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Inflationary theory predicts that the observable Universe should be very close to flat, with a
spatial-curvature parameter |ΩK | . 10−4. The WMAP satellite currently constrains |ΩK | . 0.01,
and the Planck satellite will be sensitive to values near 10−3. Suppose that Planck were to find
ΩK 6= 0 at this level. Would this necessarily be a serious problem for inflation? We argue that
an apparent departure from flatness could be due either to a local (wavelength comparable to
the observable horizon) inhomogeneity, or a truly superhorizon departure from flatness. If there
is a local inhomogeneity, then secondary CMB anisotropies distort the CMB frequency spectrum
at a level potentially detectable by a next-generation experiment. We discuss how these spectral
distortions would complement constraints on the Grishchuk-Zel’dovich effect from the low-` CMB
power spectrum in discovering the source of the departure from flatness.

Inflation predicts that the observable Universe should
be very nearly flat, with a spatial-curvature parameter
|ΩK | < 10−4 in most models [1]. WMAP data currently
constrain |ΩK | . 10−2 (95% CL) [2], and Planck should
be sensitive to ΩK at around the 10−3 level [3], improving
to ∼10−4 when combined with 21-cm intensity maps [4]
(which represents the limit of detectability [5]).

Suppose that Planck were to find a nonzero value for
ΩK . What might this mean for inflation? Such an ob-
servation would nominally be evidence for a genuine de-
parture from flatness on superhorizon scales, with wide-
ranging implications for a broad class of inflationary
models; for example, a measurement of ΩK < −10−4

is sufficient to rule out the majority of eternal inflation
scenarios with high confidence [6].

Before jumping to such conclusions, though, one might
wonder whether the deviation could be explained simply
by a local inhomogeneity that biases our determinations
of cosmological parameters. This would allow us to pre-
serve flatness (and thus some relatively natural sort of
inflation) by explaining the discrepancy as the result of
systematic distortions of, e.g., the distance-redshift rela-
tion due to lensing by the inhomogeneity [7]. Although
a local density fluctuation of a large enough amplitude
(Φ & 10−3) would be inconsistent with the simplest in-
flationary models, it might conceivably arise if there is
some strongly scale-dependent non-Gaussianity, or per-
haps if some sort of semi-classical fluctuation arises at
the beginning or end of inflation [8].

For a sufficiently large and smooth local inhomogene-
ity, it would be difficult to definitively distinguish these
two situations using standard cosmological tests. Purely
geometric observables such as distance measures would
be inhibited by degeneracies with evolving-dark-energy
models [9], and the deviation from flatness would be too
small to significantly affect the growth of structure.

In this Letter, we show that a class of observables based
on spectral distortions of the CMB offer the prospect to
disentangle the two scenarios. These observables exploit
the strong relationship between spatial homogeneity and

the isotropy of spacetime; by using them to measure the
dipole anisotropy of the CMB about distant points, it
is possible to place stringent constraints on the possible
size of a local inhomogeneity [10]. Furthermore, these ob-
servables unambiguously distinguish between subhorizon
and superhorizon effects, owing to a cancellation of the
dipole induced by superhorizon perturbations [11, 12].

We begin by calculating the bias in ΩK due to a lo-
cal inhomogeneity. We take the form of this local in-
homogeneity throughout to be a spherically symmetric
potential perturbation Φ(r, t) = D(t)Φ0 exp[−(r/r0)2],
where the linear-theory growth factor is normalized to
D=1 today. The presence of a large, local inhomogeneity
modifies the apparent distance to last scattering through
a combination of lensing, integrated Sachs-Wolfe effect,
gravitational redshift, and Doppler shift. Ref. [13] de-
rived a full expression for the (subhorizon) luminosity-
distance perturbation δdL up to linear order in perturba-
tions. (The observed distance dL(z) = d̄L(1+δdL), where
the overbar denotes a background quantity.) When con-
sidering the CMB, it is useful to rewrite this as a pertur-
bation δdA = δdL − 2δz/(1 + z) to the angular-diameter
distance.

An observer sitting at the center of a spherically-
symmetric inhomogeneity will measure a distance to last
scattering which deviates from the background quan-
tity by a uniform amount over the whole sky. This
introduces a shift in angular scale of the entire CMB
power spectrum. The value of ΩK inferred from obser-
vations depends primarily on the angular scale of the
first few CMB acoustic peaks [14], and will therefore be
biased away from its background value. Fig. 1 shows
the distance perturbation as a function of the depth
and width of a local inhomogeneity, compared with the
change in (background) distance between a flat model,
and one with |ΩK | = 10−3. (For numerical work we
take [h,Ωm,ΩΛ, σ8] = [0.71, 0.266, 0.734, 0.8] and red-
shifts of reionization and last scattering to be zre = 10
and z∗ = 1090.79 respectively.) Based on the distance to
last scattering alone, an inhomogeneity with Φ0 ∼ 10−3
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would induce an apparent shift in ΩK of order 10−3 for
a wide range of widths. (The null in δdA near r0 = 2.3
Gpc results from cancellation of different contributions
to the distance perturbation. The location of this null
depends on the shape of the inhomogeneity.)

The inhomogeneity will also cause the observed red-
shift z∗ of the surface of last scattering, to differ from its
background value, z̄∗ = z∗ − δz∗, where [13]

δz = (1+zs)

[
Φs − Φo + (vo − vs) · n + 2

∫ ηo

ηs

dη n · ∇Φ

]
,

(1)
and n is a unit vector along the line of sight. For the cen-
tral observer, the effect of the redshift perturbation is to
change the inferred conformal time (and thus expansion
rate) of last scattering, which will bias the estimation of
parameters such as Ωm. For an observer who is off-center
in the inhomogeneity, however, an additional anisotropy
will also be induced in the CMB. This is because the red-
shift perturbation, Eq. (1), depends on direction; a line
of sight looking towards the center of the inhomogene-
ity will experience a different change in redshift to one
looking away from it, and thus there will be a direction-
dependent change in temperature.

In general, anisotropies will be induced over a range
of angular scales, but at least for observers close to the
center of a large (wide) inhomogeneity, the dipole, β, will
dominate. While there is also a dipole contribution due
to the peculiar velocity of the observer, velocity perturba-
tions due to the matter distribution on smaller scales are
expected to be Gaussian random distributed with mean
zero, whereas the dipole due to a large inhomogeneity will
generally present a systematic trend in redshift and an-
gle on the sky. This allows us to distinguish between the
two contributions. For a spherical inhomogeneity, axial
symmetry dictates that the dipole will be aligned in the
radial direction, and that all spherical-harmonic modes
of the induced anisotropy with m 6= 0 on the sky of the
observer will be zero, so that β ∝

∫
δz∗(θ) cos θ sin θdθ.

We now discuss spectral distortions due to a local in-
homogeneity. There is a close relationship between ho-
mogeneity and the isotropy of spacetime. A number of
observational tests that are sensitive to CMB anisotropies
about distant points can be used to exploit this link and
detect local inhomogeneities of the kind that would cause
a systematic bias in measurements of ΩK .

The strength of the connection between homogeneity
and isotropy is most clearly demonstrated by the Ehlers-
Geren-Sachs (EGS) theorem [15]. According to EGS,
if all comoving observers in a patch of spacetime see an
isotropic CMB radiation field, then that patch is uniquely
FLRW (i.e., it is necessarily homogeneous and isotropic).
Generalizations of this result show that it is perturba-
tively stable, in the sense that small departures from
perfect isotropy imply only small departures from homo-
geneity (up to some assumptions; see [16] for a critique).
A corollary to the EGS theorem is that observers in an
inhomogeneous region of spacetime will in general see an

FIG. 1: The change δdA in the distance to last scattering
as a function of the width and depth of the inhomogeneity.
Solid/dashed lines denote a positive/negative δdA. The thick
blue lines plot the difference in distance (in background) be-
tween models with |ΩK | = 10−3 and ΩK = 0 (with identical
h and Ωm), equivalent to δdA = 2.7× 10−4.

anisotropic CMB sky. We can therefore use measure-
ments of the anisotropy of the CMB about a collection
of spacetime points to constrain the degree of inhomo-
geneity inside our Hubble volume [17].

Compton scattering of CMB radiation by ionized gas
provides a way to detect anisotropy about remote points.
The scattered radiation spectrum consists of a weighted
superposition of spectra from all directions on the scat-
terer’s sky, I ′ν ∼

∫
τ(1 + cos2 θ)Iν(θ, φ)dΩ. If the scat-

terer’s sky is a perfectly isotropic blackbody of uniform
temperature, the scattered spectrum is simply a black-
body of the same temperature, plus spectral distortions
due to the random thermal motions of the electrons in
the scattering medium (the thermal Sunyaev-Zel’dovich
effect, TSZ [18]). If its sky is anisotropic, however, the
resulting spectrum is a combination of blackbodies of
different temperatures. This induces additional black-
body spectral distortions, and shifts the temperature of
the ‘base’ blackbody spectrum as seen by an observer
[10, 19]. If the dipole anisotropy dominates, we call these
the Compton-y distortion and the kinematic Sunyaev-
Zel’dovich (KSZ) effect [20], respectively.

By measuring the Compton-y distortion and KSZ ef-
fects for many scattering regions on our own sky, we can
build up a picture of the degree of anisotropy, and thus
inhomogeneity, within our past lightcone. We will now
outline three observational tests based on these effects,
and estimate their sensitivities to a local inhomogeneity.

We begin with the KSZ effect from galaxy clusters.
Galaxy clusters contain a significant amount of ionized
gas. Since they are effectively individual collapsed ob-
jects, they can be used to sample the dipole anisotropy
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FIG. 2: The KSZ power D` = `(` + 1)C`T
2
0 /2π at ` = 3000,

in µK2. The thick red line is the SPT upper limit of D3000 <
6.7µK2 (95% CL).

induced by a local inhomogeneity at discrete points in
space. This is useful to reconstruct the systematic trend
in dipole anisotropy as a function of redshift that a local
inhomogeneity produces. Each cluster has a character-
istic integrated optical depth of τ ∼ 10−3 − 10−2. The
KSZ signal due to a single galaxy cluster at redshift z is
∆T/T = −β(z)τ , and can be extracted from CMB sky
maps given a sufficiently accurate component separation
method and low-noise data.

The KSZ effect from individual clusters is difficult to
measure owing to the smallness of the signal, confusion
with primary CMB anisotropies, and other dominant sys-
tematic errors. Currently, only upper limits are available,
but this is likely to change as data from Planck and small-
scale CMB experiments such as ACT and SPT become
available. Current data have nevertheless been used to
constrain inhomogeneous relativistic cosmological mod-
els for dark energy [21].

We now consider the KSZ angular power spectrum
from gas in the intergalactic medium. This angular power
spectrum is easier to measure than the KSZ effect from
individual clusters because it is an integrated quantity
and has additional contributions from the diffuse in-
tergalactic medium that is not associated with clusters
(sometimes called the Ostriker-Vishniac effect [22]). The
KSZ power spectrum from a large inhomogeneity is [23]

C` ≈ 8π3

∫ rre

0

dr r−3 [β(z)(dτ/dr)]
2
P (k(r), z(r)). (2)

The Limber approximation has been used, giving k(r) =
(2`+1)/2r(z). We model the distribution of scatterers in
the late Universe with dτ/dz ∝ σT fbρ(z)/H(z) [23], and
take reionization to be an abrupt transition at zre. At
high `, the KSZ signal is strongly dependent on the non-
linear matter power spectrum, P (k, z), which we model

FIG. 3: The Compton-y distortion induced by the inhomo-
geneity. Also plotted is the projected upper limit from PIXIE
(thick blue line).

using HaloFit/CLASS [24]. Results for our toy model are
shown in Fig. 2.

At a characteristic angular scale of ` ∼ 3000 (where
the primary CMB signal becomes subdominant), the sig-
nal is dominated by contributions from small-scale mat-
ter inhomogeneities at lower redshifts, where the induced
anisotropy is mostly dipolar. These scales are accessi-
ble to CMB experiments such as ACT and SPT, which
have recently put stringent upper limits on the combined
TSZ+KSZ power [25]. Accessing the bare KSZ signal is
complicated by difficulties in modeling the distribution
of extragalactic point sources [26], and contains a the-
oretical uncertainty due to the unknown ‘patchiness’ of
reionization, which also contributes a KSZ effect [27].

We now turn to the Compton-y distortion induced
by the inhomogeneity. Spectral distortions arising from
the Compton scattering of an anisotropic CMB can
be parametrized as a Compton-y blackbody distortion.
When the dipole dominates, the observed Compton-y dis-
tortion is a monopole [23],

y = (7/10)

∫ rre

0

dr (dτ/dr)β2(r). (3)

Results for our model are shown in Fig. 3.
Measurement of the Compton-y distortion requires an

instrument for which an absolute calibration of the spec-
tral response can be obtained. This excludes most recent
CMB experiments, and so the best current constraints
come from COBE/FIRAS [28]. The planned PIXIE mis-
sion [29] could improve the determination of y by some
four orders of magnitude.

Our toy-model calculations give some sense of the effec-
tiveness of the different spectral-distortion tests in con-
straining the size of a local inhomogeneity. A depth of
Φ0 ∼ 3 × 10−4 is sufficient to induce a bias in the in-
ferred spatial curvature of ∆ΩK ≈ 10−3 for a wide range
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of r0 (Fig. 1). Existing upper limits on the KSZ power
at ` = 3000 from SPT are sufficient to rule out an inho-
mogeneity of this depth with a width less than around 8
Gpc, although larger r0 are still allowed (Fig. 2). The
Compton-y distortion, on the other hand, provides much
weaker constraints even with the great increase in preci-
sion that would be possible with PIXIE (Fig. 3). Part of
the reason for the relative effectiveness of the KSZ power
spectrum is its density weighting, which enhances the sig-
nal at the high ` probed by precision CMB experiments.

The above calculations are only intended to be illus-
trative, and more detailed modeling would be required to
produce firmer constraints. For example, the KSZ angu-
lar power spectrum is sensitive to the non-linear contribu-
tions to P (k) [23], and the form of β(z) to the shape of the
potential, Φ(r), so uncertainties in these functions should
be treated carefully. For wider inhomogeneities, there is
also a (relatively minor) dependence on the details of
reionization. Finally, the assumption that the inhomo-
geneity is perfectly spherically symmetric, and that we
are exactly at its center, should also be relaxed. A realis-
tic inhomogeneity cannot be too asymmetric, or place us
too far from the center, however, without violating limits
on isotropy, moderating a CMB dipole that is observed
locally [30], or inducing a CMB statistical anisotropy [8].

Why should we expect to find ourselves near to the
center of a large inhomogeneity in the first place? Al-
though such a situation may seem unlikely [30], there are
inflationary mechanisms known in the literature which
preferentially place observers near the center of large un-
derdensities [31]. Furthermore, Ellis [32] has argued that
it would be inconsistent to rule out such inhomogeneities
on strictly a priori probabilistic grounds, since we cur-
rently accept features in our cosmological models that
are substantially less probable anyway. As such, obser-
vations should be the final arbiter in deciding whether a
large inhomogeneity exists or not.

Wouldn’t its presence have already been discovered
through other observational probes? Inhomogeneities of
the kind considered here modify the low-` CMB, causing

alignment of low-` multipoles [33], and changes in the
ISW signal, temperature-polarization cross-spectrum,
and associated modifications to the reionization history
[34]. Unfortunately, the induced effects tend either to
be smaller than cosmic variance at the relevant scales, or
strongly dependent on the details of the model, rendering
these tests inconclusive.

Superhorizon perturbations also produce fluctuations
in the low-` CMB through the Grishchuk-Zel’dovich ef-
fect [11]. In a number of cosmological models (including
ΛCDM), it has been shown that there is a cancellation
between the anisotropy and peculiar velocity induced by
such perturbations, resulting in no net dipole to first or-
der [12]. Constraints from the low-` CMB are therefore
complementary to spectral-distortion tests of the sort
outlined above: A deviation from spatial flatness caused
by a local inhomogeneity results in a net dipole about
many locations within our horizon, which can be mea-
sured using, e.g., the KSZ effect, whereas a superhori-
zon deviation from flatness will produce no such signal,
instead causing an enhancement of the quadrupole and
higher moments of our local CMB.

In conclusion, an observation of |ΩK | & 10−4 would
have considerable implications for inflation but would
not, on its own, be sufficient to rule out eternal inflation.
It would also have to be shown that the inferred devia-
tion from flatness was not caused by the effects of a local
inhomogeneity instead. Observations of CMB spectral
distortions such as the KSZ effect and Compton-y distor-
tion, taken with constraints on the size of the Grishchuk-
Zel’dovich effect from the low-` CMB power spectrum,
present a viable method to constrain the source of a seem-
ing departure from flatness.
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