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We construct an evolution equation for the invariant-mass distribution of light-quark and gluon
jets in the framework of QCD resummation. The solution of the evolution equation exhibits a
behavior consistent with Tevatron CDF data: the jet distribution vanishes in the small invariant-
mass limit, and its peak moves toward the high invariant-mass region with the jet energy. We also
construct an evolution equation for the energy profile of the light-quark and gluon jets in the similar
framework. The solution shows that the energy accumulates faster within a light-quark jet cone
than within a gluon jet cone. The jet energy profile convoluted with hard scattering and parton
distribution functions matches well with the Tevatron CDF and the large-hadron-collider (LHC)
CMS data. Moreover, comparison with the CDF and CMS data implies that jets with large (small)
transverse momentum are mainly composed of the light-quark (gluon) jets. At last, we discuss the
application of the above solutions for the light-particle jets to the identification of highly-boosted
heavy particles produced at LHC.

PACS numbers: 12.38.Cy,12.38.Qk,13.87.Ce

I. INTRODUCTION

It is known that a top quark produced almost at rest at the Tevatron can be identified by measuring isolated
jets from its decay. However, this strategy does not work for identifying a highly-boosted top quark produced at
the Large Hadron Collider (LHC). It has been observed that an ordinary high-energy QCD jet [1, 2] can have an
invariant mass close to the top quark mass. A highly-boosted top quark [3–6], producing only a single jet, is then
difficult to be distinguished from a QCD jet. This difficulty also appears in the identification of a highly-boosted
new-physics resonance decaying into standard-model (SM) particles, or Higgs boson decaying into a bottom-quark
pair [7, 8]. Hence, additional information needs to be extracted from jet internal structures in order to improve the
jet identification at the LHC. The quantity, called planar flow [9], has been proposed for this purpose, which utilizes
the geometrical shape of a jet: a QCD jet with large invariant mass mainly involves one-to-two splitting, so it leaves
a linear energy deposition in a detector. A top-quark jet, proceeding with a weak decay, mainly involves one-to-three
splitting, so it leaves a planar energy deposition. Measuring this additional information, it has been shown with event
generators that the top-quark identification can be improved to some extent. Investigations on various observables
associated with jet substructures using event generators can be found in Refs. [7, 10–24]. For a review on recent
theoretical progress and the latest experimental results in jet substructures, see Ref. [25].
In this paper we shall propose to measure a jet substructure, called the energy profile, which describes the energy

fraction accumulated in the cone of size r within a jet cone R, with r < R. Its explicit definition is given by [26]

Ψ(r) =
1

NJ

∑

J

∑

ri<r,i∈J PTi
∑

ri<R,i∈J PTi
, (1)

with the normalization Ψ(R) = 1, where PTi is the transverse momentum carried by the particle i in the jet J , and
ri < r (ri < R) means the flow of the particle i into the jet cone r (R). Different types of jets are expected to exhibit
different energy profiles. For example, a light-quark jet is narrower than a gluon jet; that is, energy is accumulated
faster with r in a light-quark jet than in a gluon jet. A heavy-particle jet certainly has a distinct energy profile,
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which will be studied in a forthcoming paper. The importance of higher-order corrections and their resummation for
studying a jet energy profile have been first emphasized in [27]. The invariant mass distribution of a single jet has
also been analyzed in [28] as part of a calculation of threshold effects in dijet cross section. In this work we shall
apply the perturbative QCD (pQCD) resummation technique [29], which is extended from the Collins-Soper-Sterman
resummation formalism [30], to this jet substructure. An alternative approach based on the soft-collinear effective
theory (SCET) and its application to jet production at an electron-positron collider can be found in Refs. [31–33].
We first derive an evolution equation for the distribution of jet invariant mass MJ , starting with the definitions of

a light quark jet and of a gluon jet with the four momentum Pµ
J [9, 34]. The definition of a jet function contains a

Wilson line along the light cone, which collects gluons collimated to the light parent particle and emitted from other
parts of a hadron-hadron scattering process. To perform the resummation, we vary the Wilson line into an arbitrary
direction nµ with n2 6= 0 [35]. The jet function must depend on Pµ

J and nµ through the invariants P 2
J = M2

J and PJ ·n
which are related to the jet transverse momentum PT =

√

(P 0
J )

2 −M2
J , and n2. When MJ approaches zero, the phase

space of real radiation is strongly constrained, so the associated infrared enhancement does not cancel completely that
in virtual correction. The infrared enhancement then generates the double logarithms of the ratio (PJ · n)2/(M2

Jn
2),

and the variation of n turns into the variation of MJ . All the different choices of the vector n are equivalent in the
viewpoint of collecting the collinear divergences associated with the jet. Therefore, the effect from varying n does not
involve the collinear divergences, which can then be factorized out of the jet, leading to an evolution equation in n
for the jet function.
The evolution equation for the jet function is constructed in the Mellin N space, i.e., the space conjugate to

MJ/(RPT ), through which the dependence on the jet cone size R is introduced. Solving the evolution equation,
we derive the jet function in N as a result of the all-order summation of the double logarithms ln2 N . An inverse
transformation is then implemented to bring the distribution back to the MJ space. At this step, a nonperturbative
contribution in the large N region is included to avoid the Landau pole of the running coupling constant and to
phenomenologically parameterize effects from hadronization and underlying events. This contribution modifies the
behavior of the jet function at small MJ , but not the behavior at large MJ . It will be shown that our resummation
results for the jet distribution are consistent with the Tevatron CDF data [36]. We also observe that a gluon jet has a
higher invariant mass and a broader distribution due to stronger radiation caused by the larger color factor CA = 3,
compared to CF = 4/3 for a light-quark jet.
The QCD resummation formula is then extended to the jet energy functions for a light quark jet and for a gluon

jet, whose definitions are similar to the jet functions. They also contain the Wilson lines along the light cone, which
collect gluons emitted from other parts of a collision process and collimated to the parent particles. The difference is
that a step function kiTΘ(r−ri) is associated with each final-state particle i in the smaller jet cone r, where kiT and ri
are the transverse momentum and the radial distance of the particle i with respect to the jet axis. When r approaches
zero, the phase space of real radiation is strongly constrained, so the associated infrared enhancement does not cancel
completely that in virtual correction, which then generates the double logarithms of the ratio (PJ · n)2/(n2r2). The
derivation of the evolution equation for the jet energy function is basically the same as that for the jet function, and
the variation of n turns into the variation of r in this case. Because we shall consider the energy profile with the
jet invariant mass being integrated over, the nonperturbative contribution is not relevant in predicting the jet energy
profile. The obtained jet energy function allows us to calculate the energy profile Ψ(r) in Eq. (1). It will be shown
that our resummation results for Ψ(r) are in agreement with the Tevatron CDF [26] and LHC CMS [37] data. We
also observe that a light-quark jet is narrower than a gluon jet, and that jets with high (low) transverse momentum
are dominated by light-quark (gluon) jets in hadron collisions.
The above formalism is applicable to the study of a highly boosted heavy particle, with the associated collinear

radiation being factorized into a heavy-particle jet function. The resultant definition is similar to the light-particle
jet function, except that the light-particle field is replaced by the heavy-particle field. We then lower the scale to
the heavy-particle mass mQ, at which jets formed by the light particles, from the heavy-particle decay, are further
factorized. This step is similar to the conventional heavy-quark expansion, and the factorization of the light-particle
jet functions holds at leading power of 1/mQ. The heavy-particle jet function is thus written as a convolution of a
heavy-particle kernel, involving specific decay dynamics, and the light-particle jet functions. The former is evaluated
perturbatively to certain orders of the coupling constant, and results derived in the present work are employed as
inputs for the latter. Hence, both the heavy-particle jet distribution in invariant mass and the energy profile within a
heavy-particle jet can be predicted, which will improve the particle identification at LHC. Broad applications of our
framework to jet physics are expected.
In Sec. II, we construct the evolution equations for the light-quark and gluon jet functions, and solve them in the

Mellin space. The treatment of soft gluon contributions to the evolution equations is explained. A nonperturbative
contribution is introduced into the resummation formula to mimic PYTHIA8.145 [38] predictions in the region of
small jet invariant mass. After fixing the nonperturbative piece at a given PT value, the behavior of the jet functions
in the whole range of invariant mass is derived via the inverse Mellin transformation numerically in Sec. III. It will
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be shown that our resummation predictions for the jet mass distribution agree well with the CDF data. The same
formula is extended to calculating the energy profiles of the light-quark and gluon jets in Sec. IV by constructing
and solving the evolution equations for the jet energy functions. Our resummation predictions are consistent with
the CDF and CMS data. With the important logarithms being collected, the initial conditions of the jet functions
and the jet energy functions can be evaluated up to a fixed order. Their next-to-leading order (NLO) expressions are
presented in Appendices A and C, respectively. The contour choice for the inverse Mellin transformation is discussed
in Appendix B. Before concluding this section, we note that the non-global logarithms and the clustering effects should
be also considered, when comparing experimental data and theoretical predictions for the jet mass distribution at the
next-to-leading-logarithmic (NLL) level, as discussed in Refs. [39–41].

II. RESUMMATION FOR JET FUNCTIONS

In this section we derive the evolution equation for the light-quark and gluon jet functions defined in [34]:

Jq(M
2
J , PT , ν

2, R, µ2) =
(2π)3

2
√
2(P 0

J )
2Nc

∑

NJ

Tr
{

6 ξ〈0|q(0)W (q̄)†
n (∞, 0)|NJ 〉〈NJ |W (q̄)

n (∞, 0)q̄(0)|0〉
}

×δ(M2
J − M̂2

J(NJ , R))δ(2)(ê− ê(NJ))δ(P
0
J − ω(NJ)),

Jg(M
2
J , PT , ν

2, R, µ2) =
(2π)3

2(P 0
J )

3Nc

∑

NJ

〈0|ξσF σν(0)W (g)†
n (∞, 0)|NJ 〉〈NJ |W (g)

n (∞, 0)F ρ
ν (0)ξρ|0〉

×δ(M2
J − M̂2

J(NJ , R))δ(2)(ê− ê(NJ))δ(P
0
J − ω(NJ)), (2)

where |NJ〉 denotes the final state withNJ particles within the cone of size R centered in the direction of the unit vector

ê = (0, 1, 0, 0), M̂J(NJ , R) (ω(NJ)) is the invariant mass (total energy) of all NJ particles, and µ is the factorization
scale. The above jet functions absorb the collinear divergences from all-order radiative corrections associated with
the energetic light jet of momentum Pµ

J = P 0
J v

µ, where P 0
J is the jet energy, and vµ = (1, β, 0, 0) is a 4-vector with

β =
√

1− (MJ/P 0
J )

2. The coefficients in Eq. (2) have been chosen such that the lowest-order (LO) jet functions
are equal to δ(M2

J) in perturbative expansion. The definition of the jet function in Eq. (2) contains a Wilson line,
which collects gluons radiated from either initial states or other final states of a hadron-hadron scattering process, and
collimated to the light-quark (or gluon) jet. Gluon exchanges between the quark fields q (or the gluon fields F σν and
F ρ
ν ) correspond to final-state radiation. Both initial-state and final-state radiations are leading-power effects in the

factorization theorem, and have been included in the jet function definition. However, the contribution from multiple
parton interaction, which is regarded as being higher-power, is not included. Nevertheless, it still makes sense to
compare predictions for jet observables based on Eq. (2) at the current leading-power accuracy with experimental
data .
The Wilson line represents the path-ordered exponential

Wn(∞, 0) = P exp

[

−igs(µ
2)

∫ ∞

0

dzn ·A(zn)
]

, (3)

where the gauge field denotes A = Aata with ta being the gauge group generators in the fundamental (adjoint)
representation for the light-quark (gluon) jet function, and gs(µ

2) is the QCD strong coupling at the energy scale µ.
As explained in the Introduction, the original Wilson line vector ξ = (1,−1, 0, 0) [34] can be replaced by the arbitrary
vector n, while the spin projector 6 ξ in the light-quark jet, cf. Eq.(2), remains unchanged. The scale invariance of
Eq. (3) in n guarantees that the jet function depends on the ratio

ν2 ≡ 4(v · n)2
R2|n2| , (4)

where the dependence on R is inspired by the logarithms observed in the NLO jet function. We then vary n by
considering the derivative [35] of the jet function Jf :

− n2

v · nvα
d

dnα
Jf (M

2
J , PT , ν

2, R, µ2), (5)

with f = q or g. The n dependence appears only in the Feynman rules for the Wilson line, whose differentiation with
respect to nα leads to

− n2

v · nvα
d

dnα

nµ

n · l =
n2

v · n

(

v · l
n · l nµ − vµ

)

1

n · l ≡
n̂µ

n · l . (6)
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The special vertex n̂µ defined in the above expression suppresses the collinear region of the loop momentum l that
flows through the special vertex: if l is parallel to PJ , i.e., to v, the contribution from the first term is down by the
ratio M2

J/P
2
T . The second term vµ also gives a power-suppressed contribution, after being contracted with a vertex

in Jf , in which all momenta are mainly parallel to PJ , Hence, the leading regions of l are soft and ultraviolet, but
not collinear.

FIG. 1: Diagram for the light-quark jet function with a special vertex at the outermost end of the Wilson line. The factorization
gives the LO virtual soft kernel.

FIG. 2: Factorization of the LO real soft kernel.

To obtain the leading logarithms (LL), the special vertex must appear at the outermost end of the Wilson line
(nearest the final-state cut) as shown in Fig. 1(a). If the special vertex does not appear at the outermost end, the
gluons emitted after the differentiated gluon must be soft too. Otherwise, their finite momenta will regularize the
soft divergence associated with the differentiated gluon. In this case we will have more soft gluons, namely, a soft
divergence at higher orders in the coupling constant, which corresponds to a subleading logarithm. To collect the
LL in Fig. 1, the replacement gµν → Pµ

J l
ν/(PJ · l) [42] is employed for the metric tensor of the differentiated gluon,

where the vertex with the Lorentz index µ is located on the Wilson line, and the vertex ν on a line in the jet function.
We explain this replacement by assuming that PJ is in the plus direction for convenience. Then the component g+−

among gµν leads to the leading contribution. The + superscript is represented by the largest component P+
J of Pµ

J
in the replacement. The components lν are arbitrary, but only l− is selected when lν is contracted with a vertex in
the jet function, which is dominated by the momentum flow along PJ . Applying the Ward identity to the sum over

all possible attachments of lν [42], we factorize the differentiated gluon into the virtual soft kernel K
(1)
v as displayed

in Fig. 1. The factorization of the real soft kernel K
(1)
r at LO is depicted in Fig. 2. The LO soft kernel K(1) is then

written as the sum of the above two diagrams, i.e., K(1) = K
(1)
v +K

(1)
r .

To produce a LO ultraviolet divergence, the special vertex must appear at the innermost end of the Wilson line,
and the differentiated gluon forms a loop correction to the quark-Wilson-line vertex as shown in Fig. 3. If this is not
the case, we will have more off-shell lines, namely, a higher-order ultraviolet divergence, which leads to a subleading
logarithm. The LO differentiated gluon can be factorized trivially by performing the Fierz transformation of the
fermion flow,

IijIlk =
1

4
IikIlj +

1

4
(γ5)ik(γ5)lj +

1

4
(γα)ik(γ

α)lj +
1

4
(γ5γα)ik(γ

αγ5)lj +
1

8
(σαβ)ik(σ

αβ)lj , (7)
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FIG. 3: Diagram for the light-quark jet function with a special vertex at the innermost end of the Wilson line. The factorization
gives the LO hard kernel.

with I being the identity matrix, and σαβ ≡ i[γα, γβ ]/2. The first and last terms contribute in the combined structure

IijIlk → 1

4
Iik(6 ξ 6 ξ̄)lj , (8)

where the vector ξ̄ lies on the light cone and satisfies ξ · ξ̄ = 1. The identity matrix Iik in Eq. (8) goes into the trace
for the jet function. The matrix (6 ξ 6 ξ̄)lj/4 then leads to the loop integral for the hard kernel G(1) in Fig. 3.
The jet transverse momentum, the jet invariant mass, and the jet cone, under the factorization of the virtual

differentiated gluons, remain as PT , MJ and R, respectively. The jet momentum and the jet cone are not modified
by the soft real correction, but the jet invariant mass squared M2

J , regarded as a small scale, is modified into
(PJ − l)2 = M2

J − 2PJ · l. For the light-quark jet function, we then arrive at the differential equation

− n2

v · nvα
d

dnα
Jq(M

2
J , PT , ν

2, R, µ2) = 2(G+K)⊗ Jq(M
2
J , PT , ν

2, R, µ2), (9)

where the hard correction, the virtual soft correction, and the real soft correction to the NLO evolution kernels are
written as

G(1) = ig2sCFµ
′ǫ

∫

d4−ǫl

(2π)4−ǫ

n̂ν

(n · l + iǫ)(l2 + iǫ)

(

1

4

tr[γν(6 PJ− 6 l) 6 ξ 6 ξ̄]
(PJ − l)2 + iǫ

+
PJν

PJ · l − iǫ

)

− δG, (10)

K(1)
v = −ig2sCFµ

′ǫ

∫

d4−ǫl

(2π)4−ǫ

n̂ · PJ

(n · l+ iǫ)(PJ · l − iǫ)(l2 + iǫ)
− δK, (11)

K(1)
r ⊗ Jq = g2sCF

∫

d4l

(2π)4
n̂ · PJ

(n · l + iǫ)(PJ · l − iǫ)
2πδ(l2)Jq(M

2
J − 2PJ · l, PT , ν

2, R, µ2), (12)

respectively. The first term in the parentheses of Eq. (10) is free of ultraviolet divergence, and the second term, repre-

senting the soft subtraction −K
(1)
v to avoid double counting of the soft contribution, contains ultraviolet divergence.

As adding G(1) and K
(1)
v together, their ultraviolet divergences cancel. K

(1)
r in Eq. (12) is ultraviolet finite, so the

kernel G+K = G+Kv +Kr is independent of renormalization scale µ′. In our regularization scheme, the additive
counterterms δG and δK are chosen as

δG =
αs

2π
CF

[

2

ǫ
+ ln(4πC2

2ν
2)− γE

]

= −δK, (13)

where αs = g2s/4π, γE is the Euler constant, and the arbitrary constant C2 can be varied to estimate subleading
logarithmic corrections to our formula.
The trace in Eq. (10) indicates that the vν term in the special vertex n̂ν gives a contribution suppressed by M2

J/P
2
T ,

as compared to the contribution from the nν term. Equation (10) then reduces to

G(1) = ig2sCFµ
′ǫ n2

PJ · n

∫

d4−ǫl

(2π)4−ǫ

[ 6 n(6 PJ− 6 l)PJ · l
(n · l)2(PJ − l)2l2

+
PJ · n

(n · l)2l2
]

− δG,

= −αs

2π
CF

[

ln
(C2ν

2RPT )
2

µ′2
− 1

]

. (14)
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The virtual soft correction in Eq. (11) gives

K(1)
v = −ig2sCFµ

′ǫn2

∫

d4−ǫl

(2π)4−ǫ

2PJ · l
(n · l)2l2(2PJ · l + λ2)

− δK,

=
αs

2π
CF ln

λ4C2
2

R2P 2
Tµ

′2
, (15)

in which the infrared regulator λ2 will be taken to be zero eventually.
It is more convenient to perform the resummation in the conjugate space via the Mellin transformation. The reason

becomes evident as comparing the convolutions of the virtual and real soft corrections with the LO jet function: the

former leads to K
(1)
v ⊗ J (0) = K

(1)
v δ(M2

J), while the latter leads to

K(1)
r ⊗ J (0)

q = g2sCF

∫

d4l

(2π)4
n̂ · PJ

(n · l + iǫ)(PJ · l − iǫ)
2πδ(l2)δ(M2

J − 2PJ · l),

=
αs

π
CF

1

M2
J

. (16)

If transforming the above results into the Mellin space, the infrared divergences from MJ → 0 in the virtual and real
soft corrections cancel explicitly. Therefore, we introduce the Mellin transformation

J̄q(N,PT , ν
2, R, µ2) ≡

∫ 1

0

dx(1 − x)N−1Jq(x, PT , ν
2, R, µ2), (17)

x ≡ M2
J/(RPT )

2 being the dimensionless variable. The convolution in Eq. (12) is converted into a product

∫ 1

0

dx(1 − x)N−1K(1)
r ⊗ Jq = K̄(1)

r (N)J̄q(N,PT , ν
2, R, µ2), (18)

with the definition

K̄(1)
r (N) = g2sCF

∫ 1

0

dz(1− z)N−1

∫

d4l

(2π)3
2(PJ · l)n2

(n · l + iǫ)2(2PJ · l + λ2)
δ(l2)δ

(

z − 2
|l|

RPT
(1− cos θ)

)

. (19)

To derive the above expression, we have made the small-mass approximation 1− β cos θ ≈ 1− cos θ, and inserted the
identities

∫

dzδ(z − 2|l|(1 − cos θ)/(RPT )) = 1 and
∫

dyδ(x − y − z) = 1. The approximation 1 − x = 1 − y − z ≈
(1− y)(1− z) has been also adopted, which holds in the dominant region with small y and z.
We compute Eq. (19) by splitting it into two pieces

K̄(1)
r (N) = g2sCF

∫ 1

0

dz[(1− z)N−1 − 1]

∫

d4l

(2π)3
n2

(n · l + iǫ)2
δ(l2)δ

(

z − 2
|l|

RPT
(1− cos θ)

)

Θ(R− θ)

+g2sCF

∫ 1

0

dz

∫

d4l

(2π)3
2(PJ · l)n2

(n · l + iǫ)2(2PJ · l+ λ2)
δ(l2)δ

(

z − 2
|l|

RPT
(1− cos θ)

)

, (20)

where the infrared regulator λ2 has been neglected in the first term, because of the absence of the infrared divergence
from z → 0. Since the gluon momentum is finite in the first term, we require that its angle can not exceed the cone size
R by including the step function Θ(R− θ), which then brings the R dependence into our resummation formula. The
soft effect dominates in the second term, so there is no need to constrain the range of the angle θ. A straightforward
calculation leads to

K̄(1)
r (N) =

αs

π
CF ln

R2P 2
T

N̄λ2
, (21)

with N̄ ≡ N exp(γE). Combining Eqs. (15) and (21), we obtain

K̄(1)(N) = K̄(1)
v + K̄(1)

r (N) =
αs

π
CF

[

ln
C1RPT

N̄µ′
+ ln

C2

C1

]

, (22)

where K̄
(1)
v = K

(1)
v , and the dependence on the infrared regulator λ2 has disappeared. Furthermore, an arbitrary

constant C1 has been introduced to estimate subleading logarithmic corrections to our formula.
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Solving the renormalization-group (RG) equations,

µ′ d

dµ′
G = λK = −µ′ d

dµ′
K, (23)

with the cusp anomalous dimension

λK ≡ µ′ d

dµ′
δK = −µ′ d

dµ′
δG, (24)

we derive

K

(

C1RPT

N̄µ′
, αs(µ

′2)

)

+G

(

C2ν
2RPT

µ′
, αs(µ

′2)

)

= K

(

1, αs

(

C2
1R

2P 2
T

N̄2

))

+G
(

1, αs

(

C2
2ν

4R2P 2
T

))

−
∫ C2ν

2RPT

C1RPT /N̄

dµ′

µ′
λK(αs(µ

′2)),

=
CF

π
αs

(

C2
1R

2P 2
T

N̄2

)

ln
C2

C1
+

CF

2π
αs

(

C2
2ν

4R2P 2
T

)

−
∫ C2ν

2

C1/N̄

dω

ω
λK(αs(ω

2R2P 2
T )). (25)

With the large logarithms being removed, the LO expression for the initial condition K(1, αs) +G(1, αs) of the RG
evolution has been inserted into the last line. The cusp anomalous dimension λK is process independent, and given,
up to two loops, by

λK =
αs

π
CF +

1

2

(αs

π

)2

CF

[

CA

(

67

18
− π2

6

)

− 5

9
nf

]

, (26)

for a light quark jet, where nf denotes the number of active light-quark flavors.
After organizing the large logarithms in the kernels, we solve the differential equation

− n2

v · nvα
d

dnα
J̄q(N,PT , ν

2, R, µ2) = 2ν2
d

dν2
J̄q(N,PT , ν

2, R, µ2)

= 2

[

K

(

C1RPT

N̄µ′
, αs(µ

′2)

)

+G

(

C2ν
2RPT

µ′
, αs(µ

′2)

)]

J̄q(N,PT , ν
2, R, µ2). (27)

The strategy is to evolve ν2 from the low value ν2in = C1/(C2N̄) to the large value ν2fi = 1, corresponding to the specific
choices n = nin ≡ (1, (4C2N̄ − C1R

2)/(4C2N̄ + C1R
2), 0, 0) and n = nfi ≡ (1, (4 − R2)/(4 + R2), 0, 0), respectively.

The former defines the initial condition of the jet function, which can be evaluated at a given fixed order, because of
the vanishing of the logarithm ln(C2ν

2N̄/C1). The latter defines the all-order jet function with the large logarithms
being factorized and organized. Since the jet function collects the soft and collinear radiations, which mainly occur
at a lower scale, µ2 should take a value of O(R2P 2

T /N̄). This choice introduces an additional single logarithm, that
needs to be summed to all orders by a RG evolution equation in µ. To achieve it, we set µ2 ∼ O(R2P 2

T /(N̄ν2)), which
will be elaborated in Appendix A. The solution to Eq. (27) is derived as

J̄q(N,PT , ν
2
fi, R) = J̄q(N,PT , ν

2
in, R) exp[Sq(N,PT , R)], (28)

with the Sudakov exponent

Sq(N,PT , R) = −
∫ C2

C1/N̄

dy

y

{

∫ y

C1/N̄

dω

ω
λK(αs(ω

2R2P 2
T ))−

CF

2π
αs(y

2R2P 2
T )−

CF

π
αs

(

C2
1R

2P 2
T

N̄2

)

ln
C2

C1

}

. (29)

It is noted that the R dependence appears in the single logarithmic term of the Sudakov exponent.
We further evolve αs from the scale C1RPT /N̄ to yRPT in the last term of Eq. (29),

−CF

π
αs

(

C2
1R

2P 2
T

N̄2

)

= −CF

π

[

∫ αs(C
2

1
R2P 2

T
/N̄2)

αs(yRPT )

dαs + αs(y
2R2P 2

T )

]

,

= CF

[

∫ yRPT

C1RPT /N̄

dµ

µ
2β(αs(µ

2))− αs(y
2R2P 2

T )

π

]

, (30)
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and expand the QCD Beta function up to O(α2
s), β = −(β0/4)(αs/π)

2 with β0 = 11− 2nf/3 [43]. Inserting Eq. (30)
into Eq. (29), and applying the integration by part, the exponent is rewritten as

Sq(N,PT , R) = −
∫ C2

C1/N̄

dy

y

{

Aq(αs(y
2R2P 2

T )) ln

(

C2

y

)

+Bq(αs(y
2R2P 2

T ))

}

, (31)

with the anomalous dimensions

Aq = CF
αs

π
+

1

2
CF

(αs

π

)2
[

CA

(

67

18
− π2

6

)

− 5

9
nf − β0 ln

C2

C1

]

,

Bq = −CF
αs

π

(

1

2
+ ln

C2

C1

)

. (32)

The Sudakov exponent for the gluon jet function can be derived in a similar way:

Sg(N,PT , R) = −
∫ C2

C1/N̄

dy

y

{

Ag(αs(y
2R2P 2

T )) ln

(

C2

y

)

+Bg(αs(y
2R2P 2

T ))

}

, (33)

where the anomalous dimension Ag (Bg) is obtained by substituting CA for CF in Aq (Bq). In this work the NLL
terms have been included into the resummation by adopting Af at two-loop level and Bf at one-loop level. Although
the numerical evaluation of the Sudakov integral induces some next-to-next-to-leading logarithmic (NNLL) terms,
the inclusion of the complete NNLL terms demands higher-order contributions to Af and Bf . Hence, we shall refer
our resummation formalism presented here as one with the NLL accuracy. Finally, it is noted that the non-global
logarithms discussed in Refs. [39–41] are not included in our resummation formalism for the jet function definition in
Eq. (2).
We evaluate the initial conditions of the Sudakov evolution for the light-quark and gluon jet functions up to NLO

in Appendix A, and confirm that the large logarithms ln N̄ do not appear in these initial conditions as ν2 = ν2in;
namely, they have been collected into the Sudakov exponents. We note that the quark-loop contribution to the gluon
jet function, which carries a different color factor, has to be handled separately as shown in the next section. The
resummation formulas for the light-quark and gluon jets are summarized, in the Mellin space, as

J̄q(N,PT , R) =
1

R2P 2
T

{

1 +
CF

π
αs

(

C2
3R

2P 2
T

)

[

1

2
ln

C1

C2
− 1

2
ln2 C1

C2
+

1

4
ln

C2
3C1

C2
+

1

2
γE − π2

4
− 9

8

]}

×Sq(N,PT , R), (34)

J̄g(N,PT , R) =
1

R2P 2
T

{

1 +
CA

π
αs

(

C2
3R

2P 2
T

)

[

1

2
ln

C1

C2
− 1

2
ln2 C1

C2
+

5

12
ln

C2
3C1

C2
− 5

12
γE − π2

4
+

1

2
(ln 2− 3) +

1

36

]}

×Sg(N,PT , R), (35)

Here the third arbitrary constant C3 has been introduced through the choice of the renormalization scale µ for the
initial conditions, which denotes another source of theoretical uncertainty in our formalism.

III. NUMERICAL ANALYSIS FOR JET FUNCTIONS

In this section we compare our predictions for jet mass distribution to the experimental data from the Tevatron and
the LHC. As x = M2

J/(RPT )
2 → 0, all moments in N are equally weighted, since the suppression factor (1 − x)N−1

is not effective. The terms containing lnN , being the dominant ones, have been summed to all orders in αs, so the
predictions from Eqs. (34) and (35) are supposed to be reliable at small x. However, the running coupling constant αs,
evaluated at the soft scale RPT /N , increases with N , and the expansion parameter αs lnN may become much larger
than order unity. In this region a perturbative calculation is not adequate and contributions from nonperturbative
physics need to be included. Furthermore, the complex argument µ = yRPT of αs(µ

2) in Eqs. (31) and (33) tends
to be small in magnitude at large N , even lower than the Landau pole scale. Therefore, in our numerical analysis
we introduce a critical scale µc to avoid the Landau pole, below which the running coupling is frozen to the constant
value αs(µ

2
c). For an explicit treatment of αs(µ

2), see Appendix B. As x grows gradually, the large-N moments are
suppressed by (1−x)N−1, and the resummation effects together with the nonperturbative inputs become less crucial.
A fixed-order evaluation is then more reliable at large x, where Eqs. (34) and (35) are expected to coincide with the
NLO jet mass distributions, cf. Appendix A.
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In this work the following nonperturbative correction is implemented into the Sudakov exponent in the N space

SNP
f (N,PT , R) =

N2Q2
0

R2P 2
T

(Cfα0 lnN + α1) + Cfα2
NQ0

RPT
, (36)

with Q0 = 1 GeV and Cf = CF (CA) for the light-quark (gluon) jet function. The first two terms proportional
to N2Q2

0/P
2
T are similar to the singular terms in the nonperturbative contributions to the transverse-momentum

resummation [30, 44, 45] and threshold resummation [46] formalisms. The last term, being a power correction [47],
can be obtained from the asymptotic behavior of the Sudakov exponent. The powers in NQ0/PT indicate that
the nonperturbative effects are significant only in the extremely large N region. We determine the nonperturbative
parameters α0, α1 and α2 from fits to PYTHIA8.145 [38] predictions associated with SpartyJet [48] for the light-quark
and gluon jets, separately. The resummation formulas including the nonperturbative inputs are then written as

J̄RES
q (N,PT , R) = J̄q(N,PT , R) exp[SNP

q (N,PT , R)], (37)

J̄RES
g (N,PT , R) = J̄g(N,PT , R) exp[SNP

g (N,PT , R)] +
nfCF

3πR2P 2
T

αs

(

C2
3C1R

2P 2
T

C2N̄

)(

1

3
− ln

C1C
2
3

C2

)

, (38)

where the quark-loop contribution proportional to the flavor number nf has been added as the second term on the
right-hand side of Eq. (38). Note that this contribution does not contain the large logarithm ln N̄ as µ2 ∼ O(R2P 2

T /N̄),
at which the final conditions of the jet functions are defined, so it is not organized into the resummation formula.
The inverse Mellin transformation of the above expressions leads to

JRES
f (M2

J , PT , R) =
1

2πi

∫

C

dN(1 − x)−N J̄RES
f (N,PT , R). (39)

An appropriate contour C extending to infinity in the complex N plane needs to be chosen for the numerical inverse
transformation, which is specified in Appendix B.
As stated before, hard radiation is important at large MJ , although the probability of having a jet with large mass

decreases quickly as MJ increases. To describe the distribution at large MJ , we further perform the matching between
the resummation and NLO results via

JNLL/NLO
q (M2

J , PT , R) = JRES
q (M2

J , PT , R) +
[

J (1)R
q (M2

J , PT , R)− J (1)R,asym
q (M2

J , PT , R)
]

,

JNLL/NLO
g (M2

J , PT , R) = JRES
g (M2

J , PT , R) +
[

J (1)R
g (M2

J , PT , R)− J (1)R,asym
g (M2

J , PT , R)
]

, (40)

where J
(1)R
f is the contribution from the NLO real emissions, J

(1)R,asym
f denotes its asymptotic expression in the

MJ → 0 limit, i.e., the so-called “singular piece” [29]. The inclusion of the “regular piece”, i.e., the term in the square

brackets on the right-hand side of Eq. (40), warrants that the expansion of J
NLL/NLO
f up to NLO coincides with the

complete NLO QCD predictions of the jet functions. We note that the regular piece of the quark-loop contribution

to the gluon jet function has been included into J
(1)R
g − J

(1)R,asym
g , cf. Appendix A.
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FIG. 4: Quark (left) and gluon (right) jet mass distributions with SNP (solid lines) and without SNP (dotted lines) for PT = 600
GeV and R = 0.7.

To be compared with the normalized jet mass distribution, we convolute Eq. (40) with the parton-level differential
cross section dσ̂f/dPT evaluated at the renormalization scale µ = C3RPT , the same as the initial scale in Eqs. (34)
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and (35), yielding the factorization formula

1

σ

dσ

dM2
J

=
1

σ

∑

f

∫

dPT
dσ̂f

dPT
(M2

J , PT )J
NLL/NLO
f (M2

J , PT , R), (41)

where σ =
∫

(dσ/dM2
J )dM

2
J is the integrated jet cross section. We adopt the default choice C1 = exp(γE), C2 =

exp(−γE), C3 = 1, and µc = 0.3 GeV, and include the nonperturbative contributions in fits to PYTHIA predictions
for the jet distributions with PT = 600 GeV and R = 0.7. It is found that the nonperturbative parameter set
α0 = −0.35, α1 = 0.50 (α1 = −4.59), and α2 = −1.66 leads to a reasonably good fit to the light-quark (gluon) jet. It
is also observed that the quark-loop contribution to the gluon jet function is negligible.
The quark and gluon jet mass distributions depicted in Fig. 4 indicate that including SNP shifts their peak positions

toward the larger jet mass region, and suppresses (enhances) the peak height of the quark (gluon) jet distribution. As
stated in the Introduction, the nonperturbative contribution does not modify the behavior of the jet functions at large
MJ . Given the nonperturbative parameters, we predict the jet mass distributions at any arbitrary value of collider
energy

√
S, jet energy PT and jet cone size R. The resummation predictions for the normalized light-quark and gluon

jet mass distributions as functions of MJ/(RPT ) for R = 0.4, 0.5, 0.6 and 0.7 with RPT = 280 GeV are presented
in Fig. 5. It has been found in [49] that the NLO jet mass is remarkably well described by the simple rule-of-thumb
MJ ≃ 0.2RPT . However, Fig. 5 shows that not only the average jet mass but also the shapes of the light-quark
and gluon jet mass distributions almost remain the same, when we vary the jet cone R with RPT being fixed. This
behavior is attributed to the fact that each component of the resummation formula, including the Sudakov factors in
Eqs. (31) and (33), the initial conditions in Eqs. (34) and (35), and the nonperturbative contributions in Eq. (36),
depends only on the scale RPT . The scaling behavior is violated when the jet mass is large enough (MJ/(RPT ) > 0.7),
as indicated in Fig. 5. Nevertheless, the probability to find a jet with such a large mass is low. We also note that
the jet mass distribution as a function of MJ/(RPT ) is relatively independent of the collider energy

√
S, except

that for substantially larger momenta the reduced phase space will lead to smaller predicted jet masses at the same
momentum. Furthermore, our formalism also suggests that this conclusion holds for a similar jet (with the same PT

and R) produced in any kind of hard scattering processes, such as the associated production of jets with gauge boson
or Higgs boson.
Following Eq. (41), we convolute the light-quark and gluon jet functions with the constituent cross sections of LO

partonic dijet processes at the Tevatron and the parton distribution functions (PDF) CTEQ6L [50]. Here we have
neglected the soft gluon contribution [51], equivalent to the soft function introduced in the Soft Collinear Effective
Theory (SCET) [52], which couples the light-particle jet and the partonic processes. The resummation predictions
for the jet mass distributions at R = 0.4 and R = 0.7 are compared to the Tevatron CDF data [36] in Fig. 6 with
the kinematic cuts PT > 400 GeV and the rapidity interval 0.1 < |Y | < 0.7 . The above data were obtained using
the midpoint jet algorithm [53], and the data from the anti-kt algorithm [54] do not vary much as shown in [36]. The
consistency of the resummation results with the CDF data is excellent at intermediate MJ . The resummation formula
describes the shapes and the peak heights of the jet distributions in the small MJ region, but with the peak positions
being slightly lower than the CDF data. As indicated in [36], the PDF uncertainties could induce large variation in
shapes of jet mass distributions around peak positions. The difference from the data in Fig. 6 is within the above
variation. This is the first time that the pQCD factorization theorem explains the observed jet mass distributions
successfully. Note that the jet mass distribution, which corresponds to the angularity distribution with a = 0 [31],
cannot be well described in the SCET formalism. In Fig. 7 we display the resummation predictions for the jet mass
distributions at the Tevatron with R = 0.3 and at the LHC with R = 0.7, which can be tested by Tevatron data and
LHC experiments.

IV. JET ENERGY PROFILES

We define the jet energy functions JE
f (M2

J , PT , ν
2, R, r) with f = q(g) denoting the light-quark (gluon), which

describe the energy accumulation within the cone of size r < R. The definition is chosen, such that J
E(0)
f = PT δ(M

2
J)

at LO. In this section we will study the energy profile of a light-particle jet in the framework of QCD resummation at
leading power of r. The Feynman rules for JE

f are similar to those for the jet functions Jf at each order of αs, except

that a sum of the step functions
∑

i k
0
iΘ(r− θi) is inserted, where k

0
i (θi) is the energy (the angle with respect to the
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FIG. 5: Resummation results for the light-quark (upper) and gluon (lower) jet mass distributions as functions of MJ/(RPT )
including the nonperturbative contributions for R = 0.4, 0.5, 0.6 and 0.7 with RPT = 280 GeV. The ratios relative to the
predictions for R = 0.7 are also shown.
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jet axis) of the final-state particle i. For example, the jet energy functions JE
f are expressed, at NLO, as

JE(1)
q (M2

J , PT , ν
2, R, r, µ2) =

(2π)3

2
√
2(P 0

J )
2Nc

∑

σ,λ

∫

d3p

(2π)32p0
d3k

(2π)32k0
[p0Θ(r − θp) + k0Θ(r − θk)]

×Tr
{

6 ξ〈0|q(0)W (q̄)†
n (∞, 0)|p, σ; k, λ〉〈k, λ; p, σ|W (q̄)

n (∞, 0)q̄(0)|0〉
}

×δ(M2
J − (p+ k)2)δ(2)(ê − êp+k)δ(P

0
J − p0 − k0),

JE(1)
g (M2

J , PT , ν
2, R, r, µ2) =

(2π)3

2(P 0
J )

3Nc

∑

σ,λ

∫

d3p

(2π)32p0
d3k

(2π)32k0
[p0Θ(r − θp) + k0Θ(r − θk)]

×〈0|ξσF σν(0)W (g)†
n (∞, 0)|p, σ; k, λ〉〈k, λ; p, σ|W (g)

n (∞, 0)F ρ
ν (0)ξρ|0〉

×δ(M2
J − (p+ k)2)δ(2)(ê − êp+k)δ(P

0
J − p0 − k0), (42)

where the expansion of the Wilson links in αs is understood. As shown in the previous section, the quark-loop
contribution to the gluon jet function is not important, cf. Eq. (38), with a proper choice of the factorization scale µ
in the resummation calculation. Hence, the quark-loop contribution to the energy profile of the gluon jet can also be
ignored with an appropriate choice of µ.
When r approaches zero, the phase space of real radiation is strongly constrained, so infrared enhancement does not

cancel exactly with that in virtual contribution and results in large logarithms, e.g., αs ln
2 r. An evolution equation

for summing these logarithms to all orders in αs in the jet energy functions can be constructed, whose derivation
is similar to that for the jet functions discussed in Sec. II: the variation of the Wilson line direction introduces the
same special vertex in the differentiated jet energy functions. The virtual gluons emitted from the special vertex are

factorized into the same hard kernel G(1) and the same virtual soft kernel K
(1)
v . For example, their expressions for

the light-quark jet energy function JE
q are given by Eqs. (14) and (15), respectively. For the real soft gluon emitted

from the special vertex, we split the sum of the step functions into
∑

i

k0iΘ(r − θi) =
∑

i′

k0i′Θ(r − θi′ ) + l0Θ(r − θ), (43)

in which
∑

i′ means a summation over final-state particles with the real soft gluon being excluded. The first term in
Eq. (43) gives

K(1)
r ⊗ JE

q = g2sCF

∫

d4l

(2π)4
n̂ · PJ

(n · l + iǫ)(PJ · l − iǫ)
2πδ(l2)Θ

(

r − |l| sin θ
PT

)

JE
q (M2

J − 2PJ · l, PT , ν
2, R, r). (44)

Because of the real soft gluon emission with the polar angle θ, the jet axis of the rest of particles, described by JE
q

on the right-hand side of the above expression, inclines by an angle |l| sin θ/PT with respect to the jet momentum
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PJ . The step function in Eq. (44) imposes a phase-space constraint on the real soft gluon emission, such that the jet
axis of the rest of particles cannot move outside of the jet cone r. Applying the Mellin transformation with respect
to x ≡ M2

J/(RPT )
2, we have

∫ 1

0

dx(1 − x)N−1K(1)
r ⊗ JE

q = K̄(1)
r (N)J̄E

q (N,PT , ν
2, R, r), (45)

with the definition

K̄(1)
r (N) = g2sCF

∫ 1

0

dz(1− z)N−1

∫

d4l

(2π)3
2PJ · ln2

(n · l+ iǫ)2(2PJ · l + λ2)

×δ(l2)δ

(

z − 2|l|
RPT

(1− cos θ)

)

Θ

(

r − |l| sin θ
PT

)

. (46)

The second term in Eq. (43) leads to

K(1)
e ⊗ Jq = g2sCF

∫

d4l

(2π)4
n̂ · PJ l

0Θ(r − θ)

(n · l + iǫ)(PJ · l − iǫ)
2πδ(l2)Jq(M

2
J − 2PJ · l, PT , ν

2, R), (47)

whose Mellin transformation gives
∫ 1

0

dx(1 − x)N−1K(1)
e ⊗ Jq = K̄(1)

e (N)J̄q(N,PT , ν
2, R), (48)

with the definition

K̄(1)
e (N) = g2sCF

∫ 1

0

dz(1− z)N−1

∫

d4l

(2π)3
n2l0Θ(r − θ)

(n · l+ iǫ)2
δ(l2)δ

(

z − 2|l|
RPT

(1− cos θ)

)

Θ

(

PT

2
− |l|

)

. (49)

Strictly speaking, the energy |l| of a real gluon cannot approach infinity, so the step function at the end of the above
expression has been introduced. Working out the above integration, we obtain

K̄(1)
e (N) =

αs

2π
CF

1

N

∫

d cos θ
n2

(n0 − nx cos θ)2
RPT

2(1− cos θ)

(

1− cosN θ
)

Θ(r − θ), (50)

which is down by 1 − cosN r and negligible in the small r region. This result is attributed to the suppression of the
second term in Eq. (43) by soft l. Hence, this piece will not be considered from now on.
The jet energy profiles are measured by summing over all jet invariant masses in experiments. Therefore, we

perform a corresponding analysis with the M2
J dependence being integrated out of the jet energy profiles, namely, by

considering only the N = 1 moment. A straightforward computation leads Eq. (46) to

K̄(1)
r (1) =

αs

2π
CF ln

ν2R2P 4
T r

2

λ4
, (51)

where the infrared regulator λ2 will be taken to be zero eventually, and ν2 is defined as in Eq. (4). Using the same
counterterm, Eqs. (15) and (51) are combined to form

K̄(1)(1) = K̄(1)
v + K̄(1)

r (1) =
αs

2π
CF ln

ν2P 2
T r

2C2
1

µ′2
+

αs

2π
CF ln

C2
2

C2
1

. (52)

which contains the large single logarithm ln r.
Solving the RG equation for the kernels,

µ′ d

dµ′
G = λK = −µ′ d

dµ′
K̄, (53)

we derive

K̄

(

νPT rC1

µ′
, αs(µ

′2)

)

+G

(

ν2C2RPT

µ′
, αs(µ

′2)

)

= K̄
(

1, αs

(

ν2P 2
T r

2C2
1

))

+G
(

1, αs

(

ν4C2
2R

2P 2
T

))

− 1

2

∫ C2

2
ν4P 2

T
R2

C2

1
ν2P 2

T
r2

dµ′2

µ′2
λK(αs(µ

′2)),

=
CF

2π
ln

C2
2

C2
1

αs

(

ν2P 2
T r

2C2
1

)

+
CF

2π
αs

(

ν4C2
2R

2P 2
T

)

− 1

2

∫ C2

2
ν4R2

C2

1
ν2r2

dω

ω
λK(αs(ωP

2
T )). (54)
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The light-quark jet energy function J̄E
q then obeys a differential equation similar to Eq. (9):

− n2

v · nvα
d

dnα
J̄E
q (1, PT , ν

2, R, r, µ2) = 2ν2
d

dν2
J̄E
q (1, PT , ν

2, R, r, µ2)

= 2

[

K̄

(

νPT rC1

µ′
, αs(µ

′2)

)

+G

(

ν2C2RPT

µ′
, αs(µ

′2)

)]

J̄E
q (1, PT , ν

2, R, r, µ2). (55)

A similar equation also holds for describing the energy profile of the gluon jet. As solving these equations, we choose
the factorization scale µ2 ∼ O(r2P 2

T /(R
2ν2)), so that the quark-loop contribution to the gluon jet energy profile can

be ignored, for the quark-loop contribution does not contain the large logarithm ln(R2/r2) with this choice of the
scale.
The strategy to solve the above equation is to evolve ν2 from the low value ν2 = ν2in ≡ C2

1r
2/(C2

2R
2) to the large

value ν2 = ν2fi ≡ 1, which correspond to the specific choices n = nin ≡ (1, (4C2
2 − r2C2

1 )/(4C
2
2 + r2C2

1 ), 0, 0) and
n = nfi ≡ (1, (4−R2)/(4 +R2), 0, 0), respectively. The solution of the above equation is given by

J̄E
q (1, PT , ν

2
fi, R, r) = J̄E

q (1, PT , ν
2
in, R, r) exp [Sq(R, r)] , (56)

with the Sudakov exponent

Sq(R, r) =

∫ C

Cν2

in

dy

y

[

CF

2π
ln

C2
2

C2
1

αs

(

yP 2
T r

2C2
1

)

+
CF

2π
αs

(

y2C2
2R

2P 2
T

)

− 1

2

∫ C2

2
y2R2

C2

1
yr2

dω

ω
λK(αs(ωP

2
T ))

]

,

=

∫ C

Cν2

in

dy

y

[

CF

π
αs

(

y2C2
2R

2P 2
T

)

(

1

2
+ ln

C2

C1

)

− 1

2

∫ y2

yν2

in

dω

ω
Aq(αs(ωC

2
2R

2P 2
T ))

]

, (57)

where the constant C will be fixed below. The Sudakov exponent Sg(R, r) for the gluon jet is obtained by substituting
the color factor CA for CF in the above expression. The resummation formulas are summarized as

J̄E
f (1, PT , ν

2
fi, R, r) = J̄E

f (1, PT , ν
2
in, R, r) exp [Sf (R, r)] , (58)

with the subscript f = q or g. The O(1) constants are chosen as C1 = C2 = 1 and C = exp(5/2) (C = exp(17/6)) in
order to reproduce the single logarithm αs ln r in the NLO light-quark (gluon) jet energy function. The initial condi-
tions J̄E

f (1, PT , ν
2
in, R, r) of the Sudakov evolution, in the absence of the large logarithms and with the factorization

scale µ ∼ O(PT ), are calculated up to NLO in Appendix D.
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FIG. 8: Resummation predictions for the energy profiles of the light-quark (solid curve) and gluon (dotted curve) jets with√
S = 7 TeV and 80 GeV < PT < 100 GeV.

Inserting the solutions in Eq. (58) into Eq. (1), the jet energy profile is written, in terms of the convolution with
the parton-level differential cross section, as

Ψ(r) =





∑

f

∫

dPT

PT

dσ̂f

dPT
J̄E
f (1, PT , ν

2
fi, R,R)





−1
∑

f

∫

dPT

PT

dσ̂f

dPT
J̄E
f (1, PT , ν

2
fi, R, r), (59)
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which respects the normalization Ψ(R) = 1, and vanishes as r → 0. Note that a jet energy profile, with N = 1,
is not sensitive to the nonperturbative contribution, so our predictions are free of the nonperturbative parameter
dependence, in contrast to the case of describing the jet invariant mass distribution, cf. Sec. II. We find that the
light-quark jet has a narrower energy profile than the gluon jet, as exhibited in Fig. 8 for

√
S = 7 TeV and the interval

80 GeV < PT < 100 GeV of the jet transverse momentum. The broader distribution of the gluon jet results from
stronger radiations caused by the larger color factor CA = 3, compared to CF = 4/3 for a light-quark jet.
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FIG. 9: Comparison of resummation predictions for the jet energy profiles with R = 0.7 to Tevatron CDF data in various PT

intervals. The NLO predictions denoted by the dotted curves are also displayed.

We then convolute the light-quark and gluon jet energy functions with the constituent cross sections of the LO
partonic subprocess and CTEQ6L PDFs [50] at certain collider energy. The predictions are directly compared with
experiment data, such as the Tevatron CDF data [26] using the midpoint jet algorithm [53], as shown in Fig. 9. The
band represents the theoretical uncertainty caused by the variation of the parameters from C1 = C2 = exp(γE) ≈ 1.78
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to C1 = C2 = exp(−γE) ≈ 0.56, which serves as an estimate of the subleading logarithmic effect that is not included in
our formula. It is evident that the resummation predictions agree well with the data in all PT intervals. Although there
is slight difference between the data and the central values of the resummation predictions, the deviation is within the

theoretical uncertainty. The NLO predictions derived from J̄
E(1)
f (1, PT , ν

2
fi, R, r) are also displayed for comparison,

which obviously overshoot the data. The resummation predictions for the jet energy profiles are compared with
the LHC CMS data at 7 TeV [37] from the anti-kt jet algorithm [54] in Fig. 10, which are also consistent with the
data in various PT intervals. Since we can separate the contributions from the light-quark jet and the gluon jet,
the comparison with the CDF and CMS data implies that high-energy (low-energy) jets are mainly composed of
the light-quark (gluon) jets. It indicates that our resummation formula has captured the dominant dynamics in a jet
energy profile. Hence, a precise measurement of the jet energy profile as a function of jet transverse momentum can be
used to experimentally test the production mechanism of jets in association with other particles, such as electroweak
gauge bosons, top quarks and Higgs bosons.
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FIG. 10: Resummation predictions for the jet energy profiles with R = 0.7 compared to LHC CMS data in various PT intervals.
The NLO predictions denoted by the dotted curves are also displayed.

A careful look at Figs. 9 and 10 reveals that the resummation predictions fall a bit below the data, as the jet
transverse momentum PT increases. One of the reasons for this deviation may be traced back to the kinematic
constraint for the real soft gluon emitted from the special vertex in Eq. (44). This constraint will include too much
radiation outside the inner jet cone r into the estimate of the energy profile, especially when the jet axis of the rest of
particles moves toward the edge of the inner jet cone. The extra radiation can be regarded as a power correction to
the energy profile in the small r region, because its effect is proportional to r. Since more radiation will be included
as r increases, the energy profile at large r has been overestimated in our formalism. The energy profile is normalized
to unity at r = R, so the overestimate actually causes suppression of the distribution at small r, explaining the little
falloff of the resummation predictions in comparison with the data. When PT grows, the power correction in the small
r region is strengthened due to the narrowness of the jet, explaining why the deviation becomes more obvious at high
PT . The above reasoning suggests a more restricted phase space for the real soft gluon in order to reduce the power
correction and to improve the consistency between the predictions and the data. This subject will be investigated
in a future work. Besides, we note that the effects from hadronization and underlying events on jet energy profiles
have been estimated by using the PYTHIA code and removed from the published Tevatron CDF data [26]. On the
contrary, these effects have not been removed in the published LHC CMS data [37].

V. CONCLUSION

We have developed a theoretical framework for studying jet physics based on the QCD resummation technique in
this paper. The evolution equations for a light-quark jet function and for a gluon jet function have been derived and
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numerically solved in the Mellin (N) space. The inverse Mellin transformation from the N space to the jet mass
space was performed, which demands the inclusion of the nonperturbative contribution in the large N region, in order
to avoid the Landau pole, and to phenomenologically parameterize the effects from hadronization and underlying
events. It has been observed that the nonperturbative contribution is crucial for describing the jet mass distribution
in the low invariant mass region. The needed nonperturbative parameters were determined by fits of the resummation
formula including the nonperturbative contribution to the PYTHIA predictions for the light-quark and gluon jet
distributions at certain jet momentum and cone size, which were then employed to make predictions for other kinematic
configurations. The above complete resummation formula, convoluted with the LO partonic hard scattering matrix
elements and PDFs, have led to the jet mass distributions in good agreement with the Tevatron CDF data at different
jet momenta and cone sizes. Our solutions for the light-particle jet functions are ready to be implemented into
factorization formulas for jet production cross sections from various processes.
We have also derived the evolution equations for the light-quark and gluon jet energy functions. With the jet

invariant mass being integrated out, the evolution equations can be straightforwardly solved in the Mellin space.
The energy profiles were then predicted by convoluting the solutions with LO partonic hard scattering and PDFs.
It has been checked that the resummation results for the energy profiles associated with a light-quark jet and a
gluon jet agree with the PYTHIA simulations. We have demonstrated that the resummation predictions for the jet
energy profiles are consistent with the Tevatron CDF data and the LHC CMS data within the theoretical uncertainty,
while the NLO predictions overshoot the data. It should be emphasized that our formula for this jet substructure is
insensitive to the nonperturbative contribution, and does not involve tunable parameters. Hence, the agreement with
the data is a highly nontrivial success of the perturbative QCD theory. Besides, an improvement to reduce the power
corrections to the predicted energy profiles can be done and will be investigated in a forthcoming paper.
Since final states observed in experiments are usually composed of quark and gluon jets, jet substructures are

sensitive to the ratios between quark and gluon contributions in a given kinematic region. It is also known that
the components of the quark and gluon jets are related to the initial-state PDFs. For example, the quark (gluon)
jet component can be related to the initial-state gluon (quark) PDF in the W boson and jet associated production.
By analyzing the ratio between the quark and gluon contributions to jet substructures, we may extract additional
information on the PDFs, especially on the gluon PDF in the small x region. On the other hand, new physics beyond
the SM introduces more hard subprocesses, which may contribute differently to quark and gluon productions in final
states. Therefore, a jet substructure, e.g., the jet energy profile, can be used to search indirectly for new physics in
the region, where PDFs are relatively stable, when both theoretical predictions and experiment data become precise
enough.
At last, we reiterate that our framework is ready for the extension to the study of heavy-particle jets produced

at the LHC, which contain energetic light decay products. For instance, a boosted top quark at the TeV scale will
appear as an energetic jet, when it decays through its hadronic modes. Likewise, a boosted W , Z, or Higgs boson
decaying into jet modes at the TeV scale will also appear as an energetic jet. The heavy-particle jet function and
energy profile can be defined at a high energy scale in a similar way in the factorization theorem as presented in this
work. The additional ingredient is the factorization of the light final states from the heavy-particle jet at the lower
heavy-particle mass scale, for which the conventional heavy-quark expansion can be implemented. The solutions for
the light-particle jet functions and energy profiles established in this work will serve as the inputs of this factorization
formula for the heavy-particle jet. The above illustrations manifest potential and broad applications of our formalism
to jet physics.
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Appendix A: NLO JET FUNCTIONS

In this Appendix we calculate the NLO light-quark and gluon jet functions by expanding Eq. (2) to O(αs), and
demonstrate the cancellation of infrared divergences between the virtual and real corrections in the Mellin space.
After regularizing the UV divergence in the MS scheme, the NLO virtual correction to the light-quark and gluon jet
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functions are given by

J (1)V
q =

αs(µ
2)CF

π

[

−1

2
ln2

4P 2
T (1− nx)

λ2(1 + nx)
+

3

4
ln

4P 2
T (1− nx)

λ2(1 + nx)

+
1

4
ln

µ2

R2P 2
T

+
1

2
γE − π2

3
− 9

8

]

δ(M2
J), (A1)

J (1)V
g =

αs(µ
2)CA

π

[

−1

2
ln2

4P 2
T (1− nx)

λ2(1 + nx)
+
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12
ln

4P 2
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λ2(1 + nx)

+
5

12

(

ln
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R2P 2
T

− γE

)

− π2

3
+

1

2
(ln 2− 3) +

1

36

]

δ(M2
J), (A2)

respectively, where λ2 is an infrared regulator, and the Wilson line direction has been chosen as n = (1, nx, 0, 0) for
convenience. The quark-loop contributions to the gluon jet function will be elaborated at the end of this Appendix.
The explicit expressions for the NLO real corrections to the light-quark and gluon jet functions are written as

J (1)R
q =

αs(µ
2)CFβ(1 + β)

8πM2
J(β − nx)2

{

(β − cosR)(β − nx)[β(2nx − 1) + nx − 2]

1− β cosR

+(1 + β)2(1− nx)
2 ln

(1 + β2)(1 + nx cosR)− 2β(nx + cosR)

(1− β2)(1 − cosRnx)

}

, (A3)

J (1)R
g =

αs(µ
2)CAβ(1 + β)2

96πM2
J(β − nx)3

{

(β − cosR)(β − nx)

(β cosR− 1)3

×[β(β3 − 3β + 18 + 4(β2 − 9β − 3) cosR+ (7 + 18β − 3β2)β cos2 R)

+n2
x(7β

2 + 18β − 3− 4β(3β2 + 9β − 1) cosR+ (6β4 + 18β3 − 3β2 + 1) cos2 R)

−2βnx((9β
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+3(1 + β)3(1− nx)
3 ln

(1 + β2)(1 + cosRnx)− 2β(cosR+ nx)

(1− β2)(1− nx cosR)

}

, (A4)

respectively, where the polar angle of the radiated particle momentum has been constrained to be within the cone
size R. In the MJ → 0 limit and without restricting the phase space of the soft radiation, i.e., with R → π, the large
logarithms in the above expressions are collected into

J (1)R,asym
q =

αs(µ
2)CF

πM2
J

[

ln
4(1− nx)P

2
T

(1 + nx)M2
J
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]

, (A5)

J (1)R,asym
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2)CA

πM2
J

[

ln
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J

− 11

12

]

. (A6)

This isolation of the R-independent soft contributions at NLO has followed the treatment of the evolution kernel from
the real soft gluon emission in Eq. (20).
Combining the NLO real and virtual corrections to the light-quark jet function in the Mellin space, we arrive at an

infrared finite expression

∫ 1

0
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in which the infrared regulator λ2 has disappeared. Those N -dependent terms suppressed by 1/N̄ have been dropped,
whose effect is expected to be minor. Similarly, the NLO gluon jet function is given, in the Mellin space, by
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Applying the derivative ν2d/dν2 in Eq. (27) to the above expressions, it is easy to see that the double logarithms
reduce to single logarithms, which contribute to the kernel G + K in Eq. (9). Since the double logarithms are µ′-
independent, G+K is µ′-independent, and satisfies the RG equations in Eq. (23). Choosing the renormalization scale
µ2 = C′2

3 R2P 2
T /(N̄ν2), the above NLO jet functions become
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The choice of µ depends on ν2 in the way that we have µ ∼ O(RPT ) as ν2 = ν2in ≡ C1/(C2N̄) for the initial
conditions, which then do not contain the large logarithms ln N̄ . The NLO initial conditions of the Sudakov evolution
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are derived from Eqs. (A9) and (A10), respectively, with C2
3 = C′2

3 C2/C1. The original definitions of the jet functions
in Eq. (2) involve the Wilson links on the light cone along the vector ξ. Setting ν2 = ν2fi ≡ 1, Eqs. (A9) and (A10)
reproduce the ln N̄ terms in these original definitions at NLO, leading to the final conditions

∫ 1

0

dx(1 − x)N−1(J (1)V
q + J (1)R,asym

q )final

=
CF

πR2P 2
T

αs

(

C2
3C1R

2P 2
T

C2N̄

)[

−1

2
ln2 N̄ +

1

2
ln N̄ +

1

4
ln

C2
3C1

C2
+

1

2
γE − π2

4
− 9

8

]

, (A13)

∫ 1

0

dx(1 − x)N−1(J (1)V
g + J (1)R,asym

g )final

=
CA

πR2P 2
T

αs

(

C2
3C1R

2P 2
T

C2N̄

)[

−1

2
ln2 N̄ +

1

2
ln N̄ +

5

12
ln

C2
3C1

C2
− 5

12
γE − π2

4
+

1

2
(ln 2− 3) +

1

36

]

. (A14)

It is seen that as the integration variable ν2 in Eq. (27) varies from ν2in to ν2fi, the scale µ2 varies from O(R2P 2
T ) to

O(R2P 2
T /N̄). The latter describes the soft and collinear radiations in the jet mass distribution appropriately, because

they mainly occur at a lower scale.
The NLO terms in the expansion of the Sudakov exponent contain

exp[Sf (N)]|αs
=

Cf

π
αs

(

−1

2
ln2 N̄ +

1

2
ln N̄ +

1

2
ln

C2

C1
+

1

2
ln2

C2

C1

)

, (A15)

where Cf = CF or CA, for Sq or Sg, respectively. Combining the above expansion with Eqs. (A11) and (A12), it is
straightforward to show that the resummed jet functions in Eqs. (37) and (38) indeed agree with the final conditions in
Eqs. (A13) and (A14) at NLO, respectively. That is, our resummation formalism is matched to the NLO jet functions
with µ2 ∼ O(R2P 2

T /N̄), implying that the single logarithm introduced by our choice of µ2 has been also summed into
the Sudakov factor. The all-order summation of this single logarithm corresponds to the RG evolution in µ2 from
µ2 = C2

3R
2P 2

T to µ2 = (C2
3C1R

2P 2
T )/(C2N̄).
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FIG. 11: Contour for the integration variable y in Eqs. (31) and (33).

At last, we discuss the treatment of the virtual and real quark-loop contributions to the gluon jet function

J
(1)V
g→qq̄ = −αs(µ

2)nfCF

3π

(

ln
µ2

λ2
− 1

3

)

δ(M2
J), (A16)

J
(1)R
g→qq̄ =

αs(µ
2)nfCFβ

3(1 + β)2(β − cosR)

48πM2
J(1− β cosR)3

[

β2(1 + 3 cos2 R)− 8β cosR+ 3 + cos2 R
]

, (A17)

respectively. In the MJ → 0 and R → π limits, Eq. (A17) gives

J
(1)R,asym
g→qq̄ =

αs(µ
2)nfCF

3πM2
J

, (A18)

and the infrared finite expression

∫ 1

0

dx(1 − x)N−1(J
(1)V
g→qq̄ + J

(1)R,asym
g→qq̄ ) = −αs(µ

2)nfCF

3πR2P 2
T

(

ln N̄ − 1

3
+ ln

µ2

R2P 2
T

)

. (A19)

With our choice of µ2, the final condition from the quark-loop contributions is written as

∫ 1

0

dx(1 − x)N−1(J
(1)V
g→qq̄ + J

(1)R,asym
g→qq̄ )final =

nfCF

3πR2P 2
T

αs

(

C2
3C1R

2P 2
T

C2N̄

)(

1

3
− ln

C1C
2
3

C2

)

, (A20)

which has been added into Eq. (38). The absence of the logarithm ln N̄ implies that the quark-loop contribution is
not important, as verified in the numerical analysis.
The initial conditions of the jet functions, namely, the prefactors of Sf in Eqs. (34) and (35) are evaluated at the hard

scale µ ∼ O(RPT ). After applying the inverse Mellin transformation to obtain the jet functions J
NLL/NLO
f (M2

J , PT , R),

which is inserted into Eq. (41) to obtain theoretical predictions, the hard scale µ ∼ O(RPT ) remains. Since J
(1)V
f +

J
(1)R,asym
f was organized in the resummation formalism, the regular piece J

(1)R
f − J

(1)R,asym
f has to be added back in

order to reproduce the complete NLO corrections to the jet functions. This piece is also evaluated at the hard scale

µ ∼ O(RPT ) in Eq. (40). Similarly, the regular piece of the quark-loop contribution, J
(1)R
g→qq̄ − J

(1)R,asym
g→qq̄ , should be

included too, which has been combined into J
(1)R
g − J

(1)R,asym
g on the right-hand side of Eq. (40).

Appendix B: INVERSE MELLIN TRANSFORMATION

Because the evolution equations were solved in the Mellin space, we need to perform the inverse Mellin transfor-
mation to get the solutions in the space of the jet invariant mass. As stated in Sec. III, the argument µ2 of αs(µ

2)
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in the Sudakov integrals should be treated as a complex number in the inverse Mellin transformation. Besides, the
argument becomes very small (lower than the QCD scale ΛQCD) in the large N region, and the running coupling
constant suffers the Landau pole problem [43, 55]. To avoid the Landau pole, we introduce a critical scale µc, below
which the running coupling constant is frozen to a constant value αs(µ

2
c). To be precise, the following prescription is

proposed

αs(µ
2) =

{

αs(µ
2
c exp[2Arg(µ)]), |µ| < µc

αs(µ
2), |µ| > µc

. (B1)

We have adopted the perturbative expansion of αs in the numerical analysis

αs(Q
2) =

αs(µ
2)

X

{

1− αs(µ
2)

2π

β1

β0

lnX

X

}

, (B2)

with

X = 1 +
αs(µ

2)

4π
β0 ln

Q2

µ2
,

β0 = 11− 2

3
nf , β1 = 51− 19

3
nf . (B3)

The variable N , appearing in the lower bound of y in Eqs. (31) and (33), should be also treated as a complex
number in the inverse Mellin transformation. The contour in the complex y plane is depicted in Fig. 11, according to
which an integral over y is handled in the following way,

∫ C2

C1/N̄

dyF (y) =

∫ C2

C1/|N̄|

dy1F (y1) +

∫ C1/|N̄ |

C1/N̄

dy2F (y2),

=

∫ 1

0

(C2 − C1/|N̄ |)dt F (y1)−
∫ 1

0

y2iArg(1/N̄)dt F (y2), (B4)

with the variable changes y1 ≡ C1/|N̄ |+ (C2 − C1/|N̄ |)t and y2 ≡ C1/|N̄ | exp(iArg(1/N̄)(1− t)).

FIG. 12: Conventional contour of N adopted in inverse Mellin transformation.

FIG. 13: Contour of N adopted in our inverse Mellin transformation.
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The inverse Mellin transformation for the jet function is defined as

J(M2
J , PT , ν

2
fi, R, µ2) =

1

2πi

∫

C

dN(1 − x)−N J̄(N,PT , ν
2
fi, R, µ2), (B5)

with C labelling a contour of N . The conventional contour of N shown in Fig. 12 is not suitable for a numerical
approach using a grid file, since different jet masses require different parameterizations of this contour in order to get
enough information in the large N region. Instead, we choose the contour depicted in Fig. 13. The inverse Mellin
transformation along the upper-half part of this contour is written as

1

2πi

∫

C

dN(1− x)−NF (N) =
1

2πi

∫ π−ǫ/c

0

N1idφ(1 − x)−N1F (N1 ≡ ceiφ)

+
1

2πi

∫ −∞+iǫ

c+iǫ

dN2(1− x)−N2F (N2),

=
1

2πi

∫ 1

0

N1i(π − ǫ/c)dt(1− x)−N1F [N1 ≡ c exp(i(π − ǫ/c)t)]

+
1

2πi

∫ 1

0

L
−1

(1− t)2
dt(1 − x)−N2F

[

N2 ≡ −c+ iǫ+ L
−t

1− t

]

. (B6)

The expression associated with the lower-half contour can be obtained by taking the complex conjugate of Eq. (B6).
The parameters involved in the integral variables N1 and N2 are set to c = 5, L = 10, and ǫ = 10−6 in our numerical
analysis.

Appendix C: NLO JET ENERGY PROFILES

In this Appendix we calculate the NLO light-quark and gluon jet energy functions defined in Eq. (42). Due to their
lengthy expressions, we focus only on the logarithmic terms below. The NLO virtual corrections with the factorization
scale µ = PT and the real corrections to the Mellin-transformed jet energy functions are given by

J̄E(1),V
q =

CFαs

πPT

[

−1

2
ln2

4P 2
T (1 − nx)

λ2(1 + nx)
+

3

4
ln

4P 2
T (1 − nx)

λ2(1 + nx)

]

, (C1)

J̄E(1),V
g =

CAαs

πPT

[

−1

2
ln2

4P 2
T (1− nx)

λ2(1 + nx)
+

11

12
ln

4P 2
T (1− nx)

λ2(1 + nx)

]

, (C2)

and

J̄E(1),R
q =

CFαs

πPT

[

1

2
ln2

λ2

P 2
T

−
(

ln
4(1− nx)

(1 + nx)r2
− 3

4

)

ln
λ2

P 2
T

+
1

4
ln2

4(1− nx)

(1 + nx)
− 3

2
ln

4(1− nx)

(1 + nx)
− 1

4
ln2 r2 +

1

2
ln r2 ln

4(1− nx)

(1 + nx)
+

3

4
ln r2

]

. (C3)

J̄E(1),R
g =

CAαs

πPT

[

1

2
ln2

λ2

P 2
T

−
(

ln
4(1− nx)

(1 + nx)r2
− 11

12

)

ln
λ2

P 2
T

+
1

4
ln2

4(1− nx)

(1 + nx)
− 11

6
ln

4(1− nx)

(1 + nx)
− 1

4
ln2 r2 +

1

2
ln r2 ln

4(1− nx)

(1 + nx)
+

11

12
ln r2

]

, (C4)

respectively. Combining the virtual and real corrections, we derive the infrared finite NLO expressions

J̄E(1),V
q + J̄E(1),R

q =
αsCF

PTπ

[

−1

4
ln2 4(1− nx)

r2(1 + nx)
− 3

4
ln

4(1− nx)

r2(1 + nx)

]

, (C5)

J̄E(1),V
g + J̄E(1),R

g =
αsCA

PTπ

[

−1

4
ln2

4(1− nx)

r2(1 + nx)
− 11

12
ln

4(1− nx)

r2(1 + nx)

]

, (C6)

in the r → 0 limit, where the infrared regulator λ2 has disappeared.
The singular NLO terms of the resumed jet energy functions in Eq. (56) are given by

J̄
E(1)
f (1, PT , ν

2
fi, R, r) =

Cfαs

πPT

[

−1

4
ln2

R2

r2
+

1

2
(1− lnC) ln

R2

r2
+

1

4
ln2

C2
1

C2
2

− 1

2
(1− lnC) ln

C2
1

C2
2

]

. (C7)
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Substituting the vector nfi ≡ (1, (4 − R2)/(4 + R2), 0, 0) for n in Eqs. (C5) and (C6) to obtain the final con-
ditions, and choosing the O(1) constant C = exp(5/2) (C = exp(17/6)) for the light-quark (gluon) jet in
Eq. (C7), we observe the consistency between Eqs. (C5) and (C6), and Eq. (C7). That is, the resummation for-
mula in Eq. (56) has collected the important logarithms in the NLO jet energy functions. The complete expres-
sions for the NLO initial conditions corresponding to the choice nin = (1, (4C2

2 − r2C2
1 )/(4C

2
2 + r2C2

1 ), 0, 0), and
their convolution formulas with the LO partonic subprocesses and PDFs, can be downloaded from the web site
http://hep.pa.msu.edu/people/yuan/public codes/JETENPRO/code energy convolute public.zip.
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