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When high-energy single-hadron production takes place inside an identified jet, there are impor-
tant correlations between the fragmentation and phase-space cuts. For example, when one-hadron
yields are measured in on-resonance B-factory data, a cut on the thrust event shape T is required to
remove the large b-quark contribution. This leads to a dijet final state restriction for the light-quark
fragmentation process. Here we complete our analysis of unpolarized fragmentation of (light) quarks
and gluons to a light hadron h with energy fraction z in e+e− → dijet + h at the center-of-mass
energy Q = 10.58 GeV. In addition to the next-to-next-to-leading order resummation of logarithms
of 1−T , we include the next-to-leading order (NLO) nonsingular O(1−T ) contribution to the cross
section, the resummation of threshold logarithms of 1− z, and the leading nonperturbative contri-
bution to the soft function. Our results for the correlations between fragmentation and the thrust
cut are presented in a way that can be directly tested against B-factory data. These correlations
are also observed in Pythia, but are surprisingly smaller at NLO.

I. INTRODUCTION

Hard QCD interactions give rise to highly virtual partons that evolve by emitting radiation, until they hadronize
into the nonperturbative states we observe. The QCD process underlying hadron “fragmentation” has not been as well
quantified as jet production or deep-inelastic scattering (DIS), making this an active area of research. Understanding
parton fragmentation clearly extends the set of reactions that can be handled within a perturbative QCD approach.
Applications include, for example, the investigation of the spin structure of the nucleon in semi-inclusive DIS [1, 2]
and the study of hadron production at high pT in pp collisions [3, 4] which is crucial to determine more accurately
the relative suppression of hadron spectra (jet quenching) seen in heavy-ion collisions. In general, for many such
applications additional cuts on the hadronic final state may be required to reduce the background from other processes
and to help identify underlying partonic structures (see e.g. refs. [5, 6]).

A key observation is that the fragmentation process involves physics at well-separated energy scales. It has been
shown that high-energy processes with an observed hadron in the final state can be described by factorizing the
short-distance (partonic) physics associated with the hard scale Q, which is perturbatively calculable in QCD, from
(universal) nonperturbative long-distance contributions, see e.g. ref. [7]. At leading power in ΛQCD/Q, the (unpolar-
ized) fragmentation functions (FFs) Dh

i (z, µ) [8, 9] encode the information on the nonperturbative transition from
an energetic parton i = {g, u, ū, d, . . . } to a hadron h, which carries a fraction z of its energy 1, plus a remainder
X. The knowledge of both perturbative and nonperturbative ingredients in factorization theorems is crucial to ob-
tain theoretical predictions. Unpolarized FFs, for example, serve as an input to extract the flavor separated helicity
distributions from spin asymmetries observed in polarized semi-inclusive processes [10, 11].

Parameterizations for the spin-averaged FFs have been constrained by fitting to data for single-inclusive charged
hadron production in e+e− at next-to-leading order (NLO) in perturbation theory [12–14]. More recently, global
analyses have been performed to incorporate also semi-inclusive deep-inelastic scattering and/or pp, pp̄ data from

HERA, RHIC and the Tevatron [15–17]. To illustrate the current level of accuracy, the dominant Dπ+

u (z, µ = mZ) is
determined with uncertainties at the 10% level for z & 0.5 [14]. The FFs of the gluon and the non-valence quarks are
known even less accurately.

The inclusion of high-statistics B-factory data in fragmentation function analyses will significantly improve the
precision with which these are extracted. Most of the e+e− data is so far at Q = mZ and phenomenological input at a
different scale will give access to the gluon FF via mixing with the quark FFs in the renormalization group evolution.
The Belle collaboration has very recently analyzed hadron multiplicities in off-resonance data [18], which can be used

1 Due to perturbative radiation, the momentum fraction in the fragmentation function is not the same as the experimentally measured
one beyond the leading order [see e.g. eq. (2)].
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FIG. 1: Correlations between the thrust cut τ ≤ τ c and the observed momentum fraction z in the cross section of e+e− →
dijet + π+ for Q = 10.58 GeV. Curves and bands are plotted relative to the case τ c = 0.2. A cut on thrust changes the shape
in z. Left panel: our NNLL+NLO results with perturbative uncertainty bands. The result at NLO (dotted lines) contains

negligible τ c-z correlations. As input we use the HKNS fragmentation functions Dπ+

i [14] at NLO. Right panel: the same
observable using Pythia.

to extract fragmentation functions. If on-resonance data were also analyzed, a cut on thrust T would be needed to
remove the large b-quark background. This was carried out in ref. [19] for the Collins effect and has been considered
to study unpolarized fragmentation as well [20]. The thrust event shape variable is defined as [21]

T = max t̂

∑
i |t̂·~pi|∑
i |~pi|

, (1)

where the sum is over all final-state particles. More precisely, it is found that a thrust cut of τ = 1−T < 0.2 removes
98% of the B data leaving the thrust distribution dominated by the fragmentation of light (u, d, s) and charmed
quark pairs [19]. With this cut the hadronic final state is given by back-to-back jets.

In refs. [22–25] we developed the theoretical framework to study the fragmentation of a light parton into a light
hadron h inside an identified jet. With “identified” we refer to jets determined either through an event shape like
thrust [22, 23] or via a jet algorithm [6, 25]. Our analysis provides the theoretical tools for a more exclusive study of
fragmentation than is currently done, which is suitable for processes where additional cuts on the hadronic final states
are imposed, such as the Belle proposal in ref. [19]. We focus on the spin-averaged case since our main purpose here
is to provide the tools for a straightforward test of our framework against high-statistics on-resonance B-factory data.
We expect that a generalization of our formalism to study the azimuthal asymmetric distribution of hadrons inside an
identified high energy jet can lead to interesting applications in the context of spin-dependent fragmentation [26–28].

Our framework allows us to calculate the non-trivial correlations between the thrust cut τ c and the energy fraction
z in the observed cross section for e+e− → dijet +h. Due to these correlations, the thrust cut modifies the shape in z.
As already shown in the preliminary study of ref. [23], where we resummed the logarithms αns lnm τ to next-to-next-
to-leading logarithmic accuracy (NNLL), the effect is expected to be sizable and important for the analysis of data
on the Υ(4S). Here we improve our study in ref. [23] by including the NLO nonsingular contribution to the cross
section, the resummation of threshold logarithms of 1 − z and the leading nonperturbative correction to the thrust
soft function, which are discussed in sec. II.

The correlations we obtain from our new analysis are shown in the left panel of fig. 1 for various thrust cuts τ c,
including the theoretical (perturbative) uncertainties. As can be seen there, the effect of the thrust cut τ c is much
stronger in the small z region than in the large z region. This has a straightforward physical explanation: for larger
values of z, most of the jet energy is carried by the observed hadron, causing the jet to be more collimated and
less affected by the thrust cut. In particular, for z ≥ 1 − τ c, the cross section is unaffected by the thrust cut. On
comparison with the right panel, we see that the effect we find is fully compatible with the outcome of the Pythia
event generator [29, 30] based on LL parton showering and the Lund string fragmentation model 2. We stress that the
plot in the left panel has been obtained from our purely perturbative calculation, taking only the phenomenological

2 The results for other light hadrons, like the proton, are very similar to the ones shown here for π+.
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FIG. 2: A schematic of the various subprocesses in e+e− → dijet + h: The (green) vertex denotes the hard interaction H, the
(blue) jets are described by J and Jij (the latter for the jet in which the hadron is observed), the fragmentation j → h is
described by the fragmentation function Dh

j and the effects of the (orange) soft radiation are contained in S.

parameterization of the universal Dπ+

i in ref. [14] as input. There we also show the correlations that we obtain at NLO
(dotted curves), which are much smaller. Presumably, the single additional emission at NLO is insufficient to reliably
describe this doubly-differential cross section, compared to the multiple emissions in our resummed calculation and
in Pythia.

The paper is organized as follows. In sec. II we briefly review our theoretical framework, where we describe the
updates of our analysis compared to our previous work in ref. [23]. In sec. III we discuss the features of the z-spectrum
and τ -spectrum and illustrate the effect of the different ingredients of our calculation. In sec. IV we propose a first
quantitative analysis of correlations between z and τ c which can be straightforwardly tested on Belle data. All the
necessary theoretical input for this moment-space analysis is collected in app. C. App. A contains the details of
the calculation of the NLO nonsingular contribution to the cross section. A detailed discussion of our choice of
renormalization scales, as well as the scale variations used to estimate the perturbative uncertainties, is given in
app. B.

II. CALCULATING CORRELATIONS BETWEEN THRUST AND z IN e+e− → dijet + h

We focus on the case of spin-averaged fragmentation in e+e− → dijet +h where one restricts to the dijet limit by a
cut on thrust. Starting from the well-known factorization theorem for the inclusive measurement of thrust [31–34], in
refs. [22, 23] we obtained a factorization theorem for the observed cross section at leading power in ΛQCD/Q, which
has this form:

dσh

dz
(τ c) =

∫ τc

0

dτ
d2σh

dτ dz
=

∑
j=g, u, ū, d...

∫ 1

z

dx

x
Dh
j (x, µ) Cj

(
τ c,

z

x
,Q2, µ

)
, (2)

where Q is the center-of-mass energy. The Dh
j (x) denote the standard, unpolarized fragmentation functions, which

describe the hadronization j → h(x) at leading power. The index j runs over all parton flavors, including the gluon.
The coefficients Cj are calculable in perturbation theory and contain double logarithms of τ c, αns lnm τ c (m ≤ 2n),
and “threshold” logarithms of 1 − z. Our setup enables us to resum all these large logarithms in the dijet region of
the thrust distribution. This is necessary to achieve perturbative convergence with small uncertainties in Cj when
τ c . 0.2 and when z & 0.5, as we will show in sec. III. The scale µ in eq. (2) is arbitrary, but must be chosen to be
the same in Cj and Dh

j .
We obtained the expression for Cj by exploiting factorization in the framework of soft-collinear effective theory [35–

38]. The underlying idea is that dynamics at well-separated scales combine incoherently, allowing one to factorize their
contributions to the cross section. In the dijet region, the relevant subprocesses are illustrated in fig. 2. Specifically,
we distinguish the scale Q for the hard collision e+e− → qq̄, the scale

√
τ cQ for the jet production (showering), the

scale τ cQ associated with the soft radiation between the jets, and the scale ΛQCD at which hadronization takes place.
The coefficients Cj(τ

c, Q2, x/z, µ) are given by the convolution of functions encoding the effects at these different
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perturbative scales plus a nonsingular piece which contains contributions that do not factor in this way. In detail,

Cj

(
τ c, Q2,

x

z
, µ
)

=
∑
q

σq0
2(2π)3

H(Q2, µ)

∫ τc

0

dτ

∫
dsa dsb

[
Jqj
(
sa,

z

x
, µ
)
Jq̄(sb, µ) + Jq(sa, µ)Jq̄j

(
sb,

z

x
, µ
)]

×QSτ
(
Qτ − sa + sb

Q
,µ
){

1 +O
[ Λ2

QCD

(1− z)τ cQ2
,
(ΛQCD

τ cQ

)2]}
+ Cns

j

(
τ c, Q2,

x

z
, µ
)
. (3)

Here σq0 is the tree-level cross section for the electroweak process e+e− → (γ , Z) → qq̄, which depends on the quark
flavor. H is the hard function that encodes virtual corrections to the production of the qq̄ pair at the hard scale
µH ' Q. It is given by the square of the Wilson coefficient in the matching of the quark current from QCD onto
SCET:

H(Q2, µH) =

∣∣∣∣1 +
αs(µH)CF

4π

[
− ln2

(−Q2 − i0

µ2
H

)
+ 3 ln

(−Q2 − i0

µ2
H

)
− 8 +

π2

6

]∣∣∣∣ 2 . (4)

In order to improve convergence, we resum the large π2-terms that arise here by taking µH = −iQ [39–42].
The collinear contributions to the invariant masses of the jets are denoted by sa and sb, and combine with the

contribution from soft radiation to give the thrust τ . This leads to the convolution in eq. (3). The perturbative
coefficients Jij describe the emissions from the parent parton building up the jet within which the hadron h fragments.
The invariant mass distribution of the jet in the hemisphere opposite to h is described by the (perturbative) inclusive
jet function Jj . Both functions are characterized by the scale µJ '

√
τQ. Since it is not known whether the observed

hadron h fragmented from the quark or the antiquark jet, in eq. (3) we sum over both possibilities. The soft function
Sτ describes the contribution to thrust due to soft parton emissions. It is defined through the vacuum matrix element
of eikonal Wilson lines and the corresponding soft scale is µS ' τQ.

In ref. [23] we calculated the quark and gluon Jij ’s at one loop (the results are partly contained also in ref. [43]) and
this enabled us to analyze the cross section in eq. (2) up to NNLL since H and Jj are already known in the literature
to the relevant accuracy. The Jij ’s contain plus distributions in si/µ

2
J , which lead to double logarithms after the

integral over si. As pointed out in ref. [25] the threshold logarithms in 1− z appearing in Jij can simultaneously be
resummed through an appropriate choice of µJ .

Finally, the coefficient Cns
j contains the terms of the NLO cross section that are not enhanced by logarithms of

τ , and is O(τ) suppressed. The calculation of the nonsingular contribution to d2σh/(dτ dz) at NLO is discussed
in detail in app. A and its numerical effects are shown in sec. III. Lastly, we stress that since fragmentation takes
place inside a (hemisphere) jet of invariant mass of order τ cQ2, the momentum fraction z cannot be too small, to
avoid contributions from soft hadrons that are not to be associated with the jet, which originates from an energetic
(anti)quark. The hadron momentum must therefore be larger than the soft scale, implying z & τ c.

As we just discussed, the factorization in eq. (3) enables the resummation of logarithms of τ and 1− z, as well as
large π2-terms in H, which is accomplished by evaluating H, Jij , Jj and Sτ at their natural scales and using their
respective RGEs to evolve them to a common scale µ. We have made improvements in our choice of scales compared
to our earlier work in ref. [23]. Specifically, we resum threshold logarithms and take the kinematic upper bound
τ ≤ 1− z into account. A detailed discussion of our choice for the running scales is contained in app. B.

We now comment on the various corrections in eq. (3). There are corrections of order Λ2
QCD/[(1−z)τ cQ2] associated

with the Jij ’s. These coefficients describe the emissions from the parent parton (here a quark) at large virtualities
building up the jet in which the hadron is identified. The associated corrections get sizable if the jet invariant mass
gets small. In our plots in sec. III we have included the leading nonperturbative contribution to Sτ , according to
the analysis in ref. [44], which pushes the nonperturbative corrections to the soft function to order Λ2

QCD/(τ
cQ)2, as

indicated in eq. (3). These nonperturbative corrections become large for small τ c, up to about 15% for τ c = 0.15. We
therefore need τ c to be not too small.

Quark and hadron masses are treated as negligible in our calculation, and we briefly comment on the size of the
corresponding kinematic corrections. The corrections due to the hadron mass mh are of order m2

h/(z
2Q2) [45]. For

light hadrons, like pions and kaons, they are indeed negligible in the region where our framework can be applied. In
the plots of sec. III, we restrict q in eq. (3) to be u, d, s. The correction due to the charm mass is expected to be
of order m2

c/(τ
cQ2) when charm is a valence quark, which is less significant than the other corrections to eq. (3).

If the hadron h does not contain a charm valence quark, the only contribution to eq. (2) that does not get further
suppressed by the smallness of the corresponding FF, is the one involving Dh

g .
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FIG. 3: The effect of the thrust cut in e+e− → dijet + π+ for Q = 10.58 GeV and z = 0.5 at LO, NLO and NNLL+NLO. The
curves are normalized at τ c = 0.5. The bands show the perturbative uncertainties obtained from scale variations discussed in
app. B.

III. NUMERICAL ANALYSIS FOR e+e− → dijet + π+

Here we illustrate our key results for the cross section in e+e− → dijet + π+, given in eq. (2). As input we use the

HKNS fragmentation functions Dπ+

q and Dπ+

g [14] at NLO 3. To be consistent with ref. [14], we set αs(µ = mZ) = 0.125

with two-loop running, matching continuously across the quark thresholds 4. In our analysis we do not include the
effects of the uncertainties associated with αs(mZ) or with the FF parameters. Therefore we stress that the bands
shown in our plots correspond only to the perturbative uncertainties obtained from scale variations, as explained in
app. B.

We have made the following improvements with respect to the plots shown in ref. [23]:

(a) We include the NLO nonsingular contribution, which we calculate in app. A. This small O(τ) correction plays
a role for τ c & 0.2.

(b) We resum the threshold logarithms of 1− z according to our ref. [25], where we introduced a joint resummation
of these logarithms and those in τ c (suitable for values of τ c in the range of interest for a test on Belle data). As
described in app. B, this is accomplished through the choice of the renormalization scale for Jij . These effects
are expected to play a role for z & 0.5.

(c) The leading ΛQCD/(Qτ) power correction in dσ/dτ is known to be a shift [46–49]. This may be seen by
performing the operator product expansion on Sτ [44]

Sτ (k) = Spart
τ (k)− 2Ω̄1

dSpart
τ (k)

dk
+O

(Λ2
QCD

k3

)
= Spart

τ (k − 2Ω̄1) +O
(Λ2

QCD

k3

)
, (5)

where Spart
τ is the partonic soft function and Ω̄1 is a nonperturbative matrix element in the MS scheme. Inserting

the second expression in eq. (3), this leads to a shift in the thrust distribution τ c → τ c − 2Ω̄1/Q. Its effect is
most prominent at small τ c. From the analysis in ref. [44], Ω̄1 = 0.252 GeV.

In figs. 3 and 4 the effects of the thrust cut and our resummations are illustrated for fixed values of z. As the
cut becomes stronger (i.e. for smaller τ c) the cross section gets reduced, and by a larger amount in the case of our
resummed calculation. For τ c . 0.2 our resummed result starts to differ from the leading order (LO) and NLO results,
showing the effect of the resummation of double logarithms of τ c and the leading nonperturbative correction.

The nonsingular NLO correction is singled out in fig. 4, where we switch off both the threshold resummation and
the resummation of π2-terms in the hard factor H of eq. (3). The nonsingular contribution is not large, but it causes

3 We have verified that using an alternative FF set at NLO (either DSS [15] or AKK08 [17]) does not alter the main results of this paper.
4 In the next sections, which do not involve HKNS FFs, we will use a more realistic value for αs.



6

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.

1.1

Τ c

dΣ
�dzH

Τc ,
z=

0.
5L@n

bD

NNLL+NLO
NNLL
NLO

no Π2, no thres.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11

Τ c

dΣ
�dzH

Τc ,
z=

0.
8L@n

bD

NNLL+NLO
NNLL
NLO

no Π2, no thres.

FIG. 4: The effect of the inclusion of the NLO nonsingular contribution is illustrated for z = 0.5 (left panel) and z = 0.8 (right
panel), with π2 and threshold resummations switched off.
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FIG. 5: Comparison of NLL and NNLL+NLO with/without threshold resummation, for τ c = 0.2.

our resummed calculation to merge with the NLO in the τ c → 0.5 region where resummation is unimportant, and
removes an unphysical decrease of the integrated cross section for large values of τ c. When we include threshold and
π2 resummation, we should also include them in the nonsingular contribution to the cross section, to preserve the
above properties. Following ref. [50], in our analysis we estimate the effect of π2 resummation in the nonsingular piece
(which is formally of higher order in αs) by simply multiplying it by the corresponding evolution factor of the hard
function UH(Q2, µH , |µH |), given in eq. (C.7) of ref. [23]. We have not attempted to resum the threshold logarithms
in the nonsingular contribution, so our calculation does not reliably describe the region where both τ and z are large.

Next, we look at the effect of the thrust cut on the z spectrum (“the shape of the fragmentation function”), which
is shown in figs. 5 and 6 for the default value τ c = 0.2. In fig. 5 we compare our resummed result at next-to-leading
logarithmic order (NLL) and NNLL+NLO with and without threshold resummation. Comparing the two cases, our
plot shows no difference concerning the quality of the convergence patterns and the size of the uncertainty bands. As
was shown in ref. [25], the resummation of threshold logarithms is important for z & 0.5. Since this resummation
reduces the already small jet scale, nonperturbative corrections are more sizable and the improvement from threshold
resummation is marginal, at variance with the dramatic effect in ref. [25].

In fig. 6 we compare our LO, NLL and NNLL+NLO curves with the NLO result, which is independent of τ c. The
differences between the shape in z depend on both the thrust cut and the order in (resummed) perturbation theory.
As is clear from fig. 1, we also find correlations between τ c and z.
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IV. TESTING τ c-z CORRELATIONS IN BELLE DATA

In fig. 1 and sec. III we showed that the thrust cut has a sizable, calculable effect on the spectrum of the fragmen-
tation variable z. Our framework allows one to easily check this in the Belle data.

For a first quantitative analysis, we propose working in moment space, where eq. (2) simplifies to∫ 1

0

dz zN−1 dσh

dz
(τ c) =

∑
j

D̃h
j (N,µ) C̃j(τ

c, N,Q, µ) , (6)

with

D̃h
j (N,µ) =

∫ 1

0

dxxN−1Dh
j (x, µ) . (7)

At variance with eq. (2), we use the notation j = q, g by defining

D̃h
q = Q2

u

(
Dh
u +Dh

ū +Dh
c +Dh

c̄

)
+Q2

d

(
Dh
d +Dh

d̄ +Dh
s +Dh

s̄

)
, C̃q = C̃u/Q

2
u ≈ C̃d/Q2

d , (8)

with Qu = 2/3 and Qd = −1/3 the electric charges of the up- and down-type quarks. In app. C we collect our

numerical values for C̃j(τ
c, N,Q = 10.58 GeV, µ = 1 GeV) in nanobarns for j = q, g, τ c = 0.15, 0.16, . . . , 0.2 and

N = 3, 4, . . . , 8, at NNLL+NLO. We use αs(mZ) = 0.118 and three-loop running 5, and employ two-loop splitting
functions [51–53] to evolve to µ = 1 GeV. We provide a different set of coefficients for each of the independent scale
variations in app. B, which allows one to take correlations between the uncertainties into account.

Apart from the different electric charges for the up- and down-type quarks, the difference between C̃u and C̃d is less
than one percent. Thus the thrust cut is not sensitive to flavor-separated FFs since it involves only the combination
in eq. (8). In contrast, varying the thrust cut allows one to be sensitive to the separate gluon contribution. However,
at the scale µ = 1 GeV, which is the input scale for fragmentation functions, this contribution to the cross section is
small and dominated by uncertainties.

Taking as input the moments D̃q(N,µ = 1 GeV) from the available phenomenological parameterization of the FFs
together with the numbers in table II, eq. (6) can be directly compared with the Belle spectra. We stress that our
formalism can be more stringently tested by using data at different τ c.

Note that Mellin moment methods have been used in analyzing fragmentation functions before [15, 16]. Experi-
mentally, using moments has the disadvantage that they can be sensitive to the problematic z . 0.2 region, and
the z & 0.9 region, where the experimental uncertainties are large [54]. The relative contribution of these regions to

5 To avoid crossing flavor thresholds in our calculation, we choose to move the charm and bottom thresholds outside the range of scales
that we work in. NNLL resummations require the running of αs at three loops, see for example refs. [23, 44].
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FIG. 7: The composition of the Nth moment of Dπ+

u (left panel) and Dπ+

d (right panel). Using different colors we show the
contribution from the problematic regions z < 0.2 and z > 0.9. The contribution from z > 0.9 for d quarks is very small and
hardly visible.

the moments of Dπ+

u and Dπ+

d is shown in fig. 7. This is why we restricted ourselves here to moments in the range
3 ≤ N ≤ 8. In addition, the thrust cut should neither be too soft (contamination with b quarks) nor too strong
(reduced signal). As we explained in sec. II, the requirements for our calculation to be under theoretical control are
similar.

V. CONCLUSIONS

We have studied the cross section for fragmentation with a thrust cut in a formalism that can easily be tested in
high-statistics on-resonance B-factory data. The shape of the cross section in z is altered beyond LO and includes
a τ -dependent contribution. The correlation between τ and z found in our resummed calculation is consistent with
Pythia as well, but is much smaller at NLO. Our plots in secs. I and III and the discussion in sec. IV provide the
starting point for a quantitative check of this effects and of our resummations. We emphasize that binning the data
in τ c allows one to study the correlations in τ c and z, and leads to more stringent tests.
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Appendix A: Nonsingular contribution at NLO

We obtain the NLO nonsingular correction to the cross section for e+e− → dijet + h, by subtracting the singular
lnm τ c terms from the full NLO calculation. The singular NLO can directly be obtained from our resummed calculation
in eq. (3), so we start by calculating the full NLO cross section.

The easiest way to obtain the fragmentation cross section with a thrust cut at NLO is

dσh
dz

(τ ≤ τ c) =
dσh
dz
− dσh

dz
(τ ≥ τ c) . (A1)

The first term on the right-hand side is the cross section without a thrust cut,

dσh
dz

=
∑

i=q,q̄,g

∫ 1

z

dx

x

dσ̂i
dx

Dh
i

( z
x

)
, (A2)
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FIG. 8: The cross section for e+e− → dijet + π+ at Q = 10.58 GeV, differential in the momentum fraction z and thrust τ ,
and separated into its singular and nonsingular contribution. Since these separate pieces can be negative, absolute values are
plotted.

which was calculated at NLO a long time ago [52, 53, 55]

dσ̂
(1)
q,R

dz
= σ(0) αsCF

π

{
− 1

2
Pqq(z) ln

µ2

q2
+ (1 + z2)

[1

2

( ln(1− z)
1− z

)
+

+
ln z

1− z
]
− 3

4

1

(1− z)+

+

δ(1− z)
(π2

3
− 9

4

)
− 3

4
z +

5

4

}
,

dσ̂
(1)
g

dz
= σ(0) αsCF

π
Pgq(z)

[
− ln

µ2

q2
+ ln(1− z) + 2 ln z

]
. (A3)

The tree-level cross section σ(0) = 4πα2Nc/(3q
2) and the splitting functions are given by [56]

Pqq(z) =
(1 + z2

1− z
)

+
=

1 + z2

(1− z)+

+
3

2
δ(1− z) , Pgq(z) = θ(1− z) 1 + (1− z)2

z
. (A4)

The second term in eq. (A1) is described by a factorization theorem very similar to eq. (A2)

dσh
dz

(τ ≥ τ c) =
∑

i=q,q̄,g

∫ 1

z

dx

x

dσ̂i
dx

(τ ≥ τ c)Dh
i

( z
x

)
. (A5)

At NLO the thrust cut removes any regions of phase-space involving divergences and only the real radiation contributes,

dσ̂q
dz

(τ ≥ τ c) = σ(0) αsCF
2π

θ(1− z − τ c)θ(z − 2τ c)

∫ 1−τc

1−z+τc

dx
z2 + x2

(1− z)(1− x)

= σ(0)αsCF
π

θ(1− z − τ c)θ(z − 2τ c)
[1

2
Pqq(z) ln

z − τ c

τ c
+
z2 − 2z(τ c + 2) + 8τ c

4(1− z)
]
,

dσ̂g
dz

(τ ≥ τ c) = σ(0) αsCF
2π

θ(1− z − τ c)θ(z − 2τ c)

∫ 1−τc

1−z+τc

dx
(2− x− z)2 + x2

(x+ z − 1)(1− x)

= σ(0) αsCF
π

θ(1− z − τ c)θ(z − 2τ c)
[
Pgq(z) ln

z − τ c

τ c
− z + 2τ c

]
. (A6)

We now arrive at the nonsingular cross section by subtracting the singular cross section, which can directly be
obtained from our resummed calculation in eq. (3) by choosing the renormalization scale of all the objects equal to
µ. In fig. 8 the NLO cross section for z = 0.2 and z = 0.8 is shown separated into its singular and nonsingular
contribution. A first cross-check of our calculation is provided by the fact that the nonsingular piece is finite in the
τ → 0 limit, whereas both the full NLO and the singular piece diverge. The contribution of the nonsingular to the
total cross section is suppressed for small τ by O(τ). However, for larger values of τ its contribution becomes more
important, and above the NLO kinematic threshold τ ≥ min{1/3, 1 − z} the total cross section vanishes and the
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singular and nonsingular exactly cancel each other. In this region the inclusion of the nonsingular is essential to avoid
a negative differential cross section in τ or, equivalently, an unphysical turn-over in the cross section integrated up to
τ ≤ τ c.

Appendix B: Choice of running scales

The resummation of logarithms of τ and 1 − z, as well as large π2 terms, is accomplished by evaluating H, J , J
and S in eq. (3) at their natural scales µH , µJ , µJ , µS , and using their respective RGEs to evolve them to a common
scale µ. Having made some improvements compared to our earlier work ref. [23], we discuss this in some detail here.

The hard function H is the square of a time-like form factor and contains large π2-terms at µH = Q arising from
ln2(−iQ/µH), see eq. (4). These can be resummed through the complex scale setting µH = −iQ [39–42]. Following
ref. [44], we note that there are three distinct kinematic regions where the resummation of the logarithms of τ must
be handled differently:

1) µH ' −iQ , µJ '
√

ΛQCDQ , µS = ΛQCD ,

2) µH ' −iQ , µJ '
√
τQ , µS ' τQ ,

3) iµH = µJ = µS ' Q .

Region 1) corresponds to τc ∼ ΛQCD/Q and requires a completely nonperturbative soft function. Physically this
corresponds to the limit where there are only a few hadrons in each hemisphere and jet. This region is not of interest
for our application. Region 2) corresponds to τ � 1 but large enough so that τQ is still perturbative. This region
is of interest to us and corresponds to factorizable contributions in the first term of eq. (3). Region 3) corresponds
to large values of τ and to the second term in eq. (3). The resummation of the threshold logarithms of 1 − z sets
the scale µJ different from µJ for the diagonal terms Jqq [25]. In addition, the measurement of z affects the upper
bound τ ≤ τmax = min{0.5, 1− z}, implying that region 3) sets in at smaller values of τ for z > 0.5. Taking this into
account, a smooth transition between the three regions is given by

µH = −i eH Q ,

µJ(τ, z) =
[
1 + eJ θ(r3τmax − τ)

(
1− τ

r3τmax

)2 ]√
|µH |µrun(τ/τmax, z, |µH |) ,

µJ (τ, z) =
√

1− z µJ(τ, z) ,

µS(τ, z) =
[
1 + eS θ(r3τmax − τ)

(
1− τ

r3τmax

)2 ]
µrun(τ/τmax, z, |µH |) , (B1)

where scale uncertainties will be estimated by varying eH , eJ and eS as shown in table I. In addition to the explicit
z-dependence in µJ , there is an implicit dependence through τmax. For the profile µrun(τ/τmax, z, |µH |) we use a
combination of two quadratic functions and a linear function as in refs. [44, 50],

µrun(r, z, |µH |) =


µ0 + a r2/r1 r ≤ r1 ,

2a r + b r1 ≤ r ≤ r2 ,

|µH | − a(r − r3)2/(r3 − r2) r2 ≤ r ≤ r3 ,

|µH | r > r3 ,

a =
µ0 − |µH |
r1 − r2 − r3

, b =
|µH |r1 − µ0(r2 + r3)

r1 − r2 − r3
. (B2)

The expressions for a and b follow from demanding that µrun is continuous and has a continuous derivative. The value
of µ0 determines the scales at τ = 0, while r1,2,3 determine the transition between the regions discussed above. For
τ > r3τmax, our choice for µrun ensures that the resummation of logarithms of τ turns off (but π2 resummation and
threshold resummation are still present).

For the cross section integrated up to τ c, we use the same scale choices as in eq. (B1) with τ → τ c. In moment
space, τmax = 0.5 and the equation for µJ is modified to

µJ (τ,N) =
µJ(τ)√
NeγE/2

. (B3)
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var eH eJ eS interpretation

1 1 0 0 central value

2 2 0 0
hard scale variation

3 0.5 0 0

4 1 0.5 0
jet scale variation

5 1 -0.5 0

6 1 0 0.5
soft scale variation

7 1 0 -0.5

TABLE I: The scale variations in terms of the parameters in eq. (B1).

We complete our description by specifying our choice for the parameters of the profile function in eq. (B2). Our
central value corresponds to:

eH = 1 , eJ = eS = 0 , µ0 = 2 GeV , r1 =
4 GeV

Q
, r2 = 0.5 , r3 = 1 . (B4)

As mentioned before, we estimate the perturbative uncertainties by a combination of separate scale variations, which
are listed in table I. In our cross section plots we add in quadrature the upward and downward variations, which
we, respectively, determine as the largest and smallest value of the cross section obtained by looking at the pairs of
variations for the hard scale, the jet scale and the soft scale. In the tables in app. C we give results for all the separate
scale variations, allowing one to take correlations in the uncertainties into account.

Appendix C: Perturbative coefficients Cj in moment space

In this appendix we give numerical results for the coefficients in eq. (6) at NNLL+NLO. Table II contains the

results for C̃q and C̃g. For each of the independent scale variations in table I there is a separate set of C̃j , labelled by
the number in the first column.
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C̃q :

var τ c 3 4 5 6 7 8

1 0.15 1.69 1.70 1.71 1.72 1.74 1.75

0.16 1.77 1.76 1.76 1.76 1.77 1.78

0.17 1.84 1.81 1.80 1.79 1.79 1.79

0.18 1.89 1.86 1.83 1.82 1.81 1.80

0.19 1.94 1.89 1.86 1.84 1.82 1.81

0.20 1.99 1.93 1.88 1.85 1.83 1.81

2 0.15 1.73 1.73 1.73 1.74 1.76 1.77

0.16 1.82 1.80 1.79 1.80 1.80 1.81

0.17 1.90 1.86 1.85 1.84 1.83 1.84

0.18 1.96 1.92 1.89 1.87 1.86 1.85

0.19 2.02 1.96 1.92 1.89 1.88 1.87

0.20 2.06 1.99 1.95 1.91 1.89 1.88

3 0.15 1.68 1.69 1.69 1.70 1.70 1.70

0.16 1.74 1.73 1.72 1.71 1.70 1.69

0.17 1.79 1.76 1.74 1.72 1.71 1.69

0.18 1.83 1.79 1.76 1.73 1.71 1.68

0.19 1.87 1.82 1.77 1.74 1.70 1.67

0.20 1.90 1.84 1.78 1.74 1.70 1.67

4 0.15 1.62 1.62 1.62 1.63 1.65 1.66

0.16 1.71 1.69 1.69 1.69 1.69 1.70

0.17 1.78 1.75 1.74 1.73 1.73 1.74

0.18 1.84 1.80 1.78 1.77 1.76 1.76

0.19 1.90 1.85 1.82 1.80 1.78 1.77

0.20 1.95 1.89 1.85 1.82 1.80 1.79

5 0.15 1.83 1.85 1.86 1.88 1.88 1.89

0.16 1.89 1.89 1.89 1.89 1.88 1.88

0.17 1.94 1.92 1.90 1.89 1.88 1.87

0.18 1.98 1.94 1.92 1.90 1.88 1.87

0.19 2.01 1.97 1.93 1.90 1.88 1.86

0.20 2.05 1.99 1.94 1.91 1.88 1.85

6 0.15 1.84 1.85 1.85 1.86 1.87 1.88

0.16 1.91 1.89 1.89 1.88 1.88 1.89

0.17 1.96 1.93 1.91 1.90 1.89 1.88

0.18 2.00 1.96 1.93 1.91 1.89 1.88

0.19 2.04 1.98 1.94 1.92 1.89 1.88

0.20 2.07 2.00 1.96 1.92 1.89 1.87

7 0.15 1.48 1.50 1.52 1.54 1.57 1.59

0.16 1.59 1.60 1.60 1.62 1.63 1.65

0.17 1.69 1.68 1.67 1.68 1.68 1.69

0.18 1.77 1.74 1.73 1.72 1.72 1.72

0.19 1.83 1.80 1.77 1.76 1.75 1.75

0.20 1.89 1.84 1.81 1.79 1.77 1.76

C̃g :

var τ c 3 4 5 6 7 8

1 0.15 0.257 0.167 0.112 0.079 0.057 0.042

0.16 0.291 0.185 0.123 0.086 0.063 0.046

0.17 0.323 0.201 0.133 0.094 0.068 0.051

0.18 0.353 0.217 0.143 0.101 0.074 0.055

0.19 0.382 0.232 0.153 0.107 0.079 0.060

0.20 0.409 0.246 0.161 0.113 0.083 0.063

2 0.15 0.441 0.284 0.198 0.148 0.116 0.094

0.16 0.486 0.307 0.212 0.157 0.123 0.099

0.17 0.526 0.328 0.225 0.166 0.129 0.104

0.18 0.564 0.346 0.236 0.174 0.134 0.108

0.19 0.598 0.364 0.246 0.180 0.139 0.111

0.20 0.630 0.379 0.255 0.186 0.143 0.115

3 0.15 0.060 0.019 -0.011 -0.030 -0.043 -0.053

0.16 0.083 0.031 -0.004 -0.025 -0.039 -0.049

0.17 0.106 0.042 0.004 -0.019 -0.034 -0.044

0.18 0.128 0.054 0.011 -0.013 -0.029 -0.040

0.19 0.149 0.065 0.019 -0.007 -0.024 -0.035

0.20 0.169 0.076 0.026 -0.001 -0.019 -0.030

4 0.15 0.374 0.235 0.161 0.118 0.091 0.072

0.16 0.404 0.250 0.170 0.124 0.095 0.075

0.17 0.431 0.265 0.179 0.130 0.099 0.078

0.18 0.457 0.278 0.186 0.135 0.103 0.081

0.19 0.481 0.289 0.193 0.139 0.106 0.083

0.20 0.503 0.300 0.200 0.144 0.109 0.085

5 0.15 0.086 0.045 0.012 -0.010 -0.025 -0.036

0.16 0.131 0.073 0.032 0.007 -0.010 -0.022

0.17 0.174 0.099 0.051 0.023 0.004 -0.008

0.18 0.215 0.123 0.069 0.037 0.017 0.003

0.19 0.254 0.146 0.086 0.051 0.029 0.014

0.20 0.291 0.168 0.101 0.063 0.039 0.023

6 0.15 0.272 0.178 0.120 0.084 0.060 0.044

0.16 0.306 0.195 0.130 0.091 0.066 0.048

0.17 0.338 0.211 0.140 0.098 0.071 0.053

0.18 0.368 0.227 0.149 0.104 0.076 0.057

0.19 0.396 0.241 0.158 0.111 0.081 0.061

0.20 0.422 0.254 0.166 0.117 0.086 0.065

7 0.15 0.236 0.153 0.103 0.073 0.053 0.039

0.16 0.272 0.172 0.115 0.081 0.059 0.044

0.17 0.305 0.190 0.127 0.089 0.066 0.049

0.18 0.337 0.207 0.137 0.097 0.071 0.054

0.19 0.368 0.223 0.147 0.104 0.077 0.058

0.20 0.396 0.239 0.157 0.111 0.082 0.062

TABLE II: C̃i(τ
c, N,Q = 10.58 GeV, µ = 1 GeV) in units of nb at NNLL+NLO, with scale variations. C̃q applies to both up

and down-type quarks and was defined in eq. (8).
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