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Inflection Points and the Power Spectrum

Sean Downes and Bhaskar Dutta
Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843-4242, USA

Inflection point inflation generically includes a deviation from slow-roll when the inflaton ap-
proaches the inflection point. Such deviations are shown to be generated by transitions between
singular trajectories. The effects on the power spectrum are studied within the context of univer-
sality classes for small-field models. These effects are shown to scale with universality parameters,
and can explain the anomalously low power at large scales observed in the CMB. The reduction
of power is related to the inflection point’s basin of attraction. Implications for the likelihood of
inflation are discussed.
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I. INTRODUCTION

Inflation is a leading theoretical explanation for the origin of our universe[1–3]. In addition to resolving many
longstanding problems with big bang cosmology, it also motivates the observed, nearly scale-invariant spectrum of
density perturbations. Such primordial perturbations are widely believed to have seeded the formation of structure,
which is still being uncovered at the largest scales. As a possible explanation of these perturbations, inflation also
offers a quantitative description of the observed temperature anisotropies in the cosmic microwave background (CMB).

Inflation utilizes a scalar field to drive exponential expansion of the spacetime metric. Quantum perturbations
of an accelerating background are violently stretched to cosmic scales where they exit the particle horizon, become
nondynamical, and wait for the horizon to catch up. The once-quantum fluctuations reenter the horizon as a random
gravitation potential for the constituents of the cosmic fireball — the aftermath of the big bang. The density
perturbations can therefore be seen today as thermal fluctuations in the CMB. It is the detailed study of these
ancient photons that has made the case for inflation particularly compelling[4].

Despite being a successful theoretical paradigm, inflation has resisted a concrete embedding into known physical
theories. At present, it seems that neither string theory nor particle physics have any distinguished role or a priori
need for inflation. Yet there are dozens of incarnations of inflation, each manifested in hundreds of models. Inflation,
it would seem, stands embarrassed by its riches. Its agent — the hypothetical scalar field dubbed the “inflaton” —
insists on remaining anonymous.

In the past decade there have been attempts to uncover its identity. One major approach involves search for
nongaussianities in the CMB [5, 6], formalized through the so-called effective field theory of inflation[7]. The idea
being that nonlinear effects in the CMB can be tied to nonlinear terms in the scalar potential, which may shed light
on the inflaton’s identity.

A complimentary approach was recently proposed in [8]. Here, model-independent details of how inflation embeds
into models derived from string theory and particle physics were codified in a set of universality classes. For the
inflection point inflation scenario, this universal behavior was shown to relate phenomena as disparate as density
perturbations and supersymmetry breaking. The theoretical technology afforded by V. I. Arnold’s Singularity Theory
[9] gave rise to scaling relations between physical observables.

In this work we investigate the effect of such scaling relations on the perturbations at linear order. We shall see
that universality can work in concert with attractor dynamics [10] to leave an observable footprint on the angular
power spectrum of the CMB. In particular, we shall see how the inflaton may temporarily leave slow-roll, giving rise
to an observable reduction in power.

Put a different way, nontrivial dynamics of the inflaton can reduce the power at scales where such modes left the
horizon. This leads to definite observational consequences. Indeed, at the largest scales accessible there is a sharp,
anomalous decrease in power in the CMB. Possible origins for these effects have been studied previously [11–15], but
generally in the context of the minimal “just enough” inflation. This work substantially generalizes this approach.

Taken at face value, these considerations are speculative. The azimuthal modes of the power spectrum are taken to
be independent measurements. Therefore, large scale harmonic modes means low statistics, and therefore a theoretical
limit on the precision of the angular power spectrum. This uncertainty, known as cosmic variance, can accommodate
the anomalously low power at large angles. Nevertheless, one may hope that the same physics which yields a thermal
power spectrum with low power at large scales may also render a better global fit to the cosmological data.

The remainder of this work is organized as follows: in Sec. II we review a few relevant features from slow roll
inflation. In Sec. III we describe the systematic analysis of the power spectrum and present the results. In Sec. IV
we conclude.

II. SELECTIONS FROM SLOW-ROLL INFLATION

We begin our discussion by developing a few relevant details from slow-roll inflation. First, we develop the attractor
dynamics using the formalism in [10]. Next, we discuss the conditions for the inflaton trajectory to temporarily fall
out of slow-roll. In particular, we emphasize the transition from chaotic to inflection point inflation. Finally, we
review the “ensemble of universes” given by the set of all possible trajectories of the gravity-scalar system; it is the
framework for performing our systematic analysis of the power spectrum in Section III. This is the basin of attraction
in phase space; we demonstrate how it varies with the catastrophe parameters of [8].
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A. Slow-roll and other singular trajectories

We work in natural units, with c = ~ = MP = 1/
√

8πG = 1. The field equations which govern the Fridemann-
Lemâıtre-Robertson-Walker/scalar system are given by,

φ̈+ 3Hφ̇+ Vφ = 0, (1)

−3H2 +
1

2
φ̇2 + V = 0, (2)

Ḣ +
1

2
φ̇2 = 0. (3)

A subscript φ denotes a partial derivative with respect to φ. Dots corresponds to time derivatives. To separate these
coupled equations and explicitly manifest the attractor dynamics, we parametrize time with the (suitably normalized)
scalar factor,

t→ N = log a/a0,

which leads to relations like

φ̇ = Hφ′,

where primes denote derivatives with respect to N . The normalization a0 is the value of the scale factor today.
With this parametrization, the field equations can be rewritten,

φ′′ = −3

(
1− 1

6
φ′2
)(

φ′ +
Vφ
V

)
, (4)

3H2 =
V

1− 1
6φ
′2 , (5)

H ′ = −1

2
φ′2H. (6)

The field equation (4) admits three “singular” trajectories were the right hand side vanishes. The two solutions,

φ′ = ±
√

6, corresponds to kinetic domination of the energy density. These are “fast-roll” solutions and are typically
dynamical repulsors. The other, “slow-roll” trajectory — call it φ? — solves,

φ′ = −Vφ
V
. (7)

This is only an approximate solution, since

φ′′? = −φ′?

[
Vφφ
V
−
(
Vφ
V

)2
]
φ=φ?

, (8)

which does not vanish in general. However, the condition that φ? approximate a solution to (4) — that φ′′? nearly
vanishes — agrees with the familiar slow roll conditions,

1

2

(
Vφ
V

)2

� 1,
Vφφ
V
� 1. (9)

Indeed, the near-vanishing of (8) is the more precise statement of (9).
Despite the failure of φ? to solve the field equation, it is still a dynamical attractor, at least so long as φ? is less than√
6. The details of the attractor/repulsor trajectories are understood [16, 17], and were reviewed in this framework

in [10].
The small deviations of φ? from the full solution has direct consequences for those φ that do solve (4). The resulting

deviation from φ? leads to consequences in the power spectrum, and is the principal focus of this work.
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B. Deviations from slow-roll

A convenient parametrization of the deviation from the slow-roll trajectory φ? is given by the variable Ξ,

Ξ =
φ′′

φ′
.

Simple algebra reveals that,

Ξ =
1

2
(φ′ +

√
6)(φ′ −

√
6)(1 +

Vφ
φ ′ V

). (10)

So Ξ vanishes for all “singular” solutions of (4), both slow-roll and fast-roll. This is important to bear in mind, as Ξ
also enters directly into the mode equations for the linear perturbations,

u′′k +

(
1− 1

2
φ′2
)
u′k +

[(
k

aH

)2

+ (1 + Ξ)

(
Ξ +

1

2
φ′2
)
− Ξ′

]
uk = 0, (11)

and can therefore impact the power spectrum when it is of order unity.
Here uk is the Fourier transform of the Mukhanov-Sasaki variable[18],

u =
Ψ

4Hφ′
,

which corresponds to fluctuations of the gravitational field about the FLRW background. In particular, Ψ is Bardeen’s
gauge-invariant gravitational potential[19]. We derive (11) and discuss it in more detail in Sec. III.

Quantifying the impact of Ξ on the power spectrum with respect to the scaling phenomena observed in [8] is the
central focus of this paper. We will discuss this and (11) in more detail in the next section.

As φ transitions between different singular trajectories, Ξ can become large. To build an intuition for such effects,
we consider three examples of large Ξ: when the φ starts from rest, when φ starts from a fast-roll trajectory, and
when it transitions from chaotic to inflection point inflation. All three can may lead to observable effects on the power
spectrum. This has been studied, for instance, in [11–13].

Field velocity and Ξ

We begin with the chaotic inflation scenario. Consider a field slowly rolling in a quadratic potential, V ∝ φ2. If
φ starts at rest, it must first accelerate towards the slow-roll trajectory, (7). Thus, a vanishing field velocity rarely
qualifies as slow-roll. Indeed, if the field starts from rest, Ξ can be quite large as the field rapidly accelerates toward
the slow-roll trajectory. When φ′ vanishes, Ξ diverges. This is illustrated numerically in Fig. 1.

Alternatively, the inflaton may start near the fast-roll condition, φ′ ≈ −
√

6. In this case, Ξ starts off nearly
vanishing, but spikes when the field transitions to slow-roll, as shown in Fig. 2.

These two examples involved chaotic inflation. There are other cases of interest, like a transition between chaotic
and inflection point inflation.

Transition from chaotic to inflection point inflation

Chaotic inflation solves the slow roll conditions (9) with large V , which necessitates large field excursions. Inflection
point inflation satisfies (9) by a vanishingly small Vφ and Vφφ. In this sense, inflection point inflation is something of
a misnomer. V must possess a degenerate critical point; its first derivative must also vanish at an inflection point.
Inflation then occurs over a small field excursion in the vicinity of the degenerate critical point.

Since the first two derivatives vanish, the Taylor expansion near the “inflection point” has the form,

V ≈ V0 + V3φ
3 +O(φ4). (12)

These two inflationary scenarios are not mutually exclusive. As a result of attractor dynamics, reviewed in the next
subsection, the inflaton can transition from a period of chaotic to inflection point inflation. As illustrated in Fig. 3, Ξ
spikes as φ approaches the inflection point. This transition from chaotic to inflection point potentials was first studied
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X vs. N: Quadradic Potential

FIG. 1: Ξ as a function of N for chaotic inflation on a quadratic potential (solid red line). φ starts from rest and is
shown (dashed, with arbitrary units) for qualitative comparison. Near N = 50, slow-roll ends and φ accelerates

towards the minimum.
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X vs. N: Quadradic Potential

FIG. 2: Ξ as a function of N for chaotic inflation on a quadratic potential (solid red line). φ starts from fast-roll,
and is shown (dashed, with arbitrary units) for qualitative comparison. Ξ spikes as the field transitions from fast-roll

to slow-roll. Ξ spikes again as φ accelerates towards the minimum of the potential.

in [20] and later in [8]. Physically, trajectories close to slow-roll in the chaotic regime must brake abruptly at the
inflection point. The “braking” in φ? is too strong to be physical, leading instead to a spike in Ξ. It is an example of
the failure of an exact solution φ to match φ? mentioned in Sec. II A.

The cubic coupling at the inflection point is the leading term near the critical point, as seen in (12). This coupling
strongly influences Ξ. As seen in Fig. 4, the amplitude of Ξ decreases inversely to this coupling. In inflection point
models, this is the most important contribution to Ξ.

Since Ξ can be quite large as the field approaches the inflection point, there is the possibility for an observable effect
in the power spectrum. We investigate this in the next section. Before that, we lay the groundwork for a systematic
analysis by discussing the inflection point’s basin of attraction.
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X vs. N: Inflection Point Potential

FIG. 3: Ξ as a function of N for an inflection point potential (solid red line). φ starts from fast-roll, and is shown
(dashed, with arbitrary units) for qualitative comparison.
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FIG. 4: Ξ plotted for trajectories with various values of the cubic coupling α. Each was started with the same,
slow-roll boundary conditions. As α increases, the amplitude of Ξ rapidly decreases. Here α ranges from 0.7 to 1.2

in increments of 0.1.

C. The basin of attraction

The attractor dynamics of slow-roll inflation are well known, particularly in the chaotic inflation scenario [21, 22].
What is less well known is that inflection points are very efficient attractors [10, 23]. We review the basin of attraction
for the simplest class of inflection point models; the generalization is straight forward.

Models of inflection point inflation fall into universality classes [8], depending on the number of parameters in the
potential. The canonical representative of the class of two-parameter models (A3) is,

V =
1

4
φ4 +

1

2
aφ2 + bφ+ constant.
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FIG. 5: Initial conditions for the scalar field subject to the potential (14). Points in the shaded regions come to rest
at the inflection point, others overshoot. The basin of attraction shrinks with smaller α. The colored bands

correspond to different values of α: 2,1,0.8 and 0.7.

The condition on the parameters for a degenerate critical point (“inflection point”) is

(a
3

)3
+

(
b

2

)2

= 0. (13)

This gives an inflection point at φ = α, and a minimum — a vacuum suitable for reheating — at φ = −3α.
After shifting the origin of field space to coincide with the inflection point, what remains is a family of potentials,
parametrized by α.

V =
1

4
φ4 + αφ3 +

27

4
α4. (14)

Thus, for two-parameter models of inflection point inflation, a solution is specified by a choice of α and an initial
point in phase space.

For any choice of three such numbers, some solutions will asymptotically approach the inflection point and come to
rest. Others will overshoot. Owing to the solitonic nature of these trajectories, the boundary of the basin of attraction
in this space is a transcendental function. Despite this, such an analysis can be carried out numerically [10]. For fixed
α, the basin of attraction can be seen in Fig 5.

Finite e-foldigs

So far we have studied idealized potentials with exactly degenerate critical points. The attractor behavior gives rise
to infinitely many e-foldings within the basin of attraction described. Physically, inflation must end, so the critical
points must not be precisely degenerate. As discussed is [10], this is good, otherwise the subset of viable couplings
would be of measure zero.

Inflation ends due to the presence of an additional, small term in the potential. In (13), this means a slight shift in
b. This can be modelled by a slightly deformed potential,

V =
1

4
φ4 + αφ3 + λ1φ+

27

4
α4 +O(λ1). (15)

The constant term has been deformed slightly to keep the minima approximately zero. The number of e-foldings
associated to the inflection point is approximately [24],

Ne ≈
π

2
√

3αλ1
. (16)
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Note that arbitrarily many e-foldings of slow-roll inflation may exist prior to the contribution of inflection point.
Physically, of course, we are interested in the the point where the observed perturbations in the CMB entered the
horizon - last sixty or so e-foldings.

So long as λ1 � α3, as is typically required to achieve sufficiently many e-foldings to match observations, the basins
of attraction discussed above reasonably models the physically viable solutions. In the following section, we shall
focus on solutions within this basin.

Critical Couplings

We close this section with a technical aside. Once again, we consider the case where λ vanishes.
Not all values of α in (14) give rise to a finite basin of attraction. Below a critical value, αC ∼ 0.66, the basin is

simple a point; overshooting the inflection point is inevitable. This was first observed in the one-parameter (A2) case
[20], and was generalized in [10] which also mapped out the basin of attraction. In the next section we shall exclusive
focus on couplings well inside the basin, so that we may sensibly talk about sufficient inflation. Despite that, it is
worth pausing to mention the interesting behavior near these critical couplings.

We saw in Fig. 4 that α decreases, the amplitude of deviation Ξ grows. This deviation occurs as the field brakes
while approaching the inflection point. As α approaches αC from above, the required braking becomes substantial.
This is depicted in Fig. 6.

10 20 30 40
N

0.01

0.1

1

X

Field Trajectory: Φ vs. N

FIG. 6: Trajectories of φ started on slow-roll for the potential (14). The blue curve uses α = 0.6599 and the purple
uses α = 1.1599. Note how the blue curve abruptly approaches the inflection point, whereas the purple curve is

slowly asymptoting towards it.

With significant breaking comes significant deviation from slow-roll. The deviation finds a lower bound[25] at
Ξ = −3, as depicted in Fig. 7. The duration at which Ξ remains near this value increases rapidly near αC .

As one might expect, this behavior actually occurs for any point on the boundary of the basin of attraction.
From (11), we see that the linear perturbations in this regime obey,

u′′k +

(
1− 1

2
φ′2
)
u′k +

[(
k

aH

)2

+ (−2)

(
−3 +

1

2
φ′2
)]

uk = 0.

Since φ′ ∝ φ ∝ exp(−3N) in this regime, this rapidly approaches

u′′k + u′k +

[(
k

aH

)2

+ 6

]
uk = 0. (17)

For perturbations well outside the horizon — small k — the six dominates the last term. This represents an
underdamped harmonic oscillator, with frequency

√
6, nothing close to scale-invariance. All this unstable behavior
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FIG. 7: The deviation from slow-roll, Ξ, is plotted versus N . The blue curve uses α = 0.6599 and the purple,
representative of those in Fig. 4, uses α = 1.1599. Note how the blue curve reaches a lower bound.

near αC , leads us to conjecture that the semi-classical (mean field) theory is ill-defined near this special value of the
coupling. We avoid such critical points in our present work, and shall leave its study for future investigation.

III. Ξ AND POWER SPECTRUM

A. Derivation

Mode Equations

The Mukhanov-Sasaki variable, u corresponds to fluctuations of the gravitational field. More precisely,

u =
Ψ

4Hφ′
,

where Ψ is a gauge-invariant metric variable. At linear order, it is equal the (also gauge-invariant) gravitional potential,
since off-diagonal elements of the stress-energy tensor vanish. For more details see [18].

Upon Fourier transforming, the modes uk obey [18] equations of the form,

∂2uk
∂η2

+ (k2 − fu)uk = 0. (18)

Here the functions fu are given by

fu = −(aH)2
[
(1 + Ξ)(Ξ +

1

2
φ′2)− Ξ′

]
(19)

A solution to (18) becomes simple upon making a simple ansatz,

uk =
√
ηZM . (20)

This reduces to an equation for ZM ,

∂2ZM
∂η2

+
1

η

∂ZM
∂η

+

[
k2 −

(
fu +

1

4η2

)]
ZM = 0. (21)

Upon making the identification,

M2 = η2fu +
1

4
, (22)

the functions ZM solve Bessel’s equation. We now apply these solutions to the study of the power spectrum of density
perturbations.
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Power Spectrum

The comoving distance to the last scattering surface, r? ∼ 14 Gpc, sets the scale of interest for the power spectrum.
ηk is the conformal time when the modes uk leave the horizon,

k ∼ aH
∣∣
η=ηk

.

η? is the time when the modes associated to the scale r? left the horizon. Thus, those mode which leaves before η?
have already frozen out. From that fact we can write the most general solution to (21),

uk = A(k)
√
k(η? − ηk)H

(1)
M (k(η? − ηk)) +B(k)

√
k(η? − ηk)H

(2)
M (k(η? − ηk)). (23)

Where the H
(i)
M are Hankel functions (not to be confused with the Hubble parameter), and M is defined by (22).

The power spectrum is proportional to the squared modulus of uk, evaluated at η?,

P(k) =
72

25
φ′2H2|uk|2, (24)

and is traditionally presented in terms harmonic modes observable in the sky, the angular power spectrum,

C` =
2

25π

∫ ∞
0

dkk2P(k)j2` (kr?). (25)

B. Slow Roll and Its Deviations

Let us examine the dependence of P(k) on Ξ more closely. From (22) and (19), one finds that the indices of the
relevant Hankel functions are,

M = ±i

√
([η? − ηk]aH)2

[
(1 + Ξ)(Ξ +

1

2
φ′2)− Ξ′

]
− 1

4
. (26)

Deep in the slow roll regime, the contribution from fu nearly vanishes, leaving M ≈ ±1/2. At these special values,
spherical Hankel functions emerge,

√
ηH

(i)
1/2(η) 7→

√
2

π
η h

(i)
0 (η).

These are just plane waves, e±iη. As such, when integrated over to find C`, one finds a flat spectrum, that is, for all
`,

`(`+ 1)C`
2C1

= 1,

consistent with the Harrison-Zeldovich spectrum.
The physical power spectrum depends on the trajectory of the inflaton. To linear order, each mode evolves inde-

pendently. The power spectrum is a slice through the set of the modes at a fixed conformal time η?. Features in the
trajectory of φ which occur after η? will be imprinted on the power spectrum. To understand this, we deconstruct
the quantity xk, which we define as the argument of the linear perturbations (23),

xk =

(
∂ log(η? − ηk)

∂N

)−1
= k(η? − ηk). (27)

That is, the modes are,

uk = Ak
√
xkH

(1)
M (xk) +Bk

√
xkH

(2)
M (xk),

with

M = ±i

√
(x2k

[
(1 + Ξ)(Ξ +

1

2
φ′2)− Ξ′

]
− 1

4
.
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FIG. 8: xk plotted against the number of e-foldings (solid black curve). During slow-roll inflation, it asymptotes to
unity. Deviation from slow-roll yields a spike in this quantity. φ(N) is plotted (dashed, with arbitrary units) for

reference.

A transition from chaotic to inflection point inflation, shown in Fig. 3, can distorts xk, as illustrated in Fig. 8.

Such features which occur at conformal time η̃ can appear in the power spectrum at k̃ ∼ aH
∣∣∣
η=η̃

. To be observed,

such features should occur shortly before the the modes relevant for the CMB left the horizon. If the feature occurs
too early, it will be pushed too far to the red part of the spectrum to be measured. This may require a fortuitous
coincidence, but such signatures – low power at large scales – are observed in the CMB power spectrum. In any case,
we now turn to quantifying these possibilities by examining parameters and the initial conditions.

We now discuss how these features yield such a reduction of power. The important, xk dependent-quantity for
this analysis is M , the index of the Hankel function, (26). As previously mentioned, during slow-roll, M asymptotes
towards 1/2. A spike in both Ξ and xk, as happens when φ approaches the inflection point, temporarily pushes
M through zero and into imaginary values. This dramatically alters the behavior of absolute value of the mode
wavefunctions, |uk|2.

As illustrated in Fig. 9, the absolute values of
√
xH

(1)
M (x) and

√
xH

(2)
M (x) are identical for real M . When M passes

to imaginary values, they ramify, with
√
xH

(1)
M (x) exponentially growing and

√
xH

(2)
M (x) decaying. This fact motivates

the choice Ak = 0 in (23), consistent with a Bunch-Davies vacuum [26].
When the transition is over, φ finds itself in slow-roll, M again approaches 1/2, and the wavefuctions resume their

standard 1/k3 behavior. The upshot of all this is dramatic reduction of power, demonstrated by the huge “bight” in
power spectrum during the transition. Such a feature is manifest in the red curve of Fig. 9. As we shall now see, this
“bight” has direct implications for the angular power spectrum.

C. Scanning the basin of attraction

We now quantify the effect of a transient deviation from slow-roll inflation on the power spectrum of primordial
density perturbations. In particular, we focus on the effect of a transition from chaotic to inflection point inflation.
We demonstrate this by examining the angular power spectrum, C`, as a function of the catastrophe parameter α in
the A3 model (see Sec. II C).

The set up

First we connect the theoretical ideas discussed so far to observational quantities. In particular, we need to establish
the various scales in the system to carryout a numerical analysis. To that end, we begin with the normalization of
the power spectrum, ∆2, which is related to the wavefunction of the linear modes [18] by

∆2 = 4k3H2φ′2|uk|2.
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FIG. 9: Normalization of the power spectrum (in arbitrary units) during a spike in Ξ. Deviation from slow-roll
yields a spike in this quantity. When separated, the red curve corresponds to the H(2) mode, the black is H(1). The

magnitude of the Hankel function index, |M | is plotted for reference.

The C`’s from Eqn. (25) can be reparametrized using the fact that k = aH, so that

C` =
2

25π

∫
dN

(
1− 1

2
φ′2
)
j2` (k(N)r?)∆

2(k(N)). (28)

The argument of j` is dimensionless. For generic choice of units, it is given by

kr? →
kr?
hc

.

In the vicinity of the inflection point,

V ∼ 27

4
α4V0M

4
P , φ′ ≈ 0.

Here V0 represents the overall scaling of the potential, which though largely irrelevant for the background dynamics
(c.f. Eqn. (4)), is important for the perturbations.

Simple algebra reveals that

kr? → V
1/2
0 α2a

24MP c
2 Gpc

hc
≈ (V

1/2
0 α2a)(1.45× 1060) ≈ V 1/2

0 α2e(Nk−N0)+139,

where N0 normalizes the scale factor to unity today.
Therefore, if the transition occurred at Nk ∼ 15, as in Fig. 3, observability requires

V
1/2
0 ≈ eN0−124. (29)

Low power at large scales

The primordial power spectrum appears to be very close to scale-invariant. The sharp peaks and troughs observed
in the CMB are well explained by baryon acoustic oscillations [27]. Power at the very largest scales, however, appears
to be anomalously low. Taken together, this suggests that the universe inflated fairly regularly from η? until the end
of inflation. Any nontrivial dynamics must – and could – have occurred just prior to η?.
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For definiteness, we focus on the transition from chaotic to inflection point inflation, although similar arguments
apply for similar features. The suppression of power at low scales depends on two quantities. The time between the
transition and η? and the strength of the cubic coupling during inflation, α. The former quantity is related to V0
and the total number of e-foldings, as can be inferred from (29). We define an effective parameter β to absorb these
dependencies.

kr? → βk,

that is,

β =
V

1/2
0 MP c

2r?
a0hc

. (30)

Increasing β corresponds to either raising the scale of inflation or lowering the initial total number of e-foldings, i.e.
N0 = log a0. This can be related to the initial conditions for φ, and therefore the basin of attraction.
α and β have qualitatively different effects on the angular power spectrum. In particular, the effects of α are largely

independent of N0 — the total number of e-foldings of inflation. We now study the effects of varying both α and β
in detail.

Changing α and β

We begin by considering changes in α. As expected from (23), the “bight” in ∆ tracks the deviation of Ξ from
zero. Similarly, their magnitudes are correlated, as one can see by comparing Fig. 4 and Fig. 10. The α dependence
of a nonzero Ξ is somewhat clearer to analyze, and we do so by defining a deviation parameter Ω,

Ω =

∫
Ξ2 dN. (31)

Ω rapidly falls to zero as α deviates from αC ≈ 0.659. This behavior is plotted by the solid red curve in Fig. 11.
The integral is taken over the feature associated to the transition. For example, if the transition occurs at N = 15,
we integrate from around N = 5 to around N = 30, since both endpoints are well within the slow-roll regime. Of
course, such a transition can occur at any value of N . A larger value of Ω corresponds to a more violent and sustained
deviation from slow-roll and a larger “bight” in the power spectrum. Ω has an approximate power law dependence
on α,

Ω ∝ α−3/2,

which is represented by the dashed curve in Fig. 11. The actual scaling α dependence oscillates slowly between powers
of −1.8 and −1.3, but the qualitative behavior is clear.

The temporary reduction in ∆ can also be seen in the angular power spectrum. The relation between them can be
seen by comparing Fig. 10 and Fig. 12. When these features in ∆ occur on the largest observable scales, the the first
few modes of the angular power spectrum are suppressed. Fig. 12 illustrates this for α = 0.7, 0.8, 1.2 and 1.6. The
largest effect occurs for α = 0.7, which is close to αC . The values of α (and colors) are linked across both of these
plots.

We now turn to β, which determines which range of N dominate the angular power spectrum — the C` integrals.
The integrands, dC`, are the oscillating curves in Fig. 13. Large values of β shifts the curves to the left — to larger
scales. These integrals are enveloped by ∆2, which does not change with β. These are the light, dashed curves seen
in Fig. 13. As we just discussed, α changes the shape of the envelope. In particular, close to the critical value, αC , a
larger “bight” is removed from the envelope.

Fig. 14 displays this information in a different way. Here the quadrupole moment is studied where the scalar
potential is given by (15) with α = 0.7, as in Fig. 13. Let N? time the end of the transition from chaotic to inflection
point inflation. If the moment when the modes relevant for the CMB leave the horizon occurs after N?, no signifigant
reduction in power is noticed. As demonstrated in Fig. 14, signifigant reduction in power at low scale can occur if the
modes relevant for the CMB leave the horizon half an e-folding or so before N?.

To explain the anomaly in the CMB angular power spectrum, β must take a value close to that in Fig. 13c. That
is, the associated power reduction must be focused on the low multipole moments. Since no such power reduction
appears seems to exist at smaller scales, to be physical it may also be smaller. While it is fixed by these considerations,
from (30) we see that there is still a degenerancy between V0 and a0. Since a0 depends on the total expansion of the
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FIG. 10: The power spectrum α = 0.7, 0.8, 1.2 and 1.6. As α approaches the critical value αc ≈ 0.659, the effect on
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FIG. 11: The slow-roll derivation parameter Ω as a function of α (solid red curve), the cubic coupling during
inflation. Ω diverges near αC and decreases as α grows. The dashed line, plotted for comparison, represents a power

law 1/N1.5.

universe before today, it can be related to the initial conditions. In particular, for fixed V0 we can see how β varies
over the entire basin of attraction.

The amount of inflection point inflation depends on λ, and therefore independent of the initial conditions. However,
the length and duration of the approach to the inflection point gives rise to a prior history of chaotic inflation. Call
this “extra” inflation Nex. It scales by β by

β → exp(−Nex)β.
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FIG. 12: The angular power spectrum α = 0.7, 0.8, 1.2 and 1.6. As α approaches the critical value αc ≈ 0.659, the
effect on the power spectrum is more pronounced.

This is the effect, illustrated in Fig. 15, which we now quantify. Any initial field velocity will drastically reduce Nex,
but starting from a larger value of φ will increase it. Each curve in both Fig. 15a and Fig. 15b corresponds to a
different initial velocity: φ′ = 0,−1.9,−2.4. These are the red, black and orange curves, respectively. Note that the
maximum possible φ′ is −

√
6 ∼ −2.449, as this corresponds to kinetic energy domination. In Fig. 15b, the basin of

attraction is sketched for reference. The important effect to observe is that Nex grows rapidly as the initial conditions
are chosen deeper inside the basin of attraction. The larger velocities are have little effect on Nex, as can be seen
in Fig. 15a. Indeed, Nex is only strongly suppressed exponentially close to the boundary of the basin of attraction,
which is shown in Fig. 5.

Implications for the measure problem

A number of studies have attempted to put a measure on phase space. The standard Liouville measure suggests
that early-time kinetic domination is by far the most likely scenario. While including the couplings amongst the
random variables enhances the likelihood of inflection point inflation to 1/N3, this measure still favors a substantial
initial velocity. This suggests that a larger β is far more likely. In short, Nex ∼ 0. In this case (30) together with (16)
gives,

β ≈
√
V0 exp(−π/2

√
3αλ)

MP c
2r?

hc
.

For β fixed by the CMB, and fixed α, the scale of inflection point inflation is fixed by its duration,

V0 ∝ e2/
√
λ.

Note that λ must be sufficiently small to generate sufficient expansion for the observable universe. We also stress here
that this analysis is extremely sensitive to the details of the chosen measure on phase space, although it is interesting
to see further implications of the measure used in [28]. More generally, one must appeal to Fig. 15.

IV. CONCLUSION

The dynamics of the inflaton have a rich structure despite the generic predictions for the cosmic microwave back-
ground. Advances in observational and theoretical technologies have increased our sensitivity to the effects of nontrivial
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FIG. 13: Integrand of the Quadrupole moment, dC2 versus N , for various values of β, defined in Eqn. 30. The solid
red curve corresponds to the β indicated in each panel. The grey dashed curves are the dC2 from previous panels,
replotted for reference. As β increases, dC2 shifts left. ∆2, which acts as an envelope, is also plotted for reference

(thin, dashed curve). We chose α = 0.7 for this figure.

dynamics on the cosmological perturbations. Small-field models of inflation generically involve temporary deviations
from the slow-roll, attractor trajectory. In this work we have quantified these deviations and shown how they may
affect the primordial density perturbations. Crucially, these effects arise in a model-independent fashion. Since these
effects only depend on the local structure of the potential, they scale with the same universality parameters discussed
in early work [8].

We demonstrated analytically how sufficiently large deviations from slow-roll change the structure of the wavefunc-
tion for the perturbations, and explicitly how this reduced the power in their spectrum. We closed by relating both
the couplings and the initial conditions to the strength and timing of this power suppression. While this completes
the systematics for how low power at large scales may have arisen with a chosen universality class, we also discussed
how it informs the likelihood of inflation.

This sudden change in the power spectrum may have important implications for nongaussianities, particularly in
the context of multifield models where the dynamics have a richer structure. It would be interesting understand the
relation, if any, between the strength and shape of nongaussianities and the universality parameters.

Finally, the deviation from slow-roll is most dramatic near critical values of the couplings. This fact leads to a
curious saturation of the Ξ parameter, and has an extreme effect on the perturbations. Itzhaki and Kovetz [20]
showed that the background has the properties of a second order phase transition. More generally, this feature occurs
along the entire boundary of the basin of attraction. As Ξ is maximized for an extended period, it stands to give the
strongest effect on primordial nongaussianities. From a field theoretic perspective, such a dramatic effect near the
vicinity of a nontrivial fixed point alone warrants further investigation.
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FIG. 15: The basin of attraction is plotted with curves of constant initial φ′. The red, black and orange curves
correspond to φ′ = 0,−1.9,−2.4, respectively. Deeper into the basin, the more e-foldings of inflation occur above the

inflection point. Note how little initial φ′ suppresses Nex. We chose α = 1 in this figure.
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