ
f
(E)
01,lm , (3.12)

are gauge invariant variables (see Eq. (II-27) in Ref. [45] and Eq. (II-11) in Ref. [46]).

A. Perturbations of a Dipole Magnetic Field: Exterior region

In the exterior vacuum region, we adopt the condition δJµ = 0. With this condition, the perturbed electromagnetic
fields will be determined via the linearized form of Maxwell’s equations, Eqs. (3.5), (assuming that Jµ = δJµ = 0)

∂ν

[

(−g)1/2fµν
]

= −1

2
∂ν

[

(−g)1/2Fµνgαβhαβ

]

, (3.13)

together with the perturbed Maxwell equation (3.6). Equation (3.13) for µ = t and µ = r can be written down as

∑

l,m

{

A
(I,E)
lm Ylm + Ã

(I,A)
lm cos θYlm +B

(I,A)
lm sin θ∂θYlm + C

(I,P )
lm ∂φYlm

}

= 0 (I = 0, 1) , (3.14)
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where the indices “A” and “P” stand for axial and polar gravitational perturbative quantities, and obviously “I”
stands for the t and r components of Eq. (3.13). The coefficients of Eq. (3.14) have the following expressions

A
(0,E)
lm =

1

2

(

ν′ + λ′ − 4

r

)

f
(E)
01,lm − f

(E)
01,lm

′

+
Λ

r2
eλf

(E)
02,lm , (3.15)

Ã
(0,A)
lm =

Λ

r2
eλB1h0,lm , (3.16)

B
(0,A)
lm =

[

−1

2

(

ν′ + λ′ − 4

r

)

B2 +B2
′ +

1

r2
eλB1

]

h0,lm +B2h
′

0,lm , (3.17)

C
(0,P )
lm = −B2H1,lm , (3.18)

A
(1,E)
lm = r2ḟ

(E)
01,lm − Λeνf

(E)
12,lm , (3.19)

Ã
(1,A)
lm = −ΛeνB1h1,lm , (3.20)

B
(1,A)
lm = −eνB1h1,lm − r2B2ḣ0,lm , (3.21)

C
(1,P )
lm = r2eνB2H0,lm . (3.22)

One can decompose the equations above for a specific mode with fixed harmonic numbers (l,m), by multiplying with
Y ∗

lm and integrating over the two-sphere, i.e.

A
(I,E)
lm + imC

(I,P )
lm +Qlm

[

Ã
(I,A)
l−1m + (l − 1)B

(I,A)
l−1m

]

+Ql+1m

[

Ã
(I,A)
l+1m − (l + 2)B

(I,A)
l+1m

]

= 0 (I = 0, 1) . (3.23)

In a similar way, from the two remaining equations, i.e. Eq. (3.13) for µ = θ and µ = φ, one gets the relations

∑

l,m

{

(αlm + α̃lm cos θ) ∂θYlm −
(

βlm + β̃lm cos θ
)

(∂φYlm/ sin θ) + ηlm sin θYlm + χlm sin θWlm

}

= 0, (3.24)

∑

l,m

{(

βlm + β̃lm cos θ
)

∂θYlm + (αlm + α̃lm cos θ) (∂φYlm/ sin θ) + ζlm sin θYlm + χlm sin θXlm

}

= 0, (3.25)

where

Wlm =

(

∂2
θ − cot θ∂θ −

1

sin2 θ
∂φ

)

Ylm, (3.26)

Xlm = 2∂φ (∂θ − cot θ)Ylm . (3.27)

These equations lead to an extra set of evolution equations for a specific mode (l,m) by multiplying with Y ∗

lm and
integrating over the two-sphere:

Λαlm − im
[

β̃lm + ζlm

]

+Qlm(l + 1) [(l − 2)(l − 1)χl−1m + (l − 1)α̃l−1m − ηl−1m]

−Ql+1ml [(l + 2)(l+ 3)χl+1m − (l + 2)α̃l+1m − ηl+1m] = 0, (3.28)

Λβlm + im [(l − 1)(l+ 2)χlm + α̃lm + ηlm]

+Qlm(l + 1)
[

(l − 1)β̃l−1m − ζl−1m

]

+Ql+1ml
[

(l + 2)β̃l+1m + ζl+1m

]

= 0, (3.29)
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where the coefficients are given by

αlm =
1

2
(λ′ − ν′) f

(E)
12,lm + eλ−ν ḟ

(E)
02,lm − f

(E)
12,lm

′

, (3.30)

βlm =
1

2
(ν′ − λ′) f

(M)
12,lm − eλ−ν ḟ

(M)
02,lm + f

(M)
12,lm

′

− 1

r2
eλf

(M)
23,lm , (3.31)

α̃lm =

[

1

2
(λ′ − ν′)B1 −B1

′ +B2

]

h1,lm −B1h
′

1,lm + eλ−νB1ḣ0,lm , (3.32)

β̃lm = eλB1Klm, (3.33)

ηlm =
Λ

2
B2h1,lm , (3.34)

χlm =
1

2
B2h1,lm , (3.35)

ζlm =

[

r2

2
(λ′ − ν′)B2 − 2rB2 − r2B2

′

]

H0,lm − r2B2H
′

0,lm − eλB1Klm + e−νr2B2Ḣ1,lm . (3.36)

B. Perturbations of a Dipole Magnetic Field: Interior region

In the stellar interior, because we have adopted the ideal MHD approximation for which Fµνu
ν = 0, the components

of the perturbed electromagnetic field tensor are determined by using the perturbed Maxwell equation (3.6), i.e.

f0µ = eν/2Fµνδu
ν , (3.37)

where δuµ is the perturbed fluid 4-velocity, defined as

δuµ =

(

1

2
e−ν/2H0,lm, Rlm, Vlm∂θ − Ulm sin−1 θ∂φ, Vlm sin−2 θ∂φ + Ulm sin−1 θ∂θ

)

Ylm . (3.38)

From Eq. (3.37) one can get the following equations

∑

l,m

{

f
(E)
01,lmYlm − r2B2e

ν/2 (Vlm∂φYlm + Ulm sin θ∂θYlm)
}

= 0 , (3.39)

∑

l,m

{(

Alm + Ãlm cos θ
)

∂θYlm −
(

Blm + B̃lm cos θ
)

(∂φYlm/ sin θ)
}

= 0 , (3.40)

∑

l,m

{(

Blm + B̃lm cos θ
)

∂θYlm +
(

Alm + Ãlm cos θ
)

(∂φYlm/ sin θ) + C̃lm(sin θYlm)
}

= 0 , (3.41)

where the coefficients Alm and Blm are functions of the perturbed electromagnetic fields, while Ãlm, B̃lm, and C̃lm
are functions of the perturbed matter fluid 4-velocity. The expressions for these coefficients are

Alm = f
(E)
02,lm , (3.42)

Blm = −f
(M)
02,lm , (3.43)

Ãlm = r2B1e
ν/2Ulm , (3.44)

B̃lm = −r2B1e
ν/2Vlm , (3.45)

C̃lm = r2B2e
ν/2Rlm . (3.46)

By multiplying Eqs. (3.39), (3.40), and (3.41) with Y ∗
lm and integrating over the two-sphere we can obtain the following

system of equations that depends only on r

f
(E)
01,lm − r2B2e

ν/2 [imVlm +Qlm(l − 1)Ul−1m −Ql+1m(l + 2)Ul+1m] = 0 , (3.47)

ΛAlm − im[B̃lm + C̃lm] +Qlm(l − 1)(l + 1)Ãl−1m +Ql+1ml(l + 2)Ãl+1m = 0 , (3.48)

ΛBlm + imÃlm +Qlm(l + 1)[(l − 1)B̃l−1m − C̃l−1m] +Ql+1ml[(l+ 2)B̃l+1m + C̃l+1m] = 0 , (3.49)
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where

Qlm ≡
√

(l −m)(l +m)

(2l − 1)(2l+ 1)
. (3.50)

Finally, we should compute Eqs. (3.23), (3.28), and (3.29) for the exterior region, and Eqs. (3.47), (3.48), and (3.49)
for the interior region of the star. From this system of equations, we can see the specific couplings between the
electromagnetic and gravitational perturbations. For example, an electromagnetic perturbation of specific parity
with harmonic indices (l,m) depends on the gravitational perturbations of the same parity with (l,m) as well as the
gravitational perturbations of the opposite parity with (l ± 1,m). In other words, for the special and simpler case of
axisymmetric perturbations (m = 0), we arrive at the following conclusions: 1) Dipole electric (polar) electromag-
netic perturbations will be driven by axial quadrupole gravitational perturbations, and 2) Dipole magnetic (axial)
electromagnetic perturbations will be driven by polar quadrupole and radial gravitational perturbations. These two
types of couplings will be discussed in detail in the next sections.

C. Junction conditions for perturbed electro-magnetic fields

In order to close the system of equations derived in the previous subsection, we should impose appropriate junction
conditions on the stellar surface. Such junction conditions for the perturbed electromagnetic fields can be derived
from the conditions

nµδB(in)
µ = nµδB(ex)

µ , (3.51)

q ν
µ δE(in)

ν = q ν
µ δE(ex)

ν , (3.52)

where nµ is the unit outward normal vector to the stellar surface, while q ν
µ is the corresponding projection tensor

associated with nµ. These junction conditions lead to the following set of equations:

f
(M)(in)
23 = f

(M)(ex)
23 , (3.53)

f
(M)(in)
02 = f

(M)(ex)
02 = 0 , (3.54)

f
(E)(ex)
02 = 0 . (3.55)

IV. DIPOLE PERTURBATIONS OF A MAGNETIC FIELD ON A STELLAR BACKGROUND

In the previous section, we provided the general form of the perturbative equations. In order to focus on a simple
case, we only consider axisymmetric perturbations (m = 0) in this section. In this way, the various couplings become
less complicated. Under these conditions, we study the excitation of dipole electric perturbations driven by axial
gravitational ones and dipole magnetic perturbations driven by polar gravitational ones. These perturbative modes
are actually the most important ones from the energetic point of view.

A. Dipole Electric Perturbations driven by Axial Gravitational Perturbations

Here, we consider only dipole “electric type” perturbations driven by quadrupole axial gravitational perturbations.
Since we neglect the back reaction of electromagnetic perturbations on the gravitational ones, the quadrupole axial
gravitational perturbations of a spherically symmetric star can be described by a single wave equation [40, 47], which
is given by

∂2Xlm

∂t2
− ∂2Xlm

∂r2∗
+ eν

(

Λ

r2
− 6m

r3
+ 4π(ρ− p)

)

Xlm = 0 , (4.1)

where

Xlm =
e(ν−λ)/2

r
h1,lm and

∂

∂r
= e(λ−ν)/2 ∂

∂r∗
. (4.2)
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Note that r∗ is the tortoise coordinate defined as r∗ = r+2M ln(r/2M − 1). Since there are no fluid oscillations if the
matter is assumed to be described as a perfect fluid (unless we introduce rotation), the spacetime only contains pure
spacetime modes, i.e. the so-called w-modes [42, 47, 48]. In this case, the axial component of the fluid perturbation,
Ulm, has the form Ulm = −e−ν/2h0,lm/r2, while the component of h0,lm is computed from the equation

∂

∂t
h0,lm = e(ν−λ)/2Xlm + r

∂

∂r∗
Xlm, (4.3)

which is used later to simplify the coupling terms between the two types of perturbations.
On the other hand, in the same way as in the case of electromagnetic perturbations in the exterior region, Eqs.

(3.11) and (3.23) for I = 1, and Eq. (3.28) lead to three simple evolution equations for the three perturbation functions

f
(E)
12,10, f

(E)
01,10, and f

(E)
02,10:

∂f
(E)
12,10

∂t
= e−ν

∂f
(E)
02,10

∂r∗
− f

(E)
01,10 , (4.4)

∂f
(E)
01,10

∂t
=

2

r2
eνf

(E)
12,01 + S

(1)
20 , (4.5)

∂f
(E)
02,10

∂t
= eν

∂f
(E)
12,10

∂r∗
+ ν′e2νf

(E)
12,10 + S

(2)
20 , (4.6)

where S
(1)
20 and S

(2)
20 are the source terms describing the coupling of the electromagnetic perturbations with the

gravitational ones, and are given by

S
(1)
20 = 3Q20

[(

1

r
B1 − eνB2

)

X20 − rB2
∂X20

∂r∗

]

, (4.7)

S
(2)
20 =

3

2
Q20re

νB1
′X20 . (4.8)

In order to derive second-order wave-type equations for the electromagnetic perturbations, we introduce a new func-
tion: Ψlm = Ψlm(t, r), given by

Ψlm = eνf
(E)
12,lm . (4.9)

With this variable, the above evolution equations can be written as

∂Ψ10

∂t
=

∂f
(E)
02,10

∂r∗
− eνf

(E)
01,lm , (4.10)

∂f
(E)
01,10

∂t
=

2

r2
Ψ10 + S

(1)
20 , (4.11)

∂f
(E)
02,10

∂t
=

∂Ψ10

∂r∗
+ S

(2)
20 . (4.12)

From this system of evolution equations, one can construct a single wave-type equation for the “electric” perturbations

∂2Ψ10

∂t2
− ∂2Ψ10

∂r2∗
+

2

r2
eνΨ10 = S

(E)
20 , (4.13)

where the source term S
(E)
20 is given by

S
(E)
20 =

∂S
(2)
20

∂r∗
− eνS

(1)
20 . (4.14)

Without the coupling term, this wave equation outside the star is the well-known Regge-Wheeler equation for elec-
tromagnetic perturbations. It should be pointed out that Ψ is not a gauge-invariant quantity while the function Ψ̃
given by Eq. (3.12) is a gauge invariant variable, where both variables Ψ and Ψ̃ can be related to each other via the
evolution equation (4.11), i.e.

∂Ψ̃10

∂t
= −Ψ10 −

r2

2
S
(1)
20 . (4.15)
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Finally, the electromagnetic perturbations in the interior region are determined from Eqs. (3.47), (3.48), and (3.11),
i.e.

f
(E)
01,10 = B2S

(3)
20 , (4.16)

f
(E)
02,10 =

1

2
B1S

(3)
20 , (4.17)

∂f
(E)
12,10

∂t
=

∂f
(E)
02,10

∂r
− f

(E)
01,10 , (4.18)

where

S
(3)
20 = −3Q20r

2eν/2U20 . (4.19)

B. Dipole Magnetic Perturbations driven by Polar Gravitational Perturbations

As it was mentioned earlier in Sec. III for the case of axisymmetric perturbations, the “magnetic (axial) type”
perturbations of the electromagnetic field with harmonic index l are driven by polar gravitational perturbations with
harmonic index l±1. Here, we consider the axisymmetric perturbations (m = 0) for the dipole (l = 1) electromagnetic
fields, which are driven by quadrupole (l = 2) gravitational perturbations.
For the description of the perturbations of the spacetime and the stellar fluid, we adopt the formalism derived by

Allen et al. in [44]. In this formalism, the perturbations are described by three coupled wave-type equations, in
such a way that two equations describe the perturbations of the spacetime and the other one the fluid perturbations.
In addition to these three wave equations, there is also a constraint equation. The two wave-type equations for the
spacetime variables are

−∂2Slm

∂t2
+

∂2Slm

∂r2∗
+

2eν

r3
[

2πr3(ρ+ 3p) +m− (n+ 1)r
]

Slm = −4e2ν

r5

[

(m+ 4πpr3)2

r − 2m
+ 4πρr3 − 3m

]

Flm , (4.20)

−∂2Flm

∂t2
+

∂2Flm

∂r2∗
+
2eν

r3
[

2πr3(3ρ+ p) +m− (n+ 1)r
]

Flm

=− 2
[

4πr2(p+ ρ)− e−λ
]

Slm + 8π(ρ+ p)reν
(

1− 1

C2
s

)

Hlm , (4.21)

where Flm, Slm, and Hlm are given by

Flm(t, r) = rKlm , (4.22)

Slm(t, r) =
eν

r
(H0,lm −Klm) , (4.23)

Hlm(t, r) =
δplm
ρ+ p

, (4.24)

while δplm is the perturbation in the pressure, n ≡ (l − 1)(l + 2)/2, and Cs is the sound speed. On the other hand,
the wave equation for the perturbed relativistic enthalpy Hlm, describing the fluid perturbations, is

− 1

C2
s

∂2Hlm

∂t2
+

∂2Hlm

∂r2∗
+

e(ν+λ)/2

r2

[

(m+ 4πpr3)

(

1− 1

C2
s

)

+ 2(r − 2m)

]

∂Hlm

∂r∗

+
2eν

r2

[

2πr2(ρ+ p)

(

3 +
1

C2
s

)

− (n+ 1)

]

Hlm

= (m+ 4πpr3)

(

1− 1

C2
s

)

e(λ−ν)/2

2r

(

eν

r2
∂Flm

∂r∗
− ∂Slm

∂r∗

)

+

[

(m+ 4πpr3)2

r2(r − 2m)

(

1 +
1

C2
s

)

− m+ 4πpr3

2r2

(

1− 1

C2
s

)

− 4πr(3p+ ρ)

]

Slm

+
eν

r2

[

2(m+ 4πpr3)2

r2(r − 2m)

1

C2
s

− m+ 4πpr3

2r2

(

1− 1

C2
s

)

− 4πr(3p+ ρ)

]

Flm . (4.25)
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This third wave equation (4.25) is valid only inside the star, while the first two are simplified considerably outside
the star, which can be reduced to a single wave-type equation, i.e. the Zerilli equation (see [44] and §VB). Finally,
the Hamiltonian constraint,

∂2Flm

∂r2∗
− e(ν+λ)/2

r2
(

m+ 4πr3p
) ∂Flm

∂r∗
+

eν

r3
[

12πr3ρ−m− 2(n+ 1)r
]

Flm

− re−(ν+λ)/2 ∂Slm

∂r∗
+

[

8πr2(ρ+ p)− (n+ 3) +
4m

r

]

Slm +
8πr

C2
s

eν(ρ+ p)Hlm = 0 , (4.26)

can be used for setting up initial data and monitoring the evolution of the coupled system.
Regarding the quadrupole gravitational perturbations, the perturbation equation for the “magnetic type” dipole in

the exterior region is obtained from Eq. (3.29) as

∂2Φ10

∂t2
− ∂2Φ10

∂r2∗
+

2

r2
eνΦ10 = S

(M)
20 , (4.27)

where Φlm ≡ f
(M)
23,lm and

S
(M)
20 = −Q20e

ν

[

(

2B2 + rB2
′
)

r2S20 +

(

eνB2 + reνB2
′ − 2

r
B1

)

F20 + rB2
∂F20

∂r∗

]

. (4.28)

In order to derive the wave equation (4.27), we have used Eq. (3.10) and the (r, φ)-component of the perturbed Einstein

equations, i.e. e−νḢ1 − H ′
0 + K ′ − ν′H0 = 0. We remark that the wave equation (4.27) without the source terms

is the same as the one derived in [49, 50]. In addition, the other components of the electromagnetic perturbations,

f
(M)
12,10 and f

(M)
02,10, can be determined with Φ10 via the relation (3.10).

Finally, from Eq. (3.49) and Eq. (3.10), we can obtain the equation that determines the dipole “magnetic type”
perturbations for the interior region:

∂Φ10

∂t
= Q20r

2eν/2 (B2R20 − 3B1V20) , (4.29)

where the perturbations of the fluid velocity, R20 and V20, in the source term are given by

∂R20

∂t
=eν/2−λ

[(

−11p+ 3ρ

2(p+ ρ)
+

3rν′

2

)

e−νS20 −
3

2
re−νS′

20 +
3p− ρ

2r2(p+ ρ)
(F20 − rF ′

20)−H ′

20

]

, (4.30)

∂V20

∂t
=

1

2r2
eν/2

[

re−νS20 +
ρ− 3p

p+ ρ

F20

r
− 2H20

]

. (4.31)

V. PERTURBATIONS OF DIPOLE MAGNETIC FIELD ON A BH BACKGROUND

The perturbations of a dipole magnetic field on a Schwarzschild black hole background are described by the same
set of perturbation equations as in the exterior region of the star except for the boundary conditions, i.e. the
boundary conditions for the neutron star imposed on the stellar surface are Eqs. (3.53) – (3.55), while for the
black hole case one should impose the pure ingoing wave conditions at the event horizon. Then, even in the case
of the black hole background, we observe the same coupling of the various harmonics of the electromagnetic and
gravitational perturbations as for the neutron star background. That is, for the axisymmetric perturbations, the
“electric” dipole (l = 1) perturbations of the electromagnetic fields will be driven by axial quadrupole (l = 2)
gravitational perturbations, while the “magnetic” dipole (l = 1) perturbations of the electromagnetic fields will be
driven by polar quadrupole (l = 2) gravitational ones. In this specific case, our study is similar to the work in [24],
although they use a different formalism.

A. Dipole Electric Perturbations driven by Axial Gravitational Perturbations (BH)

The axial quadrupole (l = 2) gravitational perturbations are described by the Regge-Wheeler equation

∂2Xlm

∂t2
− ∂2Xlm

∂r2∗
+ eν

(

Λ

r2
− 6M

r3

)

Xlm = 0 , (5.1)
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where

Xlm =
eν

r
h1,lm . (5.2)

In accordance with the results of Section IVA, the perturbations of the electromagnetic fields will be described by a
single wave equation, that is, the Regge-Wheeler equation for electromagnetic perturbations, give by

∂2Ψ10

∂t2
− ∂2Ψ10

∂r2∗
+

2

r2
eνΨ10 = S

(E)
20 , (5.3)

where the source term becomes of the same form as in Section IVA: Ψlm = eνf
(E)
12,lm.

B. Dipole Magnetic Perturbations driven by Polar Gravitational Perturbations (BH)

The equation describing the “magnetic” type perturbations driven by the gravitational perturbations is the same
equation as the one derived for a neutron star background (see Eq. (4.27)), that is

∂2Φ10

∂t2
− ∂2Φ10

∂r2∗
+

2

r2
eνΦ10 = S

(M)
20 , (5.4)

where Φlm = f
(M)
23,lm, and the source term is also of the same form as in Eq. (4.28). The perturbative equation for the

spacetime variables can be written in the form of the Zerilli equation

∂2Zlm

∂t2
− ∂2Zlm

∂r2∗
+ VZ(r)Zlm = 0 , (5.5)

VZ(r) =
2eν

[

Λ2
1(Λ1 + 1)r3 + 3MΛ2

1r
2 + 9M2Λ1r + 9M3

]

r3(rΛ1 + 3M)2
, (5.6)

where Λ1 ≡ (l+2)(l− 1)/2. Meanwhile, in the same way as for the neutron star background, one can also adopt Flm

and Slm as the perturbation variables for the spacetime. In this case, the two wave equations simplify to become

∂2Slm

∂t2
− ∂2Slm

∂r2∗
+ eν

(

Λ

r2
− 2M

r3

)

Slm = −4M

r5
eν

(

3− 7M

r

)

Flm , (5.7)

∂2Flm

∂t2
− ∂2Flm

∂r2∗
+ eν

(

Λ

r2
− 2M

r3

)

Flm = −2eνSlm , (5.8)

which have to be supplemented with the Hamiltonian constraint equation

∂2Flm

∂r2∗
− M

r2
∂Flm

∂r∗
− Λ

r2
eνFlm − r

∂Slm

∂r∗
− 1

2
(4eν + Λ)Slm = 0 . (5.9)

Note that there are useful relations between the perturbation variables (Flm, Slm) and the Zerilli function (Z), i.e.

Flm = r
dZlm

dr∗
+

Λ1(Λ1 + 1)r2 + 3Λ1Mr + 6M2

r(Λ1r + 3M)
Zlm , (5.10)

Slm =
1

r

dFlm

dr∗
− (Λ1 + 2)r −M

r3
Flm +

(Λ1 + 1)(Λ1r + 3M)

r3
Zlm , (5.11)

which can be used in constructing initial data (since the Zerilli function is gauge invariant and unconstrained), or for
the extraction of the Zerilli function.

VI. APPLICATIONS

As an application, we consider the case in which dipole “electric type” perturbations are driven by axial gravitational
ones and present numerical results. First, we study the coupling on a Schwarzschild black hole background and later
on the background of spherical neutron stars, as discussed in §VA and in §IVA, respectively. The more complicate
cases that involve the driving of “magnetic type” electromagnetic field perturbations driven by polar gravitational
ones will be discussed elsewhere in the future.
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A. Perturbations on a Black-Hole Background

In order to calculate the waveforms in the black hole background, we need to modify the background magnetic field
near the event horizon. The reason for this is that the solution for a dipole magnetic field in vacuum diverges at the
event horizon (see Eqs. (2.15) and (2.16)). In fact, the isolated black hole cannot have magnetic fields due to the no
hair theorem. But, according to the simulations of the accretion onto the black hole, the magnetic field can reach
almost to the event horizon, because the accreting matter will fall into the black hole with infinite time [51, 52]. Thus,
we adopt a simple modification of the dipole magnetic field near the event horizon, that is, we set B1(r) = B1(6M)
and B2(r) = B2(6M) for r ≤ 6M , where the position at r = 6M corresponds to the innermost stable circular orbit for
a test particle around the Schwarzschild black hole. The magnetic dipole moment µd is identified with the normalized
magnetic field strength B15, defined as B15 ≡ Bp/(10

15[G]), where Bp is the field strength at r = 6M and θ = 0.
We assume vanishing electromagnetic perturbations i.e., Ψ10 = ∂Ψ10/∂t = 0 at the initial time slice t = 0,

while the initial gravitational perturbations, X20, are prescribed in terms of a Gaussian wave packet. Under these
initial conditions, the electromagnetic waves will result from the coupling to the gravitational ones. In the numerical
calculations, we adopt the iterated Crank-Nicholson method [53] with a grid choice of ∆r∗ = 0.1M and ∆t = ∆r∗/2
(see [54] for the dependence of the choice of ∆r∗ and ∆t on the waveforms).
The energy emitted in the form of either gravitational (EGW) or electromagnetic waves (EEM), is estimated by

integrating the luminosity (L
(A)
GW,l) for the axial gravitational waves and for electric type electromagnetic waves (L

(E)
EM,l),

which are described by the following formulae [45, 46]

L
(A)
GW,l =

1

16π

(l − 2)!

(l + 2)!

∣

∣

∣

∣

∂Xl0

∂t

∣

∣

∣

∣

2

, (6.1)

L
(E)
EM,l =

1

4π

(l + 1)!

(l − 1)!

∣

∣

∣

∣

∂Ψl0

∂t

∣

∣

∣

∣

2

. (6.2)

In practice, we can find a relation between the energy emitted in gravitational and electromagnetic waves for a given
initial spacetime perturbation, which has the form:

EEM = αB15
2EGW , (6.3)

where α is a “proportionality constant”.
In the simulation that we describe we set the magnetic field strength to the value Bp = 1015 Gauss. Fig. 1 shows

the waveform of the gravitational wave observed at r = 2000M , the amplitude is normalized to correspond to an
emitted energy of EGW ≈ 1.8 × 1049 (M/50M⊙) ergs. On the other hand, the waveforms of electromagnetic waves
driven by the gravitational waves are shown in Fig. 2. From this figure, we can observe somewhat complicated
waveforms of electromagnetic waves due to the coupling with the gravitational waves. From the specific waveforms,
one can estimate the value of the proportionality constant in the relation (Eq. (6.3)) to be α = 8.02 × 10−6. This
efficiency might not be very high, but the radiated energy of gravitational waves can reach ∼ 1051 ergs for a black
hole formation due to the merger of a neutron stars binary (see, e.g. [55]). In this case the strength of the magnetic
field can be amplified by the Kelvin-Helmholz instability to reach values of the order of 1015−17 Gauss [56]. Although
this is not an ideal situation for the black hole case we are considering in this paper, if one adopts the above efficiency
for the case of a black hole formed after merger, one can expect that energies of the order of ∼ 1046−50 ergs can be
emitted in the form of electromagnetic waves which can be potentially driven by the gravitational field perturbations.
Furthermore, in Fig. 3, we show the Fast Fourier Transform (FFT) of the electromagnetic waveforms shown in

Fig. 2, where for comparison we also add the frequencies of the quasinormal modes for l = 1 electromagnetic waves
(dashed line) and for l = 2 gravitational waves (dot-dash line) radiated from the Schwarzschild black hole [45]. From
this figure, one can obviously see that the driven electromagnetic waves have two specific frequencies corresponding
to the l = 1 quasinormal mode of electromagnetic waves and the l = 2 quasinormal mode of gravitational waves.
This means that it might be possible to see the effect of gravitational waves via observation of electromagnetic
waves. However, electromagnetic waves with such a low frequencies could be coupled/absorbed by the interstellar
medium (and/or accretion disk around the central object) during the propagation and it will be almost impossible to
directly detect the driven electromagnetic waves. The only possible way to see the driven electromagnetic waves is
the observation of indirect effects, such as synchrotron radiation.
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FIG. 1: Gravitational waveform observed at r = 2000M . In the right panel, we also show the absolute value of X20.
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FIG. 2: Waveform of the driven electromagnetic waves observed at r = 2000M for Bp = 1015 Gauss. In the right panel, we
also show the absolute value of Ψ10.

B. Perturbations on a Neutron-Star Background

In order to examine the coupling between the emitted gravitational and electromagnetic waves in a neutron star
background, we adopt the same initial conditions as for the black hole case, i.e. the electromagnetic perturbations are
set to zero and the initial gravitational perturbations are approximated by an ingoing Gaussian wave packet. In the
numerical calculations, we adopt a grid spacing of ∆r = R/200 and a time step ∆t/∆r = 0.05, where R is the stellar
radius. For the background stellar models, we adopt the polytropic equation of state (EOS) of the form P = KρΓ.
Then, one can get the waveforms of the reflected gravitational waves and the induced electromagnetic ones.

0.00 0.04 0.08 0.12
0

1!10–15

2!10–15

3!10–15

f M

F
F
T

fGWfEMW

FIG. 3: FFT of the electromagnetic waves shown in Fig. 2. The two vertical lines correspond to the frequencies of quasinormal
modes for l = 1 electromagnetic waves (dashed line) and for l = 2 gravitational waves (dot-dash line).



15

As an example, we show results for a stellar mode with Γ = 2 and K = 200 km2. Fig. 4 shows the waveforms of
the gravitational waves (solid line) and the electromagnetic waves (dotted line) observed at r = 300 km, where we
adopt two stellar models with different compactness M/R (see Table I for the stellar properties). Compared with the
fast damping of gravitational waves, one can see the long-term oscillations in the electromagnetic waves, which can be
driven not only by the quasinormal ringing of gravitational waves but also during the tail phase of the gravitational
waves. For the waveforms shown in Fig. 4, the FFT is plotted in Fig. 5, where the left and right panels correspond to
the FFT of the gravitational and electromagnetic waves, respectively. From this figure, one can see the same features
as in the case of a black hole. Namely, the FFT of the electromagnetic waves driven by the gravitational waves has
two specific frequencies, i.e. one is the proper electromagnetic oscillation (1st peak in the right panel of Fig. 5) and
the other one is the oscillation corresponding to the gravitational waves (2nd peak in the right panel of Fig. 5). We
remark that electromagnetic waves with such low frequencies could be absorbed by the interstellar medium and then,
their direct detection is almost impossible. Namely, we should consider the secondary emission mechanism such as a
synchrotron radiation. Maybe, the plasma around the central object will be excited after receiving the energy from
the electromagnetic waves driven by the gravitational waves and move along with the magnetic field lines. Anyway,
such a secondary emission mechanism will be discussed somewhere. Furthermore, we find that as in the case for a
black hole, the relationship between the emitted energies of gravitational and electromagnetic waves can be described
by Eq. (6.3), even for neutron stars, if Bp is considered as the magnetic field strength at the stellar pole (r = R and
θ = 0). In practice, for the specific stellar models in Fig. 4, the proportionality constant becomes α = 1.61 × 10−5

and 4.37× 10−6 for the particular stellar models with M/R = 0.162 and 0.237, respectively.
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FIG. 4: Waveforms of the gravitational waves (solid line) and the electromagnetic waves (dotted line) for the stellar model with
Bp = 1015 Gauss, which are observed at r = 300 km. The left and right panels are corresponding to different stellar models
for EOS with Γ = 2 and K = 200 km2.
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FIG. 5: FFT of the gravitational waves (left panel) and electromagnetic waves (right panel) shown in Fig. 4.

In order to see the dependence on the stellar properties, we study a variety of stellar models with different stiffness
of the equation of state and with different central densities, radii, and masses, which are given in Table I. As a
result, we find that the proportionality constant α can be written as a function of the stellar compactness, which is
almost independent of the stellar models and the adopted equation of state. In fact, in Fig. 6 we plot the values of
α for various stellar models, where the circles, diamonds, and squares correspond to the results for the stellar models
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TABLE I: Stellar parameters adopted in this article.

Γ K ρc (g/cm3) M/M⊙ R (km) M/R

2 100 1.0 × 1015 0.802 10.8 0.109

2 100 1.5 × 1015 0.998 10.2 0.145

2 100 2.0 × 1015 1.126 9.67 0.172

2 100 3.0 × 1015 1.266 8.86 0.211

2 200 0.7 × 1015 1.365 14.6 0.138

2 200 0.9 × 1015 1.528 14.0 0.162

2 200 1.0 × 1015 1.592 13.7 0.172

2 200 1.5 × 1015 1.791 12.5 0.211

2 200 2.0 × 1015 1.876 11.7 0.237

2.25 600 1.0 × 1015 0.732 9.69 0.111

2.25 600 1.5 × 1015 1.008 9.44 0.158

2.25 600 2.0 × 1015 1.197 9.12 0.194

2.25 600 3.0 × 1015 1.404 8.48 0.245

2.25 600 4.0 × 1015 1.486 7.95 0.276

characterized by (Γ,K) = (2, 100), (2,200), and (2.25,600). From this figure, one can see that the proportionality
constant α depends strongly on the stellar compactness, as expected, with typical values ranging from 10−6 up to
∼ 10−4.
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FIG. 6: The proportionality constant α as a function of the stellar compactness for various polytropic models. The circles,
diamonds, and squares correspond to stellar models with (Γ,K) = (2, 100), (2, 200), and (2.25, 600).

VII. CONCLUSION

We have considered the coupling between gravitational and electromagnetic waves emitted by compact objects,
i.e. black holes and neutron stars. We have derived a coupled system of equations describing the propagation of
gravitational and electromagnetic waves. In our study we have investigated the driving of electromagnetic pertur-
bations via their coupling to the gravitational ones. However, for simplicity, we have neglected the back reaction
from the electromagnetic waves on the gravitational waves, because the magnetic energy of the compact objects, even
for magnetars, is quite small as compared with the gravitational energy. We found that the electromagnetic waves
of specific parity with harmonic indices (l,m) can be coupled to gravitational waves of the same parity and with
harmonic indices (l,m) (for m 6= 0) and harmonic indices (l ± 1,m), for every value of m. In particular, our findings
lead to the result that, for the axisymmetric perturbations, i.e., m = 0, the dipole electric electromagnetic waves will
be driven by axial quadrupole gravitational waves, while the dipole magnetic electromagnetic waves will be driven by
polar gravitational waves.
As an application of our perturbative framework, we presented numerical calculations for the case in which dipole-

electric electromagnetic waves are driven by the axial gravitational ones, both for the case of a black hole and a
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neutron star background. We found that the emitted energy in electromagnetic waves driven by the gravitational
waves is proportional to not only the emitted energy in gravitational waves but also to the square of the strength
of the magnetic field of the central object. For the case of a black hole background, the ratio of the emitted energy
of the electromagnetic waves to that of the gravitational waves is around 8 × 10−6(Bp/10

15G)2, where Bp is the
magnetic field strength at r = 6M . On the other hand, in the case of a neutron star background, we find that this
proportionality constant can be written as a function of the stellar compactness.
Although we have considered only the case of axial gravitational waves and the associated induced electromagnetic

waves, the polar oscillations also play an important role in extracting the information about the neutron star structure
since in the case of non-rotating stars, the matter oscillations are typically coupled to the polar gravitational waves.
This is a direction that we are currently investigating.

Acknowledgments

H.S. is grateful to Ken Ohsuga for valuable comments. This work was supported by the German Science Founda-
tion (DFG) via SFB/TR7, by Grants-in-Aid for Scientific Research on Innovative Areas through No. 23105711, No.
24105001, and No. 24105008 provided by MEXT, by Grant-in-Aid for Young Scientists (B) through No. 24740177
provided by JSPS, by the Yukawa International Program for Quark-hadron Sciences, and by the Grant-in-Aid for
the global COE program “The Next Generation of Physics, Spun from Universality and Emergence” from MEXT.
C.F.S. acknowledges support from contracts FIS2008-06078-C03-03, AYA-2010-15709, and FIS2011-30145-C03-03 of
the Spanish Ministry of Science and Innovation, and contract 2009-SGR-935 of AGAUR (Generalitat de Catalunya).
P.L. acknowledges the support from NSF awards 1205864, 0903973 and 0941417.

[1] S. Márka (The LIGO Scientific Collaboration and the Virgo Collaboration), Class. Quantum Grav. 28, 114013 (2011)
[2] N. L. Christensen (The LIGO Scientific Collaboration and the Virgo Collaboration), preprint arXiv:1105.5843 [gr-qc]
[3] P. Ghosh Rotation and Accretion Powered Pulsars, World Scientific (2007).
[4] A. L. Watts and T. E. Strohmayer, Adv. Space Res., 40, 1446 (2006).
[5] K. Glampedakis, L. Samuelsson, and N. Andersson, Mon. Not. R. Astron. Soc. 371, L74 (2006).
[6] Y. Levin, Mon. Not. R. Astron. Soc. 377 159 (2007).
[7] H. Sotani, K. D. Kokkotas, and N. Stergioulas, Mon. Not. R. Astron. Soc. 385, 261 (2007).
[8] H. Sotani, K. D. Kokkotas, and N. Stergioulas, Mon. Not. R. Astron. Soc. 375, L5 (2008).
[9] A. Colaiuda, H. Beyer, and K. D. Kokkotas, Mon. Not. R. Astron. Soc. 395, 1163 (2009).

[10] P. Cérda-Durán, N. Stergioulas, and J. A. Font, Mon. Not. R. Astron. Soc. 397, 1607 (2009).
[11] H. Sotani, Mon. Not. R. Astron. Soc. 417, L70 (2011).
[12] M. van Hoven, Y. Levin, Mon. Not. R. Astron. Soc 410, 1036 (2011).
[13] M. Gabler, P. Cérda-Durán, J. A. Font, E. Müller, and N. Stergioulas, Mon. Not. R. Astron. Soc. 421, 2054 (2012).
[14] A. Colaiuda and K. D. Kokkotas, Mon. Not. R. Astron. Soc. 423, 811 (2012).
[15] H. Sotani, K. Nakazato, K. Iida, and K. Oyamatsu, Phys. Rev. Lett. 108, 201101 (2012).
[16] H. Sotani, K. Nakazato, K. Iida, and K. Oyamatsu, Mon. Not. R. Astron. Soc. 428, L21 (2013).
[17] M. van Hoven, Y. Levin, Mon. Not. R. Astron. Soc 420, 3035 (2012).
[18] L. P. Grishchuk and A. G. Polnarev, General Relativity and Gravitation, edited by A. Held (Plenum Press, New York,

1980), Vol. 2, pp. 416.
[19] D. Papadopoulos, N. Stergioulas, L. Vlahos, and J. Kuijpers., Astron. Astrophys. 377, 701 (2001).
[20] M. Servin and G. Brodin, Phys. Rev. D 68, 044017 (2003).
[21] J. Moortgat and J. Kuijpers, Astron. Astrophys. 402, 905 (2003).
[22] J. Moortgat and J. Kuijpers, Phys. Rev. D 70, 023001 (2004).
[23] M. Forsberg, G. Brodin, M. Marklund, P. K. Shukla, and J. Moortgat, Phys. Rev. D 74, 064014 (2006).
[24] C. A. Clarkson, M. Marklund, G. Betschart, and P. K. S. Dunsby, Astrophys. J. 613, 492 (2004).
[25] B. F. Schutz, Introduction to General Relativity (Cambridge University Press, Cambridge 1985).
[26] I. Wasserman and S. L. Shapiro, Astrophys. J. 265, 1036 (1983).
[27] M. Bocquet, S. Bonazzola, E. Gourgoulhon, and J. Novak, Astron. Astrophys. 301, 757 (1995).
[28] K. Konno, T. Obata, and Y. Kojima, Astron. Astrophys. 352, 211 (1999).
[29] A. Colaiuda, V. Ferrari, L. Gualtieri, and J. A. Pons, Mon. Not. R. Astron. Soc. 385, 2080 (2008).
[30] S. Bonazzola, E. Gourgoulhon, M. Salgado, and J. A. Marck, Astron. Astrophys. 278, 421 (1993).
[31] C. Kouveliotou et al., Nature, 393, L235 (1998).
[32] K. Hurley et al., Nature, 397, L41 (1999).
[33] G. L. Israel et al., Astrophys. J. 628, L53 (2005).
[34] P. D. Lasky, B. Zink, K. D. Kokkotas, and K. Glampedakis, Astrophys. J 735, L20 (2011).



18

[35] R. Ciolfi, S. K. Lander, G. M Manca, and L. Rezzolla, Astrophys. J 736, L6 (2011).
[36] B. Zink, P. D. Lasky, and K. D. Kokkotas, Phys. Rev. D 85, 024030 (2012).
[37] P. Lasky, B. Zink, and K. D. Kokkotas, Preprint, arXiv: 1203.3590.
[38] R. Ciolfi and L. Rezzolla, Astrophys. J., 760, (2012).
[39] T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).
[40] K. S. Thorne and A. Campolattaro, Astrophys. J. 149, 591 (1967).
[41] F. Zerilli, Phys. Rev. D 2, 2141 (1970).
[42] K. D. Kokkotas and B. F. Schutz, Mon. Not. R. Astron. Soc. 255, 119 (1992).
[43] Y. Kojima, Phys. Rev. D 46, 4289 (1992).
[44] G. Allen, N. Andersson, K. D. Kokkotas, and B. F. Schutz, Rhys. Rev. D 58, 124012 (1998).
[45] C. M. Cunningham, R. H. Price, and V. Moncrief, Astrophys. J. 224, 643 (1978).
[46] C. M. Cunningham, R. H. Price, and V. Moncrief, Astrophys. J. 230, 870 (1979).
[47] S. Chandrasekhar and V. Ferrari, Proc. Roy. Soc. London A432, 247 (1991).
[48] K. D. Kokkotas, Mon. Not. R. Astron. Soc. 268, 1015 (1994).
[49] H. Sotani, S. Yoshida, and K. D. Kokkotas, Phys. Rev. D 75, 084015 (2007).
[50] H. Sotani, Phys. Rev. D 79, 084037 (2009).
[51] A. Tchekhovskoy, R. Narayan, and J. C. McKinney, Mon. Not. R. Astron. Soc. 418, L79 (2011).
[52] J. C. McKinney, A. Tchekhovskoy, and R. D. Blandford, Mon. Not. R. Astron. Soc. 423, 3083 (2012).
[53] S. A. Teukolsky, Phys. Rev. D 61, 087501 (2000).
[54] H. Sotani and M. Saijo, Phys. Rev. D 74, 024001 (2006).
[55] M. Shibata, K. Taniguchi, and K. Uryu, Phys. Rev. D 68, 084020 (2003).
[56] D.J. Price and S. Rossweg, Science, 312, 719 (2006).


