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Abstract

We determine both real and virtual next-to-leading order corrections to the gluon induced
forward jet vertex, from the high energy effective action proposed by Lipatov. For these calcu-
lations we employ the same regularization and subtraction formalism developed in our previous
work on the quark-initiated vertex. We find agreement with previous results in the literature.

I Theoretical framework

In this work we present the calculation of the vertex describing the production of a jet in a forward
direction very close in the detector to one of the hadrons in hadron-hadron interactions at very
high energies. This is done in the kinematic approximation where the jet is well separated in
rapidity from other jets also produced in the scattering process. As a calculational technique we
make use of Lipatov’s effective action [1], designed to easy the derivation of scattering amplitudes
in the high energy limit of QCD. Here we focus on the gluon-initiated jet vertex, which is a more
complicated counterpart of the quark-initiated vertex, derived with similar techniques in Ref. [2].
A convenient regularization and subtraction procedure, taken from Ref. [2], is shown to give
the correct results (in agreement with previous calculations in the literature [3, 4, 5, 6, 7, 8]) at
next-to-leading (NLO) accuracy. The convolution of this jet vertex with the NLO BFKL gluon
Green function plays a very important role in the description of jet production at the LHC physics
program. Many interesting studies have been performed in this direction in recent years, see
Refs. [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

A complete description of the high energy effective action used in this work can be found
in Refs. [1, 5]. For a more recent discussion directly related to our calculation we refer the reader
to Ref. [22]. The calculation of the quark contributions to the gluon Regge trajectory at two loops
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using Lipatov’s effective action has been performed by us in Ref. [21, 23]. Here we will just briefly
explain the general structure of this action to then describe in some detail our calculation of the
gluon-initiated jet vertex.

The high energy effective action is based on the interplay between QCD particles and reggeized
degrees of freedom, which are introduced as independent fields interacting with the standard ones
via new vertices. These effective interactions, dominant in the high energy limit of QCD, appear
inside an extra term added to the QCD action. Reggeized quarks and gluons “propagate” in the
t-channel with modified propagators connecting two regions of different rapidities and play the role
of suppressing any real emission in that interval. At the endpoints of these intervals there can be
particle production; single production in multi-regge kinematics (MRK) and double production in
quasi-multi-regge kinematics (QMRK). Within these clusters of particle production there are not
kinematic restrictions and interactions are the usual QCD ones. A representation of this effective
clustering is shown in Fig. 1.a. The ordering in rapidity of the produced clusters is of the form
y0 � y1 � · · · � yn+1, where yk = 1

2 ln k+

k− and with all particles in each cluster being emitted with a
similar rapidity. Defining the light-cone vectors n+,− = 2pa,b/

√
s we work with Sudakov expansions

for four dimensional vectors of the form k = 1
2(k+n− + k−n+) + k, with k being transverse. The

strong ordering of the clusters simplifies the polarization tensor of the t-channel reggeized particles
which can be written as gµν → 1

2(n+)µ(n−)ν + O(1
s ), with

√
s being the center-of-mass energy of

the scattering process, carrying mainly transverse momenta, q2
i = −q2

i .

p
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Figure 1: (a) Quasi-multi-regge kinematics; (b) reggeized gluon-reggeized gluon-gluon effective vertex. The
first two diagrams are the induced contributions.

The effective interaction between reggeized and usual particles, like the one shown in Fig. 1, consists
of two pieces: the projection of the QCD vertex onto high energy kinematics and additional induced
contributions. This structure can be obtained from the following form of the effective action:

Seff = SQCD + Sind; Sind =
∫
d4xTr[(W+[v(x)]−A+(x))∂2

⊥A−(x)] + {+↔ −}, (1)

where A± are the gauge-invariant reggeized gluon fields which satisfy the following kinematic
constraint

∂+A−(x) = 0 = ∂−A+(x). (2)
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Their couplings to the QCD gluon field is given in terms of two non-local functionals W±[v] =
v±

1
D±

∂± = v± − gv± 1
∂±
v± + · · · with D± = ∂± + gv±.

q, a,±

k, c, ν

= −iq2δac(n±)ν ,

k± = 0.

+ a

− b

q = δab i/2
q2

q, a,±

k2, c2, ν2k1, c1, ν1

= gf c1c2a q2

k±1
(n±)ν1(n±)ν2 ,

k±1 + k±2 = 0

(a) (b) (c)

q, a,±

k3, c3, ν3k1, c1, ν1

k2, c2, ν2

= ig2q2
(
fa3a2efa1ea

k±3 k
±
1

+ fa3a1efa2ea

k±3 k
±
2

)
(n±)ν1(n±)ν2(n±)ν3

k±1 + k±2 + k±3 = 0

(d)

Figure 2: Feynman rules for the lowest-order effective vertices. Wavy lines denote reggeized fields and curly
lines gluons. (a) is the direct transition vertex and (b) the reggeized gluon propagator. We also show the
unregulated order g (c) and order g2 (d) induced vertices.

The lowest order Feynman rules for the induced vertices are shown in Fig. 2. The contributions
in the vertices of the form 1/k± generate a new type of divergencies which will be related to high
energy logarithms. These divergencies call for a regularization, or equivalently, a suitable definition
of the nonlocal operator ∂−1

± in the Wilson lines. A convenient regularization scheme was defined
in [2, 21] where n+ and n− are replaced by tilted light-cone vectors of the form a = n− + e−ρn+

and b = n+ + e−ρn−. These tilted light-cone vectors form a hyperbolic angle ρ in Minkowski
space which can be interpreted as ln s, implying that at high energies we are interested in the
ρ → ∞ limit. In the following we treat ρ as an external parameter which, at the end, we con-
sider in the ρ→∞ limit, similar to the treatment of ε→ 0 in d = 4+2ε dimensional regularization.

After this brief Introduction we turn in the following to give details of our calculation of the
gluon-initiated forward jet vertex. In Section II we provide a description of the virtual corrections
to the gluon-gluon-reggeized gluon vertex, while in Section III we explain the key details for the
calculation of the real corrections. Finally, Section IV contains our conclusions and an outlook for
future calculations. The Appendix collects further technical details.

II Virtual Corrections to the Gluon-Gluon-Reggeized Gluon Vertex

Let us consider the process gg → gg, where the external gluons are on-shell: p2
a = (pa− q)2 = p2

b =
(pb + q)2 = 0. In the high-energy limit the corresponding scattering amplitude factorizes into a
reggeized gluon exchange in the t-channel and its couplings to the external particles, the so-called
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impact factors. At tree level this is shown in Fig. 3.

Light cone momenta are defined making use of the momenta of the incoming particles pa
and pb through pa = p+

a n
−/2 and pb = p−b n

+/2 with 2pa · pb = s = p+
a p
−
b . From Eq. (2) one obtains

for the upper vertex the constraint q+ = 0, while q− = 0 for the lower one. Both constraints
can be understood as the leading term in the expansion in the small q+/p+

a and q−/p−b ratios,
respectively. The polarization vectors must be physical, satisfying for the upper vertex ε · pa = 0
and ε∗ · (pa− q) = 0. The last relation implies that ε∗ · pa = ε∗ · q. Gauge invariance of the effective
action enables us to choose different gauges for the upper and lower gluon-gluon-reggeized gluon
couplings. We therefore impose the condition ε(pa) · n+ = ε∗(p1) · n+ = 0 for the upper vertex
and the condition ε(pb) · n− = ε∗(p2) · n− = 0 for the lower vertex, which implies the following
polarization sum ∑

polarizations
ελµ(p, n)(ελ′ν )∗(p, n) = −gµν + pµnν + pνnµ

p · n
, (3)

with p being the gluon momentum and n = n±.

= +

Figure 3: Tree-level contribution to the gluon-gluon scattering amplitude in terms of effective vertices.

To define the impact factors we start from the general definition for the differential cross-section for
m-particle production in terms of the corresponding matrix elements and the phase space integral,
i.e.

dσ = 1
2s |Mi→f |2dΠm(2π)dδd

(
pa + pb −

m∑
j=1

pj

)
; dΠm =

m∏
j=1

ddpj
(2π)d−1 δ+(p2

j ). (4)

In the special case where all final state particles are produced either in the fragmentation region
of particle a or particle b we rewrite, with m = ma + mb, the overall delta function for global
momentum conservation as follows

(2π)dδd
(
pa + pb −

m∑
j=1

pj

)
=
∫

ddk

(2π)d (2π)2dδd
(
pa + k −

ma∑
j=1

pj

)
× δd

(
pb − k −

mb∑
l=1

pj

)
. (5)

The generalization to the additional production of n-particle clusters at central rapidities (see also
Fig. 1.a), with m = ma +mb +

∑n
i mi, reads

(2π)dδd
(
p1 + p2 −

m∑
j=1

pj

)
=

n∏
i=0

∫
ddki
(2π)d (2π)(2+n)dδd

(
pa + k0 −

ma∑
l0=1

pl0

)
×

δd
(
pb − kn −

mb∑
ln=1

pj

)
× (2π)ndδd

(
k0 − k1 −

m1∑
l1=1

pl1

)
× . . . δd

(
kn−1 − kn −

mn∑
ln=1

pln

)
. (6)
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Restricting from now on to the gg → gg amplitude at tree-level, we use in our next step the fact
that the effective action naturally factorizes the amplitude iMgr∗→g1 into two products of iMgr∗→g1

times the square-root of the reggeized gluon propagator i/2q2. Squaring, averaging over color and
polarization of the initial gluon and summing over color and polarization of the final state and
reggeized gluon (at the level of the gr∗ → g amplitudes), the 2→ 2 tree-level amplitude takes the
following factorized form

|M(0)
gagb→g1g2 |2 =

|M(0)
gar∗→g1 |

2

2k2
√
N2
c − 1

×
|M(0)

gbr∗→g2 |
2

2k2
√
N2
c − 1

. (7)

Defining now the impact factors = h
(0)
a,b(q) through the relation

dσab = h(0)
a (k)h(0)

b (k)d2+2εk, (8)

we are lead to the following general expression in terms of the effective action matrix elements:

h
(0)
a,gluon(k) = (2π)d/2

2p+
a

∫
dk−
|M(0)

gar∗→g1 |
2

2k2
√
N2
c − 1

dΠ1δ
(d)(pa + k − p1), (9)

with a natural generalization to mb-particle production in the fragmentation region of particle b.
The iMgr∗→g1 amplitude itself receives at tree-level two contributions (see Fig. 3): one from the
gluon-gluon-reggeized gluon (GGR) vertex

gfabc
k2

p+
a

(n+)µ1(n+)µ2εµ1ε
∗
µ2

and the other from the projection of the 3-gluon vertex

gfabc
[
2gµ1µ2p+

a − (n+)µ1(pa − k)µ2 − (n+)µ2(2k + pa)µ1
]
εµ1ε

∗
µ2 .

It is possible to verify that this amplitude is gauge invariant and satisfies the necessary
Ward/Slavnov-Taylor identities, see e.g. [1, 22]. At the amplitude level we arrive at

Mgar∗→g1 = 2gfabcε · ε∗. (10)

and

h
(0)
a,gluon(k) = Nc√

N2
c − 1

g2

k2
1

(2π)1+ε = 21+εαsCA

µ2εΓ(1− ε)
√
N2
c − 1

1
k2 ; αs ≡

g2µ2εΓ(1− ε)
(4π)1+ε . (11)

The one-loop corrections to this gluon-gluon-reggeized gluon vertex are shown in Fig. 4. All dia-
grams are evaluated in the limit ρ → ∞, while we only keep track of divergent (O(ρ)) and finite
(O(ρ0)) terms; ε is on the other hand kept finite. Details about the calculation of individual di-
agrams can be found in the appendix A.1. The final result for the 1-loop gr∗ → g amplitude
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Figure 4: One-loop virtual corrections to the gluon-initiated jet vertex.

reads

iM(1)
gar∗→g1 = −g

3µ2εp+
a

(4π)2+ε fabc

(
k2

µ2

)ε{
Nc ε · ε∗

Γ(1− ε)Γ2(ε)
Γ(2ε)

[
2 ln

(
p+
a

|k|

)
+ ρ+ ψ(1)

− 2ψ(ε) + ψ(1− ε)
]

+ 8[Nc(1 + ε)− nf ]
[
− 1

2ε · ε
∗Γ2(1 + ε)Γ(−ε)

Γ(4 + 2ε)

+ ε · q ε∗ · q
k2

Γ(ε)Γ(1− ε)
Γ(4 + 2ε) (2Γ(1 + ε) + Γ(2 + ε))

]
+ 8[Nc(1 + ε)− nf ]ε · q ε

∗ · q
k2

Γ(−ε)Γ2(1 + ε)
(2 + 2ε)Γ(2 + 2ε) + ε · ε∗(4Nc − nf )Γ(−ε)Γ2(1 + ε)

εΓ(2 + 2ε)

− ε · ε∗(4Nc − nf )1 + 2ε
ε

Γ(−ε)Γ2(1 + ε)
Γ(2 + 2ε) + 2Nc ε · ε∗

Γ(−ε)Γ2(1 + ε)
Γ(2 + 2ε)

+ 2 ε · ε∗[(1 + ε)Nc − nf ] Γ(−ε)Γ2(1 + ε)
(3 + 2ε)Γ(2 + 2ε) − 2ε · ε∗[4Nc − nf ]Γ(−ε)Γ2(1 + ε)

Γ(2 + 2ε)

}
. (12)

Our result contains two types of tensor structures involving the initial and final polarization tensors,
namely, ε · ε∗ and ε · q ε∗ · q/k2. These are related to the helicity conserving and helicity violating
terms [8]

ε · ε∗ = δλa,λ1 ; ε · ε∗ + 2
k2 ε · q ε

∗ · q = −δλa,−λ1 . (13)

To avoid double counting it is now needed to introduce the subtraction procedure discussed in
the Introduction. This procedure requires to subtract all effective diagrams which contain internal
reggeized gluon propagators in the t-channel from the above result. With

1 loop

= iM(1)
gar∗→g1 , (14)
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the subtraction procedure results into the following coefficient

Cgr∗→g

(
p+
a√
k2
, ρ; εk

2

µ2

)
=

1 loop

=
1 loop

− 1 loop . (15)

The one-loop reggeized gluon self-energy, which was computed in [2], includes both divergent, O(ρ),
and finite terms of O(ρ0) and reads1

Σ(1)(ρ; ε, k2

µ2 ) == − = (−2ik2)ω(1)(k2)
[
ρ− iπ

2 +
5 + 3ε− nf

Nc
(2 + 2ε)

2(1 + 2ε)(3 + 2ε)

]
. (16)

where

ω(1)(k2) = −αsNc

2π
Γ2(1 + ε)
εΓ(1 + 2ε)

(
k2

µ2

)ε
(17)

is the one-loop gluon Regge trajectory. The high energy limit of the gluon-gluon scattering ampli-
tude at one-loop is then obtained as the following sum of diagrams

= + + (18)

While each diagram on the right side is divergent in the limit ρ → ∞, the divergence cancels in
their sum, resulting into a finite one-loop amplitude. Following [21] we therefore define renormalized
gluon-gluon-reggeized gluon coupling coefficients,

CR
gr∗→g

(
p+
a

M+ ; ε, q
2

µ2

)
= Z+

(
M+
√
k2
, ρ; ε, k

2

µ2

)
Cgr∗→g

(
p+
a√
k2
, ρ; εk

2

µ2

)
, (19)

CR
gr∗→g

(
p−b
M−

; ε, k
2

µ2

)
= Z−

(
M−√
k2
, ρ; ε, k

2

µ2

)
Cgr∗→g

(
p−b√
k2
, ρ; εk

2

µ2

)
, (20)

and the renormalized reggeized gluon propagator,

GR
(
M+,M−; ε,k2, µ2

)
= G

(
ρ; ε,k2, µ2)

Z+
(
M+√
k2 , ρ; ε, k2

µ2

)
Z−

(
M−√
k2 , ρ; ε, k2

µ2

) , (21)

1There is a misprint in [2]: the term [· · · ]2 in Eq. 6 of [2] vanishes. As the same contribution appears also in the
1-loop corrections to the quark-quark-reggeized gluon vertex, the final result is independent of this contribution and
remains unchanged.
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with the bare reggeized gluon propagator given by

G
(
ρ; ε,k2, µ2

)
= i/2

k2

1 + i/2
k2 Σ

(
ρ; ε, k

2

µ2

)
+
[
i/2
k2 Σ

(
ρ; ε, k

2

µ2

)]2

+ . . .

 . (22)

The renormalization factors Z± cancel for the complete scattering amplitude and can be
parametrized as follows

Z±
(
M±√
k2
, ρ; ε, k

2

µ2

)
= exp

[(
ρ− ln M±

√
k

2

)
ω

(
ε,
k2

µ2

)
+ f±

(
ε,
k2

µ2

)]
, (23)

where the gluon Regge trajectory has the following perturbative expansion,

ω

(
ε,
k2

µ2

)
= ω(1)

(
ε,
k2

µ2

)
+ ω(2)

(
ε,
k2

µ2

)
+ . . . , (24)

with the one-loop expression given in Eq. (17). The function f(ε,k2) parametrizes finite con-
tributions and is, in principle, arbitrary. While symmetry of the scattering amplitude requires
f+ = f− = f , Regge theory suggests to fix it in such a way that at one loop the non-ρ-enhanced
contributions of the one-loop reggeized gluon self energy are entirely transferred to the quark-
reggeized gluon couplings. This leads to

f (1)
(
ε,
k2

µ2

)
= −αsNcΓ2(1 + ε)

4πΓ(1 + 2ε)

(
q2

µ2

)ε [5 + 3ε− nf

Nc
(2 + 2ε)

2(1 + 2ε)(3 + 2ε)

]
. (25)

Let us remark that in principle other alternative and even asymmetric f+ 6= f− choices are possible,
as long as they are in agreement with UV-renormalizability of QCD and collinear factorization.
Using now M+ = p+

a , M− = p−b we can see that this choice for f keeps the full s-dependence of
the amplitude inside the reggeized gluon exchange. The renormalized gluon-gluon-reggeized gluon
couplings allows then to extract the NLO corrections to the gluon impact factor. Extracting the
Born contribution and decomposing into helicity conserving and non-conserving parts

CR
gr∗→g

(
1; ε, q

2

µ2

)
= 2gfabc ·

[
Γ(+)
a δλa,λ1 + Γ(−)

a δλa,−λ1

]
, (26)

where the helicity tensors are for finite ε defined through Eq. (13), we have

Γ(+)
a = −1

2ω
(1)
[
−ψ(1) + 2ψ(2ε)− ψ(1− ε) + 1

4(1 + 2ε)(3 + 2ε) + 7
4(1 + 2ε) −

nf
Nc

1 + ε

(1 + 2ε)(3 + 2ε)

]
= αsNc

4π

(
q2

µ2

)ε [
− 1
ε2

+ β0
2ε −

(67− π2)Nc − 10nf
18

]
+O(ε), β0 = 11

3 Nc −
2
3nf ;

Γ(−)
a = −1

2ω
(1)
[

ε

(1 + ε)(1 + 2ε)(3 + 2ε)

(
1 + ε− nf

Nc

)]
= αs

12π (Nc − nf ) +O(ε).

(27)
which is in precise agreement with the literature 2 [3, 4, 5, 6, 8].

2As noted in [6], the original result [3] contains several misprints. The correct expressions can be found e.g.
in [5, 6, 8].
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III Real Corrections and One-Loop Jet Vertex

In the high energy limit, the real corrections to the Born-level process are naturally cast into three
contributions to the gg → ggg amplitude where the additional gluon is either produced at central
rapidities or close to the fragmentation region of one of the initial gluons (quasi-elastic gluon
production), see Fig. 5. A second class of corrections is due to the possible fragmentation of one
of the initial gluons into a qq̄ pair which only contributes to the quasi-elastic region, see Fig. 6.

+ +

Figure 5: Central (left) and quasi-elastic (middle and right) gluon production.

+

Figure 6: Quark production is restricted to the quasi-elastic region.

In the same way as the effective action generates high energy divergences near the light-cone when
computing virtual corrections, a cut-off in rapidity must be enforced in the longitudinal integrations.

The central production amplitude yields the unintegrated real part of the forward leading order
BFKL kernel and is obtained from the sum of the following three effective diagrams:

. (28)

The squared amplitude for (28), averaged over color of the incoming reggeized fields and summed
over final state color and helicities reads [2]

|M|2r∗r∗→g = 16g2Nc

N2
c − 1

k′2k2

q2 (29)
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with k′ = k − q. Defining the central production vertex V (0) through the differential cross section3,

dσ̂
(c)
ab = h(0)

a (k′)h(0)
b (k)V(k,k′; q)d2+2εk′ d2+2εk dy, (30)

we obtain, using the decomposition in Eq. (6) and with µ2 = k+′k−:

V (k,k′; q) = N2
c − 1
8

∫
dµ2 |M|

2
r∗r∗→g

k2k′2
dΠ1δ

(d)(k′ − k − q)

= αsNc

πεπq2 ; πε ≡ π1+εΓ(1− ε)µ2ε. (31)

While the rapidities of the gluons in the forward and backward directions are determined by kine-
matics, ya = ln p+

a /|k′| and yb = − ln p−b /|k|, the integral over the gluon rapidity in Eq. (30)
leads to a divergence in the limit y → ±∞ of inclusive observables. We therefore intro-
duce upper and lower bounds ηa,b on this integral with ηa > y > ηb which we evaluate in
the limit ηa,b → ±∞. This leads then to the definition of the regularized production vertex
V(k,k′; q; ηa, ηb) ≡ V (k,k′)Θ(ηa − y)Θ(y − ηb).
The remaining part of our calculation, the quasi-elastic contribution g(pa)r∗(k) → g(p)g(q) (see
the notation in Fig. 7), is given by the sum of all the effective diagrams in Fig. 8, where we include
both the gg and the qq̄ final state. In the computation of these diagrams we will employ the

pa

p

k

q

µ ν

ρ

a b

c

d
+

Figure 7: Notation for external momenta and color indices in the quasi-elastic contribution.

following choice for the polarization vectors: εa · pa = εb · p = εc · q = εa ·n+ = εb ·n+ = εc ·n+ = 0;
together with the Sudakov decomposition

pa = p+
a

n−

2 , p = (1− z)p+
a

n−

2 + p−
n+

2 + k′,

k = k−
n+

2 + k, q = zp+
a

n−

2 + (k− − p−)n
+

2 + q,

(32)

where we used q+ = zp+
a and p+

a = (1 − z)p+
a . Squaring and averaging over initial colors and

polarizations and summing over the final state we obtain with ∆ = q − zk

|M2|gg→ggg =

8z(1− z)(p+
a )2g4Ca(1 + ε)Pgg(z)

k2

k′2

[
z2k′2 + (1− z)2q2 − z(1− z)q · k′)

q2∆2

]
,

(33)

3Strictly speaking we cannot identify the gluon with transverse momentum q = k−k′ to be the centrally produced
one. The cross-section should be therefore written as the sum over the three possibilities where one of the gluons is
produced at central rapidities, together with the corresponding symmetry factor 1/3.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (k) (l)(j)

Figure 8: Diagrams involved in the computation of the real corrections. In the case of final qq̄ state, the
external quark has momentum p and the external antiquark momentum q.

where Pgg(z) = Ca
1+z4+(1−z)4

z(1−z) is the gluon-gluon Altarelli-Parisi splitting function. In the same
way, the joined contribution of the diagrams (j), (k) and (l) for the quark-antiquark final state gives

|M2|gg→qq̄ = 8z(1− z)(p+
a )2g4nfNc(1 + ε)Pqg(z, ε)

k2

q2k′2

[
Cf
Ca

+ z(1− z)q ·∆
∆2

]
, (34)

with Pqg(z, ε) = 1
2

[
1− 2z(1−z)

1+ε

]
the quark-gluon splitting function. Generalizing our definition in

Eq. (9) to two final state particles we obtain

h(1)
a,gg(k) = (2π)d/2

2p+
a

∫
dk−
|M(0)

gar∗→gg|
2

2k2
√
N2
c − 1

dΠ2δ
(d)(pa + k − p− q)

=
∫
dzd2+2εk′Fggg(k,k′, z)h(0)

a,gluon(k′) (35)

and

h
(1)
a,qq̄(k) = (2π)d/2

2p+
a

∫
dk−
|M(0)

gar∗→gg|
2

2k2
√
N2
c − 1

dΠ2δ
(d)(pa + k − p− q)

=
∫
dzd2+2εk′Fgqq̄(k,k′, z)h(0)

a,gluon(k′) (36)

with

Fggg(k,k′, z) = 1
2
αs

2ππε
Pgg(z)

[
z2k′2 + (1− z)2q2 − z(1− z)q · k′

q2∆2

]
(37)

and

Fgqq̄(k,k′, z) = αs
2ππε

nfPqg(z, ε)
1
q2

[
Cf
Ca

+ z(1− z)q ·∆
∆2

]
, (38)
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where the overall factor 1/2 for the gg final state stems from the indistinguishability of identical
bosons in the final state.
If we parametrize the momentum fraction z in terms of the rapidity difference ∆y ≡ yp − qq of the
final state gluons, i.e.

z = e∆y

(k′2/q2) + e∆y , (39)

we can see that Fggg reduces in the limits ∆y → ±∞ (including the corresponding Jacobian
factor) to half of the central production vertex of Eq. (31). To regularize the resulting divergence
of the rapidity integral we introduce a lower bound |∆y| > −ηb, where ηb is again taken in the
limit ηb → −∞, and define Fggg(k,k′, z, ηb) = Fggg(k,k′, z)Θ(|∆y|+ ηb). As in the case of virtual
corrections it is now needed to subtract the contribution from gluon production at central rapidities
to construct the complete differential cross section, schematically:

= − (40)

This leads to the definition of the coefficient

G(a)
ggg(k,k′, z, ηb) = Fggg(k,k′, z, ηb)−

1
2

[1
z
V(k,k′; q; ηa, ηb) + 1

1− zV(k, q; k′; ηa, ηb)
]
. (41)

Defining finally the cross-section for quasi-elastic production as

dσ̂
(qea)
ab = h

(0)
a,gluon(k′)G(a)

ggg(k,k′, z, ηb)h
(0)
b,gluon dz d

2+2εk d2+2εk′, (42)

the sum of central and quasi-elastic contributions,

dσ̂ab = dσ̂
(c)
ab + dσ̂

(qea)
ab + dσ̂

(qeb)
ab , (43)

turns out to be finite, if integrated over the gluon rapidity, with a well-defined limit ηa,b → ±∞.
This completes our calculation of the gluon-initiated forward jet vertex at NLO using the high
energy effective action constructed by Lipatov.

IV Conclusions and Outlook

We have performed the calculation of the forward jet vertex at next-to-leading order in the BFKL
formalism, offering an explicit derivation of the gluon-initiated contribution. This adds to the
previously calculated for the quark-initiated vertex and completes the derivation of the full vertex.
We have found agreement with previous results in the literature. Our method of calculation is
based on the high energy effective action for QCD proposed by Lipatov, which is proven to be
very useful to streamline our calculations. Our subtraction and regularization procedure in order
to avoid over-counting of kinematic regions has been proven to work well in both gluon and quark

12



cases. Compared to more standard calculations, in this approach the number of Feynman diagrams
finally contributing to the physical observables is reduced and gauge invariance is readily ensured.
We are now confident this method will help in the calculation of further amplitudes at loop level.
We understand that it is important to test these high energy resummations in exclusive observables
at the Large Hadron Collider. Typical pro- cesses where our approach can be applied include the
inclusive production of a pair of forward (Mueller-Navelet) jets. Similar techniques are now being
used to calculate the production of a forward jet coupled to a color singlet, associated to diffractive
events (Mueller-Tang jets) [25] at next-to-leading order.
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A Appendix

In the following we present further details on the NLO calculation of both virtual and real correc-
tions

A.1 Virtual corrections

We refer for the notation to Fig. 4. Tadpole contributions vanish in dimensional regularization.
The contribution for each of these diagrams can be written in terms of master integrals labelled with
the following notation: M, S, P, and Q denote, respectively, the existence of a propagator of the
form k+(→ b ·k), k2, (k−pa)2 or (k− q)2. The number at the end (0, 1, 2, or 3) indicates how many
tensor indices are present in the numerator (e.g. 2 stands for a factor kµkν). ξ = a2 = b2 = 4e−ρ
are chosen to indicate the squares of the new light-cone vectors. For diagrams (E), (F), (I) and
(J) in Fig. 4 the contribution with reversed arrows is included. Diagrams (G) and (H) turn out to
vanish completely. The symmetry factors for the diagrams, which are included, are equal to one
apart from diagrams (C) and (D), for which it is two. In more detail, these are all the contributing
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expressions:

iM(A) = − ig
3

2 q2fabcNc

∫
ddk

(2π)d
(k+ − 2p+

a )2 ε · ε∗ + 4 ξ ε · k ε∗ · (k − q)
k+k2(k − pa)2(k − q)2

= − ig
3

2 q2fabcNc {16e−ρεµε∗ν [MSPQ2]− 16e−ρε∗ · q εµ[MSPQ1]− 4p+
a ε · ε∗[SPQ0]

+ 4(p+
a )2ε · ε∗[MSPQ0] + (n+)µε · ε∗[SPQ1]};

iM(B) = − ig
3

2 fabcNc

∫
ddk

(2π)d
1

k2(k − pa)2(k − q)2 [4p+
a {ε · ε∗((k − pa)2 − q2)

+ 4(ε · k ε∗ · q − ε · q ε∗ · k)}+ k+{7q2ε · ε∗ + (18 + 16ε)ε · k ε∗ · (k − q)
+ 16 ε · q ε∗ · q}]

= − ig
3

2 fabcNc{(18 + 16ε)(n+)µενε∗ρ[SPQ3]− (18 + 16ε)(n+)µεν ε∗ · q[SPQ2]

+ [(n+)µ(16ε · q ε∗ · q + 7q2ε · ε∗)− 16p+
a (ε · q ε∗µ − ε∗ · q εµ)][SPQ1]

− 4p+
a q2ε · ε∗[SPQ0] + 4p+

a ε · ε∗[SQ0]};
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iM(C) = − ig
3

2 fabcNc

∫
ddk

(2π)d
1

k+k2(k − q)2 [4ξ(ε · k ε∗ · q − ε · q ε∗ · k)

+ ε · ε∗(4k+p+
a + ξ(2(k − pa)2 − q2)]

= − ig
3

2 fabcNc{−16e−ρ(ε · ε∗paµ + ε · q ε∗µ − ε∗ · q εµ)[MSQ1]

− 4e−ρq2ε · ε∗[MSQ0] + 4p+
a ε · ε∗[SQ0]};

iM(D) = ig3

2q2 fabcNc

∫
ddk

(2π)d
1

k2(k − q)2 [−8p+
a q2ε · ε∗ + (5 + 4ε)k+{ε · ε∗(q2

− 2(k − pa)2) + 4 ε · q ε∗ · k − 4 ε · k ε∗ · q}]

= ig3

2q2 fabcNc{(20 + 16ε)(n+)µ(ε · q ε∗ν − ε∗ · q εν + ε · ε∗paν)[SQ2]

+ (5 + 4ε)q2ε · ε∗(n+)µ[SQ1]− 8p+
a q2ε · ε∗[SQ0]};

iM(E) = 2ig3

q2 fabc nf

∫
ddk

(2π)d
1

k2(k − q)2 [p+
a q2ε · ε∗ + k+[ε · ε∗(2(k − pa)2 − q2)

+ 4(ε · k ε∗ · q − ε · q ε∗ · k)]]

= −2ig3

q2 fabc nf{4(n+)µ(ε · q ε∗ν − ε∗ · q εν + ε · ε∗paν)[SQ2]

+ ε · ε∗q2(n+)µ[SQ1]− p+
a q2ε · ε∗[SQ0]};

iM(F) = ig3

2q2 fabcNc

∫
ddk

(2π)d
k+

k2(k − q)2 [ε · ε∗(2(k − pa)2 − q2)

+ 4(ε · k ε∗ · q − ε · q ε∗ · k)]

= − ig
3

2q2 fabcNc{4(n+)µ(ε · ε∗paν + ε · q ε∗ν − ε∗ · q εν)[SQ2]

+ q2ε · ε∗(n+)µ[SQ1]};

iM(I) = ig3fabc nf

∫
ddk

(2π)d
1

k2(k − pa)2(k − q)2 [p+
a (−q2ε · ε∗

+ 2(ε · k ε∗ · q − ε · q ε∗ · k)) + k+(ε · ε∗(q2 − 2(k − pa)2)
+ 8 ε · k ε∗ · (k − q) + 2ε · q ε∗ · q)]
= ig3fabc nf {8(n+)µεν ε∗ρ[SPQ3]− 8ε∗ · q(n+)µεν [SPQ2]
+ [(q2ε · ε∗ + 2ε · q ε∗ · q)(n+)µ + 2p+

a ε
∗ · q εµ − 2p+

a ε · q ε∗µ][SPQ1]
− q2p+

a ε · ε∗[SPQ0]};

iM(J) = ig3fabcNc

∫
ddk

(2π)d
k+

k2(k − pa)2(k − q)2 ε · k ε
∗ · (k − q)

= ig3fabcNc(n+)µ{ενε∗ρ[SPQ3]− ε∗ · q εν [SPQ2]}.
15



Those integrals which are not suppressed in the ρ→∞ limit are:

[SQ0] = i

(4π)2+ε (q
2)εΓ(−ε)Γ2(1 + ε)

Γ(2 + 2ε) ;

[SQ2] = (gµνq2 + qµqν(4 + 2ε)) 1
4(3 + 2ε) [SQ0] ;

[SPQ0] = 1 + 2ε
εq2 [SQ0] ;

[SPQ1] =
(
qµ + 1

ε
pµa

)
[SQ0] ;

[SPQ2] =
{ 1

2 + 2ε

[1
2g

µν +
(
qµpνa + pµaq

ν

q2

)
+ 2
ε

pµap
ν
a

q2

]
+ 1

q2 q
µqν

}
[SQ0] ;

[SPQ3] = 1
ε(1 + ε)(3 + 2ε)

{ 1
q2

[
pµap

ν
ap
ρ
a + εqµpνpρ + 1

2ε(1 + ε)qµqνpρ

− 1
6(1− ε)(2 + ε)2qµqνqρ

]
+ ε

4 [pµgνρ + (1 + ε)qµgνρ]

+ cyclic permutations of µ, ν and ρ

}
[SQ0] ;

[MSQ1] = bµ

ξ
[SQ0] + 1

2q
µ

 −i
(4π)2+ε

Γ2
(

1
2 + ε

)
Γ
(

1
2 − ε

)
Γ
(

1
2

)
Γ(1 + 2ε)(q2)

1
2−εξ

1
2

 ;

[MSPQ0] = − i

(4π)2+ε
(q2)ε−1

p+
a

Γ(1− ε)Γ2(ε)
Γ(2ε)

(
ln
[
p+
a

|q|

]
+ ρ

2 + ψ(1)− 2ψ(ε) + ψ(1− ε)
2

)
.

A.2 Details on the real corrections

We refer to Figs. 7 and 8 for our notation. We have

p− = (k − q)2

(1− z)p+
a
, k− = (q − zk)2 + z(1− z)k2

z(1− z)p+
a

. (44)

Within the given choice of polarization vectors, diagrams (a), (b), (c), (d) and (i) are immediately
zero, while diagram (h) turns out to vanish as well. The amplitudes for the non-vanishing diagrams
can be written in the following form

iM(e) = εaµε
∗
bνε
∗
cρ2ig2 fadefbce

s
p+
a

{
gνρ[kµ(1− 2z)− pµ + qµ] + gµν(2pρ + qρ)

− gµρ(2qν + pν)
}

;

iM(f) = εaµε
∗
bνε
∗
cρ(−ig2)fabefcde

t
p+
a

{
− 4z(gνρpµ + gµρpνa) + gµν [kρ(2− z) + pρ(2 + z)

+ pρa(−2 + 3z)]
}

;
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iM(g) = εaµε
∗
bνε
∗
cρ(−ig2)facefbde

u
p+
a

{
− 4(1− z)[gµνpρa + gνρqµ] + gµρ[kν(1 + z)

+ pνa(1− 3z) + qν(3− z)]
}

;

iM(j) = −2g2facd t
c

s
εaµ[kµ(n+)σ − p+

a g
µσ]ū(p)γσv(q);

iM(k) = − ig
2 tdta

u
εaµū(p)/n+(/pa − /q)γ

µv(q);

iM(l) = ig2 tatd

t
εaµū(p)γµ(/pa − /p)/n

+v(q).

(45)
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