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Abstract

Using trace anomalies, we determine the vacuum stress tensors of arbitrary even

dimensional conformal field theories in Weyl flat backgrounds. We demonstrate

a simple relation between the Casimir energy on R × Sd−1 and the type A

anomaly coefficient. This relation generalizes earlier results in two and four

dimensions. These field theory results for the Casimir are shown to be consistent

with holographic predictions in two, four, and six dimensions.
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Introduction

A conformal field theory (CFT) embedded in a curved spacetime background can

be characterized by the trace anomaly coefficients of the stress tensor. Here we only

consider even dimensional CFTs because there is no trace anomaly in odd dimensions.

The anomaly coefficients (or central charges) ad and cdj show up in the trace as follows,

〈T µ
µ 〉 =

1

(4π)d/2

(

∑

j

cdjI
(d)
j − (−)

d
2 adEd

)

. (1)

Here Ed is the Euler density in d dimensions and I
(d)
j are independent Weyl invariants

of weight −d. The subscript “j” is used to index the Weyl invariants. Our convention

for the Euler density is that

Ed =
1

2d/2
δν1···νdµ1···µd

Rµ1µ2
ν1ν2 · · ·Rµd−1µd

νd−1νd . (2)

We will not need the explicit form of the I
(d)
j in what follows, although we will discuss

their form in d ≤ 6.

Note that we are working in a renormalization scheme where the trace anomaly is

free of the so-called type D anomalies which are total derivatives that can be changed

by adding local covariant but not Weyl-invariant counter-terms to the effective action.

For example, in four space-time dimensions, a 2R in the trace can be eliminated by

adding an R2 term to the effective action.

The constraints of conformal symmetry mean that these central charges ad and

cdj determine the behavior of other correlation functions as well. In this letter, for

a conformally flat background, we show how to compute 〈T µν〉 in terms of ad and

curvatures. In addition to their role in determining correlation functions, the central

charges have attracted renewed interest as a way of ordering field theories under

renormalization group flow. In 2D, the classic c-theorem [1] states that the central

charge decreases through the renormalization group flow from the ultraviolet to the

infrared. In 4D, the corresponding trace anomaly is defined by two types of central

charge c41 and a4. The conjecture that the Euler central charge a4 is the analog

of c = 6a2 in 2D [2] was proven recently using dilaton fields to probe the trace

anomaly [3]. The possibility of a 6D a-theorem was explored in [4].

The properties of central charges in the 6D case are of particular interest; the

(2,0) theory, which describes the low energy behavior of M5-branes in M-theory, is a
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6D CFT. From the AdS/CFT correspondence, it has been known for over a decade

that quantities such as the thermal free energy [5] and the central charges [6] have

an N3 scaling for a large number N of M5-branes. However, a direct field theory

computation has proven difficult. Any results calculated from the field theory side of

the 6D CFT without referring to AdS/CFT should be interesting. Such results also

provide a non-trivial check of the holographic principle.

In this letter we study the general relation between the stress tensor and the trace

anomaly of a CFT in a conformally flat background. Our main result (21) is an

expression for the vacuum stress tensor of an even dimensional CFT in a conformally

flat background in terms of ad and curvatures.1 We pay special attention to the

general relation between the Casimir energy (ground state energy) and ad. Let ǫd be

the Casimir energy on R× Sd−1. The well known 2D CFT result is [7]

ǫ2 = − c

12ℓ
= −a2

2ℓ
, (3)

where ℓ is the radius of S1. This result is universal for an arbitrary 2D CFT, inde-

pendent of supersymmetry or other requirements. For general R× Sd−1, we find

ǫd =
1 · 3 · · · (d− 1)

(−2)d/2
ad
ℓ

. (4)

Stress Tensor and Conformal Anomaly

We would like to determine the contribution of the anomaly to the stress tensor of

a field theory in a conformally flat background. The general strategy we use was

originally developed in [8]. (See also [9–12] for related discussion.) The conformal

(Weyl) transformation is parametrized by σ(x) in the standard form

ḡµν(x) = e2σ(x)gµν(x) . (5)

Denote the partition function as Z[gµν ]. The effective potential is given by

Γ[ḡµν , gµν ] = lnZ[ḡµν ]− lnZ[gµν ] . (6)

The expectation value of the stress tensor 〈T µν〉 is defined by the variation of the

effective potential with respect to the metric. Here we consider a conformally flat

1By vacuum, we have in mind a state with no spontaneous symmetry breaking, where the expec-

tation values of the matter fields vanish.
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background, ḡµν(x) = e2σ(x)ηµν , and we normalize the stress tensor in the flat space-

time to be zero. The (renormalized) stress tensor is given by

〈T µν(x)〉 = 2√−ḡ

δΓ[ḡαβ]

δḡµν(x)
, (7)

which implies

√−ḡ〈T λ
λ (x)〉 = 2ḡµν(x)

δΓ[ḡαβ]

δḡµν(x)
=

δΓ[ḡαβ]

δσ(x′)
. (8)

We rewrite (7) as

δ(
√−ḡ〈T µ

ν (x)〉)
δσ(x′)

= 2ḡλρ(x
′)

δ

δḡλρ(x′)
2ḡνγ(x)

δΓ[ḡαβ ]

δḡµγ(x)
. (9)

Then we use the following commutative property

[

ḡλρ(x
′)

δ

δḡλρ(x′)
, ḡνγ(x)

δ

δḡµγ(x)

]

= 0 (10)

to obtain the following differential scale equation

δ
√−ḡ〈T µν(x)〉

δσ(x′)
= 2

δ
√−ḡ〈T λ

λ (x
′)〉

δḡµν(x)
. (11)

This equation determines the general relation between the stress tensor (and hence

the Casimir energy) and the trace anomaly.

Next we would like to re-write the trace anomaly 〈T µ
µ 〉 in terms of a Weyl exact

form, 〈T µ
µ 〉 = δ

δσ
(something), so that we can factor out the sigma variation in (11) to

simplify the calculation. The integration constant is fixed to zero by taking 〈T µν〉 = 0

in flat space. We use dimensional regularization and work in n = d + ǫ dimensions.

While we do not alter Ed in moving away from d dimensions, we will alter the form

of the I
(d)
j . Let limn→d I(d)

j = I
(d)
j where I(d)

j continues to satisfy the defining relation

δσI(d)
j = −d I(d)

j . We assume that in general I(d)
j ’s exist such that

δ

(n− d)δσ(x)

∫

dnx′
√−ḡEd(x

′) =
√−ḡEd , (12)

δ

(n− d)δσ(x)

∫

dnx′
√−ḡI(d)

j (x′) =
√−ḡI(d)

j . (13)

We now make a brief detour to discuss the existence of I(d)
j in d = 2, 4 and

6 [13] and also a general proof of the variation (12). In 2D, there are no Weyl
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invariants I
(2)
j and we can ignore (13). In 4D, we have the single Weyl invariant

I
(4)
1 = C

(n=4)
µνλρ C(n=4)µνλρ where C(4)µνλρ is the 4D Weyl tensor. If we define the n-

dimensional Weyl tensor

C(n)µν
λσ ≡ Rµν

λσ −
1

n− 2

[

2(δµ[λR
ν
σ] + δν[σR

µ
λ]) +

R δµνλσ
(n− 1)

]

, (14)

then we find I(4)
1 = C

(n)
µνλρC

(n)µνλρ defined in terms of the n-dimensional Weyl tensor

satisfies the eigenvector relation (13). At this point, our treatment differs somewhat

from ref. [8] where the authors vary instead I
(4)
1 with respect to σ. While ref. [8]

allows for an additional total derivative 2R term in the trace anomaly, in this letter

we choose a renormalization scheme where the trace anomaly takes the minimal form

(1). It turns out that this scheme is the one used to match holographic predictions

as we will discuss shortly. A 2R can be produced by varying (n− 4)R2 with respect

to σ. Such an R2 term appears in the difference between I(4)
1 and I

(4)
1 in [8].

In 6D, there are three Weyl invariants

I
(6)
1 = C

(6)
µνλσ C(6)νρηλ C(6)µσ

ρ η , (15)

I
(6)
2 = C(6)λσ

µν C
(6)ρη
λσ C(6)µν

ρη , (16)

I
(6)
3 = C

(6)
µνλσ

(

2δµρ + 4Rµ
ρ −

6

5
Rδµρ

)

C(6)ρνλσ +DµJ
µ . (17)

To produce the I(6)
j when j = 1,2, we replace the six dimensional Weyl tensor with

its n-dimensional cousin as in the 4D case. The variation (13) is then straightforward

to show. For j = 3, [14] demonstrated the corresponding Weyl transformation for a

linear combination of the three I(6)
j , there denoted H . The full expression for I(6)

3

and the n-dimensional version of Jµ is not important; we refer the reader to [14, 15]

for details. For d > 6, we assume the Weyl invariants can be engineered in a similar

fashion; see [16] for the d = 8 case.

To vary Ed, we write the corresponding integrated Euler density as

∫

dnx
√−ḡEd =

∫

(

∧n
j=1 dx

µj

)

2d/2(n− d)!
Ra1a2

µ1µ2
· · ·Rad−1ad

µd−1µd
ead+1

µd+1
· · · eanµn

ǫa1···an . (18)

Recall that the variation of a Riemann curvature tensor with respect to the metric

is a covariant derivative acting on the connection. After integration by parts, these

covariant derivatives act on either the vielbeins eaµ or the other Riemann tensors and

4



hence vanish by metricity or a Bianchi identity. Thus, in varying the integrated Euler

density, we need only vary the vielbeins. We use the functional relation 2δ/δgνµ =

ea(νδ/δe
a
µ). One finds

δ

δḡνµ(x)

∫

dnx′
√−ḡEd =

√−ḡ

2
d
2
+1

Rν1ν2
µ1µ2

· · ·Rνd−1νd
µd−1µd

δµ1···µdµ
ν1···νdν

. (19)

From this expression, the desired relation (12) follows after contracting with δνµ.

Given the variations (12, 13), we can factor out the sigma variation in (11) to

obtain2

〈T µν〉 = 〈Xµν〉 ≡ lim
n→d

1

(n− d)

2√−ḡ(4π)d/2
(20)

× δ

δḡµν(x)

∫

dnx′
√−ḡ

(

∑

j

cdjI(n)
j − (−)

d
2adEd

)

.

Comparing with (7), we see that the effective action must contain terms proportional

to 〈T µ
µ 〉. Indeed, these are precisely the counter terms that must be added to regularize

divergences coming from placing the CFT in a curved space time [17]. We next

perform the metric variation for a conformally flat background. The metric variation

of the Weyl tensors I(d)
j vanishes for conformally flat backgrounds because the I(d)

j are

all at least quadratic in the n-dimensional Weyl tensor. (Conformal flatness is used

only after working out the metric variation.) Thus the stress tensor in a conformally

flat background may be obtained by varying only the Euler density:

〈T µ
ν 〉 = − ad

(−8π)d/2
lim
n→d

1

n− d
Rν1ν2

µ1µ2
· · ·Rνd−1νd

µd−1µd
δµ1···µdµ
ν1···νdν

. (21)

Note that in a conformally flat background, employing (14), the Riemann curvature

can be expressed purely in terms of the Ricci tensor and Ricci scalar:

Rν1ν2
µ1µ2

=
1

n− 2

[

2(δν1[µ1
Rν2

µ2]
+ δν2[µ2

Rν1
µ1]

)− Rδν1ν2µ1µ2

n− 1

]

.

Contracting a δ
νj
µj with the antisymmetrized Kronecker delta δµ1···µdµ

ν1···νdν
eliminates the

factor of (n− d) in (21).

In 2D and 4D, we can use (21) to recover results of [8]. In 2D, the right hand

side of 〈T µ
ν 〉 is proportional to Rµ

ν − 1
2
Rδµν which vanishes in 2D. Thus we first must

2While we specialize to conformally flat backgrounds, under a more general conformal transfor-

mation one has 〈T µν(ḡ)〉 − 〈Xµν(ḡ)〉 = e−(d+2)σ (〈T µν(g)〉 − 〈Xµν(g)〉).
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expand the Einstein tensor in terms of the Weyl factor σ where gµν = e2σηµν before

taking the n → 2 limit. The result is [8]

〈T µν〉 =
a2
2π

(

σ,µ;ν + σ,µσ,ν − gµν
(

σ,λ
;λ + σ,λσ

,λ
))

. (22)

In 4D, we obtain

〈T µν〉 = −a4
(4π)2

[

gµν
(R2

2
−R2

λρ

)

+ 2RµλRν
λ −

4

3
RRµν

]

. (23)

In 6D, we obtain (to our knowledge) a new result

〈T µν〉 = − a6
(4π)3

[

3

2
Rµ

λR
ν
σR

λσ − 3

4
RµνRλ

σR
σ
λ −

1

2
gµνRσ

λR
λ
ρR

ρ
σ

−21

20
RµλRν

λR +
21

40
gµνRσ

λR
λ
σR +

39

100
RµνR2 − 1

10
gµνR3

]

. (24)

As we work in Weyl flat backgrounds, there is no contribution from B type anomalies.

These 〈T µν〉 are covariantly conserved, as they must be since they were derived from

a variational principle.

Casimir Energy and Central Charge

We would like to relate ad to the Casimir energy

ǫd =

∫

Sd−1

〈T 00〉 vol(Sd−1), (25)

on R×Sd−1. In preparation, let us calculate Ed for the sphere S
d. For Sd with radius

ℓ, the Riemann tensor is Rν1ν2
µ1µ2

= δν1ν2µ1µ2
/ℓ2. It follows from (2) that Ed = d!

ℓd
. We

conclude that the trace of the vacuum stress tensor on Sd takes the form

〈T µ
µ 〉 = − ad d!

(−4πℓ2)d/2
. (26)

Let us now calculate 〈T µ
ν 〉 for S1 × Sd−1. The Riemann tensor on S1 × Sd−1 is zero

whenever it has a leg in the S1 direction and looks like the corresponding Riemann

tensor for Sd−1 in the other directions. We can write Ri1i2
j1j2 = δi1i2j1j2

/ℓ2, where i and

j index the Sd−1. The computation of 〈T 0
0 〉 and 〈T i

j 〉 proceeds along similar lines to

the computation of Ed:

〈T 0
0 〉 = − ad(d− 1)!

(−4πℓ2)d/2
, 〈T i

j 〉 =
ad(d− 2)!

(−4πℓ2)d/2
δij . (27)
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Note that 〈T µ
ν 〉 is traceless, consistent with a result of [11]. Using the definition (25),

we compute the Casimir energy ǫd. We find that (for d even)

ǫd =
ad(d− 1)!

(−4πℓ2)d/2
Vol(Sd−1) =

1 · 3 · · · (d− 1)

(−2)d/2
ad
ℓ

. (28)

In 2D, 4D and 6D, the ratios between the Casimir energy and ad are − 1
2ℓ
, 3
4ℓ

and −15
8ℓ
,

respectively.

Holography and Discussion

In this section, we would like to use the AdS/CFT correspondence to check our re-

lation between ǫd and ad for d = 2, 4 and 6. For CFTs with a dual anti-de Sitter

space description, the stress-tensor can be calculated from a classical gravity compu-

tation [18–20]. The Euclidean gravity action is taken to be

S = Sbulk + Ssurf + Sct , (29)

Sbulk = − 1

2κ2

∫

M

dd+1x
√
G

(

R+
d(d− 1)

L2

)

,

Ssurf = − 1

κ2

∫

∂M

ddx
√
gK,

Sct =
1

2κ2

∫

∂M

ddx
√
g
[2(d− 1)

L
+

L

d− 2
R +

L3

(d− 4)(d− 2)2

(

RµνRµν −
d

4(d− 1)
R2

)

+ . . .
]

.

The Ricci tensor Rµν is computed with respect to the boundary metric gµν while R is

the Ricci Scalar computed from the bulk metric Gab. The object Kµν is the extrinsic

curvature of the boundary ∂M. The counter-terms Sct render S finite, and we keep

only as many as we need. The metrics with Sd−1 × S1 conformal boundary,

ds2 = L2(cosh2 r dt2 + dr2 + sinh2 r dΩd−1) , (30)

and Sd boundary,

ds2 = L2(dr2 + sinh2 r dΩd) , (31)

satisfy the bulk Einstein equations. Note that the Sd−1 and Sd spheres have radius

ℓ = L
2
er0 at some large reference r0 while we take the S1 to have circumference β

(hence the range of t is 0 < t < β/ℓ). We compute the stress tensor from the on-shell

7



value of the gravity action using (7), making the identification Γ = −S and using the

boundary value of the metric in place of ḡµν . One has [19]:

d ΓSd ΓS1×Sd−1

2 4πL
κ2 log ℓ πβL

κ2ℓ

4 −4π2L3

κ2 log ℓ −3π2βL3

4κ2ℓ

6 2π3L5

κ2 log ℓ 5π3βL5

16κ2ℓ

We include only the leading log term of ΓSd. From (7), it follows that 〈T 0
0 〉Vol(Sd−1) =

∂βΓS1×Sd−1 and 〈T µ
µ 〉Vol(Sd) = ∂ℓΓSd For a conformally flat manifold, we have from

(1) that 〈T µ
µ 〉 = −ad(−4π)−d/2Ed which allows us to calculate ad from 〈T µ

µ 〉 [6].

Defining the Casimir energy with respect to a time t̃ = ℓt whose range is the standard

0 < t̃ < β, we can deduce from (25) that ǫd = −∂βΓS1×Sd−1 (see also [21]). We have

a table:

〈T 0
0 〉 ǫd 〈T µ

µ 〉 Ed ad

S1 × S1 L
2κ2ℓ2

− πL
κ2ℓ

S2 L
κ2ℓ2

2
ℓ2

2πL
κ2

S1 × S3 − 3L3

8κ2ℓ4
3π2L3

4κ2ℓ
S4 − 3L3

2κ2ℓ4
24
ℓ4

π2L3

κ2

S1 × S5 5L5

16κ2ℓ6
−5π3L5

16κ2ℓ
S6 15L5

8κ2ℓ6
720
ℓ6

π3L5

6κ2

Comparing the ǫd and ad columns, we can confirm the results from earlier in this

paper, namely that3

ǫ2 = −a2
2ℓ

; ǫ4 =
3a4
4ℓ

; ǫ6 = −15a6
8ℓ

. (32)

In the 4D case, such a gravity model arises in type IIB string theory by placing a

stack of N D3-branes at the tip of a 6D Calabi-Yau cone. In this case, we can make

the further identification [6,25]: a4 =
N2

4
Vol(S5)
Vol(SE5)

where SE5 is the 5D base of the cone.

These constructions are dual to 4D quiver gauge theories with N = 1 supersymmetry.

In 6D, such a gravity model arises in M-theory by placing a stack of N M5-branes in

flat space. In this case, we can make the further identification [6, 15] (see also [26]):

a6 =
N3

9
. The dual field theory is believed to be the non-abelian (2,0)-theory.

3These results indicate that any so-called type D anomalies present in the holographic renormal-

ization scheme do not afffect the relation between ad and ǫd determined in a scheme where the type

D anomalies are absent.
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We would like to comment briefly on the Casimir energy calculated in the weak

coupling limit.4 In typical regularization schemes, for example zeta-function regu-

larization, the Casimir energy will not be related to the conformal anomaly via (4)

because of the presence of total derivative terms (D type anomalies) in the trace of

the stress tensor. For a conformally coupled scalar in 4D, ref. [17] tells us a4 = 1/360.

Our result (4) would imply then that ǫ4 = 1/480L, but naive zeta-function regulariza-

tion yields instead ǫ4 = 1/240L. The discrepancy can be resolved either by including

a 2R term in the trace, thus changing (4) [11], or by adding an R2 counter-term to

the effective action, thereby changing ǫ4. Amusingly in zeta-function regularization,

the effect of the total derivative terms on ǫ4 cancels for the full N = 4 SYM multiplet,

and the weak coupling results for ǫ4 and a4 are related via (4) [22,23]. In contrast, for

the (2,0) multiplet in 6D, the total derivative terms do not cancel [15]. The resulting

discrepancy [24] in the relation between a6 and ǫ6 can presumably be cured either

by adding counter-terms to the effective action to eliminate the total derivatives or

by improving (4) to include the effect of these derivatives. Generalizing our results

to include the contribution of D type anomalies to the stress tensor would allow

a more straightforward comparison of weak coupling Casimir energies obtained via

zeta-function regularization and the conformal anomaly ad. We leave such a project

for the future.

There are two other obvious calculations for future study: i) Determine how 〈T µν〉
transforms in non-conformally flat backgrounds. Such transformations would involve

the type B anomalies. ii) Check the full 6D stress tensor (24) for any conformally

flat background by the holographic method. A 4D check of (23) was performed in [20].
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