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Topological phenomena in gauge theories have long been recognized as the driving force for chiral
symmetry breaking and confinement. These phenomena can be conveniently investigated in the
semi-classical picture, in which the topological charge is entirely carried by (anti-)self-dual gauge
configurations. In such an approach, it has been shown that near the critical temperature, the non-
zero expectation value of the Polyakov loop (holonomy) triggers the “Higgsing” of the color group,
generating the splitting of instantons into Nc self-dual dyons. A number of lattice simulations have
provided some evidence for such dyons, and traced their relation with specific observables, such as
the Dirac eigenvalue spectrum. In this work, we formulate a model, based on one-loop partition
function and including Coulomb interaction, screening and fermion zee modes. We then perform
the first numerical Monte Carlo (MC) simulations of a statistical ensemble of self-dual dyons, as a
function of their density, quark mass and the number of flavors. We study different dyonic two-point
correlation functions and we compute the Dirac spectrum, as a function of the ensemble diluteness
and the number of quark flavors.

I. INTRODUCTION

Topological phenomena in gauge theories have been
discovered more than three decades ago, and remain the
subject of intense theoretical research ever since. In par-
ticular, magnetic objects (monopoles) have been iden-
tified as a possible source of confinement [1, 2], while
instantons have been proposed as the driving mechanism
for chiral symmetry breaking [4, 5].

The index theorem establishes a direct connection be-
tween the vacuum topology, and zero-eigenvalue solutions
of the Dirac equation, i.e. the so-called fermionic zero-
modes. These quark states are insensitive to any per-
turbative fluctuation of the gauge field, hence encode
purely non-perturbative QCD dynamics. Furthermore,
lattice simulations have shown that the Dirac eigenstates
with near-zero eigenvalues — also known as the ”zero-
mode zone” (ZMZ)— directly correlate with local fluc-
tuations of the topological charge density. After filter-
ing out quantum fluctuations, lattice fields reveal nearly
(anti) self-dual smooth fields responsible for topology and
ZMZ states [3]. Using only fermionic states attributed
to the ZMZ (a tiny subset of Dirac eigenstates, of only
about ∼ 10−4 of all eigenstates) one finds the correct pion
mass, quark condensate as well as many other hadronic
properties. On the other hand, filtering out the ZMZ
states removes the chiral symmetry breaking and leads
to drastic changes in the hadronic spectrum computed
on the lattice. In particular, some masses get shifted
by as much as ∼ 30% and parity-doublets appear (for a
recent analysis, see e.g. [6]).

This body of results coherently support a picture in

which the non-perturbative chiral dynamics in vacuum
is mediated by instantons. Indeed, instanton model cal-
culations (for a review see [7]), have been very successful
in reproducing the mass and electro-magnetic structure
of pions [8], vector mesons [9], nucleons [10–15] and even
the ∆I = 1/2 rule for hyperon [16] and kaon [17] non-
leptonic decays.

In the instanton picture, the width of the ZMZ depends
on the size of the typical “hopping” matrix element of
the Dirac operator between two instantons, which is of
the order ∼ ρ̄2/R̄3 ∼ 20 MeV, where ρ̄ is the typical
instanton size and R̄ the typical inter-instanton density
[4]. This value is comparable to the typical light quark
masses used in may lattice simulations, and this explains
why the corresponding results display significant devia-
tions from the naive chiral perturbation theory predic-
tions. Furthermore, the specific shape of the density of
eigenvalues ρ(λ) in the ZMZ depends crucially on the
theory parameters, such as the number of light fermions
Nf .

In this work, we will further investigate topological
phenomena in the semi-classical picture, focusing on tem-
peratures close to those at which the expectation value
of the Polyakov line

〈P (x)〉 = 〈exp

(
i

∫ β

0

dx4 A
a
4(x, x4)

λa

2

)
〉 (1)

drastically changes from 1 to 0.
The gauge invariant expectation value (1) defines the

holonomy of the gauge connection corresponding to a full
circle around the periodic time direction and is related
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to the free-energy Fq of a single static quark:

〈P 〉 ∼ exp (−Fq/T ) . (2)

Hence, a drastic suppression of 〈P 〉 reflects the onset of
the confinement phenomenon and we shall denote the
corresponding critical temperature with Tc.

From Eq. (1) it follows that a non-trivial holonomy
(i.e. 〈P (x)〉 6= 1) reflects a non-vanishing vacuum expec-
tation value (VEV) of the A4(x, x4) component of the
gauge field. In the semiclassical picture, this condition
is not fulfilled by the standard instantons and calorons
(finite temperature instantons). Indeed, in such topolog-
ical classical solutions, the A4 component of the gauge
field vanishes at spatial infinity, lim|x|→∞A4(x, x4) = 0.

At nonzero holonomy, the instantons basically split
into their substructures, the Nc “constituent dyons”, as
discussed in Ref.s [18, 19]. Explicit classical gauge con-
figurations, generalizing the instanton solution to a non-
trivial holonomy case, are called the Kraan-van-Baal-Lee-
Lu (KvBLL) calorons [20, 21]. There remain 4Nc collec-
tive variables for the constituent dyons as for instantons,
but those are different: while each instanton is identi-
fied by its position, size and color orientation, a dyon is
specified only by its position and its Abelian phases. Of
course, both the solution and the measure return to the
standard instanton expressions in the limit of vanishing
holonomy. For review of instanton-dyons see [22], [23]
and references therein.

In general case, the holonomy can be parametrized in
terms the VEV of A4 at spatial infinity, according to the
usual Cartan subalgebra notation. Such an asymptotic
A4 field can be taken to be spatially constant and diag-
onal in color space,

A4(∞) = (2πT ) diag(µ1...µNc);
∑
i

µi = 0 (3)

The latter condition follows from imposing a null trace.
Inserting such a constant field plus and its quantum

fluctuations into the gauge action, one finds that the
Yang-Mills commutator generates mass terms for all non-
diagonal components of the gluon field. On the other
hand, diagonal components of the quantum gauge field
commute with the holonomy and remain massless.

It is convenient to adopt a cyclic-symmetric notations
such that µNc+1 = 1 + µ1 and introduce the differences
between subsequent holonomy parameters,

νi = µi+1 − µi;
∑
i

νi = 1. (4)

These differences determine the masses of the non-
diagonal (i + 1, i) components of the gauge field. Since
the dyon cores are made of such field components, the
i-th dyon has the core size ∼ 1/(2πTνi). On the other
hand, the long-range dyon interaction is due to mass-
less diagonal fields and is governed by their electric and
magnetic charges (see e.g. Ref. [23] ).
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FIG. 1: Location of the holonomy eigenvalues µ1, µ2 shown by
(blue) darker small circles, for high temperatures (a) and for
T = Tc (b). Their differences ν1 = µ2 − µ1, ν2 = µ3 − µ2 are
also indicated. The (yellow) lighter circles on the left at the
phase π indicate the case of physical anti periodic fermions.

In this paper, we restrict our attention to the SU(2)
gauge group. In this case, the holonomy parameteriza-
tion simplifies, since there is only one diagonal generator
τ3 and a single holonomy parameter, µ = µ1 = −µ2. In
Fig.1 we show the locations of the holonomy eigenvalues
at two different temperatures. At high T (case (a)) the
holonomy is close to a zero phase, so ν2 = 2 µ is small.
Respectively, the mass of the first dyon, called M, is also
small. The mass of the second dyon is proportional to
the complementary part of the phase circle ν2, which at
high T takes nearly the whole circle. The corresponding
L dyon is thus heavy.

As T → Tc, the holonomy moves toward ±1/4 of
the circle, as shown in case (b): and in this case both
dyons have the same mass. This position corresponds
to phases µi = ±1/4 and the Polyakov line vanishes
P → cos(π/2) = 0, which physically corresponds to the
confinement of heavy charges (quarks).

In Table I we list the quantum numbers of the possible
dyon solutions for the SU(2) gauge group. In such a
gauge theory there are 4 distinct dyons, denoted with
M , M̄ , L and L̄, which are characterized by different
(color-) magnetic and electric charges. For the general
SU(Nc) case there are M1,M2...MNc so-called “static”
dyons with all diagonal charges and just one so-called
“twisted” dyon L.

From the technical point of view, the statistical physics
of the dyon ensemble is quite challenging compared to
that of the “instanton liquid” [7]. This is mostly because,
on top of topological phenomena induced by the zero-
modes of light fermions, one has to deal with long-range
Coulomb forces and even linearly growing potentials due
to a “screening” effect, as will be discussed below.

A first, qualitative discussion of dyonic ensemble has
been performed by T. Sulejmanpasic and one of us [24].
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name E M mass

M + + v

M̄ + - v

L - - 2πT − v

L̄ - + 2πT − v

TABLE I: The electric and magnetic charges and the mass
(in units of 8π2/g2T ) for the 4 different kinds of SU(2) dyons.

It was pointed out that a dyonic system can realize sev-
eral distinct phases, ranging from a gas of individual L̄L
clusters at high T , to a strongly-coupled liquid plasma at
T ≈ Tc. Ref. [24] also includes an extensive discussion
of the lattice-based phenomenology related to self-dual
dyons. Extension of that work to the case of adjoint
fermions will be given in [25].

The present paper can be considered as a quantitative
continuation of that study, we shall define a partition
function of the dyonic ensemble which is amenable to
practical many-body computer simulations, perform the
first numerical simulations and report on the results.

The partition function of the dyon ensemble can be
schematically written as

Z =

∫
{dXi}e−Sc det G detFzm

det′Fnzm√
det′B

(5)

where the first factor is the product of the differen-
tials of all the collective variables, the exponent contains
the classical actions of all dyons, while the two subse-
quent determinants of matrices G and Fzm are related to
the bosonic and fermionic zero-modes, respectively. The
two remaining (primed) determinants correspond to the
nonzero-modes of the one-loop bosonic and fermionic op-
erators, describing the small linearized perturbations of
the classical solution. (As usual, the latter determinants
are divergent and need to be regularized, e.g. in the
Pauli-Villars scheme, so that the UV bare coupling g in
the action is combined with the UV cut-off into a physical
renormalized charge.) A quantitative characterization of
the dyonic ensemble can be achieve by performing MC
sampling of the partition function (5).

Before we come to such simulations, let us outline the
physical phenomena to be addressed. As the tempera-
ture drops from T ∼ 3Tc to Tc, the value of the holonomy
changes from zero to its “confining value” v = πT . In the
former case the action of the M -dyons is small and of
the L ones is large, while at T < Tc their actions become
nearly equal. At high T “heavy” L dyons can be bound
with antidyons L̄ by the fermion exchanges into certain
LL̄ clusters [24], with zero magnetic but double electric
Abelian charge. The formation of such clusters are re-
flected in the double-bump shape of the Dirac eigenvalue
spectrum and a gap around zero: in the gas of clusters
the chiral symmetry remain unbroken. As T decreases,
the action per dyon decreases and their density grow.
Also the mass of the fermions decreases. Eventually, at
some T = Tc, the density is high enough to bridge the

gap in the Dirac eigenvalue spectrum and produce finite
density of eigenvalues at zero. This means that the chiral
symmetry gets spontaneously broken.

Let us now briefly outline the structure of the paper.
The next section describes bosonic interactions of the
dyons, which are separated into approximations made
to describe the so called moduli space metric associated
with bosonic zero-modes, and electric screening associ-
ated with the nonzero bosonic modes. The next section
describes our approximation for the third essential ingre-
dient of the partition function, the fermionic determi-
nant.

The subsequent two sections provide further technical
details about the partition function (5). Some introduc-
tion about the instanton dyons and the setting used in
our simulations is reported in section IV. The results of
the simulations are presented and discussed in section V,
while the main conclusions are summarized in VI.

II. BOSONIC DYON INTERACTIONS

A. Moduli space metric

In the selfdual (or anti-selfdual) subsectors, the dyons
are so-called Bogomolny-Prasad-Sommerfeld (BPS) pro-
tected objects, which means that their total action is
completely determined by the total topological charge.
Thus, at the level of classical solutions of the Yang-Mills
equations, the total action is independent of the dyon col-
lective coordinates. The corresponding degenerate mani-
fold of all classical solutions with a particular topological
charge Q, known as the “moduli space”, has certain met-
ric, which can be calculated from the bosonic zero-modes
of the classical solution in a standard way. The resulting
geometry is not simple: for monopoles it was derived in
classic works of Atiyah and Hitchin [27]. Even a config-
urations consisting of two monopoles/dyons gives raise
to a quite nontrivial manifold, with a specific singularity
known as “bolt” (or arrowhead). Many-body moduli are
extremely complicated, and to our knowledge their exact
metric and geometry has not been explored in any detail.

Obviously, one needs to make some approximations, in
order to perform practical simulations. Following Gib-
bons and Manton [28] and Diakonov [23], the invariant
volume element for moduli metric can be approximated
by the determinant of a certain matrix G which is defined
in order to incorporate the known limiting cases.√

det ĝ ≈ det Ĝ (6)

The Jacobian determinant of a single L-M dyon pair
has been calculated by Diakonov, Gromov, Petrov and
Slizovskiy (DGPS) [26]. The nonzero-modes lead to the
so called screening phenomenon, which we discuss in sec-
tion II B. For the SU(2) gauge group, the matrix Ĝ is

Ĝ =

(
4πνL + 1

TrLM
− 1
TrLM

− 1
TrLM

4πνM + 1
TrLM

)
, (7)
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where the matrix rows and columns correspond to the
two dyon types L,M and rLM ≡ |xL − xM |. We empha-
size that the expression (7) turns out to be correct at all
distances, not only for asymptotically large separations.
It was also shown that in the limit of trivial holonomy
(i.e. for µm → 0) or at vanishing temperature, the re-
sulting measure with (7) reduces to the standard ’t Hooft
single-instanton measure.

For sake of completeness we report also the generaliza-
tion of Eq. (7) to an arbitrary SU(Nc) group,

[Ĝ]mn = δmn(4πνm +
1

T |xm − xm−1|
+

1

T |xm − xm+1|
)− δmn−1

T |xm − xm+1|

− δmn+1

T |xm − xm−1|
, (8)

where the indexes m,n run over the different types of
dyons.

The effective potential generated by the moduli metric
can be defined as usual as Veff ≡ −T log det(G). Upon
expanding it in powers of 1/r, one recovers the usual
Coulombic potential at large distances.

A classical Coulomb gas is known to be unstable: par-
ticles can fall onto each other. Fortunately, a pair of non-
identical dyons is not affected by such a problem. Indeed,
the Coulomb term is complemented by the higher powers
of 1/r of opposite signs. As a result, the total effective
potential turns out to be only logarithmically divergent
at small distances, thus the integral which appears in the
partition function,∫

d3r det Ĝ =

∫
d3r

(
1

r
+ const.

)
(9)

is well convergent. This expression implies that the prob-
ability of finding two dyons at the same point vanishes.

Let us now discuss the case in which there are dyons
of the same kind. Simplifying the famous Atiyah-Hitchin
many-monopole metrics [27], Gibbons and Manton [28]
have shown that the weight for K identical dyons reads:

W =
1

K!

∫
dx1 . . . dxK det Ĝident, (10)

where

Ĝident
ij =

{
4πνm −

∑K
k 6=i=1

2
T |xi−xk| , i = j

1
T |xi−xj | i 6= j

(11)

Note the inversion of the signs here, as compared to the
case of non-identical dyons. We emphasize the this ex-
pression is exact only for large inter-dyon separations,
and corrections may be important at small distances.

For a pair of identical dyons, detG = 4πν(4πν−1/Tr),
which remains positive only for distances larger than
some “core size” r > 1/(4πνT ). Note also that the vol-
ume element detG vanishes linearly at the core, which
follows from the famous “bolt” geometry.

Diakonov [23] nicely combined the metric tensors for
different-kind and same-kind dyons into one symmetric-
looking metric, describing the moduli space of arbitrary
number of dyons. Let their numbers are K1 dyons of
kind 1, K2 dyons of kind 2,. . . ,KN dyons of kind N . The
result is a matrix whose dimension is the total number
of dyons (K1 + . . .+KN )× (K1 + . . .+KN ) and reads:

[Ĝ]m,i,n,j = δmnδij

4πνm − 2
∑
k 6=i

1

T |xm,i − xm,k|

+
∑
k

1

|xm,i − xm+1,k|
+
∑
k

1

|xm,i − xm−1,k|

)

+2
δm,n

|xm,i − xm,j |
− δm,n−1

|xm,i − xm+1,j |

− δm,n−1

|xm,i − xm−1,j |
. (12)

In this expression xm,i denotes the coordinate of the ith

dyon, of kind m.

Let us now discuss the short-distance behavior. Now,
the effective potential Veff = exp(− logG) has multi-
particle terms with all powers of 1/r. To make sense of it,
it is instructive to first calculate it for some examples of
configurations. For example, we can consider a “square”
consisting of 2 L and 2 M dyons. It is found that, in
all cases, their combined effect can be described by a
weakening of the Coulomb divergence.

When the distances between dyons become too small,
the Coulombic term becomes unreasonably large, and it
needs to be regulated: after all, a dyon is not a point
charge and has a finite size. In the present work, we
adopt a regulation based on the substitution

2

r
→ 2√

r2 + a2
, (13)

where we have chosen in the simulation the value of the
cutoff parameter a = π/T , leading to vanishing measure
for two identical dyons, in the limit r → 0 (to be referred
to as “soft core” ). This is in contrast with imposing
that the measure should vanish at some finite r, as in
the famous Attyah-Hitchin metric (to be referred to as
“hard core”).

The configuration space of a multi-dyon ensemble can
be sampled with a standard Metropolis-based MC algo-
rithm. Within such an approach, we shall not only en-
force the global positivity of the metric determinant, but
also we will require each eigenvalue of Ĝ to be positive.
This condition is becoming restrictive at high dyon densi-
ties, i.e. when fraction of the total volume filled by dyons
is V T 3 ∼ O(1), eventually making the MC sampling of a
very dense dyon ensemble rather inefficient. (This kind
of computational difficulty is well known, e.g. in simula-
tions of classical liquids with hard repulsive cores.)
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B. Nonzero-modes and electric screening

The DGPS determinant of the non-zero-modes [26] for
a single LM dyon pair contains the so-called “confining”
term, proportional to the inter-dyon separation and to
the “screening mass”

log det’B = rLM × 2πM2
D

Tg2
, (14)

which displays the so-called electric Debye mass M2
D =

(2/3)g2T 2, in the SU(2) gluodynamics. Upon generaliz-
ing to any Nc and number of fundamental fermions Nf
this expression becomes [29].

M2
D = g2T 2(Nc/3 +Nf/6). (15)

We now briefly elucidate the origin of the linear po-
tential which appears in Eq. (14). Let us start with the
quartic term [AµAν ]2 of the Yang-Mills Lagrangian, and
imagine two of those fields are classical ones, say from
some dyon solution, and two others belong to thermal
perturbative gluons of the heat-bath. While the latter
produce the Debye mass, the former generate the lin-
ear dependence on rLM , from the volume average of the
squared Coulomb large-distance potentials

V12 ∼ 〈(A4)2〉 =

∫
d3x

∣∣∣∣ 1

rL
− 1

rM

∣∣∣∣2 = 4π rLM (16)

Note that we consider here neutral L−M pair (i.e. the
splitting of one instanton), as a result of which their
Coulomb potential cancels out at large distances from
the pair and the volume integral is convergent. Clearly,
non-neutral configurations cannot be treated this way.

We further note that the form (14) can be obtained
directly by the instanton screening term calculated by
Pisarski and Yaffe [30] by recalling that the instanton size
ρ and the L−M separation are related by the expression

πρ2T = rML. (17)

which relates the “4-d dipole” of the instanton field to
the “3-d dipole” of the dyon LM pair made of opposite
charges.

Let us now work out the corresponding general for-
mula for screening potential which holds in the many-
body case. The sum over all dyonic contributions to A4

can be written as

〈(A4)2〉 =

∫
d3x

∣∣∣∣∣∑
i

Qi
ri

∣∣∣∣∣
2

(18)

where now the sum runs over all dyons with Qi = ±1 is
the charge and ri = |~x− ~zj |.

One can write (A4)2 as a double sum, in which we
separate the diagonal terms i = j from all non-diagonal
terms. Unless total neutrality is ensured∑

Qi = 0 (19)

this integral is divergent at large distances. If there is
an overall neutrality, one can regulate the sum term by
term, by subtracting the corresponding (r-independent)
divergency. Let us discuss one non-diagonal term i 6= j,
which we can be rewritten as follows

2

rirj
→
(

2

rirj
− 1

r2
i

− 1

r2
j

)
=

(
1

ri
− 1

rj

)2

(20)

reducing it to the 2-body case above (16). Therefore
the total answer is a simple generalization of the linear
potential

〈(A4)2〉 = 4π
∑
i>j

QiQjrij (21)

with Qi = ±1 being the electric charges. In contrast to
linear potential induced by the confining flux tubes, in
this case there is a sum over all pairs of dyons. The sum
therefore has N(N − 1)/2 terms for N dyons, of various
signs, which together enforce local neutrality of the dyon
ensemble, making A4 as small as possible. It does not
diverge in infinite volume because distant dyons may be
combined with their counterparts of the opposite charge,
producing dipole fields. On a manifold with the topology
of a sphere extra care is needed, as discussed in Appendix
B.

III. THE FERMIONIC DETERMINANT

In evaluating the fermionic determinant, the Dirac op-
erator is approximated by retaining only the contribution
evaluated on the subspace of fermionic zero-modes of the
individual pseudo-particles |φj0〉:

Det(iγµD
µ + im) ' Det(T̂ + im), (22)

where

Tij = 〈φi0|iγµDµ|φj0〉. (23)

This scheme was well tested in the framework of the in-
stanton liquid model, where it corresponds to summing
up all loop diagrams created by ’t Hooft effective La-
grangian. One of the most important lessons from that
was existence of rather narrow “zero-mode zone” (ZMZ)
of the Dirac eigenvalues |λ| < σ ∼ 20 MeV, which drive
all the effects related to chiral symmetry breaking. The
narrowness followed from relative diluteness of the in-
stanton ensemble.

The dyonic formulation also generates a narrow ZMZ:
in fact, at nonzero holonomy, all light quarks become ef-
fectively massive, so the so called “hopping amplitudes”
– i.e. the non-diagonal matrix elements of the Dirac op-
erator between different dyons – are exponentially sup-
pressed with distance,

Tij ∼ exp(−M r) (24)
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where r is the inter-dyon distance. M is the so-called
holonomy mass M , should not be confused with the or-
dinary (i.e. current) quark mass m. In particular, the
former does not break chiral symmetry, since it arises
from the interaction of the quarks with the A4 component
of the gluon field. An estimate of the magnitude of M
for various fermions followed from the zero-mode solution
can be found e.g. in Ref [24]. Antiperiodic fermions in
SU(2) have zero modes on L dyons, with the (holonomy-
induced chirally symmetric) mass given by

M = πT − v/2 (25)

proportional to the distance from the fermion boundary
condition angle ( the (yellow) lighter circles on the left at
the phase π in Fig.1) to the (blue) dark circles indicated
the holonomy values. If the fermionic boundary phase
is changed, the yellow circle moves and then one should
select the smallest distance between the two holonomy
values.

The most important qualitative trend is the following:
as the temperature decreases from high T to T ≈ Tc,
the holonomy changes as indicated in Fig.1. As a result,
the effective fermion mass M decreases and the “hopping
amplitude” (24) increases. Another qualitative tendency
is of course the reduction of the effective coupling in the
dyonic action, which additionally increases the dyon den-
sity and reduces the inter-dyon distance r. Both effects
eventually conspire towards breaking the chiral symme-
try.

Some of the (block) entries in Eq. (23) are identically
vanishing. In particular, the anti-periodic conditions on
fermions imply that zero-mode exist only for L and L̄
type dyons, see e.g. [24] for explicit solution. Hence,
we can ignore the overlap zones involving M− and M̄−
type dyons. In addition, the Dirac operator mixes only
modes with opposite chirality, hence also TLL = TL̄L̄ = 0.
Hence, the Dirac operator reduces to:

(i γµD̂
µ + im) =

(
im TLL̄
T †
LL̄

im

)
(26)

where the the ij element in L̄L block is given by the (ap-
proximate) formula [24] containing the “holonomy mass”

T ij
L̄L

= c
e−Mrij√
1 +Mrij

(27)

Notice that the normalization constant c is irrelevant for
MC ensemble simulations: it may only be needed if some
physical significance will be ascribed to the quark mass m
rather than pushing it to zero. For Nf massless fermion
flavors the determinant simply reads

det iD̂ = |detTLL̄|2Nf . (28)

A. The case of a single dyon molecule

Let us first consider the case in which there is only
one dyonic ”molecule” made by L-, L̄-, M - and M̄ - type

dyons. The fermionic determinant can be viewed as the
second-order one-loop diagram in ’t Hooft effective La-
grangian, with two vertices with 2Nf fermionic propaga-
tors in between. From Eq. (28) and (27) we get

det iD̂ = |TLL̄|2Nf = e−2NfMrLL̄−log(1+MrLL̄) (29)

Neglecting the logarithmic dependence, the formula for
the determinant for 1 molecule (L,M, L̄, M̄) reads as en
effective potential

V = − log det iD̂ = 2NfM rLL̄, (30)

where again we have dropped an irrelevant normalization
factor. Thus, fermion exchange also creates a linear con-
fining potential, but now between dyons and antidyons.
Also, note that there is no minus sign and that an addi-
tional parameter – the number of flavors Nf – appears as
a factor. Therefore, one expects that fermion exchange
to generate the tightly bound LL̄ clusters first described
in Ref[24].

B. The case of two dyon molecules

This is the simplest example demonstrating how dyonic
clusters undergo mutual repulsion. To see this we study
the two dyon molecule case, restricting to the L-dyon
zone and labeling the pseudo particles with L1, L2, L̄1

and L̄2 we find:

i D̂ =


∗ L1 L2 L̄1 L̄2

L1 0 0 TL1L̄1
TL1L̄2

L2 0 0 TL2L̄1
TL2L̄2

L̄1 T †
L1L̄1

T †
L2L̄1

0 0

L̄2 T †
L1L̄2

T †
L2L̄2

0 0

 (31)

Hence

det iD = −|detTLL̄|2Nf = −|TL1L̄1
TL2L̄2

−TL1L̄2
TL2L̄1

|2Nf (32)

from which one immediately sees that the configuration
weight vanishes when the two molecules overlap. In the
sext sections we shall we shall perform numerical simula-
tions which will allow us to investigate the consequences
of such a “Fermi repulsion”.

IV. THE SETTING

A. The setting and parameters

Let us start by enumerating parameters of our physics
problem, which we will group into global, internal and
external ones.



7

• The global parameters are the number of colors
Nc of the theory and the number of fundamental
fermions Nf of degenerate current mass m. In this
work Nc = 2 and Nf = 0, 1, 2, 4. One may in addi-
tion consider other types of fermions, e.g. adjoint
ones, but we leave such an extension to future work.

• The internal parameters are those on which the
partition function depends, such as the heat-bath
temperature T , and the flavor chemical potentials
µi. Although the Nc = 2 theory allows for finite
density MC simulations, for now we will only dis-
cuss the zero density case, µi = 0, using T as the
single internal parameter.

• The external parameters are those which may be
imposed. For example, one may consider modifi-
cations of the QCD vacuum in the nonzero (QED)
magnetic field: it is now in fact a quite active re-
search field. Another important example of an ex-
ternal parameter is the CP-odd angle θ, which how-
ever have a sign problem and need reweighing or
analytic continuation. None of it will be discussed
in this work.

The dyonic model is defined by the partition function
discussed above and can be studied for any values of such
parameters. After this is done, the results can be com-
pared to lattice data using appropriate values of these
parameters as inferred from lattice simulations at the
corresponding temperature.

One such input is the value of the holonomy parameter
µ at temperature T . There are rather accurate lattice
data defining it, see Appendix C.

Other simulation inputs are the densities ni corre-
sponding to dyons of various kind i. We will also use
their proper volumes defined by their inverse densities,
i.e. Vi ≡ 1/ni. At the time of this writing the lattice
studies of the dyons are too few to allow for a systematic
mapping, of the dyon densities at different temperature.
While we do not really use such data, for the orientation
of the reader we put brief review of the information we
find in the Appendix D.

We will only mention here that since the masses of L
and M dyons are different, their densities on the lattice
are different as well. Note that such disparity between
the densities of the L and M dyons produces a nonzero
density of the Abelian electric (but not magnetic) charge.
This is of course not a problem in general, as it is compen-
sated by an asymmetry of the densities of the electrically
charged gluons.

It would however create a technical problem for our
simulation setting, as we focus entirely on the topological
(dyonic) sector. Furthermore, one has to use a compact
manifold – a torus or a sphere – in which all the charges
must be compensated and field lines accounted for: hence
only totally neutral systems are allowed. One possible
solution to this problem is simply adding to each charge
the homogeneously distributed compensating charge: see

Appendix B for details. Another practical solution we
adopt in this work is to ignore the extra M dyons: so we
simulate an equal number of the M,L dyons.

Finally, let us discuss the physical units adopted
throughout the paper. The standard nonperturbative
normalization of the gauge field eliminates the coupling
constant from the Yang-Mills equations. This appears
in the classical action S = O(1/g2), but since its to-
tal value depends on the total number of dyons which
is not changed in our configurations, it is absorbed in
the overall input dyonic density. The one-loop bosonic
and fermionic determinants which we actually simulate
do not contain the coupling constant. Thus, there is no
running and scale dependence in the model at all, and
all quantities are essentially dimensionless. Equivalently,
we choose to turn each observable into a dimensionless
quantity, by multiplying it by the appropriate powers of
the temperature T .

In particular, the simulations are done for fixed num-
ber of the dyons on a S3 sphere, with its radius char-
acterized by the (dimensionless) radius R(S3)T , or by
the proper volume per dyon in T-units, V T 3, the inverse
of the diluteness (we remind that the total volume is
V (S3) = 2π2R(S3)3. The values for which the simula-
tions has been done are listed in the Table II. Note that
the density or volume per dyon changes by about two
orders of magnitude. The largest values of the proper
volume (per dyon) correspond in physical ensemble to
weaker coupling, larger dyon masses and higher tempera-
tures. Going down in this volume one goes into the denser
systems, stronger coupling and the lower T . Respectively
we will monitor in simulations how all observables de-
pend on the proper volume, focusing on the correlations
between the dyons and the dirac eigenvalues spectrum.

dyons R(S3)T V T 3/dyon

64 4.5 28.

64 3.0 8.3

64 2.5 4.8

64 2.2 3.28

64 1.5 1.04

64 1.2 0.53

64 1. 0.31

TABLE II: The list of the radii and volumes/dyon used in the
simulations

The only dimensional parameter which enters the
fermionic determinant is the current quark mass m,
which in our units corresponds to the ratiom/T . Keeping
it constant means a temperature-dependent mass. This
does not represent a problem as long as one is interested
in the massless limit, m → 0, in which the classical ac-
tion becomes scale invariant. Yet in reality, following a
prescription which is commonly adopted by lattice prac-
titioners, the actual value of this mass used in our simu-
lations is not zero and is not directly related to physical
light quark masses: its role is to prevent influence of the
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FIG. 2: The correlation function for LM,LL and LL̄ dyons versus distance, normalized to the volume available. From top to
bottom we show Nf = 1, 2, 4, respectively. Left/right columns are for the volumes per dyon V T 3 = 0.31, 1.04.

finite volume effects. In particular, we will see below
that, in order to correctly monitor the chiral symmetry
breaking, we are bound to consider masses m/T & 0.2,

V. SIMULATION RESULTS

Simulations are performed according to the standard
MC algorithm, with one-by-one updates of all the dyon
positions on the S3 sphere and an acceptance/rejection
based on the standard Metropolis algorithm. The bold-

ness of the MC moves was adapted in order to obtain an
acceptance ratio between 50% and 80%.

We then estimate the number of subsequent config-
urations needed to achieve thermalization, by standard
auto-correlation analysis based on the dyons’ position.
Our typical runs include a total of 256 independent (un-
correlated) configurations, obtained from 32 independent
Markov chains, each consisting of 64000 Metropolis steps.
All simulations were performed on 32 processors on the
Wiglaf cluster located at the Interdisciplinary Laboratory
for Computational Science (LISC), at Trento.
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A. The spatial correlations between dyons

One of the benefits of going from 4-d torus to the
S1 × S3 geometry is that in the latter case the system is
truly homogeneous. Also, on a sphere the interparticle
distance can be defined by a scalar product

rij = R αij = R arcos (~ni~nj) (33)

where cos(δij) is the angle between two points defined
via the scalar product of their unit position vectors on
S3 and R is its radius. Study of Coulomb fields on a
sphere is given in the Appendix.

(On a torus, there exist also distances to multiple
images of charges, which were summed over in fields
and propagators in our previous instanton-based studies.
However in the case of dyons, with their long-range fields,
convergence of such sums is much worse than for the in-
stantons, and this was the primary reason we switched
to a sphere. )

We collected histograms of the various two-particle cor-
relation functions as a function of the (dimensionless)
distance RT on the sphere are normalized by dividing
out the volume element dV/dδij ∼ sin2(δij) correspond-
ing to random occupation on the S3 sphere. A sample of
the results for different values of Nf and different dyonic
densities is shown in Fig. 2. One can immediately iden-
tify a number of feature which are common to all such
correlation functions:

• repulsive correlation between identical dyons,

• attractive interaction between, the dyon and
antidyon,

• the radius of the correlation decreases as Nf grows.

B. The Dirac eigenvalues and the finite size effects

Our present computer resources allowed us to perform
simulations with 64 dyons. In order to estimate the mag-
nitude of finite-volume effects, we performed also a few
quenched runs with ensembles consisting of 128 dyons.
Two distributions of the Dirac eigenvalues for 64 and
128 dyons performed at the same density conditions are
compared in Fig.3. One can see that the finite volume
effects are significant only for the smallest eigenvalues.
More specifically, one finds distortions of the spectrum
for the first bins, say for the shaded area

|λ|
T

< 0.25. (34)

Notice also that that larger systems have smaller finite
size effects, as expected.

A rather crude account of the finite-volume effects can
be thus made by simply disregarding the data points in

0 0.2 0.4

 h / Z
0
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0.4

0.6

0.8

1

 l
(h

) 
/ Z

R T = 1.88 (128 dyons)
R T = 1.50 (64 dyons)

FIG. 3: The spectrum of the Dirac eigenvalues in the
quenched ensemble, comparing two ensembles of 64 and 128
dyons at the same density, with zero current mass. The
shaded area denotes the region of the spectrum where vol-
ume artifacts become significant.

the strip identified by the inequality (34), yet we will need
more refined fits when we introduce a nonzero quark mass
in the next section.

C. Quark condensate dependence on the current
quark mass

Let us start reminding that there are two types of
quark masses: “current mass” generated by the interac-
tion with the Standard Model scalar (Higgs) VEV with
the left-right structure

LLR = m (q̄LqR + q̄RqL) (35)

and thus violates the chiral symmetry explicitly. The
other “mass” M is generated by the holonomy. As it is
due to the VEV of the vector field component A4, its
structure is chirally diagonal (symmetric)

LA4
= M(q̄LqL + q̄RqR) (36)

We recall that M appears in the parametrization of ma-
trix elements of the T -matrix, which defines the Dirac
operator in the background holonomy potential. (For
clarity, the notation of “constituent quark mass” induced
by spontaneous chiral symmetry breaking is not used in
this paper.)

The current quark mass m is important for our study
because it “seeds” the chiral symmetry breaking. As it is
well known to lattice practitioners, in order to study this
spontaneously broken symmetry one formally should take
the double limit, the infinite volume V →∞ and massless
quarks m→ 0, in this order. In practice, all simulations
are performed on a finite volume, and the absolute val-
ues of the smallest Dirac eigenvalues are bounded from
below at the scale λ ∼ 1/V . The current mass should be
selected somewhat above this scale, in order to cause the
chiral symmetry breaking. The reason is obvious from
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FIG. 4: Left panel: Dirac spectrum as a function of the current quark mass m. Right panel: quark condensate as a function of
the current quark mass obtained from the loop-estimate (37). The circles denotes the value of the mass used in the generation
of the dyonic configurations. The simulations used for the results shown in both panels were performed on a S3 of radius 1.5T
and with Nf = 2.

the expression for the quark condensate, as the trace of
the massive quark propagator

〈q̄q〉 =
∑
i

m

λ2
i +m2

= m

∫
dλ

ρ(λ)

λ2 +m2
(37)

Tuning the quark mass values used in the simulation is
important: it should be as small as possible, yet large
enough to avoid large finite-volume effects.

An example of how this tuning works in practice is
demonstrated in Fig.4. In the left panel we show the
Dirac eigenvalue distributions for 6 values of the current
quark mass. As one can see, the spectrum itself changes,
from a dip near λ = 0 at zero mass, to a sharp peak
at larger masses (as for quenched Nf = 0 case). The
Casher-Banks “density of the eigenvalues at the origin”
thus changes dramatically, from zero to very large val-
ues: hence, reading off ρ(0) is clearly not a good method
for estimating the quark condensate estimate. By con-
trast, the points shown in the right panel of Fig.4 show
the quark condensate estimated from the loop expres-
sion (37). We observe that the quark condensate re-
mains approximately mass independent for larger masses
m > 0.2 T , while decreasing for smaller masses, eventu-
ally going to zero at m = 0.

Let us first comment on the continuous lines in
Fig.4(b), passing through our 6 simulation points. Those
correspond to the loop expression (37) in which one uses
the eigenvalues as determined from the simulation with
the corresponding dynamical mass, but in the loop for-
mula itself the mass is substituted by a separate pa-
rameter, called the “valence quark mass” mv in litera-
ture. Such “valence approximation” has been used be-
fore, sometimes for quenched ensembles, to approximate
the mass dependence outside of the region where simu-
lations were done. However, as seen from the plot, the
trend indicated by those curves is quite misleading, be-
ing completely different from what is obtained from the
dynamical simulations – the points themselves. It shows

that the main mass dependence is stored in the eigen-
value distribution, reflecting the dynamical quark mass
of the vacuum, of the “sea” quarks.

Let us now remind the Smilga-Stern theorem [33],
which is based on chiral perturbation theory and predicts
the slope of the eigenvalue spectrum near the origin, as
a function of the chiral condensate 〈q̄q〉, the pion decay
constant Fπ and the number of flavors:

dN

dλ
(λ) = − 1

π
〈q̄q〉 (38)

+|λ|
(N2

f − 4)

Nf

〈q̄q〉2
32π2F 4

π

+O(λ2)

Lattice and instanton liquid simulations had indeed con-
firmed that the slope of the distribution changes sign at
Nf = 2, from a negative constant at Nf < 2 to positive
at Nf > 2.

Let us also point out that the spectral density in the
expanded form near λ = 0 can be put into the integral in
(37), generating the condensate expanded in powers of m.
The zeroth order is the Casher-Banks term. Returning
to Fig.4(b) for Nf = 2, we see that no linear term in
m is expected, and higher order terms can be neglected:
so the correct infinite volume V → ∞ limit should be
just a constant. Our guess of its value is indicated by a
horizontal dashed line. Comparing it to the data we see
that for m/T < 0.2 finite volume effects are large and
those should not be used. Since we cannot afford to do
simulations with variable masses in all cases studied, we
will below only use the dynamical mass m/T = 0.25, at
which we expect the condensate accuracy determination
to be not worse than, say, 20%.

Our computed eigenvalue spectra, for different volumes
and number of flavors, are shown in Fig.5. While some
finite-volume effect is still seen at the smallest eigenval-
ues, it is much less prominent than in zero mass simula-
tions discussed above: they are only seen for λ/T . 0.1.
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FIG. 5: The Dirac eigenvalue distributions for three values of the Nf = 1, 2, 4. The plots, ordered from top-left to right-bottom
are performed on different radius of the 3-sphere (R=1.0 T,R=1.5 T ,R=2.2 T, R=3.0 T ,R=4.5 T), from high to low dyon
density. The current quark mass was set to m/T = 0.25.

The Nf = 4 spectra are clearly “gapped”, without
any small eigenvalues, and the gap magnitude grows as
the dyon density falls. We thus conclude that Nf = 4
case needs rather large dyon density to break the chiral
symmetry, perhaps close to the highest one we used.

Other Nf simulation show no gap and thus correspond
to chirally broken phase, except for very low dyon den-
sity. At different dyon density and number of flavor, we
performed a linear fit ρ(λ) = Q + Cλ. The fit was re-
stricted to a range with 0.2 < λ/T < 0.4. This way, we
identified constants Q and C with the quark condensate
and the Smilga-Stern constant, respectively. The result
of the fit is shown in Fig.6. The nonzero condensate ob-
served for the Nf = 1 and Nf = 2 ensembles at high
dyon density is rather density-independent.

More systematic account for the finite-volume effects

and more accurate determination of the condensate can
be done by comparing our data with the expectations for
the so called “mesoscopic regime”, in which the volume
is not macroscopically large. Quantitative predictions of
the shape are known from chiral random matrix models
[35], which are well confirmed on the lattice. We plan to
do so elsewhere.

D. Free energy, dyons’ interaction, the
back-reaction and confinement

The well known perturbative holonomy potential,
which has a minimum at zero holonomy, has been ar-
gued by Polyakov’s original work to get cancelled by the
nonperturbative effects, resulting in a vanishing Polyakov
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FIG. 6: The quark condensate versus the dyon density. The
current quark mass is set to m = 0.25 T .

line and thus confinement. Lattice study of the effective
holonomy potential, in particularly recent Ref.[36], have
indeed found such behavior. Diakonov [23] further ar-
gued that the nonperturbative contribution comes from
the back reaction of the dyons. He also argued that (at
least the Coulomb-like moduli part of) the dyon interac-
tion is small and can be approximately ignored. In this
section we make the first step toward understanding of
whether those ideas are correct.

We calculate the change in the free energy of the sys-
tem, between the interacting and noninteracting dyon
gas using a standard thermodynamic integration method,
based on the adiabatic switching of the interaction be-
tween the particles. One splits the action into indepen-
dent particles and their interaction, introducing the adi-
abatic parameter λ

S = S0 + λSint (39)

and do simulations with λ changing from 0 to 1. The
resulting free-energy is recovered as follows

F = F0 +

∫ 1

0

dλ < Sint > |λ (40)

The resulting dependence of the action as a function of
the adiabatic parameter is shown in Fig.7. Of course,
we include all three ingredients of the interaction, the
moduli, screening and the fermions, and measure them
separately as well: but for brevity we will not discuss
those details here.

As one simulates an ensemble with a fixed number of
dyons, one can disregard any constant factors in the par-
tition function, as the relative weights of the ensemble
configurations depends only on terms which are func-
tions of the dyonic collective coordinates. This explains
why one has positive free-energy of the noninteracting
ensemble at λ = 0, which is not really physical and de-
pends of what factors we do or do not include in the
free gas expression. Total integrated free-energy change
∆F ≈ −20T . Note that a shift to negative values is typ-
ical for liquids. The value itself is for the entire system
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FIG. 7: The dependence of the average interaction free energy
on the dimensionless adiabatic parameter λ.

of 64 dyons: it thus corresponds to a free energy change
per particle of ∆F/N ≈ −1/3 T , due to the attraction
in the system. To put it in perspective, one should know
the action per dyon on the lattice. We will discuss avail-
able lattice data in the Appendix: the effective action
fitted to those are about S ≈ 3 per dyon. The result
of this section show that the average interaction shift of
the free energy per dyon is reasonably small, ∼ 1/10.
On the other hand, the partition function is enhanced
by about exp(0.34) = 1.4 per dyon, not a so negligible
enhancement.

As for the back reaction to the total holonomy po-
tential, we think that it is premature to discuss it now,
before lattice simulations provide more define estimates
on the dyon density.

VI. SUMMARY AND FURTHER
DEVELOPMENTS

This paper is the first study of the topology, in the
finite-temperature QCD near Tc, which incorporates the
nonzero holonomy and the (anti)self dual dyons as the
ingredients. We (i) formulate the partition function for
(anti) self-dual dyons incorporating one-loop screening,
moduli space measure and sermonic zero modes; and (ii)
perform the first direct simulation of the resulting statis-
tical ensembles. We obtain certain set of results, show-
ing how the dyon system depends on the dyon density
(changed by about 2 orders of magnitude), on the num-
ber of light quark flavors Nf , from 0 to 4, and on the
(current) quark mass m. We have in particularly studied
the Dirac eigenvalue spectra and chiral properties: the
gaps in the symmetric phase and the quark condensate
in the broken phase. More generally, we may say that
in spite of the long-range nature of Coulomb forces in-
volved and linearly rising screening, the simulations of
the dyonic system turned out to be not as challenging as
we thought when we started this work. While the cor-
relations between constituents are locally strong, overall
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liquid-like behavior is observed.

At the moment we are not calculating the fermionic
propagators and correlation functions of operators with
various quantum numbers, but it can be done rather di-
rectly, in a way similar to that in the instanton liquid.

Mapping those results to finite-T QCD can be done
provided the information about the dyons, such as their
density we review briefly in the Appendix, are extracted
from the lattice. One should also directly relate fermionic
quasi zero modes with the underlying topology, which we
believe will display the dyonic dominance in the chiral
symmetry breaking phenomenon, in the near-Tc region.
One may also expect progress in respect with the back
reaction of the dyons on the holonomy potential and the
origin of confinement.

Another direction is to extend the model toward theo-
ries in which one has high-T confinement under the ana-
lytical control, see e.g. [37], by including adjoint fermions
with modified (e.g. periodic or with an arbitrary phase)
boundary conditions on the torus.

Extending our results to lower temperatures – or
much smaller holonomy values – remains a numerically
challenging task. Attractive correlations of the LM
pairs should mostly recover the original instantons, yet
preserving small Polyakov line value and confinement.
At the same time, fermions induce the LL̄ attractive
interaction, producing topologically neutral clusters
whose role in the QCD vacuum has not been elucidated
or studied.
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Appendix A: Distances on the S3 sphere

In our program, all distances are defined on a 3-
dimensional sphere embedded in 4 dimensions. Let zin
be a unitary vector in 4 dimension, which will be associ-
ated to the position of the pseudo-particle of type i in the
n−th molecule. MC trial moves are made by performing
random rotations of given small angle (boldness) on the
sphere.

The angle between the 4-D vector zin identifying the
pseudo-particle of type i relative to the molecule n and
zjm that points to the pseudo-particle of type j relative

to the molecule m on the unitary sphere is given by:

αin,jm = arccos
[
zin · zjm

]
(A1)

(Notice that this formula is ill-defined for i = j ∩ n,m.
On the other hand, the distance of a particle from itself
is never needed in the calculation.) Hence the distance
between these pseudo particle is simply:

rin,jm = a αin,jm, (A2)

where a is a length scale which can be identified with the
box size.

For illustration purposes we mapped the S3 to a flat
R3 space using the stereographic projection. The three
dimensional coordinates of our dyons are defined on a
sphere, hence we use 4-dim vectors with the constraint
n2

1 + n2
2 + n2

3 + n2
4 = R2.

One may transform them into the 3 polar angle angles
like this

n1 = R cos(ψ)

n2 = R sin(ψ) cos(θ)

n3 = R sin(ψ) sin(θ) cos(φ)

n4 = R sin(ψ) sin(θ) sin(φ) (A3)

The inverse formulas are:

θ = cotg−1

(
n2√
n2

4 + n2
3

)

φ = 2 cotg−1

(√
n2

4 + n2
3 + n3

n4

)

ψ = cotg−1

(
n1√

n2
2 + n2

3 + n2
4

)
(A4)

In a stereographic projection to the flat 3d-space in
polar coordinates r, θ, φ the θ and φ angle keep the same
meaning as above, while the distance from the origin r is
defined by the angle ψ according to

r = 2 R tan(π/2− ψ/2) (A5)

(R=1 is the sphere radius and the argument of tan is the
angle conjugated to psi in the equilateral triangle of the
projection).

Note that ψ = π maps the south pole to the origin r =
0, and the equator ψ = π/2 is mapped to r = 2R. Hence
the cartesian coordinates on the projected flat space are:

x1 = 2 R tan(π/2− ψ/2) sin(θ) cos(φ)

x2 = 2 R tan(π/2− ψ/2) sin(θ) sin(φ)

x3 = x1 = 2 R tan(π/2− ψ/2) cos(θ) (A6)

Appendix B: The Coulomb fields on a S3

The usual coordinates ψ, θ, φ have the following line
element (metric)

dl2 = dψ2 + sin(ψ)2dθ2 + sin(ψ)2 sin(θ)2dφ2 (B1)
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Standard Poisson equation is

1√
g
∂µ
√
ggµν∂νf = 4πρ (B2)

For a point charge at the north pole (ψ = 0) the solution
is obviously independent on θ, φ and we need to solve
only the ψ -dependent part

f”(ψ) + 2f ′(ψ)/ tan(ψ) = 4πρ (B3)

For zero r.h.s. one get solution f = (1/4π) tan(ψ) which
looks like a positive charge at one pole and the negative
charge at the other. Indeed, on a compact manifold all
field lines have to go somewhere, and symmetry require
it to be the opposite pole.

One remedy can be introducing the homogeneous com-
pensating charge. This solution is

f =
1

4π

[
1− (ψ/π − 1)

tan(ψ)

]
(B4)

It is compared with the naive Coulomb-like 1/ψ and so-
lution given above in Fig. One can see from it that its
behavior is very reasonable, and it vanishes at the oppo-
site pole.

Screening effect contains the averaging of the dipole
potential over the 3-d space, which produces the linear
rising effective potential (as explained in the text). Keep-
ing one charge at the north pole and spreading another at
ψ = α 2d sphere one gets another solution of the Poisson
eqn. It is

A(ψ < α) =
1

4 tan(ψ)π
− 1

4 tan(α)π
(B5)

with A(ψ > α) = 0. Integrating the square of this field
over the 3d sphere one gets the following expression∫ α

0

dψA2 sin(ψ)2 =
α− sin(α) cos(α)

32π2 sin(α)2
(B6)

Both agree reasonably well till about the equator of the
3d sphere.

Appendix C: SU(2) holonomy on the lattice

One important potential input is the holonomy value
v(T ) (i.e. the VEV of the Polyakov line’s VEV 〈P 〉).
While we have not yet used it, we indicate that its tem-
perature dependence for the SU(2) gauge group is known.
To our knowledge the most accurately determined values
are from Ref. [34]. The resulting fit of the Polyakov line
VEV

〈P (T )〉 = 1.22 t0.326 (1− 0.246 t0.53), (C1)

where t is the near-critical parameter

t = (T − Tc)/Tc (C2)

The temperature dependence of the holonomy is then
arccos〈P 〉 = v(T )/2T .

Note that these data and the fit are consistent with the
indices of the Ising universality class to which the SU(2)
pure gauge theory belongs.

Appendix D: The (anti)self-dual dyons on the lattice

While we only consider a case with 2 colors, we re-
mind the reader that one of the major benefits of the
dyon approach is the smooth behavior of the action in
the large-Nc limit. Indeed, the dyon partition function
is roughly the 1/Nc root of the instanton partition func-
tion, so the dyon action in the large-Nc limit is expressed
via ’t Hooft coupling λ = g2Nc as

S =
8π2

g2Nc
=

8π2

λ
(D1)

While at very strong coupling λ → ∞ it is small, at
the “physical” value of the parameter λ = 20 − 30 usu-
ally used for strongly coupled QGP applications it is still
in the range of 3-4 ~-units. Hence, the weight factor
exp(−S) is still a rather small number, providing a sub-
stantial suppression of the dyon density. It is important
to stress that, although in principle it may be argued that
the value of the action S0 ≈ 3− 4 is not large enough to
justify the usage of the semiclassical approach, the cor-
responding dyon ensemble remains dilute even close to
Tc, hence providing an a posteriori justification of the
approach.

While we generally postpone mapping of the results of
our dyonic model to the QCD thermodynamics directly,
in this section we still discuss some available results on
the dyons, from Refs. [31] and [32]. One of the issues
here is whether they are or are not compatible with the
with semiclassical expressions, in spite of possible low
accuracy of those.

These works both investigate the SU(2) gluodynamics
on the 202× 6 and 202× 4 lattices respectively, adopting
the same tree-level improved Symanzik action at a bare
coupling βc = 2Nc/g

2 = 3.248. In the former lattice, this
choice corresponds to the critical temperature, T = Tc,
while in the latter lattice to a temperature T = (3/2)Tc.

Note that lattice practitioners often introduce ad-hoc
units of energy and length which are defined in such a
way to mimic the dynamics of the physical world. For
example, In order to fix an energy scale, they measure
the dimensionless constant.√

σ(T = 0)a = 0.236, Tc/
√
σ(T = 0) = 0.71 (D2)

and artificially set the vacuum string tension σ(T = 0)
value to (420 MeV)2, i.e. to its physical value in the ’real-
world’ QCD. Furthermore, one keeps also the ’real-world’
relation between the length and the energy units fm =
1/(197 MeV). Under this set of conventions, one obtains
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the following “absolute” values for the lattice spacing and
the critical temperature

a = 0.236× (197/420) ' 0.11fm (D3)

Tc = 0.71× 420 ≈ 300MeV. (D4)

When comparing to lattice results from those works
– such as the density of various dyons – we may adopt
such absolute units. However, in general, we will refrain
from doing so because this may lead to confusion when
studying the dependence on the number of flavors Nf . In
addition, holding fixed the value of the string tension con-
stant is only practical in a lattice approach, in which this
observable can be straightforwardly calculated. In view
of such considerations, in the present analysis we avoid
using “physical units” and consider only dimensionless
ratios and couplings.

In Ref.[31], Ilgenfritz and co-workers report a list of the
absolute densities of static (M -type) dyons and calorons
(LM dyon pairs) which were found in their lattice calcu-
lation. As M dyons are much lighter than L, the calorons
density is dominated by the density of the heaviest L-
dyons. Their results are plotted in Fig.8. In a more
recent paper by Bornyakov and co-workers [32] an im-
proved identification of the dyon type was preformed by
adopting the fermion method and also by computing the
value of the Polyakov loop at the dyon center: it should
be 1 for the M dyons, but −1 for “additionally twisted”
L dyons.

Their result is shown in the same figure by the filled
diamond, and its suggests the M density about twice
larger than in the other method. Unfortunately, the lat-
est study was done only at one temperature T = 1.5Tc.
The factor two discrepancy between the results in Ref.
[31] and in Ref. [32] is due to different efficiency of their
topology-searching algorithms. The values of the the pa-
per Ref.[31] mean to be the lower bound on the densities,
as the authors also report also rather large number of
“unidentified topological clusters” in the same table.

It is instructive to compare the dyon densities observed
on the lattice with the analytic semi classical expressions.
Those include the holonomy ν(T ) = v(T )/(2πT ) and the
effective action S0 = 8π2/g2 in a combination

nM = Cν8ν/3 exp(−S0ν), (D5)

where C is the normalization constant and the product of
the pre-exponent powers of the holonomy is taken from
the DGPS weight for the LM pair [26]. The density
of L + L̄-dyons is given by obvious change ν → ν̄ =
1 − ν.Since the holonomy ν(T ) goes to small values at
high T more rapidly than the charge is running, one ex-
pects a significant excess of the M -dyons over the L-type
ones at high T . The difference between the two densities
should however disappear at T = Tc, with a character-
istic singularity related to critical behavior of the SU(2)
theory.

As it is clear from Fig.8 , the observed dependence
shown by curves can be well reproduced by the semiclas-

sical expression, with two fitted parameters:

C = 1.6fm−4, S0 = 3 (D6)

We also note that the point from [32] at T = 3/2Tc ≈
450 “MeV” corresponds to rather small dimensionless
density

nL+L̄/T
4 ≈ 0.007. (D7)

or volumes/dyon above even the highest values used in
our simulations.

We recall that the lattice data apply to a fully inter-
acting ensemble, e.g. including the screening part of the
action and that the data/expressions discussed so far ap-
ply only to a pure gauge theory, i.e. to Nf = 0, which
is characterized by the weakest coupling along the crit-
ical line. Hence, by increasing number of quark flavors
we expect to assess a significantly stronger coupling do-
main, hence a smaller S0 ∼ 1. If so, eventually there
would be no numerical suppression and the diluteness
should become nL+L̄/T

4 ∼ O(1). Such a dense liquid
of (non-semiclassical) dyons is obviously not expected to
be described by the simple formulas used above. This
regime should be the subject of future theoretical and
numerical studies.

While grouping of the dyons into instantons suggests
about equal number of L,M dyons, this equality is only
reached at and below Tc, while at T > Tc the lighter M
dyons are more numerous than heavier L ones. The rele-
vant lattice data are shown in Fig.8. As one can see, the
density of M -dyons grows at high temperature, as their
action decreases. The density of L-type, associated with
calorons, decreases, at large T . We emphasize again that
the identified topological objects in the lattice simula-
tions are just a sub-set of the of the observed topological
clusters.

Only the solid diamond corresponding to the analysis
of Bornyakov et al. [32] should be considered as a quanti-
tative determination of the L-type dyon density. Indeed,
this was done by combining the fermionic quasizero-
modes filtering procedure with the action smearing to lo-
cate topology, and by computing the sign of the Polyakov
line at the center to identify the L and M−type dyons.
Such a work focused on T = 1.5 Tc SU(2) gauge config-
urations in a 203 × 4 lattice. These authors confirmed
that several main predictions of the semiclassical theory
remain valid in their lattice configurations. In partic-
ular, all fermionic zero and near-zero-modes are locally
chiral ( a general property of their topological nature),
the periodic fermions interact with M and antiperiodic
fermions with L dyons, as expected from semiclassical so-
lutions. The L dyons are dilute and paired with L̄ ones
into clusters” discussed in [24] . The chiral symmetry of
the antiperiodic fermions is unbroken. The M -type dyon
ensemble is dense and thus chiral symmetry for periodic
fermions is broken. They also found that while the L-
type dyons occupy only about 3% of the lattice volume,
the M dyons occupy a significant fraction of it.
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FIG. 8: (color online) The density of the topological clusters (in fm−4) versus the temperature T/Tc of the SU(2) pure gauge
theory. The open blue circles show static dyons, identified as M -type, while the open red diamonds are for calorons or L-type
dyons [31]. The closed diamond at T/Tc = 1.5 is from [32], in which L-type dyons were identified directly by fermionic zero-
modes and the value of the Polyakov loop at its center. The dashed and solid lines correspond to semiclassical expectations for
M,L dyon density, with parameters defined in the text.
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