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We report a new analysis of lattice simulation results for octet baryon masses in 2+1-flavor QCD,
with an emphasis on a precise determination of the pion-nucleon and strangeness nucleon sigma
terms. A controlled chiral extrapolation of a recent PACS-CS Collaboration data set yields baryon
masses which exhibit remarkable agreement both with experimental values at the physical point
and with the results of independent lattice QCD simulations at unphysical meson masses. Using
the Feynman-Hellmann relation, we evaluate sigma commutators for all octet baryons. The small
statistical uncertainty and considerably smaller model-dependence allows a significantly more precise
determination of the pion-nucleon sigma commutator and the strangeness sigma term than hitherto
possible, subject to an unresolved issue concerning the lattice scale setting.
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The light-quark sigma terms provide critical informa-
tion concerning the nature of explicit chiral symmetry
breaking in QCD, as well as the decomposition of the
mass of the nucleon [1]. While these physical observables
are difficult to measure with conventional probes, an ac-
curate knowledge of the sigma terms is of essential impor-
tance in the interpretation of experimental searches for
dark matter [2–6]. Dark matter candidates, such as the
favoured neutralino, a weakly interacting fermion with
mass of order 100 GeV or more, have interactions with
hadronic matter which are essentially determined by cou-
plings to the light and strange quark sigma commutators.

Experimentally, σπN is determined from πN scatter-
ing through a dispersion relation analysis [7]. Tradition-
ally, the strange scalar form factor has then been eval-
uated indirectly using σπN and a best-estimate for the
non-singlet contribution σ0 = ml〈N |uu + dd − 2ss|N〉.
These traditional evaluations have yielded a value for σs
as large as 300 MeV, compared to 50 MeV for the light
quark commutator, indicating that as much as one third
of the nucleon mass might be attributed to non-valence
quarks. This suggestion appears to be incompatible with
widely-used constituent quark models, and has generated
considerable theoretical interest.

The traditional method of determination of σs is
severely limited because it involves the small difference
between σπN (with its uncertainty) and σ0 which is usu-
ally deduced in terms of SU(3) symmetry breaking. Even
given a perfect determination of σπN , σs will have an un-
certainty of order 90 MeV [8]. For that reason σs has been
considered notoriously difficult to pin down. In recent
years, the best value for σs has seen an enormous revi-
sion. Advances in lattice QCD have revealed a strange
sigma term of 20-50 MeV [9–21], an order of magnitude
smaller than was previously believed.

Here we use the finite-range regularization (FRR) tech-
nique to effectively resum the chiral perturbation the-
ory expansion of the quark mass dependence of octet
baryons. Fitting the resulting functions to recent lattice
data, we extract the scalar form factors by simple dif-
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ferentiation using the Feynman-Hellmann theorem. Our
technique allows comparison with recent direct lattice
QCD calculations of the flavor-singlet matrix elements
at unphysical meson masses [11–15].

Because of the indirect evaluation of the sigma terms
by differentiation, the analysis of the strangeness sigma
term in particular suffers from an uncertainty due to the
choice of scale setting scheme. With two prescriptions for
setting the lattice scale, namely using ‘mass dependent’,
or ‘mass independent’ schemes, described further in the
text, we find σs = 59± 6 MeV and σs = 21± 6 MeV re-
spectively. Comparison with recent direct lattice calcula-
tions suggests a slight preference for the latter value [11–
14]. Our results for the pion-nucleon sigma term are con-
sistent irrespective of scale setting prescription. We re-
port a value of σπN = 45± 6 MeV at the physical point.

The sigma terms of a baryon B are defined as scalar
form factors, evaluated in the limit of vanishing momen-
tum transfer. For each quark flavor q,

σBq = mq〈B|qq|B〉; σBq = σBq/MB . (1)

For the nucleon, the so-called πN sigma commutator and
the strange sigma commutator are defined by

σπN = ml〈N |uu+ dd|N〉, (2)

σs = ms〈N |ss|N〉, (3)

where ml = (mu +md)/2.
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Following the technique described in Refs. [9, 23], we fit
octet baryon mass data recently published by the PACS-
CS Collaboration [24] using a chiral expansion:

MB = M (0) + δM
(1)
B + δM

(3/2)
B + . . . (4)

Here, M (0) denotes the degenerate mass of the baryon

octet in the SU(3) chiral limit, and δM
(1)
B gives the cor-

rection linear in the quark masses. This may be derived
by considering the relevant terms of the usual lowest-
order effective Lagrangian:

2αbTr(BBM)+2βbTr(BMB)+2σbTr(BB)Tr(M), (5)

where B represents the usual tensor of octet baryon
fields, and M indicates the quark mass matrix (see, for
example, Ref. [25]). One finds

δM
(1)
B = −C(1)

Bl bml − C(1)
Bs bms, (6)

with the coefficients given in Table I.
According to the Gell-Mann–Oakes-Renner (GMOR)

relation,

m2
π = 2bml +O(m2

q), (7)

m2
K = b(ml +ms) +O(m2

q), (8)

and hence we substitute the quark masses in Eq. 6 by
bml → m2

π/2 and bms → (m2
K−m2

π/2). We note that the
corrections to the leading-order GMOR result will only
amount to a modification of the chiral series at O(m2

q),
which is beyond the order of the expansion considered
here.

The term at next order, following the linear mass
insertions, represents quantum corrections correspond-
ing to one-loop contributions from the pseudo-Goldstone
bosons φ = π,K, η. These loops take the form:

δM
(3/2)
B = − 1

16πf2

∑
φ

[χBφIR(mφ, 0,Λ)

+χTφIR(mφ, δ,Λ)] , (9)

where the coefficients χBφ, χTφ, corresponding to octet-
baryon–meson and decuplet-baryon–meson loops, are
given in Table II.

The meson loops involve the integrals:

IR =
2

π

∫
dk

k4√
k2 +m2

φ(δ +
√
k2 +m2

φ)
u2(k)−b0−b2m2

φ

(10)
where the subtraction constants, b0,2, are defined so that

the parameters M (0), C
(1)
Bl and C

(1)
Bs are renormalized (ex-

plicit expressions may be found in Ref. [26], or can be
readily evaluated numerically by Taylor expanding the
integrand in m2

φ).

Following Ref. [9], we retain the octet-decuplet mass
difference δ in numerical evaluations to properly account
for the branch structure near mφ ∼ δ. The loop contribu-
tion parameters are set to appropriate experimental and
phenomenological values; D + F = gA = 1.27, F = 2

3D,
C = −2D, f = 0.0871 GeV, and δ = 0.292 GeV. Within
the framework of FRR, we introduce a mass scale Λ,
through a regulator u(k). Λ is related to the scale beyond
which a formal expansion in powers of the Goldstone bo-
son masses breaks down. This allows for the suppression
of short-distance physics from the loop integrals of the
effective theory. Here, Λ is chosen by fitting to the lat-
tice data itself. We note that the demonstrated benefit
of FRR is to incorporate the non-analytic behaviour as-
sociated with chiral symmetry breaking in QCD, while
maintaining a robust fit to lattice data over a wide range
of quark masses. In particular, higher-order terms are
implicit in the structure of FRR, and essentially sum to
zero in the region of large quark masses. For this reason,
the chiral series is stable under the truncation of such
terms. We refer to Refs. [26–30] for further discussions
of the FRR regularization scheme.

The model-dependent uncertainty in the result is esti-
mated by the consideration of a variety of forms of the
regulator u(k), namely monopole, dipole, and Gaussian,
as well as a sharp cutoff. The uncertainty due to the
choice of regulator is small and below the resolution of
the figures. In addition, we allow f , the meson decay
constant in the chiral limit, the baryon-baryon-meson
coupling constants F and C, and δ to vary by ±10%
from the central values given above; see Ref. [31] for de-
tails. The effects of these variations, as well as the effect
of a 2% uncertainty in the physical value of r0, are in-
cluded in the final quoted errors. Statistical uncertainties
are accounted for by a covariance matrix analysis which
includes the effect of correlations between all of the fit
parameters M0, α, β, σ, as well as the regulator mass Λ.

The PACS-CS results have been corrected for small,
model-independent, finite volume effects before fitting.
These finite volume corrections were evaluated by con-
sidering the leading one-loop results of chiral EFT [9, 32–
34]. We note that the largest shift was −0.022 ±
0.002 GeV for the nucleon at the lightest pion mass.

The fit to the PACS-CS baryon octet data is shown in
Figure 1. We find an optimal dipole regularization scale
of Λ = 1.0± 0.1 GeV, in close agreement with the value
deduced from an analysis of nucleon magnetic moment
data [35] and, from the phenomenological point of view,
remarkably close to the value preferred from compari-
son of the nucleon’s axial and induced pseudoscalar form
factors [36]. The minimum χ2

dof is 0.45 (6.8 divided by
(20-5 ≡ 15)) for the dipole, and varies between 0.44 and
0.426 for the other regulators. This value is somewhat
lower than unity, as correlations between the lattice data
cannot be accounted for without access to the original
data.

Clearly, the fit is very satisfactory over the entire range
of quark masses explored in the simulations. Further-
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TABLE II. Chiral SU(3) coefficients for the octet baryons to octet (B) and decuplet (T ) baryons through the pseudoscalar
octet meson φ.

more, the masses of the octet baryons agree remark-
ably well with experiment at the physical point (with
a χ2/point close to one). A comparison of the extrap-
olated baryon masses with the best experimental values
is given in Table III. The first error quoted is statisti-
cal and includes the correlated uncertainty of all of the fit
parameters including the regulator mass Λ, while the sec-
ond is an estimate of model-dependence. This includes
the full variation over dipole, monopole, sharp cutoff and
Gaussian regulator forms, as well as accounting for the
variation of the phenomenologically-set parameters f , F ,
C and δ described earlier.

As we fit baryon mass functions to lattice data over
a range of pseudoscalar masses significantly larger than
the physical values, it is prudent to check the consistency
of our results as the analysis moves outside the power-
counting regime (PCR), where higher order terms may
become significant. By performing our fit to progressively
fewer data points, that is, by dropping the heaviest mass
points, we test the scheme dependence of our evaluation.
The results are consistent, and largely independent of
the truncation of the data. This can be seen clearly in
Figure 2, which shows the variation of the dimensionless
baryon sigma terms as progressively fewer data points are
used for the fit to the octet masses. The points shown
correspond to an evaluation with a dipole regulator, and
error bars are purely statistical.

B Mass (GeV) Experimental σBl σBs
N 0.959(24)(9) 0.939 0.047(6)(5) 0.022(6)(0)
Λ 1.129(15)(6) 1.116 0.026(3)(2) 0.141(8)(1)
Σ 1.188(11)(6) 1.193 0.020(2)(2) 0.171(8)(1)
Ξ 1.325(6)(2) 1.318 0.0089(7)(4) 0.239(8)(1)

TABLE III. Extracted masses and sigma terms for the phys-
ical baryons, with the lattice scale set using the ‘mass-
dependent’ prescription. The first uncertainty quoted is sta-
tistical, while the second results from the variation of various
chiral parameters and the form of the UV regulator as de-
scribed in the text. The experimental masses are shown for
comparison.

To further test our claim that the fitted mass functions
accurately describe the variation of the baryon masses
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FIG. 1. Fit to the PACS-CS baryon octet data. Error bands
shown are purely statistical, and incorporate correlated un-
certainties between all fit parameters. Note that the data
shown has been corrected for finite volume and the simula-
tion strange quark mass, which was somewhat larger than the
physical value. The green stars show experimental values.

with quark mass, we compare our extrapolation with in-
dependent lattice data along a very different trajectory
in the ml − ms plane, as compared to the fit domain.
Most lattice simulations, including that of the PACS-CS
Collaboration, hold the simulation strange quark mass
fixed near the physical value, and progressively lower the
light quark mass to approach the physical point. These
simulations necessarily sample a range of singlet masses
(2m2

K + m2
π). As an alternative, the QCDSF-UKQCD

Collaboration has recently presented a different method
of tuning the quark masses, in which the singlet mass
is held fixed along the simulation trajectory [37]. This
procedure constrains the simulation kaon mass to always
be smaller than the physical value. In comparison, the
traditional trajectory in the mπ −mK plane necessarily
keeps the kaon mass larger than the physical value.

The close match between our fit to the PACS-CS points
and the QCDSF-UKQCD lattice data, shown in Figure 3,
is extremely encouraging. We emphasize that the lines in
Figure 3 are not a fit to the data shown, but rather a pre-
diction, resulting from the described fit to the PACS-CS
octet data being evaluated along the QCDSF-UKQCD
simulation trajectory.

All lattice points shown in Figure 3 have been shifted,
by the procedure described for the PACS-CS data, to ac-
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FIG. 2. Dimensionless baryon sigma terms, evaluated using a
dipole regulator, based on fits to the PACS-CS results at the
lightest 5 (all), 4, and 3 pseudoscalar mass points.
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FIG. 3. Prediction of QCDSF-UKQCD lattice data, based
on our fit to the PACS-CS octet baryon mass simulation.
Red (square) and green (diamond) points correspond to 243

and 323 lattice volumes respectively. Error bands shown are
purely statistical, and incorporate correlated uncertainties be-
tween all fit parameters.

count for finite-volume effects. We chose to use the lattice
spacing a = 0.078 fm deduced by the QCDSF-UKQCD
Collaboration. For further details of the QCDSF-
UKQCD data set, and the normalizations XN , Xπ, we
refer to Ref. [37].

It should be noted that the leading-order term in a
chiral expansion for the strangeness sigma commutator
is determined by the parameter σ, as seen in Table I.
This parameter is common to all baryons in the octet,
and by Eq. 5 is sensitive only to the singlet combination
of the quark masses. The contours in Fig. 4 show that,
across the PACS-CS ensemble, the variation of the sin-
glet quark mass is relatively large, with only a relatively
small extrapolation necessary to reach the physical point.
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FIG. 4. Locations of lattice QCD simulations by the PACS-
CS Collaboration (blue circles), and QCDSF-UKQCD Collab-
oration (red and green squares and diamonds) in the ml−ms

plane. The star denotes the physical point. Contours indicate
lines of constant singlet quark mass (2m2

K +m2
π), in units of

(GeV)2. Figure 3 shows the fit to the PACS-CS data only,
evaluated at the QCDSF-UKQCD simulation quark masses.

With respect to the variation of the quark masses orthog-
onal to the singlet direction, Fig. 4 acts to emphasize the
extrapolation distance required in the prediction of the
QCDSF-UKQCD results seen in Fig. 3. While a powerful
check of the robustness of the chiral expansions, it should
be noted that an analysis of the QCDSF-UKQCD results
on their own cannot give a meaningful determination of
the parameter σ, since (by design) these simulations have
only been performed at a single value of the singlet quark
mass.

To extract the sigma commutators from our baryon
mass functions, we use the Feynman-Hellman rela-
tion [38],

σBq = mq
∂MB

∂mq
, (11)

and, as above, replace quark masses by meson masses
squared: bml → m2

π/2 and bms → (m2
K−m2

π/2). For the
case of the nucleon, we recall the alternative conventional
notation to quantify the strangeness content, namely the
kaon sigma term

σKN =
1

2
(ml +ms)〈N |uu+ dd+ ss|N〉. (12)

A direct measure of the magnitude of the strange quark
content of the nucleon relative to its light quark content:

y =
2〈N |ss|N〉
〈N |uu+ dd|N〉

=
ml

ms

2σs
σπN

, (13)

can be trivially evaluated given the strange and light
quark sigma terms. At the physical point, we find
σπN = 45 ± 6 MeV, σKN = 300 ± 40 MeV and σs =
21 ± 6 MeV, corresponding to a y-value of 0.04 ± 0.01
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σs (MeV)
(mπ,mK) MeV direct mass-dep scale mass-indep scale

QCDSF Collaboration [11] 3-point (281,547) 12+23
−16 16(5)(1) 56(6)(1)

ETM Collaboration [12] 3-point (390,580) 13(5)(1) 12(5)(1) 58(6)(1)
Engelhardt [13] 3-point physical (chiral extrap) 43(10) 21(6)(0) 59(6)(1)
JLQCD Collaboration [14] 3-point physical (chiral extrap) 8(14)(15) 21(6)(0) 59(6)(1)
MILC Collaboration [15] hybrid physical (chiral extrap) 59(6)(8) 21(6)(0) 59(6)(1)

TABLE IV. Recent direct lattice calculations of σs compared with the results of our analysis. Columns labelled ‘mass-dep
scale’ and ‘mass-indep scale’ correspond to our analysis of the PACS-CS Collaboration lattice results, evaluated at the indicated
(mπ,mK) values, with the scale set using the relevant scale setting prescriptions.

for ml/ms = 0.039(6) [39]. This analysis also constrains
σπN−σ0 to be 1.64±0.53 MeV. The quoted errors include
all systematic and model-dependent uncertainties com-
bined in quadrature. Results for the other octet baryons
are made explicit in Table III.

While the method used here leads to relatively small
uncertainties for all sigma terms calculated, we point out
that there is a systematic effect which arises because of
the need to set the scale for the lattice data. As the
Feynman-Hellman theorem relates the sigma commuta-
tors to the octet baryon masses via a derivative with
respect to quark mass, a spectral determination of these
terms will necessarily make reference to the scale away
from the physical point, and hence depend on the scale
setting scheme.

Precisely, the application of the Feynman-Hellman re-
lation requires taking a partial derivative of a baryon
mass with respect to quark mass. That is, all other pa-
rameters must be held fixed, including the strong cou-
pling α (or, equivalently, ΛQCD). In lattice QCD, there
is an apparent ambiguity as to how to define a fixed renor-
malized coupling α [40, 41].

For example, for the analysis in this work the scale
for the PACS-CS lattice data was set assuming that the
dimensionful Sommer scale r0 is independent of quark
mass. This choice is based on the assumption that r0,
which is related to the force between static quarks at rela-
tively short distance, is essentially disconnected from chi-
ral physics and should therefore vary slowly with changes
in quark mass.

An alternative scale setting method is to assume that
the lattice scale, at constant bare coupling (e.g., β), is in-
dependent of the bare quark mass (e.g., κ). In this ‘mass
independent’ approach, one identifies a single lattice scale
with an entire lattice ensemble at constant bare coupling
by extrapolation of some dimensional observable to the
physical quark masses. For instance, at fixed β the lat-
tice Sommer scale could be extrapolated to the physical
point. The extrapolated quantity, denoted r∗0/a

∗, is then
matched to experiment to determine the lattice scale.

Using the mass-dependent scale setting scheme, apply-
ing the Feynman-Hellman relation amounts to evaluating

∂( r0a aMB)

∂mq
, (14)

which requires one to assume that ∂r0/∂mq = 0. The
mass-independent scheme amounts to calculating

∂(
r∗0
a∗ aMB)

∂mq
, (15)

which, in contrast, requires the assumption that a/a∗ = 1
(or equivalently, ∂a/∂mq = 0). We extend our described
analysis to investigate the latter method of scale deter-
mination, and describe the consequences for the determi-
nation of the sigma terms.

Repeating the analysis described above with a
‘mass independent’ scale setting scheme gives σπN =
51(3)(6) MeV and σs = 59(6)(1) MeV (compared to
σπN = 45(5)(4) and σs = 21(6)(0) with the ‘mass de-
pendent’ prescription). We emphasize that our results
for the pion-nucleon sigma term using each scale setting
method are precise and compatible within uncertainties,
and that we are for this reason extremely confident in
that result.

With a view to finding a physically significant result
for σs, we point out that direct lattice calculations of
this quantity should not have a large dependence on
the scale setting scheme. An advantage of the method
used here is that we can easily evaluate sigma terms
from our fit at any pion or kaon mass. In particular,
we may compare with the results of recent direct lat-
tice calculations, including preliminary calculations per-
formed at only one set of pseudoscalar masses. Such a
comparison is given for the strangeness sigma term σs
in Table IV. The available direct calculations include
2− and 2 + 1 + 1−flavor simulations [11, 12] at a single
set of pion and kaon masses, and 2 + 1−flavor calcula-
tions which have been chirally extrapolated to the phys-
ical point [13, 14]. The MILC Collaboration calculation
is not a direct three-point calculation, but rather uses
a ‘hybrid’ method to find the sigma term [15]. In com-
parison with spectral results, the Collaboration indicates
that the mass-independent scale setting scheme is rele-
vant to their results [42]. We emphasize that this sum-
mary does not include the results of calculations which
use the Feynman-Hellman theorem, as these may suffer
from the same source of scale setting ambiguity as in our
own work. We also note that several of these calculations
are preliminary, with results at only one lattice spacing
and volume.
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The results of our calculation using the ‘mass depen-
dent’ scale setting approach agree extremely well with
the direct QCDSF and TMC calculations at the simula-
tion values of mπ and mK . A similar level of agreement
is found with the JLQCD result. Finally, the Engelhardt
result sits between the values of σs given by the two scale
setting schemes, while the MILC result favors the ‘mass
independent’ scheme.

The conclusion of our analysis is clear. By develop-
ing closed-form functions for baryon mass as a function
of quark mass based on a fit to PACS-CS Collaboration
lattice data, we were able to determine precise baryonic
sigma terms by simple differentiation. This method al-
lows us to achieve small statistical and model-dependent
uncertainties. Considerable effort was made to check the
sensitivity of the final results to variations in low en-
ergy constants as well as the lattice spacing, with cor-
relations being consistently included in the evaluation of
the quoted errors. The only significant systematic uncer-
tainty we find, which is discussed in detail, is that arising
from the choice of scale setting method. As an impor-
tant additional check, we tested our predictions for the
sigma terms against recent direct lattice calculations of
these values at unphysical pseudoscalar masses, finding
excellent agreement when the scale is set using the ‘mass

dependent’ prescription in particular. With this scale
setting scheme, we find the pion-nucleon sigma term to
be σπN = 45 ± 6 MeV at the physical point, in close
agreement with other recent lattice determinations of this
value [17, 18, 43]. This result is within uncertainties of
the value σπN = 51± 7 MeV found within the ‘mass in-
dependent’ scheme. We also determine the strangeness
nucleon sigma term very precisely within each scale set-
ting scheme. Using a ‘mass independent’ scheme, we find
σs = 59±6 MeV. Comparison with direct calculations of
σs suggests a slight preference for using the ‘mass depen-
dent’ prescription to set the lattice spacing. That yields
σs = 21± 6 MeV at the physical point.
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