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Black-hole–neutron-star mergers resulting in the disruption of the neutron star and the formation
of an accretion disk and/or the ejection of unbound material are prime candidates for the joint de-
tection of gravitational-wave and electromagnetic signals when the next generation of gravitational-
wave detectors comes online. However, the disruption of the neutron star and the properties of the
post-merger remnant are very sensitive to the parameters of the binary (mass ratio, black hole spin,
neutron star radius). In this paper, we study the impact of the radius of the neutron star and the
alignment of the black hole spin on black-hole–neutron-star mergers within the range of mass ratio
currently deemed most likely for field binaries (MBH ∼ 7MNS) and for black hole spins large enough
for the neutron star to disrupt (JBH/M

2
BH = 0.9). We find that: (i) In this regime, the merger is

particularly sensitive to the radius of the neutron star, with remnant masses varying from 0.3MNS

to 0.1MNS for changes of only 2 km in the NS radius; (ii) 0.01M⊙ − 0.05M⊙ of unbound material
can be ejected with kinetic energy >∼ 1051 ergs, a significant increase compared to low mass ratio,
low spin binaries. This ejecta could power detectable post-merger optical and radio afterglows. (iii)
Only a small fraction of the Advanced LIGO events in this parameter range have gravitational-wave
signals which could offer constraints on the equation of state of the neutron star (at best ∼ 3% of the
events for a single detector at design sensitivity). (iv) A misaligned black hole spin works against
disk formation, with less neutron star material remaining outside of the black hole after merger,
and a larger fraction of that material remaining in the tidal tail instead of the forming accretion
disk. (v) Large kicks vkick >∼ 300 km/s can be given to the final black hole as a result of a precessing
BHNS merger, when the disruption of the neutron star occurs just outside or within the innermost
stable spherical orbit.

PACS numbers: 04.25.dg, 04.30.-w, 04.40.Dg, 47.75.+f

I. INTRODUCTION

The next generation of ground-based gravitational-
wave detectors (Advanced LIGO, Advanced Virgo and
KAGRA [1–3]) will progressively begin taking data over
the next decade, opening an entirely new way to observe
the universe. One of the sources of gravitational waves
that they will detect are compact binary coalescences: bi-
nary black holes (BBH), black-hole–neutron-star (BHNS)
and binary neutron star (BNS) systems [4]. In the
presence of a neutron star, these gravitational-wave sig-
nals could be accompanied by electromagnetic emissions,
which would provide better sky localization and addi-
tional information about the characteristics and the en-
vironment of the binary. The most energetic, and most
often discussed potential counterparts are short gamma-
ray bursts (SGRBs, see e.g. [5]), while other possibilities
include the x-ray and optical afterglows of SGRBs, opti-
cal transients due to the radioactive decay of neutron-rich
unbound material, and radio emission from that ejecta
as it decelerates in the interstellar medium (see [6] for
more details on EM signals emitted by compact binary
mergers, and [7] for their detectability). The ejection of
a small amount of material at ultrarelativistic speeds as

a result of a shock in the region in which two neutron
stars first get into contact was also recently proposed as
a potential outcome of BNS mergers [8]. Finally, pre-
merger electromagnetic transients are also a possibility,
and could for example be due to the breaking of the neu-
tron star crust [9].

Which of these effects occur in practice depends
strongly on the parameters of the binary. The exact con-
ditions leading to the emission of a SGRB are not known,
and will depend on the physical process responsible for
these bursts — most likely either the extraction of black
hole rotational energy by the magnetic field of the ac-
cretion disk (Blandford-Znajek effect [10]), magnetically-
driven outflows in the accretion disk (Blandford-Payne
effect [11]), or the production of ultrarelativistic e+e−

pairs from the annihilation of νν̃ pairs, themselves pro-
duced by a hot accretion disk surrounding the remnant
black hole [5, 12]. In all cases, the presence of both an
accretion disk and a baryon-poor region in which a rela-
tivistic jet can be produced appears to be a prerequisite.
The amount of matter required in the disk depends on
the efficiency of the jet production mechanism and the
energy of the burst, with estimates spanning multiple
orders of magnitudes (10−4M⊙ − 0.5M⊙) [13, 14]. The
formation of an accretion disk is a natural result of the
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merger of BNS systems. For BHNS binaries, however,
many initial conditions lead to the direct plunge of the
neutron star into the black hole, before the tidal field
of the hole can disrupt the neutron star and cause the
formation of an accretion disk. Relatively massive black
holes (MBH >∼ 7M⊙) are favored both by current popu-
lation synthesis models [15, 16] and by the distribution
of black hole masses measured in galactic X-ray bina-
ries [17]. In that regime, tidal disruption only occurs for
the most rapidly spinning black holes [18].

The ejection of enough unbound material to power de-
tectable electromagnetic transients is not a certainty ei-
ther. General relativistic simulations of BNS systems
have found that only a small amount of mass is unbound
by the merger (Mej = 10−4M⊙ − 10−2M⊙) [19], while
Newtonian smoothed particle hydrodynamics (SPH)
simulations have more optimistic predictions (Mej >∼
10−2M⊙) [20]. BHNS systems have more asymmetric
mass ratios, and are thus generally more favorable for the
ejection of neutron-rich material during the disruption of
the neutron star. However, this requires the neutron star
to be disrupted in the first place. Numerical simulations
have shown that this will only be the case if the mass of
the black hole is lower than what population synthesis
models predict, or if the spin of the black hole is high.
The amount of material ejected in such mergers remains
very uncertain. SPH results predict ejected masses of
up to ∼ 0.1M⊙ [21]. General relativistic simulations for
low mass, low spin black holes find little ejected mate-
rial (< 0.01M⊙) [22], but estimates for rapidly spinning
black holes have not been offered yet. We show in this
paper that more massive outflows (0.01M⊙ − 0.05M⊙)
are likely for high black hole spins. Finally, matter could
be ejected due to magnetically-driven [23] or neutrino-
driven [24] winds in the disk.

An important limitation of existing general relativis-
tic simulations of BHNS mergers is the lack of cov-
erage of the range of black hole masses deemed most
likely astrophysically. The only simulations consider-
ing mass ratios q = MBH/MNS > 5 have shown that,
even for very large neutron stars (RNS ∼ 14.4 km) and
aligned black hole spins, dimensionless black hole spins
χBH = J/M2

BH
>∼ 0.7 are required for tidal disruption to

occur [18]. Simulations for more symmetric mass ratios
have however already shown that smaller neutron star
radii [22, 25] or misaligned black hole spins [26] are likely
to make tidal disruption harder. In this paper, we begin
a more quantitative exploration of these effects. We con-
sider BHNS binaries at mass ratio q = 7 and with large
black hole spins χBH = 0.9, and vary the radius of the
neutron star and the orientation of the black hole spin.
We currently limit ourselves to the most basic physical
effects which will influence the dynamics of the merger:
we treat gravity in a fully general relativistic framework,
but use a simple Γ-law equation of state to describe the
neutron star matter, and ignore the effects of magnetic
fields or neutrino radiation. More realistic equations of
state are likely to influence tidal disruption, but to first

order the compactness of the neutron star is expected
to capture the main physical effects during merger [22].
Magnetic fields are important for the evolution of any
post-merger accretion disk, as these disks are unstable to
the magnetorotational instability (MRI), but very large
internal fields are necessary for magnetic effects to in-
fluence the disruption of the neutron star [27, 28]. Fi-
nally, while neutrinos are the main source of cooling in
the disk, and are thus crucial to their evolution over a
cooling timescale τν (τν ∼ 0.1s for the relatively dense
disks considered by Lee et al. [12], and could be signifi-
cantly smaller for the lower density disks observed at the
end of our simulations), neutrino emission will be neg-
ligible before merger (neutron stars are expected to be
extremely cool, with T ≪ 1MeV). This was confirmed
numerically in the case of BNS [29]. Our simulations will
thus capture the physical effects which are important for
the evolution of BHNS systems in the last few orbits be-
fore their merger, and during the merger itself. They are
however not suitable for the long term evolution of the
post-merger remnant.

Gravitational waveforms from BHNS and BNS merg-
ers are of particular interest for the constraints that they
might offer on the unknown equation of state of the neu-
tron star. Numerical simulations indicate that from the
last few orbits of a BNS merger occurring at 100Mpc,
constraints of ∼ 1 km could be obtained on the radius
of the neutron star [30]. Damour et al. [31] have shown
using Effective One Body waveforms that equations of
state effects in the late inspiral could be measured for
events of moderate signal-to-noise ratio (ρ ∼ 16). Accu-
rate numerical simulations are however necessary to cal-
ibrate such models at high frequency. Numerical results
by Bernuzzi et al. [32] have confirmed the predictions
of Damour et al. [31] regarding the detectability of these
equations of state effects, but existing simulations are not
accurate enough to model the waveform with the accu-
racy required to take full advantage of all of the informa-
tion that will be available in waveforms detected by Ad-
vanced LIGO. For BHNS mergers of nonspinning black
holes, tidal effects during the inspiral are too small to be
detected directly by Advanced LIGO [31, 33]. But the
cutoff in the gravitational-wave spectrum occurring when
the neutron star is disrupted by the tidal field of the black
hole can be. Semi-analytical models have been developed
to attempt to extract that information [34, 35]. Numer-
ical simulations mapping the cutoff frequency across the
relevant parameter space are however necessary to better
calibrate them.

At low mass ratios (q = 2 − 3) and for nonspinning
black holes, Lackey et al. [36] have shown from numeri-
cal simulations that the combined effects of the tidal in-
teractions during the inspiral and of the high-frequency
cutoff of the signal would allow Advanced LIGO to detect
variations of ∼ 10% − 40% in the radius of the neutron
star for a favorable event at ∼ 100Mpc. This is thus
slightly inferior to what can be done for binary neutron
star systems located at the same distance from the ob-
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server (and, within a fixed volume, we expect many more
BNS mergers than BHNS mergers). At higher mass ra-
tio, tidal effects during the inspiral further decrease [33].
On the other hand, due to the higher total mass of the
system, the amplitude of the signal will be larger. Tidal
disruption will also occur at lower frequency, and thus in
a more favorable region of the LIGO noise curve. The
spin of the black hole can also affect how much tidal
distortion occurs during the inspiral (as the neutron star
can get closer to a spinning BH before reaching its ISCO,
tidal effects can be stronger). How these competing ef-
fects will affect our ability to measure the properties of
neutron stars in BHNS binaries, or even to differentiate
BHNS systems from BBH binaries, remains an important
open question.
In this paper, we study the influence of the radius

of the neutron star and of the orientation of the black
hole spin on the dynamics of the merger of BHNS bi-
naries around the black hole mass MBH ∼ 10M⊙ cur-
rently favored by population synthesis models, focusing
on tidal effects during the inspiral, on the initial charac-
teristics of the post-merger remnant (accretion disk and
tidal tail formation), and on the properties of the emitted
gravitational-wave signal — and in particular the effects
of the neutron star radius on that signal, and the condi-
tions under which such effects might be detected by the
next generation of gravitational-wave experiments. We
stop the simulations 5ms after merger, as neglected mi-
crophysical effects are likely to become important at later
times. We will begin by describing briefly the numerical
setup used for our simulations, as well as modifications to
the code since the publication of [18] (Sec. II). We will
then detail the initial configurations evolved (Sec. III),
and estimate the accuracy of the results (Sec. IV). Fi-
nally, the main physical results are presented in Sec. V.

II. NUMERICAL SETUP

The numerical simulations presented here are per-
formed with the SpEC code [37], which evolves Ein-
stein’s equations of general relativity coupled to the rel-
ativistic hydrodynamics equations (see Appendix A for
details). Einstein’s equations are solved using pseu-
dospectral methods, in the generalized harmonics for-
mulation [38], and excising the black hole interior. The
numerical grid on which Einstein’s equations are solved
consists at first of 8 spherical shells immediately around
the black hole, 8 spherical shells and 1 inner ball in the re-
gion close to the neutron star, 24 spherical shells covering
the far-field region, and a set of 13 distorted cylindrical
shells and filled cylinders connecting them (see Fig. 1).
All subdomains are touching but not overlapping. The
low, medium and high resolution runs correspond to a
total number of points N = 573, 643, 723.
Once the neutron star disrupts, we cannot take advan-

tage of an approximate spherical symmetry around the
neutron star, and have to modify the pseudospectral grid.

FIG. 1: Numerical grid before disruption of the neutron star,
below the equatorial plane of the binary. The black hole is
the excised region on the right (black sphere), while we su-
perpose a linear color scale for the baryon density ρ0. The
subdomains on the outer edge of the plot connect to spherical
shells covering the wave region.

FIG. 2: Same as Fig. 1, but during the disruption of the
neutron star.

The shells around the black hole are replaced by a set of
264 distorted cubes, in order to allow for high angular
resolution as the neutron star falls into the hole. The
wave zone is still covered by 24 spherical shells, while
the region around the neutron star and the near field re-
gion are covered by non-overlapping distorted cubes (see
Fig. 2). The resolution is chosen adaptively, by requir-
ing that the relative truncation error for each set of basis
functions (measured from the coefficients of the spectral
expansion of the evolved variables) is (0.5, 0.7, 1.0)×10−4

for our 3 resolutions. The actual number of grid points
thus vary during the merger, peaking as the neutron star
accretes onto the black hole. At medium resolution, we
have N ∼ 703 − 1103.
The relativistic hydrodynamics equations are solved

on a separate finite difference grid [39]. The grid cov-
ers only the region in which matter is present, and ex-
pands/contracts at discrete times as needed. Before
disruption, we use N = 1003, 1203, 1403 points for the
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3 different resolutions. During merger, we use instead
1203, 1403, 1603 points. For configurations in which the
black hole spin is aligned with the orbital angular mo-
mentum, we only evolve the region above the orbital
plane and impose symmetry conditions on that plane (the
number of grid points in the direction orthogonal to the
orbital plane is then divided by 2).
Compared to the simulations performed in [18], we also

fixed an error in the algorithm responsible for commu-
nicating source terms between the two numerical grids,
which could cause the time stepping algorithm to be effec-
tively of lower order than expected. The correction leads
to reduced errors in the observed trajectories and in the
phase of the gravitational waveforms (see Sec. IVB).

III. INITIAL CONFIGURATIONS

The initial data for these simulations is constructed as
described in Foucart et al.(2008) [40]. The constraints
that Einstein’s equations impose on the initial variables
are solved in the extended conformal thin sandwich ap-
proximation [41], under the assumption that the system
is in equilibrium in a frame rotating at angular veloc-
ity Ω0 and contracting with radial velocity −vr. The
values of Ω0 and vr determine the eccentricity of the sys-
tem, and are chosen iteratively in order to minimize that
eccentricity [42]. We go through two iterations of that
procedure, starting from quasi-circular orbits (i.e. initial
data with vr = 0 and Ω0 chosen so that the initial mo-
tion of the neutron star center has no radial component).
The residual eccentricities at the end of the iterative pro-
cedure are e ∼ 0.002 − 0.004. The free variables in the
initial data (conformal metric, extrinsic curvature) are
the weighted superposition of an isolated black hole in
Kerr-Schild coordinates and of an isolated neutron star
in isotropic coordinates, following the method developed
by Lovelace et al.(2008) [43] for binary black holes. A
more detailed description of the modifications required
to apply this method to black-hole–neutron-star systems
is given in Foucart et al. (2008) [40].
Two series of initial configurations are considered in

this paper (see Table I), chosen in order to study sepa-
rately the effects of the radius of the neutron star and
of the orientation of the black hole spin on BHNS merg-
ers at realistic mass ratios. All configurations consider
a black hole of mass MBH = 7MNS ∼ 10M⊙ and spin
χBH = JBH/M

2
BH = 0.9, where MBH is the Christodolou

mass of the black hole, JBH its angular momentum, and
MNS the ADM mass in isolation of a neutron star with
the same baryon mass M b

NS as the neutron star in the
binary. The neutron star is initially nonspinning. As our
initial data does not exactly represent a BHNS binary in
quasi-equilibrium, small transients are always observed
at the beginning of the simulations. After those tran-
sients, the mass and spin of the black hole are slightly
modified (by ∼ 0.01%). All simulations describe the neu-
tron star matter as an ideal fluid with stress-energy ten-

TABLE I: Initial configurations studied. All binaries have
a mass ratio of 1:7, with the black hole dimensionless spin
magnitude being χBH = 0.9. ΘBH is the angle between the
rotation axis of the black hole and the initial orbital angular
momentum of the binary, CNS = MNS/RNS is the compact-

ness of the neutron star, and R
M=1.4M⊙

NS the Schwarzschild
radius of that neutron star assuming an ADM mass in iso-
lation of 1.4M⊙. The orbital parameters are the eccentricity
e, the initial orbital angular velocity times the total mass of
the system, MΩ(t = 0), and the number of gravitational-
wave cycles before the peak of the wave amplitude, Ncycles

(approximate numbers given for the precessing systems, in
which mode mixing makes this variable ill-defined).

Name ΘBH CNS R
M=1.4M⊙

NS MΩt=0
orbit Ncycles e(t = 0)

R12i0 0◦ 0.170 12.2 km 0.0413 20.5 0.004
R13i0 0◦ 0.156 13.3 km 0.0413 20.3 0.003
R14i0 0◦ 0.144 14.4 km 0.0413 19.7 0.003
R14i20 20◦ 0.144 14.4 km 0.0412 ∼ 18 0.003
R14i40 40◦ 0.144 14.4 km 0.0413 ∼ 17 0.004
R14i60 60◦ 0.144 14.4 km 0.0415 ∼ 14 0.002

sor Tµν = (ρ0(1 + ǫ) + P )uµuν + Pgµν , and use a Γ-law
equation of state of index Γ = 2:

P = κρ20 + ρ0T (1)

ǫ =
P

ρ0
(2)

where ρ0 is the baryon density of the neutron star mate-
rial, P its pressure, ǫ its internal energy, uµ its 4-velocity,
κ a free constant and T a variable related to the tempera-
ture of the fluid (Pth = ρ0T is the thermal pressure in the
fluid). To obtain the physical temperature Tphys of the
fluid from the variable T , we assume that the thermal
pressure is the composition of an ideal gas component
and a black body component:

T =
3kTphys

2mn
+ f

aT 4
phys

ρ0
(3)

wheremn is the nucleon mass, k the Boltzmann constant,
and f a function of T reflecting the fraction of relativistic
particles in the gas (see [44, 45] for details).
In the first group of simulations, we consider black hole

spins aligned with the orbital angular momentum of the
system, and modify the radius of the neutron star be-
tweenR = 12.2 km andR = 14.4 km (forMNS = 1.4M⊙).
This is done by modifying the value of the free parameter
κ in the equation of state of the fluid. We only consider
this simple variation of the equation of state as we know
that, to first order, the radius of the neutron star is the
most important contribution to the dependence of BHNS
mergers on the equation of state of the fluid [22], while
the tidal deformability λ ∼ k2R

5
NS determines tidal ef-

fects during the inspiral [33] (k2 being the tidal Love
number of the neutron star). With respect to these pa-
rameters, the configurations considered here are within
the range currently allowed for real neutron stars. They
do however fail to reproduce other properties of neutron
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stars which are not as relevant to this study. For exam-
ple, all three equations of state have a maximum mass
smaller than 2M⊙ (which is more important for stud-
ies of stellar collapse and of the evolution of hypermas-
sive neutron stars than for tidal disruption and BHNS
mergers, in which the maximum density of the fluid only
decreases over the course of the evolution), they have a
very simplified temperature dependence, and they do not
describe the composition of the fluid. The largest neu-
tron star (case R14i0) is identical to the configuration
studied in Foucart et al.(2012) [18], except that the ini-
tial separation is larger than in our previous work. As
we will see, these parameters study most of the transi-
tion between BHNS mergers resulting in the formation
of massive disks and those having nearly no material left
out of the black hole a few milliseconds after merger.
As we are considering Γ-law equations of state, it is

worth mentioning that any of these simulations actually
represent a continuum of systems, as they are invariant
through the rescaling

M ′ = K ∗M (4)

R′ = K ∗R (5)

T ′ = K ∗ T (6)

where M is the mass scale of the binary, R the distance
scale, T the time scale, and K an arbitrary positive con-
stant. A more useful description of the initial conditions
would thus use quantities which are also invariant un-
der this rescaling, i.e. the mass ratio q = MNS/MBH,
the compactness of the neutron star CNS = MNS/RNS,
and the dimensionless time τ = T/M (in units in which
G = c = 1). Realistic neutron stars of 1.4M⊙ probably
have radii in the range RNS ∼ 9 km−14 km [46], with the
most likely values being RNS ∼ 11 km− 12 km [47]. The
values of CNS considered here are thus more likely to be
found in neutron stars of ADM mass around or slightly
below 1.4M⊙, while probably unrealistically low for very
massive neutron stars (MNS ∼ 2M⊙).
The second set of simulations considers variations of

the orientation of the black hole spin while maintaining
the equation of state fixed (using the larger neutron star
with CNS = 0.144). In terms of disk formation, this
choice of equation of state is clearly optimistic, although
not unrealistic, and thus provides an upper bound on the
mass remaining outside of the black hole after merger.
Moderate misalignments of the spin of the black hole with
respect to the angular momentum of the binaries are an
expected consequence of the kick that the supernova ex-
plosion is likely to impart to the forming neutron star.
The actual distribution of the misalignment angle ΘBH

between the spin of the black hole and the orbital angular
momentum of the binary is currently unknown, although
ΘBH <∼ 90◦ should probably be favored [15]. Here we
vary ΘBH between 0◦ and 60◦, as such misalignments are
both physically realistic and covering the range of param-
eters over which the properties of the final remnant vary
significantly (at least for BHNS systems of mass ratio

q = 7 with black hole spins χBH = 0.9). Misalignments
are also often quoted as the angle ηBH between the black
hole spin and the total angular momentum of the system.
For the systems considered here, ΘBH = (20◦, 40◦, 60◦),
we have ηBH = (7◦, 14◦, 21◦).
All simulations begin at a coordinate separation d =

7.44M , whereM = MBH+MNS is the total ADM mass of
the system at infinite separation. This corresponds to an
initial orbital angular velocity MΩorbit(t = 0) ∼ 0.041,
or an initial gravitational-wave frequency fGW(t = 0) ∼
235Hz

(

1.4M⊙

MNS

)

. Over the course of the simulation, the

binary will go through 7− 10 orbits before merging.

IV. ACCURACY

The combination of spectral and finite difference meth-
ods used in our simulations can make it difficult to ob-
tain strict error estimates: spectral methods are expo-
nentially convergent in regions in which all variables are
smooth, but only show polynomial convergence in the
presence of discontinuities (such as at the surface of the
neutron star or at a shock front). The finite difference
methods used to evolve the equations of relativistic hy-
drodynamics are second order in smooth regions, and
first order at the location of shocks. As the region in
which we get first order convergence should be of mea-
sure zero, we expect at least second-order convergence as
we increase the resolution of the finite difference grid. In
practice, we generally observe much faster convergence
between the 3 resolutions considered here, particularly
for quantities evolved on the spectral grid (e.g. trajec-
tories, gravitational-wave signal,...). A conservative esti-
mate of our error would thus be to assume second order
convergence between our medium and high resolutions -
the actual error being somewhere between that value and
the optimistic estimate obtained by simply looking at the
difference between those two simulations. The ratio be-
tween these pessimistic and optimistic error estimates is
∼ 3 for the simulations presented here.

A. Final Remnant

Of the characteristics of the final remnant listed in Ta-
ble II, the parameters of the black hole (mass and spin)
are the most accurate, with relative errors ǫrelBH

<∼ 0.3%
(i.e. differences of ∼ 0.1% between the medium and
high resolutions). Global mass measurements (disk mass,
tidal tail mass) are already less accurate, with ǫrelMass

<∼
15% (0.01MNS difference measured in the final remnant
mass of the medium and high resolution runs for configu-
ration R13i0). Finally, the maximum density within the
disk is only order-of-magnitude accurate: the distribu-
tion of matter within the disk remains fairly asymmetric
and time-dependent at the end of the simulation, and
variations of ∼ 50% within ∼ 1ms should still be ex-
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FIG. 3: Phase error in the dominant (2,2) mode of the
gravitational-wave signal for simulation R13i0. We show the
phase difference between our standard and high resolutions,
both with (dashed red line) and without (solid black line)
aligning the waves in phase and time. The dash-dotted green
curve shows an estimate of the error in the extrapolation
method (obtained by comparing extrapolation using different
polynomial orders).

pected. Measurements of the mass of unbound material
and the properties of this ejecta have similar errors, and
are discussed in more details in Sec. VA3.

B. Waveform Accuracy

The phase accuracy of the gravitational waveforms in
the non-precessing simulations presented here is about a
factor of 2 better than in our last set of simulations [18],
even though the evolutions are ∼ 2 − 3 orbits longer.
This is most likely due to the correction of an error
which effectively decreased the order of the time step-
ping method used in our simulations. Fig. 3 shows the
phase difference between the medium and high resolu-
tion of the inspiral of simulation R13i0, both without
any matching (i.e. by directly computing the phase dif-
ference between the output of the 2 resolutions), and af-
ter matching the waveforms over one period of the radial
oscillation of the orbit, choosing a time and phase shifts
minimizing the difference between the two waveforms in
the matching region. The first method is the most di-
rect assessment of the effect of numerical errors on the
phase of the gravitational-wave signal, which are here of
the order of a few tenths of a radian during the inspi-
ral. The second method is more useful when comparing
waveforms obtained in simulations starting from different
initial conditions, and shows how different the waveforms
would look to a gravitational-wave detector. Fig. 3 shows
that, for matched waveforms, differences of the order of
a few percents of a radian or less cannot be resolved by
our numerical simulations.
When considering waveform accuracy, numerical errors

due to the discretization of the evolution equations are

however only part of the problem. Another potential
source of error comes from extracting gravitational waves
at finite radii, and then using polynomial extrapolation
to obtain the waveform at null infinity [48]. An esti-
mate of the error due to this process can be obtained by
comparing the waveforms obtained using different poly-
nomial orders for the extrapolation. Fig. 3 shows that
this error is ∼ 0.01 rad. Phase differences of the same
order can also be due to the eccentricity of the binaries,
at least for the eccentricities e ∼ 0.002−0.004 considered
here. This can easily be seen from the oscillations in the
phase difference between different configurations shown
in Fig. 11 (the oscillations in the phase difference between
simulations R13i0 and R14i0 are smaller that those be-
tween R12i0 and R14i0 because the radial oscillations of
the first two cases happen to be nearly in phase at the
beginning of the simulation).
Adding all these sources of error, we can thus estimate

that differences between numerical waveforms are large
enough to be measured at our current accuracy only if,
for matched waveforms, we have δφ ≥ 0.05 rad during
inspiral.

V. RESULTS

A. Non-Precessing Binaries

1. Inspiral : Tidal Effects

Before the disruption of the neutron star, the main dif-
ferences between a BHNS inspiral and a BBH inspiral are
due to the finite size of the neutron star, and its distor-
tion under the influence of the tidal field of the black hole.
The tidal distortion of the neutron star, and in particu-
lar its effect on the gravitational-wave signal, has already
been studied in the Post-Newtonian framework. During
the early inspiral, Hinderer et al. [33] found that for BNS
systems the tidal effects would only be detectable by Ad-
vanced LIGO for the most favorable configurations (i.e.
the largest neutron stars, see also [49] for similar results
considering the tidal effects up to the disruption of the
neutron star). Over the last few orbits, Damour et al. [31]
find that tidal parameters would be detectable for BNS
mergers of moderate signal-to-noise ratio (ρ ∼ 16). But
as these effects are significantly smaller for more asym-
metric mass ratios, the detection of tidal effects through
gravitational waves is much more difficult for BHNS sys-
tems. A more detailed discussion of the detectability of
the neutron star equation of state in our mergers is of-
fered in Sec. VA5 - but from Fig. 11 alone, where we
show the phase difference between our 3 non-precessing
simulations, it is easy to see that up to 4 gravitational-
wave cycles before the peak of the gravitational-wave sig-
nal (fGW <∼ 500Hz) the difference between these cases is
not resolved numerically. This could however be due ei-
ther to the fact that tidal effects on the waveform are
extremely small, or to a failure of the simulations to cap-
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ture the tidal distortion of the neutron star properly. Ac-
cordingly, we need to test that the neutron star is tidally
distorted during inspiral, and that these tidal effects scale
as expected. We compute the quadrupole moments of the
neutron star

Qij =

∫

ρ

(

xixj −
1

3
δijr

2

)

dV (7)

(where ρ =
√
gWρ0, W =

√

1 + gijuiuj , ui is the spatial
component of the 4-velocity and dV is the volume ele-
ment, so that

∫

ρdV = M b
NS), and assume that they are

due to first order to the composition of the tidal distor-
tion of the neutron star and of a coordinate boost, acting
along orthogonal directions. Qij is then diagonal in the
coordinate frame (ê±, êz), where ê± are two orthogonal
unit vectors in the equatorial plane of the binary and
êz is a unit vector in the direction of the orbital angular
momentum (by symmetry, Qxz = Qyz = 0). The orienta-
tion of ê± in the equatorial plane is a priori unknown, and
practically determined by solving for the rotation matrix
diagonalizing Qij . To first order, we assume that the
tidal distortion causes the neutron star to stretch along
the direction ê+ and contract along ê− and êz, while the
boost causes a contraction along ê− and a stretch along
ê+ and êz, i.e.

Q++ =
2Q

3
+

B

3
(8)

Q−− = −Q

3
− 2B

3
(9)

Qzz = −Q

3
+

B

3
(10)

where Q is the magnitude of the tidal distortion, and B
the amplitude of the boost distortion (by construction,
Q++ + Q−− + Qzz = 0. So we can solve any 2 of the
3 equations above for the unknowns B and Q, and the
third will automatically be satisfied). From this decom-
position, we can also retrieve the lag angle Ψtidal between
the tidal bulge and the line connecting the center of the
hole and the center of the neutron star (i.e. the angle
between ê+ and the line connecting the two centers).
These quantities are clearly dependent on the coordi-

nate system chosen. We cannot entirely remove that de-
pendence, but can at least get a reasonable normalization
for the quadrupole moments from the quantity

I00 =

∫

ρr2dV. (11)

For all simulations, we find similar boost components
B/I00 ∼ 2%: B/I00 is a function of the binary sep-
aration, but does not depend on the equation of state
considered (for a true Lorentz boost of a spherical star,
we should get B/I00 ∼ (v/c)2). The lag angle is fairly
constant too, with Ψtidal ∼ 20◦ − 25◦ for separations
d ∼ 60 km− 90 km ∼ 4MBH − 6MBH. The tidal compo-
nent, on the other hand, varies strongly with both the
binary separation and the equation of state. In Fig. 4,
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FIG. 4: Top: Tidal quadrupole Q normalized by I00. Bottom:

Normalized quadrupole Qnorm (see eq. 13).

we show Q/I00 for the three different equations of state
considered here, and in the range of binary separations
d ∼ 60 km− 90 km. The tidal distortion goes from being
of the same order as the boost effect at d ∼ 90 km to a
factor of 2− 3 larger at d ∼ 60 km. Not surprisingly, the
larger neutron star is significantly more distorted.
To leading order, we expect the tidal distortion Q and

the tidal field of the black hole (∼ MBH/d
3) to be related

by

Q ∼ 2k2R
5
NS

MBH

d3
(12)

where k2 is the tidal Love number of the neutron star
(for Γ = 2 polytropes, which at T = 0 are equivalent to
the Γ-law equation of state used in our simulations, k2
was computed by Hinderer [50]). To verify that the tidal
effects scale as expected, we thus compute the normalized
tidal parameter Qnorm:

Qnorm =
Q

0.0071IR14
00

kR14
2

k2

(

CNS

0.144

)5 (
d

d0

)3

. (13)

The superscriptR14 refers to values for simulation R14i0,
and d0 = 123 km is the initial separation of the binary.
The normalization IR14

00 is the value of I00 for simulation
R14i0 at the separation d at which we are measuring
Qnorm. The numerical factor 0.0071 is computed in the
limit d → ∞ (i.e. with IR14

00 computed for an isolated
neutron star), so that Qnorm(d → ∞) = 1. The scal-
ings of k2, CNS and d are chosen so that, as long as the
tidal distortion of the neutron star follows the theoretical
predictions, we will measure Qnorm = 1.
In practice, our ability to measure Qnorm accurately is

limited by the fact that the boost B and normalization
I00 only approximately model the distortion of the NS
due to coordinate effects (i.e. the boost, but also any
other gauge effect due to the coordinate choices made in
the simulation). Measurements of Qnorm are thus unreli-
able for Q <∼ B ∼ 0.02. Figure 4 shows that for Q ∼ B,
the scatter in the measurement of Qnorm is ∼ 30%, while
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TABLE II: Properties of the final remnant. M5ms
remnant is the

baryon mass remaining outside of the black hole 5ms after
merger. M5ms

tail is the baryon mass located at a coordinate
radius greater than ∼ 200 km at the same time. ρ5ms

max is the
maximum density in the disk, χf

BH the dimensionless spin of

the black hole at the end of the simulation, M f
BH the final

Christodolou mass of the black hole and M the ADM mass
of the system at infinite separation.

Name
M5ms

remnant

Mb
NS

M5ms
tail

Mb
NS

ρ5ms
max [1011 g/cm3] χf

BH

Mf

BH

M

R12i0 0.10 0.06 2 0.923 0.960
R13i0 0.20 0.11 3 0.919 0.950
R14i0 0.30 0.16 21 0.910 0.935
R14i20 0.28 0.15 17 0.909 0.939
R14i40 0.15 0.10 3 0.898 0.959
R14i60 0.03 0.03 0.4 0.862 0.978

for Q ∼ 2B − 3B, it decreases below 10%. All measure-
ments of Qnorm are compatible with Qnorm = 1 within
that scatter, thus showing that the tidal distortion of
the neutron star follows approximately the predictions of
Ref. [50], even at close separations.
From these computations, we can thus conclude that

the tidal distortion of the neutron star during the late in-
spiral is resolved by our numerical simulations, and scales
with the binary separation and the equation of state of
the neutron star in the manner expected from theoretical
calculations, at least within δQ/I00 ∼ 0.005.

2. Merger and Disk Formation

An important question when considering BHNS merg-
ers is the form of the post-merger remnant. To first order,
this depends on whether the neutron star is disrupted
before reaching the innermost stable circular orbit of the
black hole or not. In the first case, a large amount of
matter can remain outside of the hole after merger in the
form of an accretion disk and a tidal tail. In the second
case, no matter will remain. For a BHNS merger to be
the progenitor of a short gamma-ray burst, the creation
of an accretion disk is necessary. Accordingly, SGRBs
are only possible if the neutron star disrupts. Stellar
disruption is facilitated by low black hole masses, high
black hole spins and large neutron stars (see [51] for a
simple fit to the results of previous numerical simula-
tions). At low mass ratios (MBH/MNS < 5), a moder-
ately spinning black hole χBH ∼ 0.5 is generally suffi-
cient to provide disks of ∼ 0.1M⊙. For the more massive
black holes considered here, however, this is no longer the
case. We have already shown that for spins χBH ≤ 0.7
disk formation is unlikely even for large neutron stars
(RNS = 14.4 km). The simulations presented here begin
to explore how smaller neutron stars fare.
Fig. 5 shows snapshot of simulations R14i0 and R12i0,

the largest and smallest neutron stars considered here,
both in the middle of the stellar disruption, and 5ms
later. The larger neutron star disrupts far enough from

the black hole for a large portion of the matter to be
initially ejected into a tidal tail, but the smaller neu-
tron star disrupts just outside of the ISCO of the black
hole. The top-right panel of Fig. 5 in particular shows
how close the smaller neutron star is to the hole when it
disrupts. From this picture, the fact than any material
remains outside of the hole after merger is surprising in
itself, and an indication of how strong the effects of the
black hole spin can be on infalling material.

Important differences are observed between the final
state of these mergers. For the larger neutron star, 30%
of the matter remains outside of the black hole 5ms after
merger. More importantly, about half that material has
already formed a thick accretion disk, of about 100 km
in radius and with peak density ρ5ms

max ∼ 2 × 1012 g/cm
3
.

The formation of a hot, thick disk is less obvious for the
smaller neutron stars. The amount of material remaining
outside of the black hole is by no means negligible (10%−
20% of the neutron star, see Fig. 6), but the maximum
density is about an order of magnitude lower. In fact, if
we look at the average surface density as a function of
radius (Fig. 7), we see no evidence of an accumulation of
higher density material at lower radii (∼ 100 km), while
that feature is clearly visible for the larger neutron star.
From these results, we can also infer that smaller neutron
stars RNS

<∼ 11 km would probably be unable to form any
long-lived remnant.

Evolutions including all the necessary microphysics
(magnetic fields, neutrino cooling) will be necessary to
determine how these disks evolve over longer time scales
(>∼ 0.1s). We can already see, however, that for all
three configurations the material remaining outside of the
black hole is hot (< T >∼ 2MeV), and would be cooled
by neutrino emission. In that respect, the differences
in density between the remnants could be significant, as
they modify the opacity of the disk to neutrino radiation,
and thus the efficiency with which the disk can transfer
its energy into neutrinos.

The properties of the final remnant are presented in
Table II. Comparing our results for the amount of ma-
terial remaining outside of the black hole at late times
with the predictions of Ref. [51], we find good agree-
ment (within 2% − 3% of the neutron star mass) for
the two smallest stars. The largest star forms a disk
heavy enough that we are out of the range in which
the predictions of Ref. [51] are expected to be valid —
and indeed, the disk formed in the simulation is signifi-
cantly more massive that what Ref. [51] would predict.
We also find consistency between our simulations and
Ref. [51] on the neutron star radius below which no mat-
ter will remain outside of the black hole after merger
(∼ 10.5 km− 11 km). A more careful examination of the
differences between our numerical results and Ref. [51]
indicates that in the regime of high spin, high black hole
masses considered here, the remnant mass probably has
a steeper dependence on the radius of the neutron star
than what would be guessed from Ref. [51], a model fitted
mostly to lower mass systems. However, these differences
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FIG. 5: Merger for the non precessing cases R14i0 (left) and R12i0 (right). The top panel shows the system at the time at
which half of the neutron star material has been accreted onto the black hole. We show densities down to ρmin ∼ 10−7M−2

⊙ ∼

6× 1010 g/cm3. The bottom panel shows the remnant 5ms later, plotting densities down to ρmin ∼ 10−8M−2
⊙ ∼ 6× 109 g/cm3

and cutting out the x > 0, y < 0 quadrant. The differences in scale between the 4 figures can be determined knowing that the
size of the black hole is always RBH ∼ 15 km.
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FIG. 6: Baryon mass remaining outside of the black hole as a
function of time, for the 3 non-precessing cases R14i0, R13i0
and R12i0. We shift all the curves by the time t50% at which
half of the matter has been accreted onto the black hole.

could also be explained by the expected variations in the
remnant mass due to the internal structure of the neu-
tron star (i.e. the fact that two neutron stars with the
same radius but different internal structure will result in
different post-merger disk masses), especially considering
the fact that all of the simulations used to fit the model

in [51] had larger tidal Love number k2 than the neu-
tron stars from simulations R13i0 and R12i0. Overall,
the magnitude of the differences between the numerical
results and the model are roughly at the expected level.
The final black hole masses and spins are also within the
expected errors of existing analytical models, i.e. 1%−2%
away from the values derived by Pannarale [52].

For all configurations, the disruption and merger of the
neutron star occurs over ∼ 2ms (see Fig. 6). Mass ac-
cretion at later times is negligible compared with what
is observed in lower mass ratio systems. When a disk
forms, its main characteristics are however fairly simi-
lar to the lower mass ratio cases — except of course for
the aforementioned lower densities and larger disk radii,
which are a natural consequence of the higher black hole
mass. Fig. 7 shows a few characteristics of the form-
ing accretion disk for the most strongly disrupted case.
The surface density peaks at a distance of 100 km from
the black hole, and the disk extends to about 150 km
1. The orbital velocity profile is slightly sub-Keplerian
(by about 10%), while the sound speed is ∼ 0.25Ωr and

1 Distances are measured in terms of the circumferential radius
in the equatorial plane, rcirc = 1

2π

∫ 2π
0

√

gφφdφ, where φ is the
azimuthal angle.
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FIG. 7: Top: Average surface density 5ms after merger for the
3 non-precessing cases R14i0, R13i0 and R12i0. Bottom: Disk
profile for simulation R14i0. Shown are the angular velocity
(normalized by the velocity for circular orbits in this metric),
the entropy and the sound speed (normalized by Ωr) as a
function of the circumferential radius r.

thus compatible with a thick, thermally supported disk
of scale height H = 0.25r. This is consistent with the
actual scale height of the disk, H ∼ 0.2r − 0.3r. Finally,
the inner edge of the disk is particularly hot: we plot an
estimate of the entropy

s = ln
(κeff

κ

)

= ln

(

P

P (ρ0, T = 0)

)

(14)

(the effective constant κeff is defined by P = κeffρ
2
0), and

find s ∼ 9 for r ∼ 60 km. Within the disk, we still have
s ∼ 4−5. As the disk settles down over ∼ 10ms−20ms,
we would expect the entropy to exhibit a minimum at the
peak of the surface density distribution, as was observed
in lower mass ratio systems [22, 26].

3. Ejecta

The ejection of unbound material by compact binary
mergers is a prerequisite for some electromagnetic coun-
terparts, most notably emissions due to the radioactive
decay of the neutron-rich ejecta [6, 53]. This ejecta
can be obtained through various physical processes: un-
bound material in the tidal tail, but also magnetically-
driven [23] or neutrino-driven [24] winds. The study of
winds goes beyond the scope of this article, as this re-
quires accurate long-term evolution of the remnant disk
and the inclusion of physical processes that are neglected
in this work (magnetic fields, neutrino radiation). We
will thus limit ourselves to the measurement of unbound
material in the tidal tail.
Even the presence of ejected material in the tidal tail

can be difficult to assess in general relativistic simula-
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FIG. 8: Mass of the unbound material, as measured by the
condition ut < −1. For each configuration, tmerge is the time
at which 50% of the neutron star material has been accreted
onto the black hole. The dashed vertical line represent the
time at which 0.001M⊙ has escaped the grid (the low density
tidal tail of simulation R12i0 cannot be followed accurately
for more than 2.5ms, at which point we stop measuring the
mass of the ejecta).

tions, particularly at high mass ratios. Maintaining a
high enough resolution in both the disk-forming region
and the tidal tail is challenging, and in practice matter
can only be reliably evolved up to a distance of a few hun-
dred kilometers from the black hole. This is indeed one
of the main disadvantage of any grid-based simulations
when compared with smoothed particle hydrodynamics
methods, which can easily follow the evolution of tidal
tails. In a time-independent spacetime and when pres-
sure forces are negligible, it is easy to determine whether
material is unbound: if ut < −1, then the material will
escape to infinity (and −ut is the Lorentz factor of the
fluid at infinity). This condition is also a fairly good ap-
proximation for low-density material far away from the
central black hole after a compact binary merger, but be-
comes more and more inaccurate as one gets close to the
black hole, or densities in the tidal tail become higher.

One way to assess whether using the ut < −1 condition
to find unbound material is accurate is to follow material
over a sufficiently long period of time, and check that ut

doesn’t vary much. In our simulations, however, this only
occurs for ∼ 1ms before the material leaves the numerical
grid, which leads to large uncertainties in the amount
of unbound material, and its characteristics. A more
detailed discussion of these issues will be presented in
Deaton et al. (in preparation). Here, we limit ourselves
to a discussion of measurements of ut at relative low radii
(<∼ 20MBH ≈ 300 km) and over short timescales, and note
the uncertainties due to these approximations.

On Fig. 8, we plot the amount of mass with ut < −1 on
the grid (and more than 60 km away from the black hole).
The most compact neutron star, simulation R12i0, natu-
rally has the least material in a tidal tail: about 0.09M⊙,
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of which ∼ 0.015M⊙ appear unbound 2.5ms− 3.5ms af-
ter accretion onto the black hole begins (1.5ms− 2.5ms
after the time at which 50% of the neutron star material
has been accreted onto the black hole), with variations
of only 0.002M⊙ over the 1ms period over which mea-
surements appear reliable. Moving up in stellar radius,
simulation R13i0 offers the most reliable measurement of
the ejected mass, with a stable value ofMR13

ej ∼ 0.046M⊙

long before matter starts flowing out of the grid (the total
mass of the tidal tail, in this case, is ∼ 0.16M⊙), and vari-
ations of 0.002M⊙ over 1ms. From this run, we can also
estimate the relative error due to finite numerical resolu-
tion in these measurements, and get ǫej < 40% (at our
“medium” resolution, we found MR13

ej ∼ 0.040M⊙). This
is distinct from the uncertainties due to the approxima-
tion made when using ut as a proxy for finding whether
material is bound or not, and appears to be the domi-
nant source of error for simulations R12i0 and R13i0. Fi-
nally, the largest neutron star shows the most uncertain
measurements. Velocities and densities in the ejecta are
generally higher: the approximate method takes more
time to become accurate, but material remains on the
grid for a shorter amount of time. There also is material
with ut < −1 flowing directly out of the forming accre-
tion disk, presumably as a result of shocks during disk
formation, which makes it impossible to have all of the
potential ejecta in the range 60 km < r < 300 km at any
given time. Even by expanding the outer boundary of
the grid by 50% compared with the two other runs, we
thus find that the measured MR14

ej ∼ 0.050M⊙ only ap-
pear to settle at the time at which matter starts flowing
out of the grid (and boundary effects might influence the
properties of the ejecta). It is thus quite likely that the
ejected mass is slightly larger than what is observed in
the simulation. Overall, adding the two main sources of
error (numerical resolution and use of ut), we estimate
that the ejected masses are

MR12
ej = 0.015M⊙ ± 0.010M⊙ (15)

MR13
ej = 0.046M⊙ ± 0.020M⊙ (16)

MR14
ej = 0.050M⊙ ± 0.035M⊙. (17)

From the measurements of ut, we can also determine
the distribution of the velocity of the fluid at large dis-
tance from the black hole. This is shown in Fig. 9 for con-
figuration R13i0. The distribution peaks at v/c ∼ 0.2,
and most of the ejecta has v/c < 0.5. The qualitative
features of the velocity distribution appear fairly robust
when we vary the time at which we measure ut, and the
resolution of the simulation — with more uncertainties
for the high-velocity tail of the distribution. The merger
with the more compact neutron stars has a very similar
velocity profile. The situation is quite different for R14i0,
where about half of the ejecta initially appear to have
v/c > 0.5. At this point, however, we do not have the
ability to follow such material for a long enough period of
time to assess the reliability of the velocity estimates of
that last configuration, and have to limit ourselves to the

0 0.2 0.4 0.6 0.8
v/c

0

0.005

0.01

0.015

0.02

M
su

n

t
m

=1.7ms
t
m

=2.1ms
t
m

=2.2ms (Mid-Res)

FIG. 9: Distribution of asymptotic velocities for the unbound
material of simulation R13i0. Two different times of the high-
resolution simulation, and one time of the medium resolution
simulation are shown.

observation that the ejecta appears more relativistic for
the largest neutron star than in the other cases studied
here.

Finally, from these measurements, we can estimate the
kinetic energy of the ejecta, which would be available
for future emission as it slows down in the interstellar
medium. We should note that these results are only or-
der of magnitude estimates, as these energies are sensi-
tive to the high-velocity tail of the velocity distribution,
which is poorly constrained in our simulations. Addi-
tionally, our energy estimates are particularly unreliable
for simulation R14i0, due to the large amount of poorly
resolved high-velocity material that is rapidly leaving the
grid. We find Eej ∼ (1, 4, 40)× 1051 ergs for simulations
(R12i0,R13i0,R14i0) respectively.

Even considering the large uncertainties in these mea-
surements, it is interesting that we consistently find that
in this region of the parameter space a few percents of a
solar mass can be ejected from the system. This is indeed
very different from the results obtained in the limit of low
mass, low spin black holes (or for BNS [19]), where only a
negligible amount of material was found to be unbound.
These results indicate that in the case of q ∼ 7 BHNS
binaries, tidal disruption of the neutron star (when it
occurs) is likely to be accompanied by the ejection of
>∼ 10−2M⊙ of neutron-rich material. Such outflows are
promising for optical emissions due to the radioactive de-
cay of neutron-rich elements in the ejecta, and the pro-
duction of heavy elements resulting from r-process nu-
cleosynthesis. These ejecta might even be detectable as
a radio afterglow as unbound material decelerates in the
interstellar medium [6]: the kinetic energy available for
radio emission is indeed larger than in supernova explo-
sions. However, the luminosity of the radio afterglow
heavily depends on the density of the environment, and
BHNS mergers are likely to occur in much lower density
environments than supernova explosions. The decelera-
tion of the ejecta in the interstellar medium would then
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occur over longer timescales, and remain harder to de-
tect. Massive ejecta in BHNS mergers are also limited to
high spin configurations, and should not be considered as
the norm unless χBH ∼ 0.9 is standard for black holes in
compact binaries. And the most energetic ejecta found
here, in particular, is a very optimistic scenario for which,
in addition of a high black hole spin, we used a very large
neutron star. Finally, we should note that the detailed
evolution of the tidal tail is likely to depend on details of
the equation of state that our simple Γ-law model cannot
capture. This problem should thus be revisited carefully
with a more realistic modeling of the neutron star fluid.

4. Gravitational Waveforms

Variations of the gravitational waveform emitted by
BHNS mergers with the equation of state of the neutron
star are mainly due to two effects: the small tidal distor-
tion of the neutron star during the inspiral, which we dis-
cussed in Sec. VA 1, and the cutoff in the gravitational-
wave signal when the neutron star is disrupted (if tidal
disruption occurs). In this section, we discuss measure-
ments of these effects in our numerical simulations, while
in the next section we will focus on their detectability by
the Advanced LIGO detector.
The effects of tides on the gravitational-wave signal

of a BHNS binary before the disruption of the neutron
star are expected to be fairly small: Damour et al. [31]
computed the phase difference δΨ due to tidal effects
in the Fourier transform of the dominant [(2,−2)] mode
of the waveform to 2.5PN order in the stationary phase
approximation,

δΨ2.5PN
T =

117λ̃

8ν
x5/2Ψ̂2.5PN

T (18)

where x = (MωGW/2)2/3 is the standard Post-
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FIG. 11: Phase difference between the (2,-2) mode of the
gravitational-wave emission of the non-precessing simulations.
Both R12i0 and R13i0 are compared with R14i0. The dashed
black lines show the matching interval, while the dashed green
line shows the time at which the amplitude of the signal peaks
for case R14i0 (the case in which the neutron star disrupts at
the earliest time).

Newtonian parameter, ωGW is the frequency of the
(2,−2) mode of the gravitational strain,

Ψ̂2.5PN
T = 1 + 2.5x− πx3/2 + 8.51x2 − 3.92πx5/2 (19)

and λ̃ is the tidal deformability parameter which for a
BHNS binary is

λ̃ =
1 + 12q

26

2k2
3C5

NS(1 + q)5
. (20)

We note that the sign of Eq. (18) is different from the
one given in [31], due to differences in the convention
used to take the Fourier transform of the signal (we

use h̃(f) =
∫

h(t)e−i2πft, while the dephasing δΨ in
the stationary phase approximation was derived with
the opposite convention h̃(f) =

∫

h(t)ei2πft [54]). For
ωGWM <∼ 0.2 and the binary parameters considered here,
we get δΨ <∼ 0.16 rad between simulations R12i0 and
R14i0 (or, for the phase φ of the gravitational waveform
in the time domain, δφ <∼ 0.21 rad). However, these pre-
dictions have only been tested on BNS mergers up to
x ∼ CNS, while the tidal disruption of the neutron star
in the binaries considered here occurs at x ∼ 0.3−0.4. In
that regime, the PN expansion no longer appears conver-
gent: the 2.5PN term is of the same order as the leading
order term.
Measuring the small phase difference δφ in our simula-

tion is a challenging problem. Fig.10 shows the dominant
(2,-2) mode of the gravitational strain h(t) for simula-
tions R12i0 and R14i0, after the application of a time
and a phase shift chosen to minimize the phase differ-
ence within a matching interval spanning 2 cycles of the
radial oscillation frequency. Clearly, the waveforms are
very similar up to the last cycle before the disruption of
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FIG. 12: Phase difference between the (2,-2) mode of the
gravitational-wave emission of the non-precessing simulations
as a function of the normalized gravitational-wave frequency
ωGWM . The dotted and dot-dashed curves correspond to
the 1PN and 2.5PN predictions from Ref. [31]. All curves
are matched at ωGWM = 0.2. At lower frequency, residual
eccentricity in the simulation makes measurements of φ(ωGW)
too noisy to be useful.

the larger neutron star. Fig. 11 shows the phase differ-
ences between the waveforms of simulations R12i0, R13i0
and R14i0. They remain under 0.05 rad until 50M be-
fore the peak of the gravitational-wave signal! Moreover,
the differences appear dominated by the influence of the
residual eccentricity, not by equation of state effects. In
Sec. VA1, we showed that the tidal distortion of the
neutron star follows fairly closely Post-Newtonian pre-
dictions, yet this is clearly insufficient to have a measur-
able effect on the gravitational-wave signal for most of
the evolution.

A small phase difference between the waveforms can
however be hidden by the matching procedure used.
Another way to compare the waveforms is to look at
the phase φ as a function of the gravitational-wave fre-
quency. This gets rid of the need to apply an arbitrary
time shift to the waveforms. However, the computa-
tion of ωGW from the numerical waveform is fairly in-
accurate, and even a small residual eccentricity can in-
troduce a large noise in the resulting φ(ωGW). Com-
puting the difference δφ(ωGW) between two numerical
simulations can thus only be done once the evolution of
the orbital frequency due to orbital decay becomes fast
enough to dominate the effects of eccentricity. Fig. 12
shows measurements of δφ(ωGW) for our numerical sim-
ulations. For ωGWM <∼ 0.2, there are large oscillations
due to the eccentricity of the orbit, and we cannot accu-
rately measure δφ(ωGW). But in the frequency range
0.2 <∼ ωGWM <∼ 0.35, a phase shift of ∼ 0.2 rad is
clearly observed between simulations R12i0 and R13i0,
and the same between R13i0 and R14i0. This result lies
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FIG. 13: Spectrum of the gravitational-wave signal. hopt(f) is
the spectrum of the dominant mode of the gravitational-wave
signal as seen by an optimally oriented observer at 100Mpc.
The dashed line shows the leading order PN behavior, h =
Af−7/6, with amplitude A matched to the numerical results.
The Zero-Detuned High Power and Zero-Detuned Low Power
noise curves of Advanced LIGO [55] are also shown, together
with 3 potential high-frequency tunings of the detector, at
1 kHz [55], 1.5 kHz and 2 kHz [56].

in between the predictions of the 1PN and 2.5PN ap-
proximations. As the 2.5PN results are barely outside
of the expected numerical error, these simulations are
not accurate enough to improve on the PN predictions
for tidal effects at high frequency. But we can confirm
that the dephasing obtained from the 2.5PN predictions
is at least correct within a factor of ∼ 2 up to frequencies
ωGWM ∼ 0.35 (f ∼ 1 kHz). The 1PN prediction also
seem slightly more accurate than the 2.5PN results.
The effects of the disruption of the neutron star by

the tidal field of the black hole are easier to see in the
numerical results. Fig. 13 shows the spectrum of the
gravitational-wave signal for the three simulations R12i0,
R13i0 and R14i0 (for an optimally oriented binary at
100Mpc). The largest star disrupts earlier, and the
gravitational-wave spectrum is cut slightly above 1 kHz.
For the smallest star, the cutoff is at about 2 kHz. As op-
posed to tidal effects, this high-frequency cutoff is very
well resolved in the simulations.
Other physical quantities which can be extracted from

the gravitational-wave signal are summarized in Ta-
ble III: the energy and angular momentum radiated, the
final kick given to the system, and a cutoff frequency fcut
defined (arbitrarily) by the relation

2h(fcut)f
7/6
cut = h(fref)f

7/6
ref (21)

with fref = 0.5 kHz (Note that any value of fref in the
range 0.3 kHz − 0.8 kHz gives nearly identical result as
hf7/6 is approximately constant during the inspiral, as
shown in Fig. 13). As the binding energy of these sys-
tems at t = 0 is Ebind

0 = 0.0055M , we see that these
binaries will radiate ∼ 2% − 2.5% of their energy be-
fore merging, and ∼ 15% of their angular momentum
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TABLE III: Gravitational-wave emission over the course of
the simulation as measured at a radius R = 275M , where M
is the ADM mass of the system at infinite separation. EGW is
the energy contained in the waves, JGW their angular momen-
tum, and vkick = PGW/Mfinal

BH the velocity kick given to that
black hole. fGW

cut is the cutoff frequency of the gravitational-
wave signal defined by Eq. 21.

Name EGW /M JGW /M2 vkick(km/s) fGW
cut (kHz)

R12i0 0.021 0.16 30 2.1
R13i0 0.017 0.15 45 1.8
R14i0 0.014 0.13 45 1.5
R14i20 0.013 0.13 60 —
R14i40 0.013 0.11 150 —
R14i60 0.013 0.09 345 —

(the more compact neutron stars naturally radiating
more, as they disrupt later). The final kicks remain low
(< 30 km/s− 50 km/s), as is generally observed for non-
precessing BHNS binaries.

5. Detectability of the Neutron Star Radius by Advanced

LIGO

Keeping in mind the results of the previous section,
we can begin to address another important question: the
measurability of finite size effects on the gravitational
waveform of BHNS mergers for mass ratios q ∼ 7. An
earlier analysis of these issues by Lackey et al. [36] showed
that at lower mass ratios (q = 2 − 3) and for nonspin-
ning black holes Advanced LIGO would be sensitive to
differences in the radius of the neutron star of order
10% − 40% for an optimally oriented BHNS merger lo-
cated at 100Mpc. This is due in part to the effects on the
waveform of the tidal distortion of the neutron star, and
in part to variations in the binary separation at which the
neutron star disrupts and the gravitational-wave signal is
cut off.

At higher mass ratio, tidal effects are smaller. How-
ever, the disruption of the neutron star occurs at a lower
frequency and the amplitude of the gravitational-wave
signal is larger. It is thus unclear whether finite size ef-
fects will be easier or harder to detect. On Fig. 13, we
show the spectrum of the gravitational-wave signal as
seen by an optimally oriented observer located 100Mpc
away from the binary, and compare it with different Ad-
vanced LIGO detector’s strain noise spectra (see below).
At that distance the differences between the three simu-
lations seem to be marginally measurable. In the rest of
this section, we will attempt to quantify this statement
more carefully.

To determine whether the difference between two wave-
forms h1 and h2 can be detected by Advanced LIGO, we
use the approximate condition [57]

‖δh‖2 = 〈δh, δh〉 = 〈h1 − h2, h1 − h2〉 ≥ 1. (22)

where the inner product is defined as

〈g, h〉 = 2

∫ ∞

0

df
g̃∗(f)h̃(f) + g̃(f)h̃∗(f)

Sn(f)
. (23)

Here g̃(f) and h̃(f) are the Fourier transforms of two
waveforms g(t) and h(t), and Sn(f) is the one-sided
power spectral density of the detector’s strain noise, de-
fined as

Sn(f) = 2

∫ ∞

−∞

dτ e2πifτ Cn(τ) , f > 0, (24)

where Cn(τ) is the noise correlation matrix for zero-
mean, stationary noise. In this case, we will consider
three of the Advanced LIGO guideline noise curves de-
fined in Ref. [55]: the Zero Detuned Low Power spec-
trum, which is the expected sensitivity of the detector
once signal recycling mirrors are in place, the Zero De-
tuned High Power spectrum, which is the final design
sensitivity of Advanced LIGO, and a High Frequency
noise curve optimized to take data at 1 kHz. We also
consider alternative tunings of the Advanced LIGO de-
tector to 1.5 kHz and 2 kHz, using noise curves graciously
provided to us by Nicolas Smith-Lefebvre [56], and gen-
erated by the noise simulation package ‘gwinc’ developed
by the LIGO collaboration. These noise curves assume
an Advanced LIGO detector in the same configuration as
the High Frequency model of Ref. [55], except that the
signal-recycling mirror detuning is chosen to tune the de-
tector to higher frequencies.
When taking the inner product ‖δh‖2, we choose one

polarization of h1 and then allow for a time and phase
shift in h2, chosen to maximize the inner product 〈h1, h2〉
(which is identical to minimizing ‖δh‖2 for ‖δh‖2 ≪
‖h1,2‖2). Finally, we consider only the quadrupolar part
of the waveform as measured by an optimally oriented
observer:

hopt(t) =

√

5

4π
h2,2(t). (25)

In theory, the integration in Eq. (23) should be carried
over the entire frequency band of the detector. This is
however complicated for our waveforms, as the numerical
simulations only cover the high-frequency part of the sig-
nal (f > 0.25 kHz). To construct a full waveform, the nu-
merical results should be hybridized with some analytical
approximation valid at low frequency (Post-Newtoninan,
Effective One-Body,...). But in the region of parame-
ter space considered here (q = 7, χBH = 0.9), the error
coming from extending these approximants to frequencies
f ∼ 0.25 kHz is significantly larger than the actual dif-
ferences expected between waveforms for f < 0.25 kHz.
Uncertainties in the construction of the hybrid then dom-
inate the measurement of ‖δh‖2.
We will instead consider three approximations to

‖δh‖2:
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TABLE IV: Detectability of tidal effects in non-precessing
BHNS mergers for 3 different Advanced LIGO noise curves
from Ref. [55]: Zero-Detuned High Power, Zero-Detuned Low
Power and High Frequency tuned at 1 kHz (see also Fig. 13).
The quantities ‖δh‖, defined in Eq. 22, are the detectability
criteria for optimally oriented events at 100Mpc. We con-
sider first the results for the numerical waveform limited to
f > 0.8 kHz (NR Only), then for the first order PN expan-
sion [Eq. (18)] limited to f < 0.8 kHz (1PN Only) and fi-
nally for hybrid waveforms matched in spectral space between
0.3 kHz < f < 0.8 kHz (Hybrid-1PN). For each case, we com-
pare simulations [R12i0,R14i0] (||δh||12−14), [R12i0,R13i0]
(||δh||12−13) and [R13i0,R14i0] (||δh||13−14). For the hybrids,
we also give results for noise curves tuned to 1.5 kHz and
2 kHz.

NR Only

S(f) ||δh||12−14 ||δh||12−13 ||δh||13−14

Zero Det H-P 1.5 0.7 0.9
Zero Det L-P 0.7 0.3 0.4

High Freq(1 kHz) 1.2 0.4 0.9
1PN Only

S(f) ||δh||12−14 ||δh||12−13 ||δh||13−14

Zero Det H-P 1.0 0.4 0.6
Zero Det L-P 0.5 0.2 0.3

High Freq(1 kHz) 0.4 0.2 0.3
Hybrid-1PN

S(f) ||δh||12−14 ||δh||12−13 ||δh||13−14

Zero Det H-P 2.5 1.2 1.5
Zero Det L-P 1.2 0.6 0.7

High Freq(1 kHz) 1.5 0.6 1.0
High Freq(1.5 kHz) 3.2 1.4 1.9
High Freq(2.0 kHz) 2.6 1.3 1.4

• Limiting the integration to frequencies f > 0.8 kHz,
where the waveform is known exactly from the nu-
merical simulations. This neglects tidal effects dur-
ing the inspiral.

• Limiting the integration to frequencies f < 0.8 kHz,
and using PN predictions over the entire frequency
range (see Appendix B). In this case, we ignore the
effects of the disruption of the neutron star, as well
as errors in the PN predictions at high frequencies.
As seen in the previous section, the 1PN predictions
appear to remain fairly accurate for f < 0.8 kHz,
and provide at least a good qualitative estimate of
the tidal effects during the inspiral.

• Combining the low-frequency PN predictions with
the numerical results at high frequency by match-
ing in the frequency domain the phase differ-
ence between two simulations to the predicted PN
phase difference. This procedure is detailed in Ap-
pendix B.

The matching procedure and the differences between var-
ious PN orders each cause uncertainties of∼ 10% in ‖δh‖.
The results for each method are summarized in Ta-

ble IV. We find that for the Zero Detuned noise curves,
the high frequency cutoff is only ∼ 50% more important

than the low-frequency tidal effects. The tuned High Fre-
quency noise curves, quite naturally, are much more sen-
sitive to the disruption of the neutron star than to tidal
effects. For the Zero Detuned High Power noise curve,
and using our estimates of the mismatch ||δh|| over the
entire LIGO band, the detectability criteria is satisfied if
the neutron stars have radii differing by

∆RNS >∼
D

125Mpc
km, (26)

where D is the distance to the observer. The Low Power
noise curve requires the binary to be about twice as
close. However, using the low-power detector with high
frequency tuning (at ∼ 1.5 kHz) leads to ||δh|| larger
than for the Zero Detuned High Power noise curve by
∼ 20%− 30%.

Differentiating a binary black hole system from a
BHNS binary would only be slightly easier. The phase
difference between a point-particle waveform and the
waveform of simulation R14i0 is, during inspiral, only
∼ 1.5 times larger than the phase difference between sim-
ulations R12i0 and R14i0. And the high-frequency cutoff
in the waveform would not help us much, as the most
compact star considered here (R12i0) does not disrupt
very far from the ISCO.

These results are not very promising. For the Zero De-
tuned High Power noise curve and the waveforms from
simulations R12i0 and R14i0, the condition ||δh|| > 1
will only be satisfied for binaries with signal-to-noise ra-
tio ρ >∼ 26, or about 3% of the Advanced LIGO events
(assuming that BHNS binaries are equally distributed in
volume). A detector tuned at 1.5 kHz would reach the
condition ||δh|| > 1 for about twice as many events. The
criteria ||δh|| > 1 is also an optimistic limit: it does not
take into account the fact that all other parameters of the
binary are here assumed to be known. Uncertainties in
the masses of the objects and the spin of the black hole
will significantly affect these results, making it harder
to detect equation of state effects. Additionally, both
the Post-Newtonian dephasing and the variations in the
high-frequency cutoff of the signal are helped by the fact
that we are considering a rapidly rotating black hole. For
a nonspinning black hole, the neutron star would reach
the ISCO at lower frequencies, and tidal effects during
the inspiral would be even smaller. And as the neutron
star would plunge into the black hole before being dis-
rupted, there is no guarantee that there would be a mea-
surable difference in the cutoff frequency of the waveform
(although this question certainly deserves further investi-
gation: the merger would also occur in a more favorable
frequency range). Finally, any real data analysis would
require the knowledge of the waveform at low frequency,
which is not at this point known with enough accuracy for
binaries with q = 7 and χBH = 0.9. The theoretical de-
tectability conditions considered here are thus certainly
too generous.



16

0 10 20 30 40 50
t(ms)

0

30

60

90
θ bi

n
R14i20
R14i40 
R14i60
2PN
1PN

FIG. 14: Inclination θbin between the initial and current di-
rection of the normal to the orbital plane.

B. Precessing Binaries

Our second set of BHNS mergers considers variations
of the orientation of the black hole spin. The start-
ing configuration is the largest neutron star studied in
the previous section. The black hole spin is inclined
with respect to the orbital angular momentum by θBH =
20◦, 40◦, 60◦. In all cases, the misaligned component of
the spin is initially along the line connecting the black
hole and neutron star centers. We do not expect this
choice to affect the qualitative feature of the merger (dis-
ruption, disk formation) [26]. It should, however, influ-
ence the magnitude of the velocity kick given to the final
black hole as a result of gravitational-wave emission [58].
Modifying the initial separation of the binary is effec-
tively identical to a change in the orientation of the black
hole spin at constant θBH. Indeed, for a binary in which
only one object is spinning, θBH is conserved [59] and
changing the initial separation only modifies the phase
of the precession of the binary.

1. Inspiral: Orbital Precession

During inspiral, the main difference with the aligned
configurations will naturally be the precession of both
the black hole spin and the orbital angular momen-
tum around the total angular momentum of the sys-
tem. A simple coordinate measurement of that preces-
sion is presented in Fig. 14, using the angle θbin be-
tween the direction of the initial orbital angular mo-
mentum and the normal to the orbital plane (defined
as (cBH − cNS) × (vBH − vNS), where (cNS, cBH) are the
coordinates of the centers of the compact objects, and
(vBH, vNS) their velocities).
We see that the amplitude of the precession of the or-

bital plane vary from 27◦ for R14i20 to 82◦ for the most
inclined case. If the total angular momentum of the sys-

tem was constant (i.e. in the absence of gravitational-
wave emission), we would expect the amplitude of that
precession to be twice the initial angle between the or-
bital angular momentum and the total angular momen-
tum, i.e. 25◦ and 78◦ for simulations R14i20 and R14i60
respectively. Somewhat larger values are expected for
radiating systems, as the loss of angular momentum due
to gravitational-wave emission is to first order aligned
with the current orbital angular momentum of the bi-
nary: taking into account the angular momentum lost to
gravitational waves listed in Table III would correct these
estimates to 30◦ and 85◦ (which are now overestimates, as
part of the radiated angular momentum is emitted dur-
ing the disruption of the neutron star). Over the course
of the binary evolution, the most inclined binary goes
through slightly more than half of a precession period,
while R14i20 gets close to completing a full precession
period (as θbin is defined with respect to the initial or-
bital plane, we get θbin ≈ 0 after a full precession period,
and not after half a precession period).

A simple comparison of the measured precession of
the orbital plane with the Post-Newtonian predictions
from [60] is also presented on Fig. 14. The 1PN and 2PN
curves are obtained by evolving the initial BH spin and
orbital angular momentum using the Post-Newtonian for-
mulae from [60], but assuming that the trajectories of
the compact objects are those observed in the simula-
tion (i.e. when computing the relative position and ve-
locity of the objects, we use our results and not a Post-
Newtonian evolution of the initial conditions, as the Post-
Newtonian equations of motion are quite inaccurate so
close to merger). We see that the period over which the
orbital plane precesses in the simulations matches the
PN predictions very well, while the amplitude of the pre-
cession is ∼ 10% smaller in the numerical results. Such
differences (as well as the additional oscillations in the
value of the inclination angle) could however easily be
due to the fact that these measurements are certainly
not gauge-independent.

A large precession of the orbital plane is quite natu-
ral for the high mass ratio, high spin systems considered
here. Indeed, the angular momentum of the black hole
is JBH/M

2 = 0.689 while the initial orbital angular mo-
mentum is only Lorbit/M

2 = 0.354 (and about 10% of the
total angular momentum, or ∼ 30% of Lorbit, is radiated
in gravitational waves). This means that even for rela-
tively low inclinations of the black hole spin (such as in
simulation R14i20), large variations of the orientation of
the orbital plane occur. These oscillations and, more im-
portantly, the shift in the phase of the gravitational wave-
form with respect to aligned spin templates which accom-
pany them, can make the detection of precessing binaries
challenging. The higher dimensionality of the parameter
space to consider also complicates parameter estimates
— although there are also positive effects due to pre-
cession: some of the degeneracies existing between the
parameters of the system for aligned binaries are broken
for precessing systems [31]. As mentioned in the previous
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section, an inaccurate determination of the parameters of
the system increases the error in any measurement of the
neutron star equation of state from gravitational wave-
forms. Obtaining proper constraints on the parameters
of a BHNS binary with misaligned spin, which requires
reliable templates for precessing systems, is thus a pre-
requisite to any attempt at constraining the equation of
state of neutron stars from BHNS waveforms, at least for
the high-spin configurations considered here (unless the
spin of the black hole is aligned with the orbital angular
momentum of the system by some unknown mechanism
during the pre-merger evolution of the binary).

2. Disruption and Disk Formation

The effect of spin misalignment on the properties of the
remnant of a BHNS merger were first studied in a general
relativistic framework in Ref. [26]. Material on an orbit
inclined with respect to the equatorial plane of the black
hole reaches the region in which stable orbits no longer
exist at a larger separation than material in the equato-
rial plane on a corotating orbit. Effectively, this means
that BHNS mergers with misaligned black hole spins are
roughly equivalent to mergers with a lower black hole
spin aligned with the orbital angular momentum. Dis-
ruption becomes less likely for misaligned configurations,
and the mass remaining outside of the black hole at late
times is smaller. The smallest radius at which stable or-
bits exist for black holes with χBH = 0.9 at inclination
θBH = (20◦, 40◦, 60◦) is equal to the radius of the inner-
most stable circular orbit of a black hole with aligned
spin χBH = (0.89, 0.80, 0.62) [61, 62]. 2 And indeed, the
disruption of the neutron star is close to what is expected
for such spins: for the low inclination case R14i20, the
mass of material remaining outside of the black hole af-
ter merger is nearly identical to what was observed in the
aligned configuration R14i0 while in simulations R12i40
and R14i60, 15% and 3% of the neutron star mass remain
outside of the hole 5ms after merger. This is very similar
to what our simple fitting model [51] would predict (13%
and 1% of the neutron star matter surviving the merger
for χBH = (0.80, 0.62)), or what might be inferred from
numerical simulations for smaller black hole spins [18]
(which found 6% of the matter remaining outside of the
hole for χBH = 0.7 and none for χBH = 0.5, all other pa-
rameters being identical to the cases considered here). It
thus seems fairly likely that, for the purpose of measur-
ing the mass of material remaining outside of the black

2 The method used here to approximate the “effective” spin of a
BHNS binary for the purpose of tidal disruption was first pointed
out to us by Nicholas Stone. This method has been used to
impose constraints on systems which could lead to SGRBs in
Stone et al. [63]. Our numerical simulations tend to confirm that
this is indeed a reasonable approximation to the result of tidal
disruption in precessing BHNS binaries.

hole at late times at least, the disruption of the neutron
star in BHNS mergers with misaligned black hole spins
can be modeled with good accuracy by considering the
results of aligned configurations only.

However, there are important qualitative differences
between the behavior of aligned and misaligned configu-
rations. Fig. 15 shows snapshot of the two simulations
with the lowest inclination angle for the black hole spin
(R14i20 and R14i40), at a time at which 50% of the neu-
tron star has been accreted onto the black hole (top) as
well as 5ms later (bottom). These can be directly com-
pared with Fig. 5 for non-precessing systems. Simulation
R14i20 mostly behaves as the aligned case, although the
slight precession of the tidal tail with respect to the disk
induces small differences in the formation of the disk,
and should affect its subsequent evolution as matter falls
back from changing directions. At moderate inclinations
(R14i40), the changes are more drastic. There is not
much of a disk forming: most of the remaining material
is in a long tidal tail, which is differentially precessing.
For aligned configurations, a disk generally starts to form
as the front edge of the accretion flow wraps around the
black hole and hits the material from the tidal tail, cre-
ating a shock, outflows, and a rapid redistribution of the
tidal tail material. Disk-tail interactions are much less
visible in inclined simulations (although there are still
contacts between the inner and outer edge of the tidal
tail as it wraps around the black hole). Existing shocks
are however still sufficient to heat the remaining material
in simulations R14i20 and R14i40 to an average tempera-
ture < T >∼ 2MeV− 3MeV. Not surprisingly the rem-
nant of the most inclined merger (R14i60), which does
not form a disk, is much cooler (T < 1MeV). Finally, we
find that precession does not prevent the formation of a
baryon-poor region along the rotation axis of the black
hole: a cone of opening angle Θclean >∼ 30◦ is clear of ma-
terial at densities ρ0 > 109 g/cm3, at least over the short
timescale over which the post-merger remnant is evolved.
Close to the black hole, lower density material is not re-
solved in the simulation. This baryon-poor region was
also shown to exist after the merger of precessing BHNS
binaries at lower mass ratio [26].

The significant asymmetry of this system with respect
to the equatorial plane of the black hole, as well as the
differential precession between fluid elements, could also
have important consequences for the long term evolution
of the system. Disk simulations by McKinney et al. [64]
indicate that coupling between the magnetic field in an
accretion disk (and relativistic jet) and the spin of the
black hole leads to an alignment of the inner disk with
the spin of the black hole, while the outer disk remains
misaligned. Similarly, the jet is emitted along the rota-
tion axis of the black hole, but orthogonal to the plane
of the outer disk at large distances. How these effects
will play out for the more compact disks produced by
BHNS mergers is an open question. Another important
consequence of spin-orbit misalignment was pointed out
by Etienne et al. [65], who showed that asymmetries and
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FIG. 15: Same as Fig. 5, but for the precessing binaries R14i20 (left) and R14i40 (right).

motion across the equatorial plane of the black hole con-
tribute to the formation of a larger toroidal field within
the disk formed by BHNS mergers (aligned configura-
tions with equatorial symmetry, on the other hand, form
disks with mostly poloidal magnetic fields, as the mag-
netic field comes from the winding of the original field
lines frozen within the disrupting neutron star). The
toroidal field is amplified by the fastest growing mode of
the magnetorotational instability(MRI), the mechanism
most likely to allow the magnetic field in the accretion
disk to grow up to levels at which jets (and short gamma-
ray bursts) could be created. Misaligned black hole spins
could thus lead to qualitative difference in the evolution
of magnetized disks. They would also make it easier to
resolve the growth of the MRI numerically, as the wave-
length of the fastest growing MRI mode scales with the
magnitude of the toroidal component of the magnetic
field [66]. On the other hand, the disks formed from
precessing BHNS binaries have lower densities and lower
masses. Compared to aligned configurations, a larger
fraction of the matter remaining outside of the black hole
is sent in the tidal tail. The most inclined configuration
studied here (R14i60), which barely disrupts, actually
keeps less than 1% of the neutron star material within
200 km of the black hole. Nearly all of the remnant mass
(3% of the neutron star material) is on highly eccentric,
differentially precessing orbits.

If the velocity kicks given to neutron stars during su-

pernova explosions are such that a majority of BHNS
systems are within the range of inclination of the black
hole spin studied here (as might be expected from the
results of Belczinsky et al. [15]), the effects of inclina-
tion on the orbital evolution of the binary, and conse-
quently on the gravitational-wave signal, would be sig-
nificant. But the conditions required for the disruption
of the neutron star to occur in a significant number of
systems would not be dramatically modified from those
derived in non-precessing systems: the location of the
marginally stable orbit does not change much for incli-
nations θBH < 30◦ (see e.g. [62]), at least for the rela-
tively large spins χBH > 0.7 which we already know are
necessary for tidal disruption to occur for mass ratios
q ∼ 5 − 10. The remnant disks would be less massive,
but with larger toroidal magnetic fields initially. Con-
sidering that even low mass disks (∼ 0.01M⊙) are en-
ergetically sufficient to power gamma-ray bursts if the
conditions (temperature, magnetic fields) are otherwise
right [13, 14], misaligned configurations could in the end
prove more favorable than the aligned cases.

3. Waveforms

The waveforms from precessing BHNS binaries are
significantly different from their non-precessing counter-
parts, as previously mentioned: the precession of the or-
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FIG. 16: Gravitational waveforms as measured by observers
who, at t = 0, see the binary face-on (solid black line) and
edge-on along the line connecting the centers of the two ob-
jects (dashed red line). h is normalized by the ratio D/M of
the distance to the observer D to the total mass of the bi-
nary M . We show both the h+ and h× polarization, with h×

shifted by 0.2. Top: Non-precessing configuration R14i0. The
face-on observer is always optimally located, while the edge-
on observer receives a weaker signal in h+ (in which higher
order modes are however more visible), and no signal at all
in h×. Bottom: Precessing configuration R14i60. The enve-
lope of the signal varies in time as the binary precess, and the
optimal orientation is modified accordingly. The merger also
occurs at an earlier time, as the orbital hang-up is only due
to the aligned component of the black hole spin.

bital plane shown in Fig. 14 will cause a modulation of the
preferred direction for gravitational-wave emission (see
Fig. 16), which has to be properly modeled in order to
avoid significantly reducing our sensitivity to any wave-
form emitted by a precessing system. The modeling of
precessing waveforms goes beyond the scope of this arti-
cle. A more detailed study of the impact of precession on
the detectability of BHNS mergers can be found in Brown
et al. [67]. Assuming an isotropic distribution of black
hole spin, about half of the BHNS binaries within the
theoretical range of the next generation of gravitational-
wave detectors could be missed given the performance of
the current search methods in the regime of high mass ra-
tio, strongly precessing systems. Attempts to reduce the
complexity of the problem by studying the waveforms in
a preferred frame precessing with the binary are under
way [68–70], and could help in the construction of future
precessing templates, but the detection of BHNS systems
in Advanced LIGO remains an important challenge today
(see also [71] for an updated template bank for binaries
with arbitrary spins). Considering the negligible influ-
ence of tidal effects on the waveform before the disrup-
tion of the neutron star, these issues are however better
studied in the context of black-hole–black-hole binaries,
for which longer and more accurate precessing waveforms
are available. Results obtained for these systems should
be immediately applicable to BHNS inspirals, at least in

the range of mass ratios considered in this work (tidal
effects are more important for more symmetric mass ra-
tios).
An interesting particularity of BHNS mergers with

high black hole spins, precession, and a high enough
mass ratio that tidal disruption either does not occur
or only occurs very close to the marginally stable or-
bit, is the possibility for the remnant black hole to re-
ceive a significant velocity kick from the merger. This
effect is already well-known for binary black hole sys-
tems [72, 73]: binary black holes with parameters similar
to the BHNS mergers studied here would receive velocity
kicks vkicK <∼ 2000 km/s (and vkick <∼ 5000 km/s for more
favorable parameters). Kicks in BHNS mergers are gener-
ally much smaller, with vkick ∼ 50 km/s−100 km/s, even
in the precessing configurations that we previously stud-
ied [26]. This is due to the fact that most of the kick is
received at the time of merger, while in BHNS systems at
lower mass ratio the neutron star disrupts before merger,
effectively cutting off the asymmetric gravitational-wave
emission responsible for the kick. Here, however, the dis-
ruption of the neutron star occurs very late in the inspiral
— or nearly not at all in the case of the most inclined con-
figuration. The strong distortion of the neutron star as it
plunges into the black hole will still reduce gravitational-
wave emission at merger, even for configurations in which
no matter remains outside of the black hole afterwards,
but not nearly as much as for aligned configurations, or
for more symmetric mass ratios. Accordingly, we find
that much larger kicks vkick ∼ 345 km/s are now possible.
It should also be noted that the kick obtained from binary
mergers is proportional to cos (φ+ φ0), with φ the orbital
phase at merger and φ0 an unknown phase shift. The
only way to measure the maximum kick from a specific
configuration is thus to consider a sequence of mergers,
spanning a range of phases φ. All that can be said from
a single configuration is that kicks larger than 345 km/s
are possible. Without more studies of the dependence of
vkick in φ, we cannot in principle exclude the possibil-
ity that kicks for these configurations could be nearly as
large as in binary black hole mergers, although maximal
values closer to those presented here appear more likely.

VI. CONCLUSIONS

We continue our study of BHNS mergers at mass ratio
q = 7, the regime currently deemed to be the most likely
for BHNS binaries in the field. Previous results [18] have
shown that for such mass ratios, high black hole spins
χBH > 0.7 are needed for the neutron star to disrupt,
even for large neutron stars (RNS = 14.4 km). In this
work, we look into the influence of the radius of the neu-
tron star and the orientation of the black hole spin on
the merger, focusing on configurations with mass ratio
q = 7 and black hole spin χBH = 0.9. We show that
the transition between configurations for which the dis-
ruption of the neutron star causes the formation of mas-
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sive accretion disks and those where the neutron star
just plunges into the black hole is very sensitive to the
compactness of the neutron star: while a 1.4M⊙ neu-
tron star of radius RNS = 14.4 km leads to the forma-
tion of a massive disk (Mdisk = 0.2M⊙) and tidal tail
(Mtail = 0.25M⊙), a smaller neutron star RNS = 12.2 km
in an otherwise identical binary forms a much less mas-
sive remnant (Mdisk = 0.06M⊙, Mtail = 0.09M⊙). For
neutron stars with radiiRNS < 10.5 km, we expect no dis-
ruption at all. This indicates that in the range of stellar
radii currently favored [47], a black hole spin χBH ∼ 0.9
is required for a 1.4M⊙ neutron star to disrupt — and
thus for post-merger electromagnetic counterparts such
as SGRBs and kilonovae to be possible. We also note
that for all but the most massive disks a fairly low maxi-
mum density ρ ∼ 1011 g/cm3 is observed, about an order
of magnitude lower than for disks of similar masses at
lower mass ratios q = 3− 5. This is simply the expected
geometrical effect: the radius of the disk is roughly pro-
portional to the mass of the final black hole. But that
difference could significantly affect the late time evolution
of the disk: the opacity of the disk to neutrino radiation
will be lower, and the evolution of the magnetic field is
likely to be affected as well.

The amount of unbound material, approximated
through measurements of the energy of fluid elements
in the limit of a time-independent metric, is found to
be larger for these high-spin configurations than in pre-
vious, lower spin studies of BHNS mergers. The ac-
curacy of these mass measurements is only ∼ 50% in
our general relativistic simulations — but for all three
equations of state studied here, we find ejected mass
Mej >∼ 0.01M⊙. The ejecta has a velocity distribution
peaking at v/c ∼ 0.2 (except for the larger neutron star,
for which we find larger velocities which cannot be ac-
curately measured at this point) and a kinetic energy
Ekin >∼ 1051 ergs. It would be a promising setup for a
potential “kilonova”, and could even be detected as a
radio afterglow. It should however be emphasized that
these massive ejecta are only produced in the high spin
region of the parameter space, as the neutron star does
not disrupt for low black hole spins.

The effect of a misaligned black hole spin is also stud-
ied in more details. General relativistic simulations of
precessing BHNS binaries had only been performed for
one set of binary parameters before this work, for low
mass, low spin black holes (q = 3, χBH = 0.5 [26]).
These high spin configurations allow us to observe the
effect of the misalignment of the black hole spin on tidal
disruption more accurately. In particular, we confirm
that using the radius of the innermost stable spherical
orbit rISSO(χBH, θ) [61] as a way to predict the mass
remaining outside the black hole at late times is rea-
sonable: it matches the results of an aligned configu-
ration with effective aligned spin χeff and rISCO(χeff) =
rISSO(χBH, θ) [63]. The qualitative features of the rem-
nant can however be quite different, with the inclined
configurations being slower to form a disk, and keeping

more mass in their tidal tail.

By extracting the gravitational-wave signal emitted by
each of these BHNS mergers, we confirm that the effects
of tides on the waveform of q = 7 binaries are negligible
during most of the inspiral: tidal effects are below the nu-
merical error in the simulation up to f ∼ 0.5 kHz, and of
the same order as the expected PN corrections [31, 33] at
higher frequencies. The cutoff in the gravitational-wave
spectrum at the frequency at which the neutron star dis-
rupts is a slightly more promising imprint of the neutron
star equation of state on the waveform. By combining
Post-Newtonian results at low frequencies with our nu-
merical waveforms, we estimate that differences in the
neutron star radius of order 2 km could be measured in
at most ∼ 3% of the Advanced LIGO events, for a sin-
gle detector at the current design sensitivity. Improved
results can be obtained for the lower power lasers that
are expected to be in use when Advanced LIGO first be-
gins to take data, if the detector is tuned to observe at
∼ 1.5 kHz. These estimates are however very optimistic,
as they neglect the degeneracy between the neutron star
radius and other binary parameters.

Finally, we observe that some precessing BHNS bi-
naries receive significant kicks from the merger, as op-
posed to what was observed for non-precessing systems.
This is in agreement with results for BBH systems: the
largest kicks are found for systems with partially mis-
aligned black hole spins. In BHNS binaries, however,
these results are modified by the fact that after the neu-
tron star disrupts, the gravitational-wave signal becomes
weaker. As kicks mostly arise from the emission of grav-
itational waves right around merger, their magnitude is
significantly reduced for disrupting BHNS binaries. Ac-
cordingly, the largest kicks in BHNS systems are found
for binaries with misaligned spins for which the neutron
star does not disrupt, or disrupts very late. Thus, the
kicks measured at a mass ratio q = 7 are actually larger
than for more symmetric systems, in opposition to BBH
results. We find vkick ∼ 345 km for our most precessing
system, which represents a lower bound on the maximum
kick attainable by the ensemble of all similar configura-
tions with different orbital phases at merger.

One of the most important limitations of this work is
that we do not model some critical physical effects: more
realistic equations of state are required to study in detail
the evolution of the tidal tail and the characteristics of
the ejecta, and are also a prerequisite for the inclusion
of neutrino radiation. Neutrinos are the main source of
cooling in the disk, and cannot be neglected if we want to
continue our evolution for longer than the few millisec-
onds after merger presented here. Finally, magnetic fields
should also play a crucial role in the evolution of the ac-
cretion disk — although their evolution requires the use
of a numerical grid much finer than what we currently use
in our simulations [65]. These effects are not expected to
significantly affect the results presented here, which fo-
cused on the general properties of the merger and on the
gravitational-wave signal, but they should be included in
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simulations aiming at a more detailed description of the
evolution of BHNS systems after merger.
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Appendix A: Summary of evolution equations

The numerical simulations presented in this paper are
evolved using the SpEC code [37], which allows us to
solve the coupled system formed by Einstein’s equations
of general relativity and the relativistic hydrodynamics
equations. The SpEC code uses the two-grid method [39],
in which Einstein’s equations are evolved using pseu-
dospectral methods, while the hydrodynamics equations
are evolved on a separate finite difference grid. In this
section, we first summarize the methods used to evolve
each system of equations independently, before discussing
the communication between the two grids.

1. Evolution of the metric

The SpEC code uses the generalized harmonic formu-
lation of Einstein’s equations [38]. The coordinates xb

are assumed to obey the inhomogeneous wave equation

gab∇c∇cx
b = Ha(x, gab) (A1)

for an arbitrary function Ha(x, gab). Einstein’s equations
can then be reduced to a set of symmetric hyperbolic first
order equations for the metric gab, its spatial derivative
Φiab ≡ ∂igab, and its time derivative Πab ≡ −tc∂cgab.
The principal part of the generalized harmonic equations
(which we will denote by the symbol ‘≃’) is

∂tgab ≃ βk∂kgab (A2)

∂tΠab ≃ βk∂kΠab − αgki∂kΦiab (A3)

∂tΦiab ≃ βk∂kΦiab − α∂iΠab (A4)

which are equivalent to Einstein’s equations as long as
the constraints

Ca ≡ Ha(x, gab)− gab∇c∇cx
b = 0 (A5)

Ciab ≡ ∂iΨab − Φiab = 0 (A6)

are satisfied (note that the standard Hamiltonian and
momentum constraints are automatically satisfied if
Ca = ∂tCa = 0). Mathematically, satisfying the con-
straints in the initial conditions guarantees that they will
remain satisfied over the entire evolution. Small numeri-
cal errors in the evolution can however lead to the expo-
nential growth of constraint violating modes. To avoid
such growth, a damping of the constraints is added to the
generalized harmonic system: we add γ1β

iCiab to equa-
tion (A2), γ0α(δ

c
(atb) − gabt

c)Cc + γ3β
iCiab to equation

(A3), and γ2αCiab to equation (A4). Choosing γ3 = γ1γ2
guarantees that the system remains symmetric hyper-
bolic. To damp the constraints, we also require γ0 > 0
and γ2 > 0. However, the values of (γ0, γ2) that guaran-
tee constraint damping are not known analytically for an
arbitrary metric. Choosing those damping parameters
is thus largely a trial-and-error process, whose success is
gauged by verifying that the constraint-violating modes

do not grow significantly during the evolution, and that
they converge to zero as the numerical resolution is in-
creased. In practice, we use, before disruption of the
neutron star,

γ0 = 0.01 +
4

MBH
f(rBH, wBH) +

0.1

MNS
f(rNS, wNS) +

0.2

M
f(rc, wc),

γ2 = 0.01 +
4

MBH
f(rBH, wBH) +

1.5

MNS
f(rNS, wNS) +

0.6

M
f(rc, wc),

f(r, w) = e−r2/w2

, (A7)

with rNS,BH,c being, respectively, the coordinate dis-
tances to the center of the neutron star, the center of the
black hole, and the center of mass of the binary, while the
widths are wBH = 2MBH, wNS = 6MNS and wc = 20M .
After disruption of the neutron star, we use

γ0 = 0.01 +
12

MBH
f(rBH, wBH) +

1.5

M
f(rc, wc),

γ2 = γ0,

with now wBH = 3MBH and wc = 20M . Finally, the
parameter γ1 is set to

γ1 = 0.999 (f(rc, 10d)− 1) (A8)

with d the coordinate separation between the black hole
and the neutron star (this value is preferred to the previ-
ous choice of γ1 = −1, which caused some characteristics
speeds of the hyperbolic system to exactly vanish).
The gauge function Ha is also freely specifiable in the

generalized harmonic formalism. We choose the initial
value of Ha by assuming that the time derivatives of the
lapse α and shift βk vanish in the coordinate frame coro-
tating with the binary. During the inspiral, Ha is evolved
assuming that taHa andHi are constant in the corotating
frame. During merger, we follow the damped wave gauge
prescription proposed by Szilagyi et al. [75], driving Ha

to

Ha = µL

√
g

α
ta − µS

gaiβ
i

α
, (A9)

where g is the determinant of the spatial metric gij , and

we choose µL = 0 and µS =
[

log(
√
g/α)

]2
(Note that

Ref. [75] recommends µL =
[

log(
√
g/α)

]2
instead. µL =

0 was chosen because the evolution of the coordinates
for the collapse of isolated neutron stars was found to be
better behaved than for µL = µS . However, in BHNS
mergers, the two choices appear to perform equally well,
and future simulations will use µL = µS). We smoothly
transition between the two prescriptions, setting

∂tHa = f(t)(∂tHa)damped+(1−f(t))(∂tHa)frozen, (A10)
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where f(t) = 1 − e−(t−td)
4/w4

d , td is the time at which
the damped wave gauge condition is turned on (typically,
when matter starts accreting onto the black hole), and
wd = 20M is the timescale over which the new gauge
condition is turned on. (∂tHa)damped,frozen are the time
derivatives of Ha in, respectively, the ‘frozen’ gauge used
during inspiral, and the ‘damped wave’ gauge using dur-
ing merger.

Another important feature of the code is the use of
a time-dependent map between the coordinates of the
numerical grid and the inertial frame [76, 77], which al-
lows the grid to follow the orbital evolution of the bi-
nary, and keeps the apparent horizon of the black hole
spherical in the grid frame. The latter feature is required
because we excise a spherical region inside the appar-
ent horizon of the black hole, and need all character-
istic velocities of the evolution equations to point out
of the computational domain in order to avoid having
to impose unknown boundary condition on the excision
surface. In practice, the map between the grid and in-
ertial coordinates is the composition of a distortion of
the region immediately around the black hole of the type
r → r + f(r)

∑

lm clm(t)Y lm(θ, φ), which controls the
size and shape of the excision surface (Y lm(θ, φ) are the
spherical harmonics functions, and r the distance from
the center of the apparent horizon), a translation keeping
the black hole center in place, and a rotation and global
scaling to follow the orbital evolution of the binary.
The numerical grid is decomposed into a set of touch-

ing but non-overlapping subdomains, which are dis-
torted cubes, spheres, balls and cylinders (see Figs. 1-
2). Boundary conditions between touching subdomains
are treated using a penalty method [78–81], while the
outer boundary uses an outgoing wave condition [38]. As
mentioned above no boundary condition is required on
the excision surface. In each subdomain, the solution
is expanded on a set of basis functions dependent on the
topology used (Chebyshev polynomials for I1, Fourier ba-
sis for S1, spherical harmonics for S2 and Matsushima-
Marcus functions [82] for B3). For stable evolution, we
filter the evolved variables at the end of each time step by
zeroing the top N modes for each set of basis functions,
with N = 1 for the I1 topology, N = 2 for S1, and N = 4
for S2 and B3 (in which case the ‘top 4 modes’ refers
to modes with l > lmax − 4 in the decomposition into
spherical harmonics Ylm). We should note that for the
I1 topology, this is different from what was done in previ-
ous BHNS simulations using the SpEC code. A stronger
filter was then used, with

afilteredn = an min (e−(
n/N−0.4

0.4 )
6

, 1), (A11)

where an is the nth coefficient of the spectral expansion,
and N is the total number of polynomials used in this
set. The filtering was also applied to the time deriva-
tive of the evolution variables, instead of to the variables
themselves. The weaker filtering used in recent simula-
tions reduces the number of basis functions required to

reach a given accuracy (a larger fraction of the modes are
unfiltered).
Finally, the numerical resolution of the grid is chosen

adaptively, and updated at regular intervals during the
simulation. The choice to increase or decrease the num-
ber of basis functions in any given set is done by compar-
ing the truncation error of the spectral expansion with a
given target. We increase the resolution if the truncation
error is below that target, and decrease it if the trunca-
tion error after removing the top unfiltered mode would
remain above it.

2. Evolution of the fluid

The neutron star is described as an ideal fluid with
stress-energy tensor

Tµν = ρ0huµuν + Pgµν , (A12)

where ρ0 is the rest mass density of the fluid, h the
specific enthalpy, P the pressure, and uµ the 4-velocity.
The general relativistic equations of hydrodynamics are
evolved in conservative form, that is we evolve the ‘con-
servative’ variables

ρ∗ = α
√
gnµu

µρ0, (A13)

τ = α2√gnµnνT
µν − ρ∗, (A14)

Sk = α
√
gnµT

µ
k, (A15)

where, as in the previous section, g is the determinant of
the spatial metric gij , while n

µ is the future directed unit
normal to the time slice. Baryon number conservation
and the Bianchi identity ∇µT

µν = 0 then allow us to
write the evolution equations (see e.g. [83])

∂tρ∗ + ∂j(ρ∗v
j) = 0, (A16)

∂tτ + ∂i(α
2√gT 0i − ρ∗v

i) = −α
√
gT µν∇νnµ, (A17)

∂tSi + ∂j(α
√
gT j

i) =
1

2
α
√
gT µν∂igµν , (A18)

with vi the 3-velocity of the fluid. All evolution equations
are in the conservative form

∂tu+ ∂iF
i = σ (A19)

for some flux functions F i and source terms σ. To dis-
cretize these equations on a finite difference grid, we
need to compute the value of the fluxes F at the in-
terface between numerical cells, and the source terms
σ at the center of each cell. A conservative scheme is
mainly defined by the method used to compute the fluxes.
In SpEC, we use high order shock capturing methods
(WENO5 [84, 85]) to reconstruct the physical variables
ρ0, T (as defined by Eqns (1-2)) and ui at cell faces from
their values at cell centers. The WENO5 algorithm gives
us for each reconstructed variable v and on each face
a left state vL and a right state vR. Both vL and vR
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are computed using a five-point stencil, with vL using
three points on the left of the face, and vR only two.
In smooth regions, both vL and vR are fifth order accu-
rate interpolations of v on the face. In the presence of a
shock, the reconstruction is only first order accurate, and
attempts to reconstruct v using a 3-point stencil which
does not include the location of the shock. From these
reconstructed variables, we can then compute the fluxes
FL and FR. The approximate Riemann problem on each
face is then solved by computing the HLL flux [86]

F =
cminFR + cmaxFL − cmincmax(uR − uL)

cmax + cmin
, (A20)

where (cmin, cmax) are the left-going and right-going char-
acteristic speeds.
To evolve these equations on a finite difference grid,

two additional modifications are required. The first is a
correction to low-density regions, where small numerical
errors in the evolved (‘conservative’) variables can lead
to large or unphysical values for the physical variables
(T ,h), or negative values of the density. That correction
is applied in regions in which ρ0 < 10−6ρmax

0 (t), where
ρmax
0 (t) is the maximum value of the rest mass density

at the current time. In that region, we set T = 0 and
ui = 0 (more precisely, we do so when ρ0 < 10−7ρmax

0 (t),
and apply ceilings T < Tmax and gijuiuj < u2

max in the
intermediate region 10−7 < ρ0/ρ

max
0 < 10−6, where Tmax

and umax are linear functions of ρ0). We also require ρ0 >
10−11ρmax

0 [t = 0] to avoid negative densities. The second
correction occurs when the ‘conservative’ variables do not
correspond to any set of physical variables. This occurs
when

SiSi

ρ2∗
> S̃2

max ≡ τ

ρ∗

(

2 +
τ

ρ∗

)

. (A21)

To avoid this, we impose

SiSi

ρ2∗
≤ αS̃2

max (A22)

at all times, with α = 0.999 for ρ∗ ≥ 10−3√gρmax
o , and

α = 0.999− 0.0005 log10
ρ∗

10−3√gρmax
o

(A23)

at lower densities.
We should also note that the finite difference grid on

which we evolve the fluid variables is modified at regular
intervals during the evolution. Indeed, the main advan-
tage of the two-grid method is that the finite difference
grid only needs to cover the region in which matter is
present. This region does, however, vary over the course
of the evolution. To automatically adapt the grid to the
current location of the fluid, we measure the flow of mat-
ter across two surfaces, located ∼ 0.05L and ∼ 0.2L away
from the outer boundary (where L is the size of the grid).
When a significant flow of matter crosses the outer sur-
face, we expand the grid in the direction in which an

outflow is detected (‘significant outflow’ is here defined
as a flow of matter sufficient to lose ∼ 0.1% of the neu-
tron star mass if it was maintained at this level for the
entire evolution). Similarly, we contract the grid when
matter is no longer detected at the inner surface. The
expansion of the grid is limited to ∼ 20MBH − 50MBH,
and after disruption most of the grid points are focused
in the region in which the accretion disk forms. More de-
tails on the exact map used between the finite difference
grid and the spectral grid can be found in Ref. [26].

3. Time-stepping and source term communication

Both sets of equations are evolved jointly, using the
same time-stepping method: we use third-order Runge-
Kutta (RK3) time-stepping, with adaptive choice of the
time step. The time step is chosen by comparing the re-
sults of the RK3 algorithm with a second-order method
that does not require any new computation of the time
derivatives of the variables, as described in Chapter 17.12
of Ref. [87]. At our medium resolution and during inspi-
ral, we require the relative error in the evolution of the
variable at any grid point to be smaller than ǫrel = 10−4,
or the absolute error to be smaller than ǫabs = 10−6 (or,
for fluid variables which naturally scale like ρmax

0 (t = 0),
ǫabs = 10−6ρmax

0 (t = 0)). During mergers, we multiply
these values by a factor of 10. At different resolutions,
the error is chosen to scale like the second-order error
in the finite difference evolution (i.e., for finite difference
grids with respectively N1 and N2 grid points along each
dimension, we choose ǫ(N1) ∗N2

1 = ǫ(N2) ∗N2
2 ).

The last important part of our evolution algorithm is
the communication between the spectral grid on which we
evolve the metric and the finite difference grid on which
we evolve the fluid variables. At the end of each time
step, we interpolate from the spectral grid onto the fi-
nite difference grid the metric quantities and their deriva-
tives in the coordinates of the numerical grid which are
required for the computation of the right-hand side of
the hydrodynamics equations (gij , Kij , α, β

i,∂igjk, ∂iα,
∂iβ

j). Similarly, we interpolate from the finite differ-
ence grid to the spectral grid the fluid variables required
to compute the stress-energy tensor for the evolution of
Einstein’s equations (ρ0, h, W = αu0, P , ui). Because
spectral interpolation of the metric variables onto every
point of the finite difference grid would be extremely ex-
pensive, the first interpolation is done by refining the
spectral grid by a factor of 3 (a cheap operation, as it
solely requires adding basis functions whose coefficients
are all zero), and then using that refined grid to perform
fourth-order accurate polynomial interpolation onto the
finite difference grid. Interpolation from the finite differ-
ence grid onto the spectral grid uses third-order shock
capturing interpolation (WENO3). Finally, we should
note that grid-to-grid interpolation is only performed at
the end of each time step, and not at the intermediate
time steps taken by the RK3 algorithm. To obtain the
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values of the interpolated variables at intermediate time
steps, we extrapolate in time from their values at the last
two interpolation times.

Appendix B: Combining PN and numerical results

to assess the detectability of Equation of State

effects in the gravitational waveforms

The influence of tidal effects in the low-frequency part
of the waveform can be estimated from simple post-
Newtonian considerations: to leading order, the ampli-
tude of the Fourier transform of the waveform is

A(f) =
M5/6

Dπ2/3

√

5η
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f−7/6 (B1)

while its phase is

Ψ(f) = Ψ0(f) + ΨT (f) (B2)

where ΨT (f) contains the tidal effects, and Ψ0(f) all
other contributions. In the regime considered here, Ψ0(f)
is poorly constrained. However, it is also identical for
all 3 of our non-precessing configurations. Thus, we
can compute the inner product ‖δh‖ for two BHNS
binaries which only differ by the equation of state of
their neutron star using h1(f) = A(f) and h2(f) =

A(f)ei(∆ΨPN

T (f)+∆φ+af), where ∆ΨPN
T (f) is the phase dif-

ference due to tidal effects (computed from Eq. (18)), ∆φ
is an arbitrary phase shift, and a = 2π(∆t) allows for an
arbitrary time shift. a and ∆φ are chosen to maximize
〈h1, h2〉. Limiting our integration to frequencies below
0.8 kHz, we find that tidal effects during the inspiral are
a slightly smaller effect than the disruption of the neutron
star for the Zero Detuned noise curves (see Table IV).
Considering the low-frequency and high-frequency por-

tions of the waveforms separately result in an underesti-
mate of the total ||δh||. Indeed, each part of the wave-
form used different time and phase shifts to maximize
〈h1, h2〉. We would thus expect ||δh||2tot > ||δh||2<0.8 kHz+

||δh||2>0.8 kHz. If we assume that the tidal part of the
Post-Newtonian approximation is valid at the beginning

of the simulation (which is approximately true, as shown
in Fig. 12), and that the simulations only differ by the ef-
fects of the neutron star equation of state (neglecting the
residual eccentricity, as well as numerical errors), we can
however obtain reasonable estimates of the total ||δh||.
Indeed, we can write the waveforms from two numerical
simulations as

h̃1(f) = A1(f)e
i(Ψ0(f)+ΨT,1(f)) (B3)

h̃2(f) = A2(f)e
i(Ψ0(f)+ΨT,2(f)). (B4)

As for the Post-Newtonian expansion, the phase Ψ0(f)
does not contribute to ||δh||, while ∆ΨNR

T = ΨT,2(f) −
ΨT,1(f) can be matched to the Post-Newtonian ∆ΨPN

T (f)
over a given frequency range. Practically, we compute
∆ΨNR

T from the simulations, allowing for an arbitrary
time and phase shift in one of the numerical simula-
tions. The shifts are chosen to minimize the differ-
ence with the Post-Newtonian predictions in the range
0.3 kHz < f < 0.8 kHz (modifying the matching window
has a ∼ 10% effect on ||δh||, similar to the differences be-
tween the various PN orders). We then smoothly connect
the amplitude and the phase of the Post-Newtonian and
numerical waveforms through Ytot(f) = a(f)YPN(f) +
(1− a(f))YNR(f) with

a(f) = 0.5 ∗
(

1 + cos

(

π(f − fl)

fu − fl

))

(B5)

for fl < f < fu [where fl and fu are the bounds of the
matching window and Y (f) is either A(f) or ∆ΨT (f)].
We also have a(f < fl) = 1 and a(f > fu) = 0. The
resulting hybrids contain the information needed to es-
timate the difference ||δh|| between waveforms. It is
worth noting, however, that they are not proper hybrid
waveforms, and would be useless as templates. Indeed,
we used the fact that the ony difference between the 3
systems considered here is the equation of state of the
neutron star to neglect the non-tidal part of the phase,
Ψ0(f). However, knowledge of Ψ0(f) would be needed in
order to compare an observed waveform to the result of
our simulations.


