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We extend our previous study of the SU(3) gauge theory with Nf = 2 flavors of fermions in the
sextet representation of color. Our tool is the Schrödinger functional method. By changing the
lattice action, we push the bulk transition of the lattice theory to stronger couplings and thus reveal
the beta function and the mass anomalous dimension γm over a wider range of coupling, out to
g2 ≃ 11. Our results are consistent with an infrared fixed point, but walking is not ruled out. Our
main result is that γm never exceeds 0.45, making the model unsuitable for walking technicolor. We
use a novel method of extrapolation to the large-volume/continuum limit, tailored to near-conformal
theories.

PACS numbers: 11.15.Ha, 11.10.Hi, 12.60.Nz

I. INTRODUCTION

For some time we have been studying SU(N) gauge
theories with fermions in the symmetric two-index rep-
resentation of color [1–8]. These are among the theories
that have been proposed [9–11] as candidate models for
walking technicolor [12–15]. Here we present our most re-
cent work on the SU(3) gauge theory with Nf = 2 flavors
of fermions in the sextet representation.
A technicolor theory must supply Goldstone bosons in

order to generate masses for the weak vector bosons. To
that end, the theory must break chiral symmetry sponta-
neously. In order to generate quark and lepton masses as
well while avoiding large effects of flavor-changing neutral
currents, one demands the additional property of walk-
ing. Here a large separation between the technicolor scale
ΛTC and the “extended” technicolor scale ΛETC is at-
tained by having a near-zero of the beta function; the
running coupling stalls for many decades in energy be-
fore chiral symmetry breaking sets in at large distances.
Furthermore, the effect of the large ratio ΛETC/ΛTC on
the technifermion condensate has to be enhanced by a
large anomalous dimension γm of the mass operator ψ̄ψ.
Current estimates [16] require γm ≃ 1. In fact γm = 1
emerges from analyses based on the gap equation for
walking technicolor [13, 14] (see also [17]).
Since the beta function and γm are the important in-

gredients of walking technicolor, our work has focused
on measuring them. We do this using Schrödinger-
functional (SF) techniques [18–23], which are a lattice im-
plementation of the background-field method. For other
instances of the Schrödinger functional applied to tech-
nicolor candidates, see [24–30].
Our first effort [1] used Wilson’s fermion action with

an added clover term [31] to reduce O(a) effects, and
was limited to lattices of linear size L = 4a, 6a, and 8a.
The result was a discrete beta function that appeared
to cross zero at a renormalized coupling g2 ≃ 2.0, in-

dicating an infrared fixed point (IRFP). An IRFP indi-
cates conformal physics at large distances, the antithe-
sis of confinement. Intending to understand (and re-
duce) discretization effects, we then [4] went to larger
lattices, L/a = 6, 8, 12, 16, and began using hypercu-
bic smearing—fat links [32, 33]—in the fermion action.
This work showed that the IRFP of Ref. [1] was but a
lattice artifact. Thanks to its numerical stability, the
fat-link action also enabled us to simulate at stronger
couplings, out to g2 ≃ 4.6, corresponding to a bare cou-
pling β = 4.4. At stronger bare couplings we encountered
a phase transition that makes it impossible to tune the
hopping parameter κ so as to make the quark mass zero.
The result of Ref. [4], then, is a beta function that is
smaller in magnitude than the two-loop result but that
does not cross zero in the accessible range of couplings.
In Ref. [4] we also calculated the anomalous dimension

γm according to the method of [27, 34–36]. We found
that γm first follows the one-loop curve but its rise slows
at strong couplings so that γm <∼ 0.6 in the range of
couplings that we could reach.

In our work on the SU(4) gauge theory with two-index
(decuplet) fermions [7, 8], we encountered the same phase
transition that prevents simulation of the massless the-
ory. We found that augmenting the pure-gauge part of
the action with a new fat-plaquette term can move this
transition to stronger bare coupling and stronger renor-
malized coupling as well. In the present paper, we present
the result of applying this strategy to the SU(3) theory.
The new action enables us to reach g2 ≃ 11, which is
in the vicinity of the zero of the two-loop beta function,
discussed by Caswell [37] and by Banks and Zaks [38].

While at first glance our calculated beta function
crosses zero near the two-loop zero, further analysis
shows that this result is not stable under extrapolation
to the continuum limit. It is quite possible that the beta
function of this theory approaches zero in the range of
coupling that we can study, and then veers away from
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zero at yet stronger couplings—much as envisioned in
scenarios of walking.

Whether the beta function crosses zero or no, we find,
in agreement with our earlier work, that the anomalous
dimension has left the one-loop curve and leveled off. The
limit we set at our strongest coupling is γm <∼ 0.45. Our
earlier work, based on the pure plaquette gauge action,
quoted values approaching 0.6, but this was without at-
tempting to remove lattice artifacts. We report here an
analysis of lattice artifacts that allows smooth extrapola-
tion to the continuum limit. The results for both actions
move downwards and the error bars grow under extrapo-
lation. As a result, the results for the two actions are not
in violent disagreement. The small value of γm near the
(real or approximate) fixed point spells trouble for any
use of the present theory as walking technicolor.

The plan of this paper is as follows. In Sec. II we
present the improved lattice action, which is the only dif-
ference in the simulation method between this paper and
Ref. [4]. For other details of our simulations we refer the
reader to Ref. [4]. We also briefly discuss the ensembles
we generated, and how we deal with the autocorrelations
of our observables. We proceed in Sec. III to present
our results for the running coupling and the beta func-
tion. We re-analyze the data of Ref. [4] according to the
lights of our later paper on the SU(2) theory [6], where
we learned to take advantage of the slow running in order
to make maximum use of the several lattice sizes in play.
Naturally, we add in the results of the new simulations
obtained with the augmented gauge action. Our first re-
sults show an apparent zero in the beta function; this
will not survive our analysis of discretization error later
in the paper. Section IV contains our numerical results
for the mass anomalous dimension γm. We study the
finite-lattice corrections to both γm and the beta func-
tion in Sec. V. The former reaches a smooth continuum
limit, albeit with larger error bars than those of the raw
results of Sec. IV; the latter is not so well-behaved. In
Sec. VI we summarize our results and place them in the
context of other work. In the appendix we examine the
fermion contribution to the one-loop SF coupling and ex-
plain that it does not provide any guidance for the range
of couplings and volumes that we study.

II. LATTICE ACTION AND ENSEMBLES

Our action contains a fermion term and two pure gauge
terms. The fermion term ψ̄DFψ is the conventional Wil-
son action, supplemented by a clover term [31] with co-
efficient cSW = 1 [39]. The gauge links in the fermion ac-
tion are fat link variables Vµ(x). The fat links are the nor-
malized hypercubic (nHYP) links of Ref. [32], where for
each link (x, µ) one takes the weighted average Vµ(x) of
links in neighboring hypercubes with weights α1 = 0.75,
α2 = 0.6, α3 = 0.3, reunitarized and subsequently pro-
moted to the sextet representation.

The gauge action is

SG = − β

2N

∑

µ6=ν

ReTrUµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν (x)

− β6
2df

∑

µ6=ν

ReTrVµ(x)Vν (x+ µ̂)V †
µ (x+ ν̂)V †

ν (x),

(1)

wherein the first term is the usual sum of plaquettes of
fundamental thin link variables, while the second term
contains plaquettes made of fat links in the sextet repre-
sentation as in the fermion action. N = 3 is the number
of colors while df = 6 is the dimension of the fermion
representation, here the sextet. The weak-coupling ex-
pansion of SG gives the effective bare coupling [7],

1

g20
=

β

2N
+
T6β6
6

, (2)

where T6 = 5/2 is the group trace in the fermions’ rep-
resentation.1

As before, we employ the hybrid Monte Carlo (HMC)
algorithm in our simulations. The molecular dynam-
ics integration is accelerated with an additional heavy
pseudo-fermion field as suggested by Hasenbusch [40],
multiple time scales [41], and a second-order Omelyan
integrator [42]. We determined the critical hopping pa-
rameter κc = κc(β) by setting to zero the quark mass, as
defined by the unimproved axial Ward identity on lattices
of size L = 12a.
Without a systematic search, we found that choosing

β6 = +0.5 removes the strong-coupling phase transition
so that we can run at bare couplings down to β = 2.0; at
smaller β the acceptance deteriorates rapidly, especially
for larger volumes, so that we did not go far enough to
find out if and where the strong-coupling transition turns
up. At β = 2.0, the running coupling for L = 6 turns
out to be g2 ≃ 11. This is close to the two-loop Banks–
Zaks zero at g2 = 13

194 (16π
2) ≃ 10.6. We list in Table I

the values of (β, κc) and the number of trajectories run
at each volume, along with the length of the trajectories
and the acceptance. Poor acceptance forced us to shorten
the trajectory length in many cases from the usual value
of 1.
The observables we measure are the (inverse) SF run-

ning coupling, 1/g2, and the pseudoscalar renormaliza-
tion factor, ZP . (We measure ZP on the same config-
urations used to determine 1/g2.) Both of them turn
out to have long autocorrelation times. We monitored
and controlled this problem by running 4 or 8 streams in
parallel at each β and L. After analyzing each stream
separately, we fit the results of the streams together to a
constant. We demanded that the χ2/dof of the constant

1 We presented a test of weak-coupling universality in our paper
on the SU(4) theory [8].
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TABLE I: β6 = 0.5 ensembles generated at the bare couplings
(β, κc) for the lattice sizes L used in this study. Listed are
the total number of trajectories for all streams at given (β, L),
the trajectory length, and the HMC acceptance.

β κc L/a trajectories trajectory acceptance
(thousands) length

3.5 0.13349 6 74.8 1.0 0.93
8 15.5 0.5 0.97

10 8.0 1.0 0.75
12 37.0 0.5 0.88

2.5 0.13991 6 8.8 1.0 0.61
8 14.3 1.0 0.43

10 20.4 0.5 0.75
12 35.6 0.5 0.50
14 11.6 0.5 0.61
16 17.1 0.5 0.48

2.0 0.14273 6 17.2 1.0 0.65
8 14.2 0.5 0.61

10 12.0 0.5 0.67
12 13.4 0.5 0.48
16 29.6 0.4 0.38

TABLE II: β6 = 0 ensembles generated at the new lattice
sizes L = 10a and 14a, which we add to the ensembles listed
in Ref. [4]. Columns as in Table I.

β κc L/a trajectories trajectory acceptance
(thousands) length

4.8 0.13173 10 9 1.0 0.95

4.4 0.13510 10 16 1.0 0.80
14 12 0.5 0.85

fit not exceed 6/3 for 4 streams, or 10/7 for 8 streams.
For the largest volume L = 16a at the strongest coupling
β = 2.0, we were not able to overcome the autocorrela-
tions in 1/g2 even with nearly 30,000 trajectories. We
therefore omit this point from the analysis of the run-
ning coupling. The autocorrelations in ZP , on the other
hand, did allow a consistent determination, and thus we
keep this point in the analysis of the mass anomalous
dimension.
In this paper we present our new results, obtained with

β6 = 0.5, alongside the β6 = 0 results presented in our
earlier paper [4]. For the more extensive study of dis-
cretization error in Sec. V, we supplemented the data of
Ref. [4] with simulations on new lattice sizes L = 10a, 14a
at two values of β in strong coupling, as shown in Table II.

III. BETA FUNCTION

The computation of the running coupling proceeds ex-
actly as described in Ref. [4], with the same boundary

0.05 0.150.1 0.2
a/L

0.2

0.4

0.6

g−2
(L

)

β
6
 = 0

β
6
 = 0.5

one loop

FIG. 1: Running coupling 1/g2 vs. a/L. The crosses are
from simulations with β6 = 0 (Ref. [4] and Table IV): top to
bottom, β = 5.8, 5.4, 5.0, 4.8, 4.6, and 4.4. The circles are
from simulations with β6 = 0.5 (Table III): top to bottom,
β = 3.5, 2.5, and 2.0. The straight lines are linear fits [Eq. (5)]
to each set of points at given (β, β6); the slope gives the beta
function. The dotted line shows the expected slope from one-
loop running.

conditions on the fermion and gauge fields. In brief, one
imposes Dirichlet boundary conditions at the time slices
t = 0, L, and measures the response of the quantum effec-
tive action. The coupling emerges from a measurement of
the derivative of the action with respect to a parameter
η in the boundary gauge field,

K

g2(L)
=

〈
∂SG

∂η
− tr

(
1

D†
F

∂(D†
FDF )

∂η

1

DF

)〉∣∣∣∣∣
η=0

.

(3)
The constant K can be calculated directly from the clas-
sical continuum action. Only g0, Eq. (2), appears in the
latter, which assures that K = 12π regardless of β6.
We presented in Ref. [4] the values of the running cou-

pling g2 for a number of values of (β, κc) with β6 = 0.
Our new results for β6 = 0.5 are shown in Table III, with
supplementary data on new volumes for β6 = 0 shown in
Table IV. Both sets are plotted in Fig. 1.2

It is convenient to define the beta function β̃(u) for
u ≡ 1/g2 as

β̃(u) ≡ d(1/g2)

d logL
= 2β(g2)/g4 = 2u2β(1/u) (4)

2 We have dropped from consideration the data given in [4] for
(β, β6) = (4.3, 0) since these were taken in a metastable state
beyond the first-order boundary.
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TABLE III: Running coupling, Eq. (3), evaluated at the bare coupling (β, κc) with β6 = 0.5 on lattices of size L. The omission
of the result for L = 16a at β = 2.0 is explained in the text.

β 1/g2

L = 6a L = 8a L = 10a L = 12a L = 14a L = 16a
3.5 0.2918(13) 0.2859(48) 0.2888(53) 0.2703(58) – –
2.5 0.1454(32) 0.1433(45) 0.1424(42) 0.1517(36) 0.1647(65) 0.1449(68)
2.0 0.0915(32) 0.1023(37) 0.0942(56) 0.1057(51) – *

TABLE IV: Running coupling for the strong-coupling cases with β6 = 0. Data for L = 10a, 14a are from the new simulations
listed in Table II, while the other data are from Ref. [4]. Data for β = 4.6 were taken with κ = κc = 0.13320.

β 1/g2

L = 6a L = 8a L = 10a L = 12a L = 14a L = 16a
4.8 0.3151(50) 0.3002(28) 0.3013(61) 0.3008(45) – –
4.6 0.2692(27) 0.2615(41) – 0.2525(50) – 0.2289(56)
4.4 0.2191(24) 0.2103(34) 0.2021(66) 0.2080(50) 0.2235(105) 0.2119(53)

in terms of the conventional beta function β(g2). As
discussed in Ref. [6], the slow running of the coupling
suggests extracting the beta function at each (β, κc) from
a linear fit of the inverse coupling

u(L) = c0 + c1 log
L

8a
. (5)

With this parametrization, c0 gives the inverse coupling
u(L = 8a), while c1 is an estimate for the beta function

β̃ at this coupling.
For a first look, we fit the data points for all L to

extract the slopes at the given bare parameters, ignoring
discretization errors that must be inherent in the smallest
lattices. These fits are shown in Fig. 1. Values of the
beta function β̃(u) obtained from these fits are plotted
as a function of u(L = 8a) in Fig. 2. One can see that
the results for β6 = 0 and for β6 = 0.5 are consistent
with each other. Also shown are the one- and two-loop
approximations from the expansion

β̃(u) = − 2b1
16π2

− 2b2
(16π2)2

1

u
+ · · · , (6)

where b1 = 13/3 and b2 = −194/3.

The assumption behind the linear fits is that β̃ is small
so that u(L/a) changes very slowly with the volume; this
behavior is apparent in Fig. 1. Nonetheless, where there
are four or more volumes to be fitted for a given coupling
the χ2 is not particularly good. Corrections to the ap-
proximate Eq. (5) come from discretization errors, as well
as from the slight deviation from constancy of the contin-
uum beta function over the range of volumes. We defer
consideration of discretization errors to Sec. V. Variation
of the continuum beta function gives rise to higher pow-
ers of logL. Adding the next-to-leading term, at each
bare coupling we fit

u(L) = c0 + c1 logL/8a+ c2(logL/8a)
2. (7)

From the definition of a beta function it follows that c1
continues to provide an estimate for β̃ at u = 1/g2(L =
8a). The results of these fits are shown as empty symbols
in Fig. 2. It is evident that there is only a small change
compared to the linear fits of Eq. (5). In our analysis of
discretization error, given below, we use only the single
logarithm.
At the two strongest couplings the beta function plot-

ted in Fig. 2 is positive, indicating the existence of an
infrared fixed point. As we shall see, this conclusion does
not survive consideration of the discretization error. It is
possible that the beta function remains negative even at
the strongest couplings studied. Hence, we cannot rule
out a “walking” scenario wherein the beta function comes
close to zero, but never actually turns positive.
Nevertheless, Figs. 1 and 2 demonstrate an important

qualitative result, which will be unaltered by any anal-
ysis of lattice error: The coupling constant runs more
slowly than one-loop perturbation theory over the entire
range of bare parameters. This is in marked contrast to
QCD, where the running coupling runs faster than the
one-loop (or the two-loop) beta function as one enters
strong coupling [23].

IV. MASS ANOMALOUS DIMENSION

We derive the mass anomalous dimension from the
scaling with L of the pseudoscalar renormalization factor
ZP . The latter is calculated by taking the ratio

ZP =
c
√
f1

fP (L/2)
. (8)

fP is the propagator from a wall source at the t = 0
boundary to a point pseudoscalar operator at time L/2.



5

0 0.1 0.2 0.3 0.4 0.5

u = 1/g
2

-0.05

0

β~ (u
)

β
6
 = 0

β
6
 = 0.5

one loop
two loops

0 0.1 0.2 0.3 0.4 0.5

u = 1/g
2

-0.05

0

β~ (u
)

β
6
 = 0

β
6
 = 0.5

two-log fit
two-log fit
one loop
two loops

FIG. 2: Left: Beta function β̃(u) plotted as a function of u(L = 8a). The squares are from the β6 = 0 data while the circles
are from β6 = 0.5. Results are extracted from the linear fits (5), as shown in Fig. 1. Plotted curves are the one-loop (dotted
line) and two-loop (dashed line) beta functions. Right: Filled symbols as on left; empty symbols derive from fits to Eq. (7), in
which a log2 term has been added. The empty symbols have been slightly displaced to the right. No correction has been made
for discretization errors.

The normalization of the wall source is removed by the
f1 factor, which is a boundary-to-boundary correlator.
The constant c, which is an arbitrary normalization, is
1/

√
2 in our convention.

We present in Tables V and VI the results of calculat-
ing ZP in our runs with β6 = 0.5 and with β6 = 0; we
plot them in Fig. 3.
The slow running suggests [6] that we may extract γm

by applying the approximate scaling formula

ZP (L) = ZP (L0)

(
L0

L

)γ

, (9)

that is, from the slopes of the lines drawn in Fig. 3. These
linear fits are analogous to Eq. (5):

logZP (L) = c0 + c1 log
L

8a
. (10)

Again, we begin by fitting to all volumes at a given bare
coupling simultaneously, leaving for later the discretiza-
tion errors due to the smallest lattices. The individual
fits are shown as straight lines in Fig. 3. The outstanding
feature of Fig. 3 is that in no case does the slope of any
data set approach −1, meaning that γm (Fig. 4) never
reaches unity. This qualitative observation survives all
further analysis.
Allowing for running of the coupling, we have also con-

sidered a fit function analogous to Eq. (7),

logZP (L) = c0 + c1 logL/8a+ c2(logL/8a)
2. (11)

6 8 10 12 16
L/a

0.1

0.2

0.3

Z
P

β
6
 = 0

β
6
 = 0.5

FIG. 3: The pseudoscalar renormalization constant ZP

vs. L/a. The crosses are from simulations with β6 = 0,
β = 5.8 to 4.4. The circles are from simulations with β6 = 0.5
(Table V): top to bottom, β = 3.5, 2.5, and 2.0. The straight
lines are linear fits to each set of points at given (β, β6); the
slope gives −γm. The hypothetical dotted line corresponds to
γm = 1.
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TABLE V: Pseudoscalar renormalization factor ZP evaluated at the couplings (β, κc), with β6 = 0.5, for lattice sizes L.

β ZP

L = 6a L = 8a L = 10a L = 12a L = 14a L = 16a
3.5 0.2171(2) 0.1923(8) 0.1789(6) 0.1680(5) – –
2.5 0.1787(4) 0.1560(5) 0.1409(6) 0.1325(6) 0.1263(10) 0.1192(8)
2.0 0.1579(6) 0.1371(6) 0.1245(10) 0.1183(10) – 0.1024(10)

TABLE VI: Pseudoscalar renormalization factor ZP for the strong-coupling cases with β6 = 0. Data for L = 10a, 14a are from
the new simulations listed in Table II, while the other data are from Ref. [4].

β ZP

L = 6a L = 8a L = 10a L = 12a L = 14a L = 16a
4.8 0.2246(23) 0.1981(15) 0.1824(9) 0.1716(10) – –
4.6 0.2127(14) 0.1808(16) – 0.1518(14) – 0.1340(6)
4.4 0.1888(18) 0.1631(16) 0.1447(6) 0.1311(13) 0.1256(9) 0.1163(13)

For both fits the mass anomalous dimension at g2(L =
8a) is given by −c1. We show the results of both fit types
in Fig. 4, plotted against the running coupling g2(L =
8a). It is apparent that the result for γm(g2) changes
little when the fit is broadened, or in other words, that
scaling violations due to the nonzero beta function are
small.
A comparison of results for the two lattice actions

shows that there is some disagreement. The two
strongest-coupling points obtained with β6 = 0 lie well
above the line connecting the β6 = 0.5 points. As we
shall see, analysis of discretization errors reduces this dis-
crepancy. Moreover, the rough bound γm <∼ 0.5 will be
strengthened by extrapolation to the continuum limit.

V. ESTIMATING DISCRETIZATION ERROR

Before showing our extrapolations to the contin-
uum/infinite volume limit, let us make some general com-
ments.
Lattice studies of quantum chromodynamics approach

the continuum limit in the weak-coupling regime. QCD
possesses a physical scale Λ. A systematic approach to
discretization error gives an expansion of physical quan-
tities in powers of Λa, with which one may extrapolate
to the a → 0 limit. Perturbation theory gives a guide
to the coefficients in the expansion. The L → ∞ limit
is taken separately; it is governed by the mass gap M of
the theory and the corrections are functions of ML.
The theory considered here differs from lattice QCD

in several essential features. In the first place, the cou-
pling runs much more slowly than in QCD. After all, the
theory was selected for study because this is true in the
two-loop beta function; our numerical results bear this
out nonperturbatively. In the second place, we seek the
putative infrared fixed point in strong coupling. Along

with a strong SF coupling at the volume scale L, then,
we have slow running to a still-strong coupling at the
lattice scale a. There is a perturbative scale Λ1 that
emerges from one-loop running, but it never comes into
play. Much as in truly conformal theories, discretization
errors are functions of a/L—they are indistinguishable
from finite-volume corrections. It is clear from this that
any perturbative estimate of discretization error is point-
less.

Nonetheless, we offer a discussion of the fermion contri-
bution to the one-loop SF coupling in the appendix. We
point out that, even were we to work at couplings where
one-loop perturbation theory is valid, for our lattices the
O(a2/L2) corrections are so large that they cannot be
disentangled from O(a/L). This means that any fit func-
tion used to extrapolate to a/L = 0 constitutes a model
rather than an expansion about the limit.

Since our main result is the upper bound on the anoma-
lous dimension γm, we begin with the analysis of dis-
cretization error in this quantity. We focus on the strong-
coupling data displayed in Tables V and VI. The β6 = 0.5
data show the dramatic departure of γ(g2) from the one-
loop line (see Fig. 4). Comparison to the β6 = 0 shows
an apparent discrepancy between the two actions that
begs explanation. We present several extrapolations to
a/L = 0, which result in a systematic shift downwards of
the results. At the same time, the results from the two
actions are brought closer to agreement, both through
the propagation of statistical error in the extrapolation
and through uncertainty surrounding the method of ex-
trapolation to a/L = 0.

Similar analyses of the beta function are inconclusive.
The dependence of the running coupling g2 on lattice size
L is irregular and not amenable to smooth extrapolation
to the continuum. In the end, we have to let our lattice
results stand as they are.
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FIG. 4: Left: Mass anomalous dimension γ(g2) plotted against g2(L = 8a). The squares are from the β6 = 0 data while the
circles are from β6 = 0.5. Results are from the linear fits shown in Fig. 3. The line is the one-loop result. Right: Filled symbols
as on left; empty symbols derive from fits to Eq. (11), in which a log2 term has been added. The empty symbols have been
slightly displaced horizontally. No correction has been made for discretization errors.

A. Anomalous dimension

The general behavior we expect for ZP (L) is

ZP (L) = A exp

[
−
∫ 1 dt

t
γm
(
g2(tL)

)]
+ P1

a

L

+P2

( a
L

)2
+ · · · . (12)

For a slowly-running coupling, the first term simplifies to

A (L/a)
−γm(g2)

. The original procedure [36] is to extract
the step scaling function σP (g

2, s) from the ratio of ZP

measured on two lattices,

σP (v, s) =
ZP (sL)

ZP (L)

∣∣∣∣
g2(L)=v

. (13)

For slow running, this is just

σP (g
2, s) = s−γm(g2). (14)

The traditional analysis3 continues by computing
σP (g

2, s) at fixed s for several values of L and extrap-
olating L to infinity. Let us begin our analysis by doing
variations on the traditional fit.

3 The truly traditional analysis keeps g2 fixed by varying the bare
couplings as L is changed. As we do throughout this paper, we
take advantage of the slow running to do our analyses at fixed
(β, β6). The variation of g2 is negligible.

1. Extrapolation of the step scaling function

At4 β = 4.4, 4.6, and 2.0, 2.5, we can do the most
traditional fit of all: fix the ratio s = 2 and compare σP
for the pair L = (6a, 12a) with L = (8a, 16a). The results
for

γm(L) =
log σP
log 2

(15)

are plotted in Fig. 5 against L of the smaller lattice.
In all four cases,there is a discernible L dependence in

the data. Now we face the problem of how to extrapolate
in L. As noted above, we are away from any perturbative
limit, and so theory cannot guide us. Choosing models,
we perform extrapolations linearly in L,

γm(L) = γm + C
a

L
, (16)

or quadratically,

γm(L) = γm + C
( a
L

)2
. (17)

The fits, with their extrapolations to a/L = 0, are shown
in the figure and tabulated in Table VII. Because our fits

4 We sometimes refer to the data sets by their β values. The tables
show that there is no confusion if we omit mention of β6.
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FIG. 5: γm from “traditional” fits to pairs of lattices (L, 2L) = (6a, 12a) and (8a, 16a), plotted versus a/L (left) and versus
(a/L)2 (right). The extrapolated values are shown near the origin. Couplings (β, β6) are as shown.

are of two points to two parameters, there is no goodness-
of-fit criterion to invoke: The data cannot express a pref-
erence between the models.
The extrapolations to a/L = 0 show a (mostly) down-

ward trend compared to any individual σP . The result-
ing error bars are of course larger but γm never exceeds
0.5 for any of the couplings examined. We defer further
discussion of this sort until we reach the results of our
all-volume analysis below.
In principle, we can judge the quality of the fits if we

add data points, that is, more lattice volumes. To this
end we have run simulations for lattices of size L = 10a
and 14a at two of the couplings, β = 2.5 and 4.4. This
gives us three independent pairs of volumes from which
to calculate a step scaling ratio. We use the pairs L/a =
(6, 12), (8,14), and (10,16) to calculate σP (g

2, s) for s =
2, 7/4, and 8/5, respectively, and estimate

γm(L) =
log σP (g

2, s)

log s
(18)

as a function of the smaller L of each pair. Fig. 6 shows
the result, together with the extrapolations to infinite
L—now two-parameter fits to three points, which are also
tabulated in Table VII. The quality of the fits is good
in all cases, so (unfortunately) the data do not express a
choice between 1/L and 1/L2 corrections.

2. All-volume extrapolations

Now we present a procedure for using data from all
volumes simultaneously to arrive at the extrapolated γm

β L pairs γm
linear fit quadratic fit

4.4 (6,12),(8,16) 0.37(10) 0.44(5)
4.6 (6,12),(8,16) 0.27(7) 0.36(4)
2.0 (6,12),(8,16) 0.43(7) 0.43(4)
2.5 (6,12),(8,16) 0.26(5) 0.33(3)

4.4 (6,12),(8,14),(10,16) 0.35(6) 0.42(4)
2.5 (6,12),(8,14),(10,16) 0.23(4) 0.31(3)

TABLE VII: “Traditional” extrapolations of γm from the
pairwise step scaling function σP .

at each value of the bare coupling. The most straight-
forward approach would be to take the measurements of
ZP and fit them to

logZP (L) = A+ γm log(a/L) + c
a

L
(19)

or to

logZP (L) = A+ γm log(a/L) + c
( a
L

)2
. (20)

We find, however, that our data do not distinguish well
among the basis functions in these fits and hence the de-
terminations of the parameters are unstable. We there-
fore adopt an alternative approach to estimation of the
discretization error.
For each bare coupling β we have measured ZP on a

set of volumes L1 < L2 < . . . < LN . The comparison
in Fig. 4 shows that the running of the coupling is slow
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FIG. 6: γm from fits to three pairs of lattices (L, L′) = (6a, 12a), (8a, 14a), and (10a, 16a), plotted versus a/L (left) and versus
(a/L)2 (right). The extrapolated values are shown at the origin.

enough to be neglected over the range L1 ≤ L ≤ LN . The
only obstruction to extracting γ from a fit to Eq. (10) is
then discretization error. Since this error is most pro-
nounced at the smallest L’s, we can improve our esti-
mate of the true γ by successively dropping the smaller
volumes. This observation is the basis for the following
continuum extrapolation.

Let c
(n)
0 , c

(n)
1 be the parameters of the linear fit (10)

where only the largest volumes Ln, Ln+1, . . . , LN are re-

tained. The slope c
(n)
1 is an estimate for −γ which

we take to be a function of a/Ln. For example, if
{L1, . . . , L4} = {6a, 8a, 10a, 12a}, a fit using all vol-

umes gives an estimate c
(1)
1 of −γ for a/L = 1/6; drop-

ping the smallest volume gives the next estimate c
(2)
1 for

a/L = 1/8; and dropping the two smallest volumes gives

the estimate c
(3)
1 for a/L = 1/10. Finally we extrapo-

late these estimates to the continuum limit, a/L→ 0, by
fitting to either Eq. (16) or Eq. (17).
When performing the continuum extrapolation, we

must take into account that the results c
(n)
1 of the suc-

cessive fits are correlated. For the example above, with a
maximum of two volumes dropped, it can be shown that

the covariance matrix Cmn = cov
(
c
(n)
1 , c

(m)
1

)
is

C =




∆(1) ∆(1) ∆(1)

∆(1) ∆(2) ∆(2)

∆(1) ∆(2) ∆(3)


 , (21)

where ∆(n) = σ2
(
c
(n)
1

)
is the variance of each c

(n)
1 .

We show in Fig. 7 the linear and quadratic continuum

extrapolations for β = 2.5 and 4.4, where we can work
from six volumes. In each case the fit has very low χ2

as long as we exclude the final (leftmost) data point,
which is based on L/a = 14 and 16 only. Since its error
bar is large, omitting this point from the fit leaves the
extrapolation unchanged. This is a feature of all the fits
in the all-volume extrapolations.
To give an idea of the stability of our fit procedures, we

compare them all (as available) in Fig. 8. We display the
results of the all-volume extrapolations for all bare cou-
plings in Table VIII, and we plot them in Fig. 9. Every
point lies lower than the corresponding point in Fig. 4,
which shows the result of the naive analysis. Correc-
tion for discretization error has pushed our bound on γm
downward. In addition, the gap between the two actions
(β6 = 0 vs. 0.5) has narrowed, for two reasons. One is
the larger error bars compared to Fig. 4; the other is the
systematic uncertainty hovering over the choice between
linear and quadratic continuum extrapolations.

B. Beta function

We would like to perform a similar analysis for the
running coupling. Unfortunately, the data do not per-
mit the extraction of extrapolated results carrying useful
uncertainties. The reason why can quickly be seen from
Fig. 10: The data at each individual bare coupling are
irregular functions of L. This may mean that the error
bars for the individual data points are underestimated.
The SF observable (3) generally has a very long autocor-
relation time. For lattice sizes L ≥ 10a, we determined
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FIG. 7: Examples of linear and quadratic continuum extrapolations of the mass anomalous dimension γ(g2) derived from
all-volume extrapolations. Values of (β, β6) are as shown.

β L values γm
linear fit quadratic fit

4.8 6,8,10,12 0.27(7) 0.32(4)
4.6 6,8,12,16 0.35(4) 0.40(3)
4.4 6,8,10,12,14,16 0.39(4) 0.43(3)
3.5 6,8,10,12 0.24(5) 0.29(3)
2.5 6,8,10,12,14,16 0.26(3) 0.33(2)
2.0 6,8,10,12,16 0.33(4) 0.37(3)

TABLE VIII: Continuum limit of γm from all-volume extrap-
olations.

an error bar by fitting four runs to a common constant,
and collecting data until the χ2 per degree of freedom
from this fit fell below about two. This may not have
been good enough. From a practical point of view, the
pattern of our data makes analysis of the discretization
errors quite difficult.
We shall treat only two data points: β = 2.0 and 2.5,

with β6 = 0.5. These are our strongest couplings, and as
seen in Fig. 2 they hint at a positive beta function and
hence an infrared fixed point.
At β = 2.0 we have four volumes: L = 6a, 8a, 10a, 12a.

(We have discarded L = 16a as discussed above.) For
an almost traditional analysis we take them as two pairs,
(6a, 10a) and (8a, 12a), and for each pair we calculate the
discrete beta function (DBF),

B(u, s) =
1

g2(sL)
− 1

g2(L)
, u ≡ 1

g2(L)
. (22)

The scale factor s is 5/3 for the first pair and 3/2 for
the second pair. The two DBFs can be combined if we

rescale them according to

R(u, s) =
B(u, s)

log s
. (23)

This rescaled DBF approximates the usual beta function
β̃(1/g2) when the running is slow [6]. We can plot it
against the smaller L in each pair and extrapolate to
a/L = 0 either linearly or quadratically, much as we did
for γm above.
At β = 2.5 we have six volumes. Following our pro-

cedure for γm, we can first calculate the DBF for s = 2,
using the pairs (L, 2L) = (6a, 12a) and (8a, 16a). Ex-
trapolations to a/L = 0 then follow. Additionally, we
calculate the rescaled DBF R(u, s) for the three pairs
(L,L′) = (6a, 12a), (8a, 14a), and (10a, 16a), and ex-
trapolate it to a/L=0. Unfortunately, the irregularity
of the data seen in Fig. 10 renders the three-pair fit use-
less: Trying to fit a straight line through the three points
gives an enormous χ2. The two-pair fits, of course, have
no degrees of freedom and hence no χ2.
At both couplings we can do all-volume extrapolations

as for ZP , mutatis mutandis . We fit to Eq. (5) to ob-

tain coefficients c
(n)
0 , c

(n)
1 , where n indicates the smallest

volume Ln retained in the fit. Finally we extrapolate to
a/L = 0 either linearly or quadratically.
For β = 2.0 the all-volume extrapolations give rea-

sonable χ2 and improve on the pairwise extrapolations,
as may be seen in Fig. 11. Nonetheless, the error bar for
each extrapolation has grown by a factor of 4–6 compared
to the raw fit shown in Figs. 1 and 2, which wipes out
any sign of a zero crossing. For β = 2.5 the all-volume
extrapolations give positive results but, again, the error
bar has grown by a factor of 4–6 and the central values
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FIG. 8: Comparison of the results of all continuum extrapola-
tions for the anomalous dimension at four bare couplings. For
each coupling, we plot in sequence, top to bottom: two-pair
extrapolations—linear and quadratic (Fig. 5); three-pair ex-
trapolations (where available)—linear and quadratic (Fig. 6);
all-volume extrapolations—linear and quadratic (Table VIII
and Fig. 7).

lie barely 1σ above zero. We therefore cannot confirm
the existence of an infrared fixed point. It is quite pos-
sible that the beta function approaches zero as seen in
Fig. 2 but then veers away, staying negative and lead-
ing to strong coupling at large distance. This would be
exactly the behavior conjectured for walking technicolor.

VI. DISCUSSION

In this paper we have continued our study of the SU(3)
gauge theory with two flavors of sextet fermions. A new
term in the lattice action allowed us to explore a much
wider range of the renormalized coupling. The old and
new actions give rise to consistent results for the beta
function where they overlap. For the mass anomalous
dimension there are some disagreements; we believe that
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FIG. 9: Continuum limit of the mass anomalous dimension
γ(g2) derived from all-volume extrapolations (see Table VIII,
and compare Fig. 4). The squares are from the β6 = 0 data
while the circles are from β6 = 0.5. Empty symbols assume
discretization errors proportional to a/L while filled symbols
assume (a/L)2. The filled symbols have been slightly dis-
placed horizontally.
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FIG. 10: A blown-up view of Fig. 1, showing the strong-
coupling portion of our data sets for the running coupling
1/g2.
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FIG. 11: Results of continuum extrapolations for the beta
function at the two strongest couplings. For each (β, β6) we
plot in sequence, top to bottom, the two-pair extrapolations—
linear and quadratic—and the all-volume extrapolations—
linear and quadratic. The vertical dotted line is the one-loop
value.

the main source of the disagreement is the proximity
of the first-order phase transitions—a lattice artifact—
in the old action. The discrepancies are reduced when
we extrapolate to the continuum limit.

We have developed a novel method to approach the
continuum limit. It begins with the observation that, in
a truly conformal theory, there is only a single expansion
of lattice artifacts in powers of a/L. This is in sharp con-
trast with QCD, which generates its own scale dynami-
cally, and therefore requires separate expansions for the
discretization error and for finite-volume corrections. In
the slowly running theory, deviations from exact confor-
mality can in principle be treated systematically. In order
to overcome difficulties in resolving fit functions in the
range of a/L available to us, we developed a method of
extrapolation based on successively dropping the small-
est lattices. The differences between linear and quadratic
extrapolations, as seen in Fig. 8, are an indication of our
systematic error.

A. An infrared fixed point?

The question of the existence of an IRFP in this model
has been addressed in the literature in several ways. A
first hint comes from qualitative features of the phase

diagram of the lattice theory [4, 5]. In QCD on a finite
lattice, there is a confining phase for sufficiently strong
coupling within which one may tune κ → κc in order
to obtain a massless pion. Then one can increase the
size of the lattice while tuning towards weak coupling on
the κc(β) curve, thus approaching the continuum limit
within the confining phase. In the sextet theory, on the
other hand, the confining phase is bounded by a first-
order phase transition that does not permit definition of
κc. It is not at all clear that a continuum limit in the
confined phase would yield a theory with finite masses,
let alone a chiral, massless limit. The only alternative
might be to begin in the weak-coupling, non-confining
phase, where one could take a non-confining continuum
limit.

This feature of the phase diagram was first seen in
QCD with a large number of (color-triplet) flavors by
Iwasaki et al. [43, 44], and explored more recently in
Ref. [45]. This may be a sign of entry into the con-
formal window in these theories. Turning to staggered
fermions, the authors of Refs. [46, 47] have recently noted
the absence of spontaneous breaking of chiral symmetry
in strong-coupling (triplet) QCD when the number of fla-
vors is large.

Even if one ignores the issue of a light pion, one can ask
whether any kind of continuum limit can be taken in the
confining phase. On a finite lattice, the first-order phase
boundary at strong coupling connects to the boundary
between strong-coupling and weak-coupling phases that
may be interpreted as the finite-temperature phase tran-
sition. In a confining theory, this transition must move
towards weak coupling as the lattice is enlarged, in such
a way as to give a finite transition temperature in the
continuum limit. In the theory with thin-link Wilson
fermions, we found [2] that this motion stalls near the
weak-coupling κc curve, as if the finite-temperature tran-
sition is avoiding the basin of attraction of an IRFP. More
detailed study of this question in the fat-link theory [4]
revealed a slow motion of the transition with lattice size;
one would need to study larger lattices to see whether this
motion eventually gives correct scaling in the continuum
limit. In fact, because the perturbative running of the
coupling is so slow [48], it will take enormous lattices to
settle the matter. Kogut and Sinclair [49–52] have been
studying the same question with staggered fermions; the
results are, so far, similarly inconclusive.

Fodor et al. [53–57] have studied the staggered-fermion
theory with extensive simulations on large volumes. On
each lattice, they use quark masses that are large enough
that the volumes are effectively infinite. They then test
alternative scaling hypotheses for the mass spectrum, the
chiral condensate, fπ, and the string tension as a function
of the quark mass. Their analysis favors confinement over
conformal physics, meaning a beta function without an
IRFP, which might behave as a walking theory.

As we have seen, our Schrödinger-functional results are
not precise enough to nail down a fixed point. Statistical
fluctuations preclude unambiguous extrapolation to the
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continuum limit. All we can say is that the beta function
is smaller than the one-loop value, so that the theory runs
slowly.

B. The mass anomalous dimension

As we have seen, γm first follows the one-loop curve
and then at stronger couplings it levels off. This is in line
with what we found in the SU(2) and SU(4) theories [6,
8]. The fits of Sec. IV, which do not take lattice error
into account, give a bound

γm <∼ 0.45 . (24)

At weak couplings we did not carry out a continuum
extrapolation. At our strongest couplings, our analysis
of discretization error (Sec. V) leads to larger error bars
than our first analysis, but also to a general movement
downwards so that our final result is the same bound
(24).
The issue of scheme-dependence always arises at this

point. The value of γm at a fixed point, if there is one,
is scheme-independent. We can say more than this, how-
ever. A bound like Eq. (24) is evidently invariant under
any redefinition g → g′(g), that is, it is entirely scheme-
independent. A change of scheme will change the func-
tional dependence of γ on the renormalized coupling, but
if γ is bounded (and even flat) over a wide range of bare
couplings then it will stay so.
A successful model of walking (extended) technicolor

must have a slowly-varying coupling, but no infrared
fixed point; it must also have a large mass anomalous
dimension, γm ≃ 1. While our results do not rule out
walking in the sextet theory, the smallness of γm makes
this theory unsuitable for walking technicolor.
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Appendix: One loop analysis

In the one-loop approximation the SF coupling, defined
in Eq. (3), takes the form

1

g2(L)
=

1

g20
+ΣG(L) + 2ΣF (L) . (A.1)

Here g0 is the bare coupling from Eq. (2), and the one-
loop contributions are ΣG from the gauge and ghost
fields5 and ΣF from each flavor of the sextet fermions.
Following the definitions6 and methodology of Ref. [21],
two groups [60–63] have recently calculated the fermion
piece ΣF for a number of gauge groups and representa-
tions and for a variety of boundary conditions and back-
ground fields (as imposed in the SF method). On general
grounds, one can expand

ΣF (L) = r0 + s0 log(L/a) + r1
a

L
+ s1

a

L
log(L/a)

+r2
a2

L2
+ s2 log(L/a)

a2

L2
+ · · · . (A.2)

The continuum limit consists of the first two terms on
the right-hand side. The coefficient s0 of the logarithmic
term is the universal contribution of a fermion field to the
one-loop beta function. The constant r0 depends on the
choice of the background field, i.e., it introduces scheme
dependence.
All other terms on the right-hand side of Eq. (A.2)

constitute the discretization error. In the presence of a

5 ΣG(L) has not been calculated for nHYP links.
6 Our ΣF (L) is called p1,1 in Ref. [21].

clover term with cSW = 1 we have s1 = 0. The remaining
terms do not vanish in general. The linear discretization
error (r1 term) can be cancelled by adding a boundary
counterterm for the gauge field. As for the quadratic
discretization error (the r2 term), one can suppress it by
a judicious choice of the background field [60–62]. The
outcome of adopting both measures is an improved one-
loop behavior, where s1 = r1 = r2 = 0.

The above strategy is natural for QCD, where the bare
coupling is such that physics at the cutoff scale is typ-
ically well inside the perturbative regime. Here we are
faced with a drastically different situation. Because of
the slow running, in order to reach the interesting strong
values of the renormalized coupling, the bare coupling
must already be strong. As a result, we can no longer rely
on perturbation theory at the quantitative level. Suffice
it to mention that, in the vicinity of a two-loop fixed
point, the two-loop contributions must be as important
as the one-loop! Besides, the main thrust of the present
paper is the calculation of the mass anomalous dimen-
sion for sextet fermions, for which no perturbative study
of discretization errors has been carried out.

The conclusion, obviously, is not that discretization
errors are to be ignored; as in any lattice simulation,
a continuum extrapolation is mandatory. The point is
that the continuum extrapolation must be done non-
perturbatively. This is what we have attempted, with
mixed success, in Sec. V.

We now proceed to a discussion of ΣF for sextet
fermions, in order to get some idea of the magnitude of
this piece of the discretization error in the weak-coupling
regime. We have computed ΣF by following closely Ap-
pendix A of Ref. [21]. Inputs to the calculation are the
fermion twist phase, set to θ = π/5, and the classical
background field, which, in turn, is determined by the
SF boundary data. (nHYP smearing leaves the classi-
cal background field unchanged.) The spatial links on
each time boundary are specified by three abelian phases
φi = φi(η), i = 1, 2, 3, which satisfy the constraint
φ1 + φ2 + φ3 = 0. The corresponding six phases of the
sextet representation are given by φij = φi + φj , with
1 ≤ i ≤ j ≤ 3. ΣF is written as a sum over the lattice 3-
momentum p. For each p, the fermions’ contribution can

be represented as ∂/∂η tr logM
∣∣∣
η=0

, where M is a two-

by-two matrix that depends on p and on the boundary
conditions [21].

We plot ΣF as a function of L in Fig. 12. For

comparison, we also show the continuum result Σ̃F =
r0+5/(12π2) logL, where the scheme-dependent constant
r0 has been extracted from a fit of ΣF to the six terms
shown in Eq. (A.2). In this fit, the coefficient s0 is fixed
at the continuum value and s1 is fixed to zero (see above).
The other coefficients are listed in Table IX.

In order to get an idea of the magnitude of discretiza-
tion errors in the beta function, we plot ΣF against
log(a/L) in the second panel of Fig. 12; here we limit
the range of L to 6a ≤ L ≤ 16a to match our numer-



15

0 20 40 60 80 100
L/a

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Σ
F

0.05 0.1 0.15 0.2
a/L

0.2

0.22

0.24

0.26

0.28

0.3

Σ
F

FIG. 12: The sextet fermions’ contribution to the one-loop SF coupling as a function of lattice size. The exact result (stars) is
compared to the continuum formula (crosses) wherein the arbitrary constant r0 comes from a fit as discussed in the text. The
second plot shows only 6a ≤ L ≤ 16a, for comparison with Fig. 1.

ical simulations. This plot is analogous to Fig. 1 (but
note that here we display only the contribution of a sin-
gle sextet fermion). The continuum result now shows
up as a straight line, whereas the lattice result exhibits
deviations from linearity. It can be seen that much of
the discrepancy between the continuum and lattice re-
sults can be accounted for by an additive constant. As
noted above, a constant shift r0 does not represent a dis-
cretization error, but, rather, scheme dependence. The
discretization error in the beta function will appear as
a difference in the slopes of the two lines. Using the
method of least squares to estimate the average slope of
the lattice data we find the value 0.0446, which amounts
to a 5% deviation from the correct continuum value
5/(12π2) ≃ 0.0422. Multiplying by two for the number
of flavors, we conclude that the fermions’ contribution to
the discretization error in the beta function is in abso-
lute terms roughly 0.005. A glance at Fig. 2 shows that
this is a less than half the statistical error plotted for the

weak-coupling data points.

The smallness of the deviation in the slope is connected
to the coefficients r1 and r2 of the linear and quadratic
lattice corrections. The two coefficients turn out to have

TABLE IX: Free coefficients in the fit (A.2).

r0 0.1569
r1 −0.1914
r2 0.4169
s2 0.0086

opposite sign and magnitudes that cause their contribu-
tions to the slope to cancel. Thus one cannot really jus-
tify an expansion in powers of a/L in extrapolating to
the continuum limit from our data. As we have stressed
above, any given extrapolation is a model.
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