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We analyze the Brownian thermal noise of a multi-layer dielectric coating, used in high-precision optical
measurements including interferometric gravitational-wave detectors. We assume the coating material to be
isotropic, and therefore study thermal noises arising from shear and bulk losses of the coating materials. We
show that coating noise arises not only from layer thickness fluctuations, but also from fluctuations of the inter-
face between the coating and substrate, driven by fluctuating shear stresses of the coating. Although thickness
fluctuations of different layers are statistically independent, there exists a finite coherence between the layers
and the substrate-coating interface. In addition, photoeleastic coefficients of the thin layers (so far not accurately
measured) further influences the thermal noise, although at a relatively low level. Taking into account uncer-
tainties in material parameters, we show that significant uncertainties still exist in estimating coating Brownian
noise.

PACS numbers: 04.80.Nn, 05.40.+j

I. INTRODUCTION

Brownian thermal noise in the dielectric coatings of mir-
rors limits some high precision experiments which use optical
metrology. This thermal noise is currently a limit for fixed
spacer Fabry-Perots used in optical clock experiments [1] and
is estimated to be the dominant noise source in the most sen-
sitive band of modern gravitational wave detectors (e.g., ad-
vanced LIGO, GEO, advanced VIRGO and KAGRA) [2–6].
Recent work has indicated the possibility of reducing the var-
ious kinds of internal thermal noise by redesigning the shape
of the optical mode [7, 8] or the structure of the multi-layer
coating [9, 10]. In this paper, we seek a more comprehensive
understanding of coating Brownian noise. We first identify all
thermally fluctuating physical properties (e.g., different com-
ponents of the strain tensor) of the coating that can lead to
Coating Brownian noise, and calculate how each of them con-
tributes (linearly) to the total noise; we then calculate their
individual levels of fluctuation, as well as cross correlations
between pairs of them, using the Fluctuation Dissipation The-
orem [11–13]. In this way, as we compute the total Coating
Brownian noise, it will be clear how each factor contributes,
and we will be in a better position to take advantage of possi-
ble correlations between different components of the noise.

As a starting point, we will assume each coating layer to be
isotropic, and hence completely characterized by its complex
bulk modulus K and shear modulus µ—each with small imag-
inary parts related to the energy loss in the bulk and shear
motions. The complex arguments of these moduli are often
referred to as loss angles. While values of K and µ are gener-
ally known, loss angles of thin optical layers vary significantly
according to the details of the coating process (i.e., how coat-
ing materials are applied onto the substrate and their compo-
sition). Since the loss angles are small, we will use K and µ to
denote the real parts of the bulk and shear moduli, and write
the complex bulk and shear moduli, K̃ and µ̃ as

K̃ = K(1 + iφB) , µ̃ = µ(1 + iφS ) . (1)

Here we have used subscripts B and S to denote bulk and
shear, because these will be symbols for bulk strain and shear

strain.
Note that our definition differs from previous literature,

which used φ‖ and φ⊥ to denote losses induced by elastic de-
formations parallel and perpendicular to the coating-substrate
interface [14]. As we shall argue in Appendix III, φ‖ and φ⊥
cannot be consistently used as independent loss angles of a
material. Only assuming φ‖ = φ⊥ = φS = φB will the previous
calculation agree with ours — if we ignore light penetration
into the coating. There is, a priori, no reason why these loss
angles should all be equal, although this assumption has so far
been compatible with existing ring-down measurements and
direct measurements of coating thermal noise [15].

Brownian thermal fluctuations of a multilayer coating can
be divided as follows: (i) thickness fluctuation of the coating
layers, (ii) fluctuation of the coating-substrate interface, and
(iii) refractive index fluctuations of the coating layers associ-
ated with longitudinal (thickness) and transverse (area) elastic
deformations—as illustrated in Figure 1. Using what is some-
times referred to as Levin’s direct approach [12] (based on the
fluctuation dissipation theorem) and writing the coating Brow-
nian noise as a linear combination of the above fluctuations
allows the construction of a corresponding set of forces act-
ing on the coating and calculation of the thermal noise spec-
trum from the the dissipation associated with the simultane-
ous application of these forces. This has been carried out
by Gurkovsky and Vyatchanin [16], as well as Kondratiev,
Gorkovsky and Gorodetsky [17]. However, in order to obtain
insights into coating noise that have proven useful we have
chosen to calculate the cross spectral densities for each of (i),
(ii), and (iii), and provide intuitive interpretations of each. We
will show, in Sec. IV, that (i) and (ii) above are driven by
both bulk and shear fluctuations in the coating, in such a way
that thickness fluctuations of the j-th layer δl j, or in transverse
locations separated by more than a coating thickness, are mu-
tually statistically independent, yet each δl j is correlated with
the fluctuation of the coating-substrate interface zs—because
zs is driven by the sum of thermal stresses in the coating lay-
ers. We will also show that when coating thickness is much
less than the beam spot size, the only significant contribution
to (iii) arises from longitudinal (thickness) fluctuations, see
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Figure 1: Drawing of a mirror coated with multiple dielectric layers.
Shown here are the various fluctuations that contribute to coating
noise, i.e., fluctuations in the amplitude and phase of the returning
light caused by fluctuations in the geometry [including: layer thick-
ness δl j, layer area stretch (δA/A) j, interface height zs of the coating-
substrate configuration] and in the refractive indices δn j(x, y, z) of the
layers.

Appendix I D for details.

This paper is organized as follows. In Sec. II, we express
the amplitude and phase of the reflected field in terms of fluc-
tuations in the coating structure, thereby identifying the var-
ious components of coating thermal noise. In Sec. III, we
introduce the loss angles of isotropic coating materials, and
use the Fluctuation-Dissipation Theorem to calculate the cross
spectral densities of the coating thermal noise ignoring light
penetration into the multi-layer coating. In Sec. IV, we dis-
cuss in detail the cross spectra of all the components of the
coating structure fluctuation, thereby obtaining the full for-
mula for coating thermal noise, taking light penetration within
the muli-layers into account. The key formulas summarizing
phase and amplitude noise spectrum is given in Eq. (94) and
Eq. (95). In Sec. V, we discuss the effect of light penetration
on coating thermal noise, using typical optical coating struc-
tures. In Sec. VI, we discuss the dependence of thermal noise
on the material parameters, and optimize the coating structure
in order to lower the thermal noise. In Sec. VII, we discuss
how only one combination of the two loss angles have been
measured in past experiments, and how other different combi-
nations can be measured using a new experimental geometry.
Finally, we summarize our main conclusions in Sec. VIII.

II. COMPONENTS OF THE COATING THERMAL NOISE

In this section, we express the coating thermal noise in
terms of the elastic deformations of the coated substrate.

A. Complex Reflectivity

As illustrated in Figure 1, we consider a laser field nor-
mally incident (along the −z direction) onto the mirror, with
complex amplitude profile uin(x, y) at a fixed reference plane
(dashed line in the figure) and intensity profile I(x, y) =

|uin(x, y)|2. Henceforth in the paper, we shall use arrows (e.g.,
~x) to denote the 2-dimensional vector (x, y) in the transverse
plane, and boldface letters (e.g., x) to denote 3-dimensional
vectors.

Because the coating thickness is much less than the beam
spot size, the reflected field (traveling along the +z direction)
at transverse location ~x has an amplitude given by

uout(~x) = ρtot(~x)uin(~x) , (2)

which only depends on the complex reflectivity ρtot(~x) and the
complex amplitude of the incident field uin(~x), at the same
location ~x — assuming no incident light from the substrate
(i.e., s2 = 0). Here ρtot(~x) can be separated into three factors,
as

ρtot(~x) =
uout(~x)
uin(~x)

=

[
uout(~x)
v2(~x)

] [
v1(~x)
uin(~x)

] [
v2(~x)
v1(~x)

]
(3)

in which v1(~x) is the incident complex amplitude at the
coating-air interface, while v2(~x) is the reflected complex am-
plitude at that interface.

The first two phase factors on the right-hand side of Eq. (3)
are gained by the light when traveling across the gap between
the fixed reference plane (see Fig. 1) and the coating-air inter-
face; we therefore obtain, up to a constant phase factor,[

uout(~x)
v2(~x)

] [
v1(~x)
uin(~x)

]
= e−2ik0

[
δzs(~x)+

∑N
j=1 δl j(~x)

]
(4)

where k0 = ω0/c is the wave number of the laser (ω0 its
angular frequency) in vacuum, δzs(~x) is the vertical displace-
ment of the coating-substrate interface (from its zero point),
and δl j(~x) is the thickness fluctuation of the j-th coating layer
— both evaluated at a transverse location ~x.

The remaining complex reflectivity v2(~x)/v1(~x) can be de-
termined as a function of the phase shift experienced by the
field in each layer, as well as the reflectivity of each interface,
as described in detail in Sec. V. We can write:

v2/v1 = ρ[φ1(~x), . . . , φN(~x); r01(~x), . . . , rNs(~x)] (5)

Here ρ is the complex reflectivity of a multi-layer coating,
measured at the coating-air interface, which in turn depends
on the optical thickness φ j(~x) of each layer ( j = 1, . . . ,N)
and the reflectivity rp,p+1(~x) ≡ rp(~x) of each interface, (p =

0, . . . ,N, with p = N + 1 representing the substrate, and p = 0
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the vacuum outside the coating). Assembling the above equa-
tions (3)–(5), we obtain:

ρtot(~x) = e−2ik0

[
δzs(~x)+

∑N
j=1 δl j(~x)

]
ρ[{φ j(~x)}; {rp(~x)}] (6)

Brownian thermal forces lead to fluctuations in both the real
and imaginary parts of this complex reflectivity. Fluctuations
in the argument of the complex reflectivity phase modulates
the out-going light and directly produces sensing noise. Fluc-
tuations in the magnitude, on the other hand, amplitude mod-
ulate the out-going light, and produces a ponderomotive force
noise.

B. Thermal Phase and Amplitude Noise

Brownian thermal fluctuations in coating geometry and re-
fractive index modify the complex reflectivity ρtot(~x) defined
in Eq. (6). The real and imaginary parts of

δ log ρtot(~x) =
δρtot(~x)
ρtot(~x)

(7)

encode the amplitude/intensity and phase fluctuations of the
reflected light at position ~x on the mirror surface. In particular,
intensity fluctuation of the reflected light is given by

δI(~x)
I(~x)

= 2
δ|ρtot(~x)|
|ρtot(~x)|

= 2Re
[
δ log ρtot(~x)

]
(8)

while phase fluctuation is given by

δφ(~x) = δ arg
[
ρtot(~x)

]
= Im

[
δ log ρtot(~x)

]
(9)

In this way, if we further write

ξ(~x) − iζ(~x) = −
i

2k0
δ
[
log ρtot

]
, (10)

with both ξ and ζ real-valued functions of ~x, with the dimen-
sionality of displacement; they will represent phase and am-
plitude noise, respectively. In particular, from Eq. (9), we have

δφ(~x) = 2k0ξ(~x) , (11)

Because we measure the mirror’s position through the addi-
tional phase shift gained by the light after being reflected,
through the relation ∆φ = 2k0∆x, Eq. (11) indicates that ξ(~x)
is the displacement noise due to phase fluctuations of the re-
flected light imposed by the coating.

The quantity ζ (which, like ξ, is a length) is connected to
amplitude/intensity noise via

2k0ζ(~x) = Re
[
δ log ρtot

]
=
δI(~x)
2I(~x)

. (12)

As we shall discuss in Sec. II E, ζ will cause a fluctuating force
on the mirror, and can eventually be converted to a displace-
ment noise via a dimensionless factor, although the effect will
turn out to be small for gravitational-wave detectors.

Inserting the dependence of ρtot on ρ, l j and zs [Cf. Eq. (6)],
we obtain

ξ(~x) − iζ(~x) = −δzs(~x) −
N∑

l=1

δl j(~x)

−

N∑
j=1

i
2k0

[
∂ log ρ
∂φ j

· δφ j(~x)
]

−

N∑
p=0

i
2k0

[
∂ log ρ
∂rp

· δrp(~x)
]
. (13)

The first two terms are due to the motion of the coating-air
interface at location ~x and thickness fluctuations of the layers,
while the last two terms are due to light penetration into the
coating layers (see Fig. 5). In particular, the third term is due
to fluctuations in the total phase the light gains when propa-
gating within the j-th layer, while the fourth term is due to the
(effective) reflectivity of the p-th interface (with p = 0 indicat-
ing the coating-air interface), whose origin will be explained
below.

C. Fluctuations δφ j and δrp

Light propagating within the coating layers are affected by
the photoelastic effect, namely an isothermal fluctuation in
δn j(x) (note here that x is a 3-D vector) due to fluctuating
Brownian stresses exerted onto the coating materials. Assum-
ing isotropy of the coating materials, we can write

δn j(x) = βL
j S zz(x) + βT

j

[
S xx(x) + S yy(x)

]
(14)

with

βL
j ≡

(
∂n j

∂ log l

)
A j

, βT
j ≡

(
∂n j

∂ log A

)
l j

(15)

Here L stands for longitudinal, and T stands for transverse,
and the subscript A j and l j indicate fixing transverse area and
longitudinal length, respectively. We have also used the usual
strain definition

S i j ≡
1
2

[
∂ui

∂x j
+
∂u j

∂xi

]
(16)

where ui(x), i = 1, 2, 3 are components of the displacement
vector of the mass element at position x. Refer to Appendix II
for more details in defining the elasticity quantities, and Ap-
pendix A 1 for more details on the photo elastic effect.

We note that in Eq. (14) S zz is the fractional increase in
length (i.e., linear expansion) in the longitudinal direction,
while S xx +S yy is the fractional increase in the transverse area.
According to Appendix I D, we can ignore the second term
representing area fluctuations in Eq. (14) when the beam spot
size is much larger than the coating thickness. In this case,
we write β j in place for βL

j , whose value can be expressed in
terms of a particular component of the photo elastic tensor,
see Eq. (A5).
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As we discuss in Appendix A 2, the first term of Eq. (14)
causes two effects for light propagating along each direction
(i.e., +z and −z): it adds an additional phase shift, and it back-
scatters a fraction of the light into the opposite direction. As
we show in Appendix I C [c.f. Eqs. (16)–(18)], theses effects
can be accounted for by modifying the phase shift δφ j of each
coating layer and changing the reflectivity δr j of interface, in
the following manner:

δφ j = k0

[
(n j + β j)δl j −

1 − r2
j

2r j
β jδlcj

+
1 + r2

j−1

2r j−1
β j−1δlcj−1

]
, (17)

δr j = k0t2
jβ jδls

j . (18)

Here we have defined

δlcj = −

∫ l j

0
S zz(z j+1 + z) cos(2k0n jz)dz (19)

δls
j = −

∫ l j

0
S zz(z j+1 + z) sin(2k0n jz)dz (20)

for j ≥ 1, δls
0 = δlc0 = 0, and

z j ≡

N∑
n= j

ln . (21)

marks the z-coordinate of the top surface of the j-th layer. We
can also write

δl j =

∫ l j

0
S zz(z j+1 + z)dz . (22)

Note that

total coating
thickness ≡ z1 > z2 > . . . > zN+1 ≡ 0 (23)

Note that δr j, as well as the last two terms in δφ j are due
to back-scattering, and have not been considered by previous
authors.

Inserting Eqs. (17), (18) into Eq. (13), we obtain:

ξ(~x) − iζ(~x) = −zs(~x) −
N∑

j=1

∫ z j

z j+1

[
1 +

iε j(z)
2

]
uzz(~x, z)dz (24)

where

ε j(z) = (n j + β j)
∂ log ρ
∂φ j

− β j

[1 − r2
j

2r j

∂ log ρ
∂φ j

−
1 + r2

j

2r j

∂ log ρ
∂φ j+1

]
cos[2k0n j(z − z j)]

− t2
jβ j

∂ log ρ
∂r j

sin[2k0n j(z − z j+1)] , (25)

a term that accounts for all effects associated with light pene-
tration. Here we need to formally define

∂ log ρ
∂φN+1

= 0 (26)

because φN+1 does not really exist. Alternatively, we can also
write formulas separately for ξ and ζ, using only real-valued
quantities. For ξ, we have,

ξ(~x) = −zs(~x)

−

N∑
j=1

[
T
ξ
j δl j(~x) + T

ξc
j δl

c
j(~x) + T

ξs
j δl

s
j(~x)

]
, (27)

where

T
ξ
j = 1 −

n j + β j

2
Im

(
∂ log ρ
∂φ j

)
(28)

T
ξc
j = −

β j

4
Im

(
∂ log ρ
∂φ j

) 1 − r2
j

r j


+
β j

4
Im

(
∂ log ρ
∂φ j+1

) 1 + r2
j

r j

 (29)

T
ξs
j = −

β jt2
j

2
Im

(
∂ log ρ
∂r j

)
(30)

are transfer functions from the various δl’s to the
displacement-equivalent thermal noise (see Fig. 6). For ζ, we
have

ζ(~x) =
∑
j=1

[
T
ζ
j δl j(~x) + T

ζc
j δl

c
j(~x) + T

ζs
j δl

s
j(~x)

]
(31)

where

T
ζ
j =

n j + β j

2
Re

(
∂ log ρ
∂φ j

)
(32)

T
ζc
j =

β j

4
Re

(
∂ log ρ
∂φ j

) 1 − r2
j

r j


−

β j

4
Re

(
∂ log ρ
∂φ j+1

) 1 + r2
j

r j

 (33)

T
ζs
j =

β jt2
j

2
Re

(
∂ log ρ
∂r j

)
(34)

For an arbitrary stack of dielectrics, ζ is comparable to the
part of ξ [c.f. Eq. (25)] that involves light penetration into
the layers. In practice, however, for highly reflective stacks,
the real parts of ∂ log ρ/∂φ j and ∂ log ρ/∂r j all turn out to be
small, and therefore fluctuations in ζ (which corresponds to
amplitude fluctuations) should be much less than fluctuations
in ξ (which corresponds to phase fluctuations).

D. Mode selection for phase noise

So far we have dealt with phase and amplitude noise as
functions at each location ~x on the mirror surface. However,
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there is only one displacement noise that the light will sense.
In this and the next subsection, we show how ξ(~x) and ζ(~x)
should be converted into measurement noise. In doing so,
we recognize that only one spatial optical mode is injected
on resonance in the optical cavity, and this mode has a com-
plex amplitude of u0(~x) at the mirror surface. Now suppose
we have uin = u0(~x) incident on the mirror surface, we will
then have uout(~x) = ρtot(~x)u0(~x), which contains not only the
resonant mode, but also other modes, which do not resonate
in the cavity.

Let us select only the component of uout(~x) that is in the
resonant spatial mode that is driven, then we have a complex
reflectivity of

ρ̄ =

∫
u∗0(~x)uout(~x)d2~x∫

u∗0u0d~x
=

∫
ρtot(~x)I(~x)d2~x∫

I(~x)d2~x
, (35)

specifically for the resonant mode, and hence independent of
~x. Here we have defined I(~x) ≡ |u0(~x)|2. Note that the bar on
top of ρ̄ represents averaging over the phase front, instead of
averaging over time.

Now, inserting Eq. (10) as definitions for ξ(~x) and ζ(~x) into
Eq. (35), we obtain the fluctuating part of ρ̄

δρ̄

ρ̄
= 2ik0(ξ̄ − iζ̄) , (36)

where

ξ̄ ≡

∫
ξ(~x)I(~x)d2~x∫

I(~x)d2~x
, ζ̄ ≡

∫
ζ(~x)I(~x)d2~x∫

I(~x)d2~x
. (37)

Note that 2ik0ξ̄ is the additional phase gained by the returning
light, while 2k0ζ̄ is the relative change in amplitude [see dis-
cussions in Sec. II B]. Focusing first on ξ̄, we note that this
creates the same phase change as that gained by the reflected
light if the mirror does not deform but instead is displaced
along the beam by ξ̄. In this way, ξ̄ is an error in our measure-
ment of the mirror’s displacement.

E. Conversion of Amplitude Noise into Displacement

The amplitude thermal noise can produce a spurious GW
signal by modulating the radiation pressure acting on the mir-
ror, which in turn drives spurious mirror motion. Let us
first consider a single-bounce scenario, in which an incoming
beam with intensity profile I(~x), unaffected by thermal noise,
is reflected with an intensity profile I(~x) + δI(~x), with δI(~x)
induced by amplitude thermal noise. In this case, the mirror
feels a thermal-noise-induced recoil force of

Fsingle
th =

∫
δI(~x)

c
d2~x . (38)

Using Eqs. (12) and (37), we obtain

Fsingle
th =

4I0k0

c
ζ̄ (39)

with I0 the power incident on the mirror. If the mirror is within
a cavity, then we need to consider both the increase in the cir-
culating power (which we denote by Ic) with respect to the
input power, and the coherent build-up of amplitude modula-
tion within the cavity. We also note that now both the incident
and reflected beam contains amplitude modulation, and that
we must also consider the effect of this amplitude modulation
on the input mirror.

If we restrict ourselves to a single optical cavity on reso-
nance, then the force thermal noise below the cavity band-
width is given by

Fcav
th =

16k0Ic

c
√

Ti
ζ̄ (40)

Here Ic is the circulating power in the arm cavity. Suppose
both input and end mirrors have the same mass M, then the
spectrum of cavity length modulation driven by the amplitude
thermal noise at angular frequency Ω is given by√

S amp
th (Ω) =

2
MΩ2

√
S Fcav

th
=

32ω0Ic

mΩ2c2
√

Ti

√
S ζ̄ (41)

Note that ζ̄ has the units of displacement, and therefore the
pre-factor in front of

√
S ζ̄ in Eq. (41) is a dimensionless con-

version factor from ζ̄ to displacement noise. For Advanced
LIGO, this cannot be completely dismissed at this stage, be-
cause

32ω0Ic

mΩ2c2
√

Ti
= 18 ·

Ic

800 kW
·

40 kg
m
·

[
10 Hz
Ω/(2π)

]2 √
0.03
Ti

(42)

Nevertheless, as we will show in Sec. V B, the minor amplifi-
cation factor here is not enough to make amplitude noise sig-
nificant, because ζ is much less than ξ, for the coatings we
consider.

III. THERMAL NOISE ASSUMING NO LIGHT
PENETRATION INTO THE COATING

In this section, we compute the coating Brownian noise as-
suming that the incident light does not penetrate into the coat-
ing. This means light is promptly reflected at the coating-
air interface, and therefore we should only keep the first two
terms on the right-hand side of Eq. (13), which leads to ζ = 0.
We therefore consider only coating phase noise ξ, in particular
its weighted average over the mirror surface, ξ̄, see Eq. (37).

A. The Fluctuation-Dissipation Theorem

The Fluctuation-Dissipation Theorem relates the near-
equilibrium thermal noise spectrum of a generalized coordi-
nate q to the rate of dissipation in the system when a gen-
eralized force acts directly on this coordinate. More specif-
ically, the thermal noise spectrum of q at temperature T is
given by [13]

S q( f ) =
kBT
π2 f 2 Re[Z( f )] (43)
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where f is frequency, Z( f ) is the mechanical impedance (in-
verse of admittance), or

Z( f ) = −2πi f q( f )/F( f ) (44)

Alternatively, suppose we apply a sinusoidal force

F(t) = F0 cos(2π f t) (45)

with amplitude F0 acting directly on q, Eq. (43) can also be
written as

S x( f ) =
4kBT
π f

Wdiss

F2
0

=
4kBT
π f

U
F2

0

φ (46)

where Wdiss is the energy dissipated per cycle of oscillation
divided by 2π (in other words, Wdiss is the average energy loss
per radian), U is the peak of the stored energy in the system,
and φ is the loss angle, defined by

φ = Re[Z( f )]/Im[Z( f )] (47)

It is important to note that φ is in general frequency depen-
dent. However, for an elastic body, if the frequency is low
enough (well below the first eigenfrequency), then U can be
computed using the quasi-static approximation, because it is
equal to the elastic energy stored in the equilibrium configu-
ration when a constant force F0 is applied to the system.

B. Mechanical Energy Dissipations in Elastic Media

It is straightforward to apply Eq. (46) to calculate the ther-
mal noise component due to fluctuation of the position of the
coating-air interface — the weighted average [c.f. Eq. (35)] of
the first two terms of Eq. (13). This can be obtained by ap-
plying a force F with a pressure profile proportional to I(~x) to
the mirror surface (coating-air interface). In this case, elastic
energy can be divided into bulk energy UB and shear energy
US [Chapter I of Ref. [18]], with

Ucoating = UB + US =

∫
coating

(K
2

Θ2 + µΣi jΣi j

)
dV , (48)

where Θ is the expansion, and Σi j is the shear tensor (see Ap-
pendix II for details). If we give small imaginary parts to K
and µ, writing

K̃ = K(1 + iφB) , µ̃ = µ(1 + iφS) (49)

then Wdiss can be written as

Wdiss = φBUB + φS US (50)

Here have introduced the loss angles φB and φS , which are as-
sociated with the dissipation of expansion energy density and
the shear energy density, respectively. Note that our way of
characterizing loss differs from previous work by Harry, et.
al. [14], because for isotropic materials, φB and φS are the
two fundamentally independent loss angles that characterize
the dissipation of bulk and shear elastic energy; were we to

literally adopt φ⊥ and φ‖ as done in Ref. [14], and consider
them independent from each other, then the dissipated energy
defined this way can turn out to be negative if certain force
distribution are applied onto the mirror, which would be un-
physical. See Appendix III for more details.

Once we have introduced φB and φS, other elastic moduli
also gain small imaginary parts correspondingly. For exam-
ple, for the most widely used Young’s modulus and Poisson
ratio, because

K =
Y

3(1 − 2σ)
, µ =

Y
2(1 + σ)

(51)

we can write

Ỹ = Y(1 + iφY ) (52)

with

φY =
(1 − 2σ)φB + 2(1 + σ)φS

3
(53)

and

σ̃ = σ +
i
3

(1 − 2σ)(1 + σ)(φB − φS ) . (54)

Since −1 < σ < 1/2, we have (1−2σ)(1+σ) > 0, therefore σ̃
has a positive imaginary part as φB is greater than φS , and vice
versa. To understand the physical meaning of the imaginary
part of Poisson ratio, one has to realize that Young’s mod-
ulus and Poisson ratio together describe the elastic response
of a rod. Suppose we apply an oscillatory tension uniformly
along a rod at a very low frequency, whether the area of the
rod leads or lags the length of the rod depends on the relative
magnitudes of the bulk and shear loss angles. In the situation
when the two loss angles φB and φS are equal to each other, the
Poisson’s ratio is real, and we only need to deal with one loss
angle φY — although there is reason to assume the equality of
these two angles.

If the coating material is made into the shape of a one-
dimensional rod, and if we only consider its elongational,
bending or torsional modes, then the Young’s modulus is the
appropriate elastic modulus associated with these modes, and
φY is the appropriate loss angle to apply. However, this is not
directly relevant for coating thermal noise. An elastic modulus
that will actually prove useful is that of the two-dimensional
(2-D) flexural rigidity of a thin plate made from the coating
material,

D =
Yh

12(1 − σ2)
= |D|(1 + iφD) (55)

where h is the thickness of the plate, with

φD =
(1 − σ − 2σ2)φB + 2(1 − σ + σ2)φS

3(1 − σ)
. (56)

As we shall see in Sec. VII A, this D is most easily measured
through the quality factor of drum modes of a thinly coated
sample — although this will not turn out to be the combina-
tion of loss angles that appear in the thermal noise of coated
mirrors.
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C. Thermal Noise of a Mirror Coated with one Thin Layer

In the case where the coating thickness is much less than the
size of the mirror substrate and the beam spot size, the elastic
deformation of the substrate is not affected by the presence of
the coating. As a consequence, if we include the elastic energy
stored in the substrate Usub with loss angle φsub, we can write

Wdiss = φsubUsub + φBUB + φS US

≈

[
φsub + φB

UB

Usub
+ φS

US

Usub

]
Usub (57)

With the assumption of thin coating and half-infinite substrate,
the total strain energy stored in the sample can be considered
as Usub. In such a way the coating adds on to substrate loss
angle as additional, effective angles

φcoated = φsub +
UB

Usub
φB +

US

Usub
φS (58)

Note that when the total coating thickness l is much less than
the beam spot size w0, we have UB/Usub ∼ US /Usub ∼ l/w0 �

1. Unfortunately, however, φB and φS are found to be so much
larger than the substrate loss angle φsub that in practice coating
thermal noise still dominates over substrate thermal noise.

Now suppose we would like to measure a weighted average
of the position of the mirror surface,

q = ξ̄ =

∫
d2~x w(~x)z(~x) (59)

with [Cf. Eq. (37)]

w(~x) =
I(~x)∫

I(~x)d2~x
(60)

and z(~x) the position of the coating-air interface at transverse
location ~x.

According to Sec. III A, we need to apply a pressure profile
of

f (~x) = F0w(~x) (61)

onto the upper surface of the coating, which we shall also refer
to as the coating-air interface. Straightforward calculations
give

UB

F2
0

=
(1 − 2σc)l

3

[ Yc

Y2
s

(1 − 2σs)2(1 + σs)2

(1 − σc)2

+
1
Ys

2(1 − 2σs)(1 + σs)(1 + σc)
(1 − σc)2

+
1
Yc

(1 + σc)2

(1 − σc)2

] ∫
w2(~x)d2~x (62)

US

F2
0

=
2l
3

[ Yc

Y2
s

(1 − σc + σ2
c)(1 + σs)2(1 − 2σs)2

(1 − σc)2(1 + σc)

−
(1 + σc)(1 − 2σc)(1 − 2σs)(1 + σs)

Ys(1 − σc)2

+
(1 − 2σc)2(1 + σc)

Yc(1 − σc)2

] ∫
w2(~x)d2~x (63)

Here l is coating thickness; for Young’s modulus Y and Pois-
son’s ratio σ, substrates c and s represent coating and sub-
strate, respectively. Directly following Eqs. (46) and (50) will
give rise to a noise spectrum of

S ξ̄ =
4kBT
π f

φB
UB

F2
0

+ φS
US

F2
0

 (64)

where UB/F2
0 and US /F2

0 are given by Eqs. (62) and (63) re-
spectively.

Here we can define∫
w2(~x)d2~x =

∫
d2~xI2(~x)[∫
d2~xI(~x)

]2 ≡
1
Aeff

(65)

as the inverse of an effective beam area. Therefore noise
power in q is proportional to coating thickness and inversely
proportional to beam area. In particular, for a Gaussian beam
with

I(~x) ∝ exp
−~2x2

w2
0

 (66)

the effective area isAeff = πw2
0.

Let us compare our results to previous calculations using φ⊥
and φ‖. As it turns out, if we assume φS = φB, then formulas
for thermal noise agree with Eq. (22) in Ref. [14]. To illustrate
the different roles now played by φB and φS , let us take the
very simple case of Y = Yc = Ys and σ = σc = σs, where

δUB

F2
0

=
4l

3YAeff

(1 + σ)2(1 − 2σ) (67)

δUS

F2
0

=
2l

3YAeff

(1 + σ)(1 − 2σ)2 (68)

Using Eq. (64), we can get the power spectral density of the
single layer non-penetration coating thermal noise as

S ξ̄( f )

=
8kBT (1 − σ − 2σ2)l

3π f YAeff

[2(1 + σ)φB + (1 − 2σ)φS ]. (69)

From Eq. (69), we can see that the bulk loss and shear loss
contribute differently to the total noise. More importantly, at
least in the simple case where Yc = Ys, the combination of φB
and φS , is approximately 2φB +φS , which differs significantly
from the combination φtot ≈ φB + 2φS measured by the ring-
down experiments that have been performed so far [19–21].
This will be discussed in detail in the rest of Sec. VII.

D. Discussions on the correlation structure of thermal noise

Before proceeding to more detailed calculations of Brown-
ian noise that involve light penetrating into the coating layers,
we would like to gain more insight about thermal noise by
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inspecting our existing expressions of coating thermal noise
[Eqs. (62)–(64)] more carefully. We note that

S ξ̄ ∝ l
∫

w2(~x)d2~x. (70)

where the coefficient of proportionality depends only on ma-
terial property. From such a dependence on coating and beam
geometries, we deduce that (i) each point on the coating-air
interface fluctuates along the z direction independently, and
(ii) materials at different z’s within the coating also contribute
independently to coating thermal noise. These observations
will be confirmed below in Sec. IV.

Finally, within the coefficient of proportionality
[Cf. Eqs. (62) and (63)], we found three types of de-
pendence on the Young’s moduli of the coating and substrate
materias: terms proportional to 1/Yc are expected to arise
from fluctuations in coating thickness, terms proportional
to Yc/Y2

s can be interpreted as arising from coating thermal
stresses driving the substrate-coating interface, while terms
proportional to 1/Ys are therefore interpreted as correlations
between the above two types of noise.

IV. CROSS SPECTRA OF THERMAL NOISE
COMPONENTS

In this section, we compute the cross spectra of each com-
ponent of coating thermal noise, and assemble the formula
for the spectral density of the total noise. Specifically, in
Sec. IV A, we compute the cross spectra of the thickness fluc-
tuations between any two uniform sublayers of the coating,
and obtain the cross spectrum of S zz; in Sec. IV B, we com-
pute the cross spectra involving height fluctuation zs of the
coating-substrate interface, i.e., S S zzzs and S zszs ; in Sec. IV C,
we dissect the above results and analyze the separate roles of
bulk and shear fluctuations; in Sec. IV D, we write down the
full formula for coating thermal noise.

A. Coating-Thickness Fluctuations

Let us start by calculating thickness fluctuations of individ-
ual layers and correlations between them. Following Levin’s
approach, we imagine applying two pairs of opposite pressure,

f1(~x) = F0w1(~x), f3(~x) = F0w3(~x) (71)

in the z direction on layer I and layer III, as shown in Fig. 2,
with thickness of l1 and l3, respectively. Here w1(~x) and w3(~x),
like the w(~x) used in Eq. (59), provides the shape of the pres-
sure profiles. Note that we apply pairs of forces, and each
pair must be equal and opposite in direction because we are
interested in learning about the fluctuations of the thickness,
instead of the location, of the layers.

We assume that layers I and III are each made from a sin-
gle type of material, yet there could be arbitrary number of
different material sub layers in II. As it will turn out, the pre-
cise locations of layers I and III along the z direction does not

affect the result, as long as they do not overlap, or in other
words, layer II has non-zero thickness.

Throughout this paper, we shall assume that the beam spot
size is much less than the radius of the mirror, so that we
can make the approximation that the mirror surface is an infi-
nite two-dimensional plane. In this case, we perform a spatial
Fourier transformation for the applied pressure,

f̃ j(~k) =

∫
ei~k·~x f j(~x) d2~x = F0w̃ j(~k) , j = 1, 3, (72)

and carry out our calculations for strain and stress distribu-
tions in the coating-substrate system in the Fourier domain.

We further assume that the coating thickness is much less
than the beam spot size, which is inverse the maximum spa-
tial frequency contained in w̃1,3. This means we only need to
consider ~k’s with |~k|l � 1, with l the total coating thickness.
According to calculations in Appendix II, non-zero compo-
nents of the stress and strain tensors in Layers I and III are
found to be (in the spatial Fourier domain)

T̃ I
xx = T̃ I

yy =
σ1w̃1

1 − σ1
F0 , T̃ I

zz = w̃1F0 , (73)

S̃ I
zz = −

(1 − 2σ1)(1 + σ1)w̃1

Y1(1 − σ1)
F0 , (74)

and

T̃ III
xx = T̃ III

yy =
σ3w̃3

1 − σ3
F0 , T̃ III

zz = w̃3F0 , (75)

S̃ III
zz = −

(1 − 2σ3)(1 + σ3)w̃3

Y3(1 − σ3)
F0 , (76)

respectively.
Note that deformations within layer I only depends on w̃1

(not w̃3), while deformations within layer III only depends on
w̃3 (not w̃1) — while regions outside these layers are found
to have vanishing strain and stress. This means we can treat
deformations caused by each pair of forces independently, as
long as layer I and layer III do not overlap. The deformations
are also independent of the thickness of the layers. The van-
ishing of deformations outside these layers means that when
we introduce additional pairs of opposite forces, the new de-
formations introduced will be constrained within those new
layers — as long as those new layers do not overlap with ex-
isting ones. This independence originates from the linearity
of elastic response, and the fact that coating strains induced
by force applied on a single surface within the coating, as dis-
cussed in Appendix II, do not depend on distance away from
that surface, as seen in Eqs. (25)–(32). The situation here is
analogous to the electrostatics of several pairs of oppositely-
charged infinite parallel planes.

In terms of thermal noise, such a distribution of elastic de-
formations corresponds to a dissipation energy that consists of
two independent terms, each corresponding to one layer and
proportional to its thickness:

Wdiss

F2
0

= W11l1

∫
w2

1d2~x + W33l3

∫
w2

3d2~x (77)
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Here we have defined, for j = 1, 3:

W j j ≡
(1 − 2σ j)(1 + σ j)

3(1 − σ j)2Y j

[
1 + σ j

2
φ

j
B + (1 − 2σ j)φ

j
S

]
. (78)

This means the fluctuation of

q ≡
∫ [

w1(~x)δl1(~x) + w3(~x)δl3(~x)
]
d2~x (79)

is given by

S q =
4kBT
π f

∑
j=1,3

[
W j jl j

∫
w2

j (~x)d2~x
]

(80)

The absence of a cross term between w1 and w3 means that
fluctuations in δl1(~x) and δl3(~x′) are uncorrelated — and hence
statistically independent. Furthermore, within each layer, in
the same spirit as the discussions in Sec. III D, the particular
form of dependence on l j and w j(~x) indicates that S zz fluctu-
ations at different 3-D locations (within this layer) are all un-
correlated and have the same spectrum. In this way, we obtain
the cross spectral density of S zz at two arbitrary 3-D locations
within the coating:

S i j
S zzS zz

(~x, z; ~x′, z′) =
4kBT
π f

δi jδ
(2)(~x − ~x′)δ(z − z′)W j j (81)

Here we have assumed that (~x, z) belongs to layer i, while
(~x′, z′) belongs to layer j. (The association to layers helps
to identify the material property to be used in W j j.)

B. Fluctuations of Coating-Substrate Interface and their
correlations with coating thickness

To investigate the correlation between the height of the
coating-substrate interface, zs(~x) and the thickness of each
coating layer, δl j(~x), we apply an identical pair of pressures
f1(~x) = F0w1(~x) at opposite sides of Layer I, and force
fs(x, y) = F0ws(~x) onto the coating-substrate interface (along
the −z direction), as shown in Fig. 1. The same strain and
stress as in Eqs. (73) and (74) are driven by f̃1, which are
only non-vanishing within layer I. On the other hand, f̃s drives
uniform strain and stress over the entire coating, with non-
vanishing components of stress and strain given by,

‖T̃i j‖ =
w̃s(1 − σs − 2σ2

s)Yc

(1 + σc)κ2Ys


k2

x+σck2
y

1−σc
kxky 0

kxky
σck2

x+k2
y

1−σc
0

0 0 0

 (82)

‖S̃ i j‖ = −
w̃s(1 − σs − 2σ2

s)
κ2Ys


k2

x kxky 0
kxky k2

y 0

0 0
−σc

1 − σc

, (83)

where Young’s modulus Yc and Poisson’s ratio σc of the coat-
ing are given by values within layer I. The total dissipation in

substrate

z

(x,y)

III

II

I

f3(x,y)

f1(x,y)

co
at

in
g 

la
ye

rs

fs(x,y)

Figure 2: Illustrations of forces applied onto various interfaces within
the coating. Each of Layers I and III in the coating are assumed to be
uniform (but they might each contain a different kind of material); re-
gion II denotes the entire gap between them, which may well contain
many different dielectric layers. A pair of force distribution f1 ( f3)
with the same pressure profile but in opposite directions is exerted
on opposite sides of Layer I (III), while fs is exerted on the coating-
substrate interface. (Although each pair has the same pressure pro-
file, they may be different from each other.) The three distributions
may well have different profiles (as also illustrated in the figure).

this case will have the following structure,

Wdiss

F2
0

= l1

[
W11

∫
w2

1d2~x + 2W1s

∫
w1wsd~x + Wss

∫
w2

sd2~x
]
,

(84)
with the first term arising from dissipation in layer I that is due
to strain and stress driven by f1, the second term also arising
from dissipation in layer I arising from cross terms between
strains and stresses caused by f1 and fs, and the third term
arises from dissipations throughout the entire coating, due to
strain and stress caused by fs. Here W11 is the same as defined
by Eq. (78), and

W js =
(1 − σs − 2σ2

s)(1 − σ j − 2σ2
j )

2(1 − σ j)2Ys
(φ j

B − φ
j
S ) (85a)

W ( j)
ss =

(1 − σs − 2σ2
s)2Y j

(1 − σ j)2Y2
s

1 − 2σ j

2
φ

j
B +

1 − σ j + σ2
j

1 + σ j
φ

j
S


(85b)

Note that we have added a superscript ( j) for Wss to indicate
that here the dissipation is due to the pair of forces applied on
one thin layer alone.

Here again, the dependences on w2
1 and w2

s indicates that
fluctuations at different transverse locations, ~x , ~x′, are un-
correlated, while the l1 in front of W11, and the arbitrariness
of l1 means that S zz fluctuations at different z locations within
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the thin layers are uncorrelated. The l1 in front of both W1s
and Wss indicates that all S zz within layer I are correlated with
zs the same way, even though all of them are mutually uncor-
related.

This allows us to extract the following

S zszs (~x, ~x
′) =

4kBT
3π f

δ(2)(~x − ~x′)
∑

j

l jW
( j)
ss (86a)

S S zz sz (~x; ~x′, z′) =
4kBT
3π f

δ2(~x − ~x′)W js . (86b)

Here for Eq. (86b), j is the layer with which z′ is associated;
and this labeling is to help identify which material parameter
to use in W js.

C. The anatomy of coating thermal noise

Here let us assemble Eqs. (81), (86a) and (86b) from the
previous sections, and write:

S i j
S zzS zz

(~x, z; ~x′, z′) =
4kBT
3π f

(1 + σ j)(1 − 2σ j)
Y j(1 − σ j)2

[1 + σ j

2
φB j + (1 − 2σ j)φS j

]
δi jδ

(2)(~x − ~x′)δ(z − z′) (87a)

S zszs (~x, ~x
′) =

4kBT
3π f

(1 − σs − 2σ2
s)2

Y2
s

∑
j

Y jl j

(1 − σ j)2

[1 − 2σ j

2
φB j +

1 − σ j + σ2
j

1 + σi
φS j

]
δ(2)(~x − ~x′) (87b)

S zs S zz (~x; ~x′, z′) =
2kBT
3π f

(1 − σs − 2σ2
s)(1 − σ j − 2σ2

i )
Ys(1 − σ j)2 [φB j − φS j]δ2(~x − ~x′) (87c)

Here we have assumed that z belongs to the i-th layer and that
z′ belongs to the j-th layer, respectively. The thickness fluc-
tuation of different layers are mutually independent [note the
Kronecker delta in Eq. (87a)], while the thickness fluctuation
of each layer is correlated with the height fluctuation of the
coating-substrate interface [Eq. (87c)].

Fluctuations in the strain S zz and the coating-substrate in-
terface zs, described by Eqs. (87a)–(87b), can be represented
alternatively as being driven by a number of independent fluc-
tuating fields that exist throughout the coating. Such a rep-
resentation allows us to better appreciate the origin and the
magnitude of these fluctuations.

In order to do so, let us first define 3N thermal noise fields
(i.e., 3 for each coating layer), nB

j (x), nS A
j (x) and nS B

j (x), all
independent from each other, with

S nB
j nB

k
=

4kBT (1 − σ j − 2σ2
j )

3π f Y j(1 − σ j)2 φ
j
Bδ jkδ

(3)(x − x′),

(88a)

S nS A
j nS A

k
= S nS B

j nS B
k

=
4kBT (1 − σ j − 2σ2

j )

3π f Y j(1 − σ j)2 φ
j
S δ jkδ

(3)(x − x′),

(88b)

and all other cross spectra vanishing. Here j labels coating
layer, the superscript B indicates bulk fluctuation, while S A
and S B label two types of shear fluctuations. The normaliza-
tion of these fields are chosen such that each of these fields,
when integrated over a length l j along z, have a noise spectrum
that is roughly the same magnitude as a single-layer thermal
noise.

Noise fields nB
j (x), nS A

j (x) and nS B
j can be used to generate

thickness fluctuations of the layers and the interface fluctua-

Thickness (δ j) Surface height (zs)

Bulk CB
j =

√
1 + σ j

2
DB

j =
1 − σs − 2σ2

s√
2(1 + σ j)

Y j

Ys

Shear
A

CS A
j =

√
1 − 2σ j DS A

j = −
1 − σs − 2σ2

s

2
√

1 − 2σ j

Y j

Ys

Shear
B

(none) DS B
j =

√
3(1 − σ j)(1 − σs − 2σ2

s)

2
√

1 − 2σ j(1 + σ j)

Y j

Ys

Table I: Transfer functions from bulk and shear noise fields to layer
thickness and surface height.

tion (87a)–(87b) if we define

uzz(~x, z) = CB
j nB

j (~x, z) + CS A
j nS A

j (~x, z) (89)

and

zs(~x) =
∑

j

∫ L j

L j+1

dz
[
DB

j nB
j (~x, z) + DS A

j nS A
j (~x, z)

+DS B
j nS B

j (~x, z)
]

(90)

For each coating layer, CB
j and DB

j are transfer functions from
the bulk noise field nB

j to its own thickness δl j and to sur-
face height zs, respectively; CS A

j and DS A
j are transfer func-

tions from the first type of shear noise to thickness and sur-
face height; finally DS B

j is the transfer function from the sec-
ond type of shear noise to surface height (note that this noise
field does not affect layer thickness). Explicit forms of these
transfer functions are listed in Table. I.

Equations (89) and (90) owe their simple forms to the un-
derlying physics of thermal fluctuations:
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Figure 3: Illustration of the correlations between coating thickness
δl j and the height of the coating-substrate interface, zs. On the left,
for a bulk deformation: when a coating element is expanding, its ex-
pansion along the x-y plane lifts the coating-substrate interface up-
wards, causing additional motion of the coating-air interface corre-
lated to that caused by the increase in coating thickness. On the right,
a a particular shear mode: when a coating element is expanding, its
contraction along the x-y plan pushes the coating-substrate interface
downwards, causing addition motion of the coating-air interface anti-
correlated to that caused by the increase in coating thickenss.

For bulk noise, i.e., terms involving nB
j , the form of

Eqs. (89) and (90) indicates that the interface fluctuation due
to bulk dissipation is simply a sum of pieces that are directly
proportional to the bulk-induced thickness fluctuations of each
layer. This means the thermal bulk stress in a layer drive si-
multaneously the thickness fluctuation of that layer and a fluc-
tuation of the coating-substrate interface. The fact that DB

j and
CB

j having the same sign means that when thickness increases,
the interface also rises (with intuitive explanation shown in
Figure 3). This sign of correlation is generally unfavorable
because the two noises add constructively towards the rise of
the coating-air interface.

For shear noise, the situation is a little more complicated,
because unlike bulk deformations, there are a total of 5 pos-
sible shear modes. From Eq. (73) and (74), it is clear that
f1, applied on opposites of Layer I (Figure 2), only drives the
xx+yy−2zz shear mode and the xx+yy+ zz bulk mode, while
from Eq. (82) and (83), the force distribution fs drives three
shear modes of xx− yy, xy + yx, and xx + yy−2zz. This means
while thermal shear stresses in the xx + yy − 2zz mode drives
layer thickness and interface fluctuation simultaneously, there
are additional modes of shear stress, xx − yy and xy + yx,
that only drives the interface without driving layer thickness.
Our mode S A, which drives both layer thickness and inter-
face height, therefore corresponds to the physical shear mode
of xx + yy − 2zz; our mode S B, which only drives interface
height, corresponds to the joint effect of the physical shear
modes xx− yy and xy + yx. It is interesting to note that for S A,
its contributions to δl j and zs are anti correlated, because CS A

and DS A have opposite signs. This is intuitively explained in
Fig. 3.

As an example application of Eqs. (89) and (90), if we ig-
nore light penetration into the coating layers, namely, when

thermal noise is equal to

ξnp ≡ −zs −
∑

j

δl j (91)

we have

ξnp = −
∑

j

L j+1∫
L j

dz
[ (

CB
j + DB

j

)
nB

j

+
(
CS A

j + DS A
j

)
nS A

j

+DS B
j nS B

j

]
(92)

in which contributions from each layer has been divided into
three mutually uncorrelated groups, each arising from a dif-
ferent type of fluctuations. Here we see explicitly that CB and
DB sharing the same sign increases contributions from nB, CS A

and DS A having opposite signs suppresses contributions from
nS A .

Finally, we note that in the spectral density of ξnp, contri-
butions directly from coating thickness will be proportional to
|CB

j |
2 and |CS A

j |
2, and hence proportional to 1/Yc, those from

interface height will be |DB
j |

2, |DS A
j |

2 and |DS B
j |2, and hence

proportional to Yc/Y2
s , while those from correlations will be

proportional to CB
j DB

j and CS A
j DS A

j , and hence proportional to
1/Ys. This confirms our anticipation at the end of Sec. III D.

D. Full formula for thermal noise

Now we give the complete formulas for amplitude and
phase noise spectrum [Cf. Eq. (94) and Eq. (95)]. As we con-
sider light penetration into the coating, we resort to Eq. (24),
and write:

ξ(~x) − iζ(~x)

=−
∑

j

∫ z j

z j+1

dz
{ [[

1 +
iε j(z)

2

]
CB

j + DB
j

]
nB

j (~x, z)

+

[[
1 +

iε j(z)
2

]
CS A

j + DS A
j

]
nS A

j (~x, z)

+DS B
j nS B

j (~x, z)
]}

(93)

Here spectra of independent fields nB
j , nS A

j and nS B
j have been

given in Eqs. (88a)–(88b), ε is defined in Eq. (25), while the
transfer functions C’s and D’s are listed in Table. I.

We can then obtain the spectrum of phase noise (after aver-
aging over the mirror surface, weighted by the power profile
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of the optical mode) as

S ξ̄ =
∑

j

∫ z j

z j+1

dz
λ j

[[
1 − Im

ε j(z)
2

]
CB

j + DB
j

]2

S B
j

+
∑

j

∫ z j

z j+1

dz
λ j

[[
1 − Im

ε j(z)
2

]
CS A

j + DS A
j

]2

S S
j

+
∑

j

[
DS B

j

]2 l j

λ j
S S

j

≡
∑

j

qB
j S B

j + qS
j S S

j (94)

and spectrum of amplitude noise as

S ζ̄ =
∑

j

∫ z j

z j+1

dz
λ j

{ [
CB

j Re
ε j(z)

2

]2

S B
j

+

[
CS A

j Re
ε j(z)

2

]2

S S
j

}
(95)

Here λ j is the wavelength of light in Layer j, and we have
defined

S X
j ≡

4kBTλ jφ
j
X(1 − σ j − 2σ2

j )

3π f Y j(1 − σ j)2Aeff

, X = B, S . (96)

which is at the level of coating thickness fluctuation of a sin-
gle layer of dielectrics with material parameters identical to
layer j and length equal to λ j. Note that the quantity S X

j only
depends on the material properties (and temperature) of the
layer, and is independent from length of that layer; the quan-
tities qX

j (see Fig. 7), on the other hand, give us the relative
thermal-noise contribution of each layer in a dimensionless
way.

Note that the reason for keeping the integrals in Eqs. (94)
and (95) is because ε has a z dependence, which originates
from the fact that the back-scattering contributions to δφ j’s
and δr j’s a weighted integral of uzz within each layer [Cf. (17)
and (18)].

V. EFFECT OF LIGHT PENETRATION INTO THE
COATING

In this section, we synthesize results from Sec. II and
Sec. IV, and compute the full Brownian thermal noise for
coating configurations. We will illustrate how the light pene-
tration affects the total noise in highly reflective coatings.

A. Optics of multi-layer coatings

For completeness of the paper, we briefly review how light
penetration coefficient ∂ log ρ/∂φ j can be calculated.

From an interface from layer i to j (here j is either i + 1 or
i−1), we denote the reflectivity and transmissivity of different

reflective surface

a

b

c

d

r r’=−r
a

b

c

d

free propagation

Figure 4: Two basic transformations involved in solving for optical
fields in a multi-layer coating.

Parameter Tantala(Ti2O5) Silica(SiO2)
Refractive index 2.07 [22] 1.45 [22]
Poisson’s ratio 0.23 [23] 0.17[23]
Young’s modulus (Pa) 1.4 × 1011[24] 7 × 1010[23]
Loss angle (φB = φS ) 2.3 × 10−4[25] 4.0 × 10−5[26]
Photoelastic coefficient -0.50 [27] -0.41[28]

Table II: Baseline material parameters.

layers by ri j and ti j: r2
i j + t2

i j = 1.

ri j =
ni − n j

ni + n j
(97)

We also define nN+1 = n1, since that is the refractive index of
the substrate.

A matrix approach can be applied to solve for the amplitude
of light inside the layers, when we view the coating as made
up from two elementary transformations, each representable
by a matrix. In this approach, instead of writing out-going
fields in terms of in-going fields, one writes fields to the right
of an optical element in terms of those to the left. As illus-
trated in Figure 4, for reflection at an interface (left panel), we
write  c

d

 ≡ Rr =
1
t

 1 −r
−r 1

  a
b

 (98)

On the other hand, for propagation across a gap with phase
shift φ, we have c

d

 ≡ Tφ =

 eiφ 0
0 e−iφ

  a
b

 (99)

In this way, assuming the input and output field amplitude
at the top surface of a multi-layer coating to be v1 and v2, and
writing those right inside the substrate to be s1 and s2, we have s1

s2

 =

 M11 M12

M21 M21

  v1

v2

 = M
 v1

v2

 (100)

where M is given by

M = RrN,N+1 TφN−1 RrN−1,N . . .Rr12 Tφ1 Rr01 (101)

The complex reflectivity is given by

ρ = −M21/M22 (102)
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Figure 5: Real (solid curves) and imaginary (dashed curves) parts of ∂ log ρ/∂φ j (upper panel) and ∂ log ρ/∂r j (lower panel), for conventional
(red curve) and Advanced LIGO (blue curve) coatings. [Note that Re(∂ log ρ/∂φ j) = 0 for conventional coating.]

B. Levels of light penetration in Advanced LIGO ETM
Coatings

In Advanced LIGO, the coating stack is made from alter-
nating layers of two materials: SiO2 (n1 = 1.45) and Ta2O5
(n2 = 2.07). Here we consider the End Test-mass Mirror
(ETM). In order to achieve very high reflectivity, the coating
is made of 19 successive pairs of alternating SiO2 and Ta2O5
layers, all λ/4 in thickness except the top one, which is λ/2.
We will refer to this as the conventional coating. An alterna-
tive design has been made to allow the coating to operate at
both 1064 nm and 532 nm. We shall refer to this as the Ad-
vanced LIGO coating (see Appendix. IV) [29].

In Fig. 5, we plot real and imaginary parts of ∂ log ρ/∂φ j
and ∂ log ρ/∂r j [see Eq. (13)], for both conventional and Ad-
vanced LIGO coating. Here we note that the real parts of these
derivatives are at the order of 10−6, which means ζ̄ is less than
ξ̄ by 6 orders of magnitude. This, together with considerations
in Sec. II E, will make amplitude coating noise negligible.

In Eq. (27), we have divided contributions to ξ into four
terms, the first, zs, is the height of the coating-substrate inter-
face, while the other three are related to fluctuations in layer
thickness, δl j, δlcj and δls

j, see Eqs. (27)–(30). We can illus-
trate the effect of light penetration by showing the relative
size of these three contributions for each layer. In Figure 6,
we carry out this illustration, for conventional coating on the

left panel and for Advanced LIGO coating on the right. We
use a solid black line to indicate the non-photoelastic part of
T
ξ
j [i.e., terms not containing β j, see Eq. (28)], and we use

red-long-dashed, blue-short-dashed, and purple-dotted curves
to indicate the photoelastic part of T ξ

j , T ξc
j

√
〈(δlcj)

2〉/〈(δl j)2〉

and T ξs
j

√
〈(δls

j)
2〉/〈(δl j)2〉, respectively. The weighting fac-

tors,

√
〈(δlcj)

2〉/〈(δl j)2〉 =
1
√

2

√
1 +

sin 4φ j

4φ j
, (103)

√
〈(δls

j)
2〉/〈(δl j)2〉 =

1
√

2

√
1 −

sin 4φ j

4φ j
, (104)

have been added for T ξc
j and T ξs

j , respectively, to correct for
the fact that δlcj and δls

j have different r.m.s. values compared
to δl. Because of the lack of experimental data, we have as-
sumed β j = −0.4 identically. Note that in order to focus on
the effect of light penetration, we have only showed the first
10 layers.

In the figure, the effect of light penetration into the coating
layers is embodied in the deviation of the black solid curve
from unity in the first few layers, and in the existence of the
other curves. Although we cannot perceive the correlation be-
tween these contributions, we can clearly appreciate that only
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Figure 6: Light penetration into the first 10 layers of a 38-layer coating (left panel for conventional coating and right panel for Advanced
LIGO coating). We plot the non-photoelastic part of T j in black sold curves, the photoelastic part of T s

j in long-dashed red curves, as well
as T s

j (scaled by rms value of δlc
j with respect to the rms value of δl j, shown in short-dashed blue curves) and T s

j (scaled by rms value of δls
j,

shown in dotted purple curves). These plots indicate that for both structures, light penetration is restricted within the first 10 layers.

the first few layers are penetrated, and that the total effect of
light penetration will be small. We should also expect the ef-
fect of photoelasticity (dashed curves) to be small, and the ef-
fect of back-scattering (which gives rise to T ξc

j and T ξs
j , blue

and purple dashed curves) to be even smaller.

C. Thermal noise contributions from different layers

Let us now examine the breakdown of the total coating
noise by plotting the coefficients qB

j and qS
j in Eq. (94). In

Fig. 7, we plot silica contributions on top panels, and tantala
contributions on lower panels, with bulk contributions on left
panels, and shear contributions on right panels. Here we use
the baseline parameters shown in Table II. As it turns out,
the results for conventional and Advanced LIGO coatings are
hardly distinguishable from each other — therefore we only
use the Advanced LIGO coating. The red curve uses β = −1,
black uses β = 0 and blue uses β = 1. Superimposed onto the
solid lines are dashed lines of each type, calculated without
introducing the back-scattering terms; the effect is noticeable
for the first few layers.

VI. DEPENDENCE OF THERMAL NOISE ON MATERIAL
PARAMETERS

Experimental knowledge of coating materials is limited.
Most notably, values of Young’s moduli and Poisson’s ratios

of the coating materials are still uncertain, while only one
combination of the two loss angles have been experimentally
measured by ring-down experiments. In this section, we ex-
plore the possible variation in coating Brownian noise, away
from the baseline configuration (Table II), considering these
uncertainties. We shall use the Advanced LIGO coating struc-
ture mentioned in the previous section.

A. Dependence on Ratios Between Loss Angles

In the baseline (Table II), we have assumed that φB and
φS are equal, but this is only out of our ignorance: experi-
ments have only been able to determine one particular combi-
nation of these two angles. We now explore the consequence
of having these loss angles not equal, while keeping fixed the
combination measured by ring down rate of drum modes [see
Eq. (110)].

In Figure 8, while fixing all other baseline parameters, we
plot how each type of thermal noise (i.e., silica vs tantala, bulk
vs shear) varies when the ratio φB/φS for both tantala and sil-
ica layers varies between 1/5 and 5. We use blue for tantala,
red for silica, dotted for bulk, dashed for shear, and solid for
the total of bulk and shear. In this configuration, tantala lay-
ers’ contribution to thermal noise always dominate over silica
layers, mainly due to the higher loss angle. As we vary the
ratio between the loss angles, there is moderate variation of
thermal noise. For the dominant tantala, as φB/φS vary from
1/5 to 5, there is a 30% change in thermal noise, while for
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Figure 7: A break-down of thermal noise contributions from silica (upper panels) and tantala (lower panels) layers, from bulk (left panels) and
shear (right panels) losses. Blue curves correspond to β = −1, black β = 0 and red β = 1. Dashed curves indicate results calculated without
including back-scattering effects.

silica, the change is a more significant 68%.

As we see from Fig. 8, a larger value of φB/φS gives rise to
higher bulk, lower shear, and higher total noise — this is rea-
sonable because bulk fluctuations drive correlated noise be-
tween layer’s thickness and the height of coating-substrate in-
terface, while shear fluctuations drive anti-correlated noise, as
shown in Fig. 3.

Moreover, the fact that variation is more significant for sil-
ica layers can be explained when we recall that thickness-
induced thermal noise is proportional to 1/Yc, while surface-
height-induced thermal noise is proportional to Yc/Y2

s . For
silica layers, Yc is assumed to be equal to Ys, so the two types
of noise being added (bulk) or subtracted (shear) are more
comparable in magnitude; by contrast, the Young’s modulus
of tantala layers is significantly higher than that of the sub-
strate, causing the noise to be dominated by fluctuations of
the height of the coating-substrate interface, therefore making
correlations between the two types of noise less important.

In Fig. 9, we plot variations in the total noise as we vary
φB/φS for silica layers (blue) or tantala layers (red) only, and
fix the other one. It shows that the variance of tantala’s loss
angle will generate larger change of the total noise.

B. Dependence on Young’s moduli and Poisson’s ratios

Since the Young’s modulus and Poisson’s ratios of coating
materials, especially of tantala, are also uncertain. In Fig. 10,
we plot variations of tantala thermal noise when its Young’s
modulus varies from the baseline value by up to a factor of 2,
for φB/φS = 0.2, 0.5, 1, 2 and 5. The noise is seen to vary by
∼15% as Young’s modulus varies by a factor of ∼ 2.

We can also explain the way the thermal noise varies as a
function of Yc. Starting from the baseline value, a lower Yc
leads to a lower thermal noise, until Yc becomes comparable
to Ys (which we fix at the baseline value, equal to 0.5YTa),
and starts to increase again. Such a behavior is reasonable be-
cause thickness noise spectrum and interface noise spectrum
are proportional to ∼ 1/Yc and ∼ Yc/Y2

s , respectively — as we
decrease Yc from the baseline YTa value, we transition from
interface fluctuation being dominant towards equal amount of
both noises (which gives a minimum total noise), and then
towards thickness fluctuation becoming dominant.

In Fig. 11, we explore the effect of varying coating Pois-
son’s ratio, for the same values of φB/φS chosen in Fig. 10.
In the baseline assumption of φB = φS , when bulk and shear
have the same level of loss, thermal noise does not depend
much on Poisson’s ratio. However, if φB/φS turns out to differ
significantly from 1, and if Poisson’s ratio can be larger than
the baseline value by more than ∼ 0.1, then thermal noise can
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Figure 8: (Color Online) Variations in thermal noise contributions
when φB/φS is varied. Contributions from tantala layers is shown
in blue, those from silica layers are shown in red. The total thermal
noise is in black. Bulk contributions are shown in dotted curves,
while shear contributions are shown in dashed curves.
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Figure 9: (Color Online) Variations in total noise when φB/φS is
varied: (solid) total noise, (dotted) total bulk noise, (dashed) total
shear noise. The red (blue) curve corresponds to only varying φB/φS

for tantala (silica). With φB/φS of tantala or silica varying from 0.2
to 5, the change in total noise is 58.1% and 10.6% respectively.

vary by ∼ 10%.

C. Dependence on Photoelastic Coefficients

Photoelastic properties of the coating materials are not yet
well known. In Fig. 12, we plot the fractional change in ther-
mal noise, separately for silica (left panel) and tantala (right
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Figure 10: Thermal noise contribution from tantala, as its Young’s
modulus deviates from baseline value, for φB/φS =5 (blue dashed), 2
(blue dotted), 1 (black solid), 1/2 (red dotted), and 1/5 (red dashed).
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Figure 11: Thermal noise contribution from tantala, as its Poisson’s
ratio deviates from baseline value, for φB/φS =5 (blue dashed), 2
(blue dotted), 1 (black solid), 1/2 (red dotted), and 1/5 (red dashed).

pane), and for bulk (blue) and shear (red) losses, when we
vary β between -1 and +1. Dashed curves are obtained ignor-
ing back-scattering effects.

It is interesting to note that for small values of β, the depen-
dence of noise on β have different trends for bulk and shear
contributions. This is also related to the different types of cor-
relations between thickness and interface height fluctuations.
As we can see from the Figure, the effect of varying β is small,
since it only affects thermal noise due to light penetration into
the first few layers. If bulk and shear losses are indeed compa-
rable, then cancelation between these two types of noises (es-
pecially for the more lossy tantala layers) will likely make the
photo elastic effect completely negligible. Even in the case
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Figure 12: Fractional change in the contribution to thermal noise from all silica layers (left panel) and all tantala layers (right panel), due to
bulk (blue) and shear (red) loss. Dashed lines indicate results calculated without including back-scattering terms.

when one particular type of loss dominates shall we expect
at most ∼2% contribution from photo elasticity of the more
lossy tantala — if we further assume that |β| ∼ 1 [right panel
of Fig. 12].

D. Optimization of Coating Structure

Although a standard highly reflective coating consists of
λ/4 layers of alternating material capped by a λ/2 layer, this
structure can be modified to lower thermal noise while still
maintaining a high reflectivity for the 1064 nm carrier light,
e.g., as shown by Agresti et al. [30]. As their results have in-
dicated, for baseline coating parameters and neglecting light
penetration into the coating layers [14], the optimal structure
is more close to a stack of pairs of λ/8 (Ta2O5) and 3λ/8
(SiO2) layers, capped by a λ/2 (SiO2) layer. This alternative
coating structure shortens the total thickness of the more lossy
tantala layers, while maintaining a high reflectivity for the
light. The Advanced LIGO type coating given in Appendix IV,
on the other hand, has been optimized considering reflectivity
at both 1064 nm and 532 nm, as well as thermal noise — al-
though light penetration into the layers have not been consid-
ered.

In this section, we carry out a numerical optimization taking
penetration into account. We first fix the number N of layers
(N is even, so we have N/2 pairs), and then for N, we use the
Lagrange multiplier method to search for the constrained min-
imum of S th, fixing T1064 and T532, namely the power trans-
missivity, 1 − |ρ|2 assuming the coating is lossless, evaluated
at 1064 nm and 532 nm, respectively. The quantity we seek to

minimize (or, the cost function) is

y ≡
√

S th + µ1T1064 + µ2(T532 − 5%)2 (105)

As we vary µ1 and µ2 and minimizing y, we obtain the con-
strained minimum of

√
S th for different pairs of (T532,T1064).

The aim is to obtain a series of coating configurations with ap-
proximately 5% transitivity for 532 nm, and with minimized
thermal noise for a variable 3 – 20 ppm transmissivity for
1064 nm. (Note that the choice of the cost function contains a
certain level of arbitrariness.)

Since we are going to carry out minimization for a large
number of multipliers over a large number of degrees of free-
dom, we have chosen to proceed gradually allowing only the
first n pairs and last n pairs of layers to vary, while maintaining
the same pair structure for N/2−n pairs in the middle (repeat-
ing doublets). In other words, our coating structure looks like:

free︸    ︷︷    ︸
2n layers

repeating pair︸           ︷︷           ︸
N − 2n layers

free︸    ︷︷    ︸
2n layers

In this work, we found that it suffices to choose n = 2 (which
corresponds to optimizing over 10 parameters); further in-
creasing n does not lead to noticeable improvements. Dur-
ing our numerical optimization, we have adopted the downhill
simplex method [31, 32].

Results for baseline material parameters (Table. II) and
N =38, 40 and 42 have been shown in Figure 13. This fig-
ure indicates that different numbers of layers should be cho-
sen for different target T1064 – more layers are required for
lower transmissivity (higher reflectivity). Overall, the opti-
mal thermal noise varies by around ∼ 10% as for T1064 from
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target Resulting Coating Structure
√

S opt
th

√
S λ/4

th

φB/φS N First 4 layers Repeated Pair Last 4 layers φB
φS

= 1
5

φB
φS

= 1 φB
φS

= 5

1/5 42 0.0479 0.1581 0.3430 0.1760 0.2919 0.1897 0.3164 0.1738 0.3178 0.1627 5.01 6.64 8.81 5.35
1 42 0.1020 0.1250 0.3267 0.1917 0.2911 0.1914 0.3110 0.1752 0.3196 0.1609 5.02 6.64 8.81 7.05
5 42 0.1118 0.0968 0.3353 0.1882 0.2893 0.1939 0.3135 0.1673 0.3199 0.1662 5.02 6.64 8.81 9.33

Table III: Results of coating-structure optimization. We list optimized coating structures for T1064 = 5 ppm and T532 = 5%, for three target
values of φB/φS while fixing the measured effective loss angle φD [Eq. (56)] and other baseline material parameters [Table II]. Thickness of
coating layers are given in units of wavelength (for 1064 nm light). For each optimized coating structure, thermal noise is calculated separately
for the same three values of φB/φS , and given in units of 10−21 m/

√
Hz (thermal noise for the target φB/φS is given in boldface, and boldface

numbers should be the minimum within its column); thermal noise spectra of the 38-layer λ/4 stack assuming the target φB/φS are also listed
for comparison.
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Figure 13: Optimized thermal noise versus transmissivity at
1064 nm, for a coating of 38 (red), 40 (blue), and 42 (purple) lay-
ers.

3 to 20 ppm. In particular, for the standard Advanced LIGO
requirement of 5 ppm (see first column of Table III), 42 lay-
ers are found to be optimal. This is 2 more pairs or 4 more
layers than the 38-layer λ/4 doublet, which has the minimum
number of layers to reach 5 ppm. The larger number of lay-
ers here gets lower thermal noise (by 6 %) because the more
lossy tantala layers are shortened, and the less lossy silica lay-
ers lengthened.

We have further optimized the structure when the ratio
φB/φS is different from 1, while keeping fixed the effective
loss angle measured so far — as done in Sec. VI A. For
T1064 = 5 ppm, we have listed results of optimized coating
structure and thermal noise in the second and third columns
of Table III. The extent of variation found here is compara-
ble to those obtained in Sec. VI A using a standard coating
structure without optimization: the optimal coating structures
consistently lower thermal noise by about 6%. In addition,
as shown in Table III, the optimal coating structure is robust
against changes in φB/φS : structure obtained for any one of
the values of the ratio is already almost optimal for all other
ratios.

VII. MEASUREMENTS OF LOSS ANGLES

In this section, we study possible mechanical ringdown ex-
periments that can be used to measure independently the bulk
and shear loss angles, φB and φS of a coating material.

In a ringdown experiment, a sample with a high intrinsic
Q is coated with a thin layer of the coating material in ques-
tion. Due to the mechanical losses in the coating, the quality
factor of the mechanical eigenmodes of the sample will be re-
duced [33, 34]. More specifically, for the nth eigenmode with
resonant frequency fn, if an e-folding decay time of τn is mea-
sured, then the quality factor is

Qn = π fnτn , (106)

while correspondingly, the loss angle is given by

φ( fn) = 1/Qn , (107)

which is equal to the fraction of energy dissipated per radian.

a

b

c

d

Figure 14: Rectangular shaped thin plate (a×b× c) with thin coating
(thickness d): c � a, b; d � c. The transverse vibration mode is
considered in this case

A. Bending Modes of a Thin Rectangular Plate

Figure 14 shows the schematic geometry of a rectangularly
shaped sample, in which a thin coating layer with thickness d
is deposited on a rectangular plate with dimensions a × b × c
(c � a, b), and d is much less than c. If we pay attention only
to the bending (or, in other words, flexing) oscillations of the
plate, the amount of energy stored in the coating layer, in the
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form of bulk and shear energies UB and US , as a fraction of
the entire energy U, can be calculated as

UB

U
=

d
3c

Yc

Ys

(1 − σ2
s)(1 − 2σc)

(1 − σc)2 (108)

US

U
=

2d
3c

Yc

Ys

(1 − σ2
s)(1 − σc + σ2

c)
(1 − σc)2(1 + σc)

(109)

Using Eq. (58), the total loss angle of the sample is

φ = φsub

+
d
c

Yc

Ys

1 − σ2
s

1 − σ2
c

[
φB(1 − σc − 2σ2

c) + 2φS (1 − σc + σ2
c)

3(1 − σc)

]
= φsub +

|Dc|

|Ds|
φD (110)

It is not surprising that only the 2-D flexural rigidity D and its
imaginary part appear in Eq. (110). During the bending of a
thin plate with thin coating, both the substrate and the coating
are described by the 2-D flexural rigidity, first introduced in
Sec. III B [see Eqs. (55) and (56) and Sec. 13 of Ref. [18]].
Because they both bend in the same way, the ratio of their
elastic energies is given directly by the ratio of their flexural
rigidities (each proportional to their thickness). The fraction
of total energy lost in the coating needs to be multiplied by
φD (of the coating material), and hence Eq. (110). As the
oscillation of a thicker object is considered, as long as the
coating only bends up and down (e.g., in a drum mode), then
we expect the coating contribution to the loss angle to still be
proportional to φD.

As it turns out, the part of coating thermal noise due to
bending of the coating-substrate interface [S zszs in Eq. (87b)]
also depends directly on φD, because the loss mechanism in
this case is the same as during the oscillation of a drum mode
— one only applies a perpendicular force from below the coat-
ing layer, while keeping Tzz = 0 within the layer.

It proves less straightforward to connect the thickness fluc-
tuation part of thermal noise [S uzuz in Eq. (87a)] to the effec-
tive loss angle of either Y or D. Although the loss mechanism
here is due to the compressing of a thin membrane from both
sides — this membrane is not characterized by vanishing Txx
and Tyy, because the coating is attached to a substrate which
provides restoring forces along the transverse (x and y) direc-
tions. However, in the case when the Poisson ratio σc of the
coating vanishes, the thickness fluctuation does depend on the
loss angle of the Young’s modulus.

For our baseline parameters, mechanical dissipation is
mostly contributed by the tantala layers, and because the
Young’s modulus of the tantala coating material is assumed to
be much greater than that of the substrate, the largest contri-
bution to the LIGO mirrors’ Brownian noise is bending noise
S zszs . This explains why the noise only varies by 30% (as
noted in Sec. VI A) even if no further measurements on the
other loss angle is made.

c

d2R

L

Figure 15: Thin cylindrical shell with thin coating outside. The first
torsional eigenmodes of such a shell can be used to measure the shear
loss angle of the coating.

B. Torsional Modes of a Coated Hollow Cylinder

Here we propose an approach with which we can measure
another combination of loss angles. We consider a cylindrical
shell with a thin, uniform coating layer outside, as shown in
Fig. 15(c � R, d � c). In this configuration, the surface de-
formations produce strains in the plane of shell according to
the Donnell shell theory [35]. Here we assumed that there is
only angular displacement in the shell, which means the lon-
gitudinal position of the cross section won’t change. For a
torsion mode, we only have shear strain energy, the expres-
sions are given by

UB

U
= 0 (111)

US

U
=

d
c

Yc

Ys

(1 + σs)
(1 + σc)

. (112)

As a consequence, the total loss angle can be expressed as

φ = φsub +
d
c

Yc

Ys

(1 + σs)
(1 + σc)

φS (113)

For a cylinder shell, according to the Donnell shell the-
ory, the natural frequency of the n-th torsional mode is given
by [36]

fn =
n

2
3
2 L

[
Y

ρ(1 + σ)

]1/2

(114)

A more accurate calculation may be found by using the
Flügge shell theory [37].

Using the values from Table IV, we can estimate the res-
onant frequency to be 9.2 kHz. The coating contribution to
loss angle, assuming a φS of at least 10−5, would be at least
the order of 10−6, which seems plausible to be extracted from
ring-down measurements.

Table IV: Example parameters of a thin, uniformly coated cylindrical
shell (SiO2)

L R c d
unit(mm) 200 50 1 0.04

With the measurement of both the thin plate and cylinder
shell, we can obtain φB and φS of the coating.



20

material
parameter

range
uncertainty

in
√

S x

for details,
see

φB/φS 0.2 – 5a ±37% Sec. VI A, Figs. 8, 9.
YTa factor of ∼ 2 ∼60% Sec. VI B, Fig. 10.

σTa ± 0.2
up to 10% if
φB/φS , 1

Sec. VI B, Fig. 11.

β −1 < β < +1 ±1% b Sec. VI C, Fig. 12.
aFixing the combination φD
bCalculated from Ta2O5 layers

Table V: Levels of thermal noise uncertainty caused by parameter
uncertainties.

VIII. CONCLUSIONS

In this paper, we applied the Fluctuation-Dissipation Theo-
rem to obtain a full set of correlation functions (87a)–(87c) of
Brownian thermal fluctuations of a multi-layer dielectric coat-
ing. In particular, we have related fluctuations of the coating
thickness and the coating-substrate interface to independent
bulk and shear thermal stresses associated with each coating
layer. While those stresses not only induce thickness fluctua-
tions of the layers themselves, they bend the coating-substrate
interface and this bending noise had not been previously ap-
preciated intuitively, although its effect has been incorporated
into formulas, e.g., in Ref. [14]. As a result, we found that
although thickness fluctuations of different coating layers are
independent of each other, they each have partial correlations
with the height fluctuations of the coating-substrate interface.
Moreover, bulk loss creates a positive correlation between
them, while shear loss creates a negative correlation. The en-
tire picture is succinctly written mathematically in Eqs. (89)
and (90). This coherence structure then gives coating Brow-
nian noise in Eq. (93). Apart from having provided a peda-
gogical and systematic derivation of these noise components,
the most important conceptual consequence of our work is to
point out an uncertainty in coating loss angles. We have also
incorporated the photo elastic effect, the reflectivity fluctua-
tions of the interfaces within the multilayer coating, and con-
sidered the effect of amplitude modulations caused by Brow-
nian thermal noise. All of these turned out to be rather unim-
portant.

We have applied our formalism to mirrors that are to be
used in Advanced LIGO detectors. As estimated in Sec. VI
and summarized in Table V (calculated for a typical can-
didate for the Advanced LIGO end test-mass mirror coat-
ing configuration), parameter uncertainties could lead to non-
negligible corrections to coating Brownian noise calculations.
The biggest uncertainties actually arise from the elastic mod-
uli of coating materials — for example, current uncertainties
in Young’s modulus of the tantala coating material might lead
up to 60% increase in thermal noise. Although photo elastic
coefficients for our coating materials are very uncertain, they
do not significantly affect thermal noise since light does not
penetrate through many layers.

It is rather remarkable that our lack of experimental knowl-
edge about the loss angles, beyond what we had already ob-

tained from the ring down of drum modes, would not give
rise to a higher uncertainty in thermal noise. This is rather
serendipitous, considering our path of understanding of the
problem: for the baseline parameters of Advanced LIGO, the
highest contribution to coating Brownian noise arises from
the coating-substrate bending noise caused by losses in tan-
tala layers, because these layers are much more lossy than the
silica layers, and have been assumed to have a much higher
Young’s modulus than the substrate material. This bending
noise, first elaborated by this work, turns out to be associ-
ated with the loss angle of the 2-D flexural rigidity, which
in turn is directly connected to the decay of the drum modes
of a thinly coated sample. This means the currently existing
program [14] has been measuring the predominant loss angle
all along, and has been compatible with direct measurements
of coating thermal noise [15]. Nevertheless, the level of un-
certainty noted in our study still warrants further experiments
seeking the other loss angle, e.g., as outlined in Sec. VII. In
addition, since future gravitational-wave detectors may use
different substrate and coating materials, situations may arise
when the loss angle measured now does not correlate with the
total coating brownian noise.

At this moment, it is worth looking once more at the previ-
ously used loss angles, φ‖ and φ⊥ — although they are mathe-
matically ill defined, they do correctly reflect the existence of
two channels of loss. The φ‖ was meant to characterize losses
incurred by the x-y deformations of the coating measurable
when we do not compress the coating but instead drive its de-
formations using drum modes of the substrate. This loss angle
is now replaced by the (mathematically well-defined) imagi-
nary part of the flexural rigidity, for which extensive measure-
ments have already been carried out. The φ⊥ was meant to
characterize the losses incurred by compressing the coating
layers. This has not been measured because it had not been
obvious how to easily excite this mode of coating deformation
(the most obvious way would be to compress the coating layer,
but that is difficult); however, because the Young’s modulus
of the coating is much larger than that of the substrate, this
difficult-to-measure loss angle should not contribute as much
to the total coating noise. This said, in this work, we do come
up with ways to measure both loss angles, φS and φB, without
having to compress the coating layers — but instead by excit-
ing different modes of substrate deformation. Of course, this
is only possible because we have assumed that the material is
isotropic — otherwise we may have to compress the coating
to directly access the loss induced by such a deformation.

On the other hand, one may think of the possibilities of
using substrate materials with higher Young’s modulus to re-
duce the bending noise. Sapphire and Silicon are two viable
choices because they both have higher Young’s modulus than
tantala. Using Eq. (87a)–(87c), it is straight forward to esti-
mate the new coating brownian noise while replacing the sub-
strate material by sapphire or silicon but keeping the same
aLIGO coating design. It turns out that the coating brown-
ian noise will be reduced to 35% of its original power spectra
value if we use silicon substrate or 32% if we use sapphire.
However, there are other disadvantages for sapphire or silicon
substrate that prevents us from using them for aLIGO mir-
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rors. The main problem is that they both have very high ther-
mal conductivity - much higher than fused silica. As a result,
the substrate thermoelastic noise is one of the important noise
source for both materials. For instance, if the aLIGO mir-
ror was made of sapphire, the bulk thermoelastic noise would
have about the same magnitude as the coating brownian noise
at 100 Hz. As for silicon substrate, the bulk thermoelastic
noise is more than twice larger than its corresponding coat-
ing brownian noise because silicon has even higher thermal
conductivity than sapphire. One may refer to [40] for detailed
methods to calculate bulk thermoelastic noise. Setting up the
experiment in a cryogenic enviroment is a possible way to re-
duce the thermooptic noise.

Furthermore, our formula Eq. (93) can serve as a starting
point for optimizing the material choice and structure design
of the multi-layer coating taking light penetration effects into
account. Our numerical results in Sec. VI D (see Table III)
have shown that optimization of the coating structure consis-
tently offers a ∼ 6% decrease in thermal noise, regardless of
φB/φS . In fact, the optimal structure for these ratios are quite
similar, and configurations obtained for each presumed ratio
of φB/φS are shown to work for other ratios interchangeably.

Upon completion of this manuscript, we noted that the
optimization of the coating structure for the case assuming
φB = φS (and β = 0) has been carried out by Kondratiev,
Gurkovsky and Gorodetsky [17]. [We note that their formal-
ism is capable to treating β , 0 and φB , φS , as well as back-
scattering induced by photo elasticity, but they did not explore
the impact of these effects in their optimization.] Our results
are compatible with theirs, if we also use these restrictions in
parameter space and ignore back-scattering.

A comparison between our result, Kondratiev et al., and
Harry et al. [14] (which ignores light penetration into the lay-
ers, and also effectively assumes φS = φB) would therefore il-
lustrate the effects caused by ignoring photoelasticity and fur-
ther ignoring light penetration into the coating. This is shown
in Table VI. This again confirms that for total coating thermal
noise, light penetration causes noticeable difference in coating
thermal noise, while photoelasticity causes a negligible differ-
ence.
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Appendix A: Fluctuations of the Complex Reflectivity due to
Refractive index fluctuations

Brownian noise is not only caused by random strains,
but also by the refractive-index fluctuations induced by such
strains, through the photo elastic effect [Cf. Eqs. (13) and
(14)]. We will quantify this contribution in this section.

1. The photoelastic effect

If we denote the displacement of coating mass elements as
(ux, uy, uz), then the relative coating-thickness change from its
equilibrium value can be written as

δl/l = uz,z (A1)

and the relative transverse area expansion can be written as

δA/A = ux,x + uy,y (A2)

If we denote 2-dimensional displacement vectors along the x-
y plane as ~u = (ux, uy), and two-dimensional gradient as ~∇,
then we have

δA/A = ux,x + uy,y = ~∇ · ~u (A3)

We can then write the change in refractive index as

δn =

[
∂n

∂ log l

]
A j

δl
l

+

[
∂n

∂ log A

]
l j

~∇ · ~u (A4)

where ∂n/∂ log l and ∂n/∂ log A only depend on material prop-
erties. The two terms on the right-hand side of Eq. (A4) repre-
sent refractive index change driven by relative length and area
changes, respectively. The first term is given by [28]

βL =

[
∂n

∂ log l

]
A

= −
1
2

n3CY (A5)

where C is the photoelastic stress constant, Y is the Young’s
modulus. For silica, CY ≈ 0.27, therefore βL

SiO2
= −0.41. The

photoelastic coefficient can also be written as

β = −
1
2

n3 pi j (A6)

where pi j is the photo elastic tensor [39]. Some experiments
have been done to measure this coefficient for tantala [27].
Empirically, the value of pi j varies from −0.15 to 0.45 for
Ta2O5 thin film fabricated in different ways. Here for the lon-
gitudinal photoelasticity, βL

Ta2O5
, we use −0.5 in our numerical

calculation.
We shall next obtain formulas that will allow us to convert

fluctuations in n into fluctuations in the complex reflectivity
of the multi-layer coating.
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Coating
Ref. [14]

(no light penetration)
Ref. [17]

(β = 0 and no back scattering)
This Work

λ/4 7.18 7.08 7.08
Advanced LIGO 6.93 6.82 6.83

optimal 6.73 6.62 6.64

Table VI: Comparison of thermal noise spectral density (assuming φB = φS and evaluated at 200 Hz, in units of 10−21m/
√

Hz) between different
works.

n1

n2

n3

r12

r23

∆lφ2

Figure 16: Light propagation across a thin layer (thickness of ∆l)
with fluctuating refractive index (from a uniform n2 to an average of
n2+δn2 within this thin layer). The propagation matrix corresponding
to this structure is given by Eq. (8).

2. Fluctuations in an Infinitesimally thin layer

Because the coating is very thin compared with the
Rayleigh associated with beam spot size, we model the phase
shift of light gained during propagation along z as only deter-
mined the local refractive index. If the refractive index δn
at a particular location δn(z) is driven by longitudinal strain
uzz at that location, the fact that 〈uzz(z′)uzz(z′′)〉 ∝ δ(z′ − z′′)
causes concern, because this indicates a high variance of δn
at any given single point z, with a magnitude which is formally
infinity. If we naively considers the reflection of light across
any interface within the coating, e.g., at z = z0, then the inde-
pendent and high-magnitude fluctuations of n(z0−) and n(z0+)
would lead to a dramatic fluctuation in the reflectivity

r =
n(z0−) − n(z0+)
n(z0+) + n(z0−)

(A7)

because, naively, n(z0−) and n(z0+) are uncorrelated and both
have a variance of infinity.

However, two effects prevent the above divergence from ac-
tually taking place: (i) there is a finite correlation length for
strain fluctuations (although not explicitly given in our current
analysis) and (ii) propagation of light averages over those fluc-
tuations. The most convenient way to circumvent the above
divergence is to always consider light propagation across a fi-
nite layer of materials. As shown in Fig. 16, let us consider
three regions in the coating, with refractive indices n1, n2 and
n3 separated by two interfaces, with the length of the n2 layer
given by ∆l — and here we only consider fluctuations in n2.
The entire transfer matrix (from below to above, in Fig. 16) is
given by

M = Rr12 Tφ2 Rr23 (8)

following the same convention as in Sec. II C. Suppose the
originally uniform n2 now fluctuates, and after averaging over
this think layer, gives a mean refractive index of n2 + δn2, we
use this as the refractive index of the entire layer, and then
have

δM =
n2
√

n1n3

 i −i
i −i

 δn2 · k0∆l (9)

Note that when ∆l→ 0, δn2 ·∆l has a variance that approaches
zero, and therefore δM is an infinitesimal matrix — and there
is no divergence. [Note that when ∆l is small enough, δn2 has
a variance that is comparable to the total variance of n, which
is finite — therefore δn2 · ∆l ∼ O(∆l).]

The physical meaning of Eq. (9) is the following: a ran-
dom field of refractive index not only gives rise to a random
phase shift (diagonal term), but also gives rise to a random re-
flectivity (non-diagonal term). The latter term is an additional
contribution that has been ignored by previous analytical cal-
culations.

C. The entire coating stack

Now we are ready to consider the entire multi-layer coat-
ing. Let us first focus on layer j of the coating stack, bounded
by two interfaces with reflectivities r j−1 and r j, respectively.
Since the total transfer matrix of the entire stack is written as

M = · · ·Tφ j+1 Rr j Tφ j Rr j−1 · · · , (10)

the reflectivity fluctuations with this layer will contribute to
the matrix Tφ j above, which in turn will contribute to fluctu-
ations in the entire M. Consider dz-thick sub-layer located at
distance z′ from the r j boundary (lower boundary in Fig. 1),
therefore at coordinate location z = z j+1 + z′ and integrate, we
have

Tφ j → Tφ j + k0

∫ l j

0
δn(z j+1 + z)Tk0n jz

 i −i
i −i

 Tk0n j(l j−z) dz′

=

 1 δη j

δη∗j 1

 Tφ j+k0δn̄ jl j (11)

where

δn̄ j =
1
l j

∫ l j

0
δn j(z j+1 + z)dz (12)
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and

δη j = −ik0

∫
δn j(z j+1 + z)e2ik0n jzdz (13)

Here we have defined

z j ≡

N∑
n= j

ln . (14)

to be the z coordinate of the top surface of Layer j.
We need to adapt the new transfer matrix into the old form,

but with modified {r j} and {φ j}. From Eq. (11), since δη j is
complex, we need to adjust φ j, r j, as well as φ j+1:

Tφ j+1 Rr j Tφ j

→ Tφ j+1+δψ+
j
Rr j+δr j Tφ j+k0l jδn̄ j+δψ

−
j

(15)

Here we have defined in addition

δr j = −t2
j k0

∫ l j

0
δn j(z j+1 + z) sin(2k0n jz)dz (16)

and

δψ±j =
r2

j ± 1

2r j
k0

∫ l j

0
δn j(z j+1 + z) cos(2k0n jz)dz (17)

As we consider photoelastic noise of all the layers together,
δr j in Eq. (16) needs to be used for the effective fluctuation in
reflectivity of each layer, while

δφ j = k0l jδn̄ j + δψ−j + δψ+
j−1 (18)

should be used as the total fluctuation in the phase shift of
each layer.

D. Unimportance of transverse fluctuations

Connecting with the photoelastic effect, we have explicitly

δn j(z, ~x) = βL
j uzz(z, ~x) + βT

j
~∇ · ~u (19)

Here the vector ~u is the two-dimensional displacement vector
(ux, uy) and ~∇· is the 2-D divergence along the x-y plane. For
terms that contain the transverse vector ~u, we note that when
a weighted average of ξ is taken over the mirror surface [see
Sec. II D], they yield the following type of contribution∫

M
I(~x)

(
~∇ · ~u

)
d2~x

=

∫
∂M

dl(~n · ~uI) +

∫
M
~u · ~∇I d2~x

=

∫
M
~u · ~∇I d2~x (20)

Here M stands for the 2-d region occupied by the beam, and
∂M is the boundary on which power vanishes. As a conse-
quence, the first term is zero according to the boundary con-
dition, while the second term gains a factor of (li/w0) with
respect to other types of coating Brownian noise, here l j is the
thickness of the j-th layer, and w0 the beam spot size. Since
we always assume coating thickness li to be much smaller than
the beam radius rbeam, we can neglect refractive index fluctu-
ation due to area fluctuation.

II. ELASTIC DEFORMATIONS IN THE COATING

Throughout this paper, we assume the mirror substrate to
be a half infinite space. We establish a Cartesian coordinate
system, with (x, y) directions along the coating-substrate in-
terface, and z direction orthogonal to the mirror surface (in
the elasticity problem, we also ignore mirror curvature). This
allows us to calculate elastic deformations in the spatial fre-
quency domain. We will also assume the coating thickness to
be much less than the beam spot size.

We denote the displacement along x, y and z directions as
ux, uy and uz. It is then straightforward to express the 3 × 3
strain tensor S in terms of their derivatives, and stress tensor
T in terms of Hooke’s Law:

S i j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
(1)

Θ = S ii (2)

Σi j =
1
2

[
S i j + S ji

]
−

1
3
δi jΘ (3)

Ti j = −KΘδi j − 2µΣi j . (4)

Here we have x j = (x, y, z), with Latin indices (like i and j)
running from 1 to 3. Within any layer, it is straightforward to
write down the most general solution of the elasticity equilib-
rium equation

Ti j, j = 0 (5)

as

ũx = ikx[(α̃+ + κzβ̃+)eκz + (α̃− − κzβ̃−)e−κz]
− iky[γ̃+eκz + γ̃−e−κz] (6)

ũy = iky[(α̃+ + κzβ̃+)eκz + (α̃− − κzβ̃−)e−κz]
+ ikx[γ̃+eκz + γ̃−e−κz] (7)

ũz = −κ[α̃+ + β̃+(−3 + 4σ + κz)]eκz

+ κ[α̃− + β̃−(−3 + 4σ − κz)]e−κz (8)

where tilde denotes quantities in the x-y spatial-frequency do-

main, and κ =
√

k2
x + k2

y . Namely

ux(x, y, z) =

∫
dkxdky

(2π)2 ũ(kx, ky, z)e−i(kx x+kyy) (9)

We now consider a single-layer coating on a substrate,
with the coating-substrate interface located at z = 0, and the
coating-air interface at z = l. Suppose there is a force profile
F(x, y) exerted perpendicular to the surface at z = d, 0 < d < l,
and let us calculate the elastic deformation field caused by
F. The entire system is now divided into three regions, (a):
d < z < l, (b): 0 < z < d, and (s): z < 0. At the interfaces, we
obtain the following 15 boundary conditions,

T a
iz = 0 , z = l (10)

T a
xz = T b

xz , T a
yz = T b

yz , T b
zz − T a

zz = F , z = d (11)

ua
j = ub

j , z = d (12)

T b
iz = 0 , ub

j = us
j , z = 0 (13)
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Figure 17: Sample with single layer coating, force is applied perpen-
dicular to the air/coating interface.

as well as the condition that when z → −∞, us
j → 0 (which

leads to α̃s
− = β̃s

− = γ̃s
− = 0). We are left with 15 fields

(α̃a
±, β̃

a
±, γ̃

a
±, α̃

b
±, β̃

b
±, γ̃

b
±, α̃

s
+, β̃

s
+, γ̃

s
+) (14)

which can be solved from the 15 boundary conditions. As-
suming κd � 1 and κl � 1, we find that all γ̃ vanish, and

α̃a
+ =

F(1 + σs)[2 − 3σs + σc(−3 + 4σs)]
2Ysκ2(−1 + σc)

(15)

α̃a
− =

F(σc − σs)(1 + σs)
2Ysκ2(−1 + σc)

(16)

β̃a
+ = −

F(1 + σs)(−3 + 4σs)
4Ysκ2(−1 + σc)

(17)

β̃a
− =

F(1 + σs)
4Ysκ2(1 − σc)

(18)

α̃b
+ =

F(1 + σs)[2 − 3σs + σc(−3 + 4σs)]
2Ysκ2(−1 + σc)

(19)

α̃b
− =

F(σc − σs)(1 + σs)
2Ysκ2(−1 + σc)

(20)

β̃b
+ =

F[Ys(1 + σ) − Yc(−3 + σs + 4σ2
s)]

4YYsκ2(−1 + σc)
(21)

β̃b
− =

F[Ys(1 + σc) − Yc(1 + σs)]
4YYsκ2(−1 + σc)

(22)

α̃s
+ =

F(1 + σs)(−1 + 2σs)
Ysκ2 (23)

β̃s
+ = −

F(1 + σs)
Ysκ2 (24)

We can therefore obtain the stain tensor in the frequency do-
main for the coating. The non-zero elements for region (a) are

given by

S a
xx =

Fk2
x(−1 + 2σs)(1 + σ2

s)
Ysκ2 (25)

S a
yy =

Fk2
y (−1 + 2σs)(1 + σ2

s)

Ysκ2 (26)

S a
xy = S yx =

Fkxky(−1 + 2σs)(1 + σ2
s)

Ysκ2 (27)

S a
zz = F

σc(−1 + σs + 2σ2
s)

Ys(−1 + σc)
(28)

while those in region (b) are given by

S b
xx =

Fk2
x(−1 + 2σs)(1 + σ2

s)
Ysκ2 (29)

S b
yy =

Fk2
y (−1 + 2σs)(1 + σ2

s)

Ysκ2 (30)

S b
xy = S yx =

Fkxky(−1 + 2σs)(1 + σ2
s)

Ysκ2 (31)

S b
zz = F

[
−(1 + 2σc)

Yc
−
σc(−1 + σs + 2σ2

s)
Ys(1 − σc)

]
(32)

Using linear superposition, as well as taking the appropriate
limits of the above solution, it is straightforward to obtain
elastic deformations in all the scenarios in Sec. IV, with forces
applied on various surfaces, that are used to obtain cross spec-
tra between different noises.

III. DEFINITION OF LOSS ANGLE

In the past [14], the coating loss angle was defined in as-
sociation with the parallel and perpendicular coating strains.
The equation is written as

φcoated = φsub +
δU‖d

U
φ‖ +

δU⊥d
U

φ⊥ (1)

where δU‖ and δU⊥ are the energy density in parallel and per-
pendicular coating strains

δU‖ =

∫
s

1
2

(S xxTxx + S yyTyy) dxdy (2)

δU⊥ =

∫
s

1
2

S zzTzz dxdy (3)

and where S i j are the strains and Ti j are the stresses. While
such a definition seems to be compatible with the symmetry
of the system, the quantities δU‖ and δU⊥ cannot be used as
energy, since in certain scenarios they each can become nega-
tive.

For example, if we have a cube with surface area of each
side A (poisson ratio σ, Young’s modulus Y), and we uni-
formly apply two pairs of forces, one pair with magnitude f
on opposite yz planes, the other with magnitude F on opposite
xy planes, with f � F, as shown in Figure 18. According to
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the definition of Young’s modulus and Poisson’s ratio, up to
leading order in f /F the non-vanishing strains are,

S zz = −
F/A
Y

, S xx = S yy = σ
F/A
Y

(4)

On the other hand, for stress, we have, up to leading order in
f /F,

Txx = − f /A , Tyy = 0 , Tzz = −F/A . (5)

As a consequence, we have

δU‖ = S xxTxx + S yyTyy = −σ f F/(A2Y) < 0 (6)

which means δU‖ is not a reasonable candidate for energy, at
least with σ , 0. Since it is also true that S xxTxx < 0 we will
arrive at

δU⊥ = S zzTzz < 0 (7)

if we take this configuration and rotate by 90 degrees around
the y axis, such that x rotates into z.

F

F

f f
x

z

Figure 18: Solid cube with two pairs of forces applied on the side:
f � F .

One reasonable way of defining the loss angle is to derive
it from the fundamental elastic energy equation. The general
form of the stored elastic energy density U can be written as

U =
1
2

KΘ2 + µΣi jΣi j (8)

UB =
1
2

KΘ2 (9)

US = µΣi jΣi j (10)

Where K is called the bulk modulus and µ is the shear modu-
lus. In the calculation, we use Young’s modulus Y and Pois-
son’s ratio σ instead of K and µ. Their relation are given in
Eq. (51). The expansion Θ and shear Σ are both irreducible
tensorial parts of the strain tensor S .

Θ = S ii (11)

Σ =
1
2

(S i j + S ji) −
1
3
δi jS kk (12)

Note that the expansion and shear energy UB and US are al-
ways positive, so it is consistent to define the loss angles φB
and φS .

j l j

1–5 0.497325 0.208175 0.289623 0.237274 0.250176
6–10 0.245330 0.249806 0.240129 0.270968 0.224129
11–15 0.251081 0.259888 0.260826 0.213460 0.290468
16–20 0.214524 0.273240 0.230905 0.259924 0.230020
21–25 0.275429 0.233086 0.270385 0.208581 0.273798
26–30 0.249741 0.267864 0.204698 0.292317 0.209712
31–35 0.278560 0.220264 0.282694 0.221687 0.268559
36–38 0.233460 0.270419 0.223050

Table VII: Structure of an Advanced LIGO-like coating optimized
jointly for dichroic operation and thermal noise. Thickness of
each layer is given in units of wavelength (for light with vacuum-
wavelength of 1064 nm) are listed here for the 38 layers. Note that
l1,3,5,... are SiO2 layers, while l2,4,6,... are Ta2O5 layers.

IV. ADVANCED LIGO STYLE COATING

In Table VII, we provide the structure of the coating opti-
mized jointly for dichroic operation and thermal noise.
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