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Abstract

The production of heavy sterile neutrinos from π−,K− decay at rest yields charged leptons with

negative helicity (positive for π+,K+). We obtain the branching ratio for this process and argue

that a Stern-Gerlach filter with a magnetic field gradient leads to spatially separated domains of

both helicity components with abundances determined by the branching ratio. Complemented

with a search of the monochromatic peak, this setup can yield both the mass and mixing angles for

sterile neutrinos with masses in the range 3MeV . ms . 414MeV in next generation high intensity

experiments. We also study oscillations of light Dirac and Majorana sterile neutrinos withms ≃ eV

produced in meson decays including decoherence aspects arising from lifetime effects of the decaying

mesons and the stopping distance of the charged lepton in short baseline experiments. We obtain

the transition probability from production to detection via charged current interactions including

these decoherence effects for 3 + 1 and 3 + 2 scenarios, also studying |∆L| = 2 transitions from

ν ↔ ν oscillations for Majorana neutrinos and the impact of these effects on the determination

of CP-violating amplitudes. We argue that decoherence effects are important in current short

baseline accelerator experiments, leading to an underestimate of masses, mixing and CP-violating

angles. At MiniBooNE/SciBooNE we estimate that these effects lead to an ∼ 15% underestimate

for sterile neutrino masses ms & 3 eV. We argue that reactor and current short baseline accelerator

experiments are fundamentally different and suggest that in future high intensity experiments with

neutrinos produced from π,K decay at rest, stopping the charged leptons on distances much smaller

than the decay length of the parent meson suppresses considerably these decoherence effects.
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I. INTRODUCTION

Neutrino masses, mixing and oscillations are the clearest evidence yet of physics beyond

the standard model [1–4]. They provide an explanation of the solar neutrino problem [5–7]

and have important phenomenological [1, 3, 4, 8–12], astrophysical [6, 13, 14] and cosmologi-

cal [15] consequences. A remarkable series of experiments have confirmed mixing and oscilla-

tions among three “active” neutrinos with δm2 = 10−4−10−3 eV2 for atmospheric and solar

oscillations respectively. The current bounds on these specifically are ∆m2
21 = 7.62×10−5eV 2

(best fit) with a 1σ range (7.43−7.81×10−5eV 2) and ∆m2
31 = 2.55×10−3eV 2 (best fit) with

a 1σ range (2.46 − 2.61 × 10−3eV 2) respectively [16], for a complementary global analysis

see[17].

However, several experimental hints have been accumulating that cannot be interpreted

within the “standard paradigm” of mixing and oscillations among three “active” neutrinos

with δm2 ≃ 10−4 − 10−3. Early results from the LSND experiment[18] have recently been

confirmed by MiniBooNE running in antineutrino mode[19] both suggesting the possibil-

ity of new “sterile” neutrinos with δm2 ∼ eV2. The latest report from the MiniBooNE

collaboration[20] on the combined νµ → νe and νµ → νe appearance data is consistent with

neutrino oscillations with 0.01 < ∆m2 < 1.0 eV2. This is consistent with the evidence from

LSND antineutrino oscillations[18], which bolsters the case for the existence of sterile neu-

trinos; however, combined MiniBooNE/SciBooNE analysis[21] of the νµ disappearance data

are consistent with no short baseline disappearance of νµ. Recently, a re-examination of the

antineutrino flux[22] in anticipation of the Double Chooz reactor experiment resulted in a

small increase in the flux of about 3.5% for reactor experiments leading to a larger deficit

of 5.7% suggesting a reactor anomaly [23]. If this deficit is the result of neutrino mixing and

oscillation with baselines L . 10 − 100m, it requires the existence of at least one sterile

neutrino with δm2 & 1.5 eV2 and mixing amplitude sin2(2θ) ≃ 0.115[23]. Taken together

these results may be explained by models that incorporate one or more sterile neutrinos that

mix with the active ones[24–31] including perhaps non-standard interactions[32]; although,

there is some tension in the sterile neutrino interpretation of short-baseline anomalies[33].

These tensions present themselves in the ”goodness of fit” parameter, which is obtained by

comparing the fit of LSND with MiniBooNE antineutrino data and all other data, which is

presently too low. A comprehensive review of short baseline oscillation experiments sum-
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marizes their interpretation in terms of one or more generations of sterile neutrinos[34, 35].

Hints for the existence of sterile neutrinos also emerge from cosmology. The analysis

of the cosmic microwave background anisotropies by WMAP[36] suggests that the effective

number of neutrino species is Neff = 3.84± 0.40 and
∑

(mν) < 0.44 eV , suggesting the case

for sterile neutrino(s) with m . eV, however the recent results from (SPT), (ACT)[37] and

PLANCK[38] weaken the bounds considerably. These bounds are obtained assuming 3 active

neutrinos, 2 sterile neutrinos and incorporate CMB data, matter power spectrum information

and a prior on the Hubble constant [39]. More recently stronger bounds on active-sterile

neutrino mixing including Planck data has been reported[40]. Complementary cosmological

data suggests that Neff > 3 at the 95% confidence level[41]; although, accommodating an

eV sterile neutrino requires a reassessment of other cosmological parameters[42]. For recent

reviews on “light” sterile neutrinos see ref.[43]. Furthermore, sterile neutrinos with masses

in the ∼ keV range may also be suitable warm dark matter candidates[44–49] compatible

with the ΛCDM model and may potentially solve the small scale problem. An experimental

confirmation of sterile neutrinos would obviously bolster the argument for a cosmologically

relevant warm dark matter candidate.

When taken together, these emerging hints motivate several experimental proposals to

search for sterile neutrinos (see the reviews in ref.[43]). Various experimental searches have

been proposed, such as Higgs decay and matter interactions of relic sterile neutrinos[50], the

end point of β-decay in 187Re with a value of Q = 2.5 keV[51, 52] (although the statistics will

be hindered by the long lifetime of the source ≃ 4.3×1010 years), and electron capture decays

of 163Ho→163 Dy[53] with aQ-value≃ 2.2 keV−2.8 keV. More recently, the focus has turned

on the possible new facilities at the “intensity frontier,” one such proposal being project X

at Fermilab[54] which would deliver high-power proton beams of energies ranging from 2.5-

120 GeV and offers flexibility in the timing structure of beams. Another proposal involves

using alternative high intensity sources[43, 55] such as mono-energetic electron neutrinos

from an Ar37 source and detecting the nuclear recoil. There are also recent proposals to

study sterile-active oscillations with pion and kaon decay at rest (DAR)[56, 57] where a

cyclotron-based proton beam can be used to produce a low energy pion and muon decay-

at-rest neutrino source as well as proposals that employee the use of muons from a storage

ring[58]. In addition, the possibility of discrimination between heavy Dirac and Majorana

sterile neutrinos[59] via |∆L| = 2 processes in high luminosity experiments[60] has been
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proposed, this is summarized in recent reviews[34, 35].

Goals: Our goals are the following:

• a:) Motivated by the possibility of high intensity sources, we assess the signals of

heavy sterile neutrinos from meson (DAR) (both π−;K−) by focusing on searching

for charged leptons of negative helicity (or positive helicity for their antiparticles in

π+;K+ in (DAR)) in a setup akin to the Stern-Gerlach type experiment where opposite

helicity components are spatially separated by a magnetic field gradient. Meson (DAR)

produces a monochromatic beam of charged leptons back-to-back with (anti) neutrinos.

Massive neutrinos yield a negative helicity component for the charged lepton which,

in a collimated beam, may be separated from the (larger) positive helicity component

by a magnetic field gradient. We study the branching ratio for the negative helicity

component as a function of the sterile neutrino mass, as a complement to the search

for monochromatic lines. We find that for pion (DAR) the electron channel is the

most efficient for 3MeV . ms . 135MeV whereas for K-(DAR) both muon and

electron channels are similar in the mass range allowed by the kinematics. We obtain

an estimate for the upper bound on the branching ratio from previous experiments

with typical upper bounds Br . 10−8−10−6 perhaps accessible in the next generation

of high intensity experiments.

• b:) We assess decoherence effects of sterile-active neutrino oscillations in short baseline

experiments as a consequence of i) the decay width of the meson, and ii) the stopping

distance of the charged lepton. As previously found in refs.[61, 62] the decay width of

the meson leads to decoherence of oscillations quantified by the dimensionless ratio

R =
δm2

2EΓM

where E is the neutrino energy and ΓM is the meson decay width. For example, a Pion

(DAR) with E ≃ 30MeV and Γπ ∼ 2.5× 10−8 eV leads to R ≃
(
δm2/eV2

)
and there

could be considerable suppression of the appearance and disappearance probability in

experiments with baseline L ≃ 30 − 100mts[61, 62]. Another source of decoherence

is the distance at which the charged lepton is stopped Lc: if the charged lepton is

correlated with the emitted mass eigenstate over a long time scale, the quantum state
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is projected onto an energy eigenstate and oscillations are suppressed[61, 63]. Both

effects, meson lifetime and charged lepton stopping scale, are sources of decoherence in

sterile-active oscillations that are more prominent in short-baseline experiments and

mass scales δm2 ≃ eV2, as discussed in refs.[61, 62]. These effects can potentially

impact the assessment of the sterile neutrino mass, mixing angle and CP-violation

phases. We study both Dirac and Majorana neutrinos and show that these processes

also affect CP-violating transitions. For Majorana neutrinos we study both ∆L = 0

oscillations and |∆L = 2| (L is lepton number) transitions from ν ↔ ν oscillations. We

focus in detail on 3+2 and 3+1 schemes with new generations of sterile neutrinos and

obtain the general CP-even and CP-odd expressions for the transition probabilities

including |∆L| = 2 processes with Majorana neutrinos.

• c:) If sterile neutrinos are massive Majorana particles there are neutrino-antineutrino

oscillations, these are lepton number violating transitions with |∆L| = 2. In short base-

line oscillation experiments, massive Majorana neutrinos yield two oscillation channels:

the usual one with ∆L = 0 and another with |∆L| = 2. While this latter channel is

suppressed by the ratio m/E, we seek to study these lepton number violating oscilla-

tions in detail as potential discriminators between Dirac and Majorana neutrinos in

future high luminosity experiments. Furthermore, neutrino-antineutrino oscillations

can distinctly yield information about CP-violating Majorana phases[64] and one of

our goals is to assess the impact of the above mentioned decoherence effects on the

potential measurement of these transitions for new generations of sterile neutrinos.

Several appendices provide the technical details.

II. HEAVY STERILE NEUTRINOS IN RARE π±,K± DECAYS AT REST:

In this work, our overarching goals are to assess the impact of sterile neutrinos in ex-

perimentally relevant situations. We begin this endeavor with the study of π/K decay

at rest experiments and focus on helicity effects as potential experimental signals. The

possibility of the existence of heavy “sterile” neutrino states had received early attention

both theoretically[65] and experimentally[66–73]; a review of the experimental bounds is
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presented in ref.[74]. In this section we analyze possible observational signatures of heavy

sterile neutrinos in π−, K− → l−α να decay at rest (DAR) but focus on negative helicity

charged leptons (or positive helicity for π+, K+ decay). If the neutrino is massless, the

charged lepton emerges from π,K (DAR) with right handed helicity (in the rest frame of

the meson, which for (DAR) is the laboratory frame). However; if the neutrino is massive,

a fraction of the charged lepton yield has left handed helicity. If the charged leptons are

collimated along an axis z and there is a magnetic field that features a gradient along this

direction, the situation is akin to the Stern-Gerlach experiment: the magnetic field gradient

leads to a force ~F ∝ −~∇(~µ · ~B) where ~µ is the charged lepton magnetic moment. This force

spatially separates the charged leptons with spins polarized parallel and antiparallel to the

magnetic field gradient, just as in a Stern-Gerlach filter. The ratio of the helicity popula-

tion is determined by the branching ratio of the production process into negative helicity

charged lepton states. Our goal is to obtain this branching ratio, which measures the relative

intensity of the negative helicity states and could serve as a complement to the searches of

monochromatic lines.

While there has been a substantial experimental effort[66–73] searching for monochro-

matic lines associated with heavy sterile neutrinos from π,K decays, we are not aware of

experimental efforts searching for wrong helicity charged lepton signals in mesons (DAR).

The bounds obtained from the various experiments[66]-[73] are summarized as exclusion

regions in ref. [74], which imply mixing angles (rather elements of the active-sterile mix-

ing matrix) . 10−6, making the branching ratios for these processes very small. However,

high intensity beams as envisaged in the proposals[43, 54–57] may provide the experimental

setting to search for these signals complementing searches for monochromatic lines.

For a π or K meson, M, the interaction Hamiltonian for a M → l ν̄l decay is given by

Hi = FM

∑

α=e,µ

∫
d3x

[
Ψlα(~x, t) γ

µLΨνα(~x, t)J
M
µ (~x, t)

]
; L =

1

2
(1− γ5) (II.1)

where the label α refers to the charged leptons, JM
µ (~x, t) = i∂µM(~x, t) and M is a complex

(interpolating) field that describes the charged pseudoscalar mesons M = π−, K−. For a

π− meson, we have that Fπ =
√
2GF Vud fπ and for the K± meson, we have that FK =

√
2GFVus fK , where fπ,K are the decay constants. The flavor neutrino fields and the fields
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that create/annihilate neutrino mass eigenstates are related by

Ψνα =
∑

j

UαjΨνj . (II.2)

For n generations of Dirac neutrinos the matrix U is n × n, unitary and features (n −
1)(n− 2)/2 CP-violating Dirac phases. For Majorana neutrinos

U → Ũ = U D ; D = diag
[
eiθ1/2, eiθ2/2, · · · , eiθn/2

]
(II.3)

where U is the mixing matrix for Dirac neutrinos and we have allowed an inconsequential

overall phase. It follows that

Ũαj = Uαj e
iθj/2 . (II.4)

The Majorana CP-violating phases, θi − θj , only contribute to ν ↔ ν oscillations and

|∆L| = 2 processes[64] which will be studied in detail in section (V).

The details of the quantization of the different fields are provided in appendix (A). From

these results, it follows that, after integration over the spatial variables, the relevant Hamil-

tonian to obtain the production amplitudes is given by (see appendix (A) for notation)

Hi =
FM√
V

∑

~q,~p

∑

h,h′

∑

α,j

Uαj

[
ψlα(

~k, h)γµLψνj (~q, h
′)pµ(M

+
~p −M−

~p )
]

√
8EM(p)Eα(k)Ej(q)

; ~k = ~p+ ~q (II.5)

where the Fermi quantum fields, ψνj , are expanded as in (A) either for Dirac or Majorana

fermions.

We identify the production matrix element M−(~p) → lα(~k) να(~q) as

MP
α,α(

~k, ~q, h, h′) =
∑

j

Uα,j MP
αj(
~k, ~q, h, h′) (II.6)

where

MP
α,j(

~k, ~q, h, h′) = FM Uα,h(~k) γ
µLVj,h′(~q) pµ ; ~k = ~p+ ~q (II.7)

is the transition matrix element for meson decay into a charged lepton, α, and an antineutrino

mass eigenstate, j. For Dirac neutrinos, the spinors Vj,h′(~q) in (II.7) are given by (A.8),

whereas for Majorana neutrinos

Vj,h′(~q) → U c
j,h′(−~q) (II.8)

given by (A.18) and the mixing matrix U → Ũ given by (II.3,II.4). The separation of helicity

contributions is frame dependent and the most clear identification of processes that reveals
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a massive neutrino is provided by the decay of the pseudoscalar meson at rest (~p = 0)

so that the laboratory coincides with the rest frame of the meson and helicity states are

unambiguously recognized. The contributions to the production amplitude from the different

helicity states in (DAR) are given by

Uα,+(~q) γ
µLVj,+(~q) pµ = −mMεlNlNν̄

Uα,+(~q) γ
µLVj,−(~q) pµ = 0

Uα,−(~q) γ
µLVj,+(~q) pµ = 0

Uα,−(~q) γ
µLVj,−(~q) pµ = mMεν̄NlNν̄

(II.9)

where (see notation in appendix (A))

εa(q) =
ma

Ea(q) + q
; Na =

√
Ea(q) + q ; Ea(q) =

√
q2 +m2

a ; a = l, ν (II.10)

Gathering these results, we obtain the helicity contributions to the π,K decay widths either

for Dirac or Majorana neutrinos:

Γ++
π/K→lν̄s

=
G2

F

4π
|Uls|2 |Vud/us|2 f 2

π/K q∗m2
l

[
Eνs(q

∗) + q∗

El(q∗) + q∗

]
(II.11)

Γ−−
π/K→lν̄s

=
G2

F

4π
|Uls|2 |Vud/us|2 f 2

π/K q∗m2
νs

[
El(q

∗) + q∗

Eνs(q
∗) + q∗

]
(II.12)

where

q∗ =
1

2mM

[
(
m2

M − (ml +ms)
2
)(
m2

M − (ml −ms)
2
)
] 1

2

; ms ≤ mM −ml (II.13)

and here we refer to the heavy sterile mass eigenstate as s rather than identifying it with a

fourth or fifth generation.

In the limit ms → 0, the usual result for π,K decay at rest, where the antineutrino and

the lepton are both right handed polarized, is obtained. We are particularly interested in

the branching ratio for the process in which both the antineutrino and the charged lepton

feature left handed helicity, given by (II.12). The branching ratio for this process is obtained

by normalizing to the total meson width and since these are rare processes, we can instead

normalize to the proxy to the total width

Γtot
π/K ≡ Γπ/K→µν̄

Br(π/K → µν̄)
(II.14)
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FIG. 1: Left panel:Br−−
π→µ,eν̄s/|Uls|2 , right panel:Br−−

K→µ,eν̄s
/|Uls|2 vs. ms for l = µ, e.

where Br(π/K → µν̄) = 0.999, 0.635 is the branching ratio for the purely leptonic decay

into muons and massless neutrinos for π,K decay respectively. Specifically, we have

Br−−
M→lν̄s

≡ Γ−−
M→lν̄s

Γtot
M

= |Uls|2
2Br(M → µν̄) q∗m2

νs

m2
µmM

(
1− m2

µ

m2
M

)2

[
El(q

∗) + q∗

Eνs(q
∗) + q∗

]
(II.15)

Fig.(1) show the branching ratios (II.15) for π → µ, e ν̄s and K → µ, e ν̄s respectively. For

π (DAR), the electron channel offers a larger window simply because of the larger amount

of phase space available whereas the maximum mass available for a heavy sterile neutrino

in the muon channel is ∼ 33.92MeV.

A Stern-Gerlach experiment:

In meson (DAR), the presence of a heavy sterile neutrino is manifest as a monochromatic

line in the charged lepton spectrum at kinetic energy

Tl(q
∗) =

1

2mM

[
(mM −ml)

2 −m2
s

]
; ms ≤ (mM −ml) . (II.16)

The negative helicity component of the charged lepton in (DAR) provides another mani-

festation of a massive sterile neutrino which can be exploited in an experiment to complement

the search of monochromatic peaks in the charged lepton spectrum. The experimental setup

to exploit the negative helicity component (or positive helicity for the opposite charged me-

son and charged lepton) should be akin to the original Stern-Gerlach experiment to separate

spin components. In this case, the relevant quantity is helicity; therefore, consider collimat-

ing the charged leptons in (DAR) along a z − axis and setting up a magnetic field with a
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gradient along this direction so that the direction of motion of the collimated charged leptons

coincide with the direction of the gradient of the magnetic field. Under these circumstances,

there is a magnetic force acting on the charged leptons

Fz ∝ −hdBz

dz
, (II.17)

where h is the helicity component; thus, opposite helicity components separate spatially and

the fraction of negative helicity charged leptons is measured by the branching ratio (II.15).

Therefore, searching for spatially separated domains of charged leptons in combination with

a monochromatic line, may provide a more robust signature of heavy sterile neutrinos and

allow extraction of the mixing matrix element |Uls|: the mass of the sterile neutrino is

inferred from the peak in the monochromatic spectrum while the ratio of abundances of the

helicity components is determined by the branching ratio (II.15); therefore, with the input

for q∗ obtained from the peak in the monochromatic line and the measurement of the ratio

of abundances of helicity states, the branching ratio (II.15) yields |Uls|.
An estimate for the upper bound on the branching ratios, Br−−, given by (II.15) can be

obtained from the summary of the bounds on the mixing matrix elements, |Uls|2, provided
in ref.[74] for l = µ: the exclusion region for π (DAR) from the µ spectrum yields an upper

bound

|Uµs|2 . 10−5 ; 3MeV . ms . 33MeV (II.18)

and for K (DAR)

|Uµs|2 . 10−6 − 10−5 ; 30MeV . ms . 330MeV . (II.19)

The experiments[66–73] on which the bounds in ref.[74] are based, search for monochromatic

peaks in the muon spectrum, both from π,K (DAR). Ref.[75] reported an upper limit

|Ues|2 < 10−7 (90%C.L.) for 30 < ms < 130MeV, therefore we find from fig. (1) that the

upper bound for Br−−
π→µ,eν̄s

Br−−
π→µ ν̄s . 10−8 − 10−7 ; 3MeV . ms . 33MeV (II.20)

Br−−
π→e ν̄s . 10−9 − 10−7 ; 30MeV . ms . 130MeV (II.21)

The small ms region is obviously suppressed by the m2
s/m

2
l factor whereas the region

near the kinematic edge is suppressed by phase space. For π decay, the electron channel is
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the most favorable to study the intermediate mass region ≃ 3MeV . ms . 135MeV with

typical upper bounds on the branching ratios 10−8 − 10−6.

For K decay, both µ, e channels yield similar branching ratios with upper bounds in the

range

Br−−
K→µ,e ν̄s

. 10−9 − 10−6 for

{
4MeV . ms . 360MeV (µ− channel)

4MeV . ms . 414MeV (e− channel)
. (II.22)

The “low” mass region of cosmological interest, ms ≃ few keV, is much more challenging.

The experimental results of refs.[66–73] and the analysis of ref.[74] do not provide reliable

upper bounds; however, bounds for this mass range emerge from cosmology: a “heavy”

sterile neutrino can decay into a photon and a light active neutrino, which, for ms ≃ keV,

leads to an X-ray line. Cosmological constraints are summarized in the review articles in

refs.[46, 47] with an upper bound |Uls|2 ≃ 10−10 − 10−9 which would make the branching

ratios exceedingly small, even for the high intensity sources envisaged.

To the best of our knowledge, Shrock[65]1 provided an early proposal to use polarization

in combination with monochromatic line searches to obtain an assessment of neutrino masses

and mixing. Our study differs from this earlier study in two main aspects: i) we advocate

using combinations of magnetic fields in a Stern-Gerlach-type setup to separate the different

helicity components. The relative abundance of the “wrong” helicity is determined by the

branching ratio obtained above. This is important, while the polarization will be dominated

by the lighter active-like neutrinos because they mix with larger mixing angles the separation

of helicity components by magnetic fields, if experimentally feasible, could result in a clearer

signal. ii) Separating the helicity components via magnetic field configurations does not re-

quire searching for monochromatic lines and is an independent and complementary method.

The proposal of ref.[65] requires first identifying the monochromatic lines and after this

identification measuring the polarization, both aspects must be combined in this proposal

to extract information perhaps increasing the challenge from the observational perspective.

A firmer assessment of whether the Stern-Gerlach type experiments, combined with

searches of monochromatic peaks in π,K (DAR), are feasible in determining the masses

of “heavy” sterile neutrinos calls for a detailed understanding of backgrounds which is a

task that is beyond the scope of this article. Furthermore the above results only apply for

1 We thank R. Shrock for making us aware of his early work on these aspects.
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V −A weak interactions, therefore if sterile neutrinos feature non-standard weak interactions

a re-assessment of the results is required[65].

III. OSCILLATIONS IN SHORT-BASELINE EXPERIMENTS

For short baseline oscillation experiments, the relevant range of neutrino mass differences

is δm2 ≃ (eV)2. A detailed analysis of oscillation phenomena requires an understanding of

the production and detection process. In ref.[61] a quantum field theoretical generalization

of the Wigner-Weisskopf method[76, 77] was introduced to obtain the correct quantum state

arising from the decay of the parent particle. A previous treatment of the correlations of

the decay product within a Wigner-Weisskopf approach to semiclassical wave packets was

originally studied in ref.[81] and the dynamics of propagation were studied in ref.[82] in

simple models. In ref.[61], the method was implemented in a simple quantum field theory

model of charged current interactions and several aspects were found to be much more

general, such as the decoherence effects associated with the lifetime of the decaying parent

particle as well as the observation (or stopping) of the charged lepton produced as partner

of the neutrino in a charged current interaction vertex.

Many of these aspects were found also in refs.[62] in a different formulation but without

explicitly obtaining the quantum mechanical state that describes the decay products.

Meson decay leads to a correlated state of the charged lepton and the neutrino, a quantum

entangled state[61, 63, 78], the entanglement being a consequence of the kinematics and

conservation laws pertinent to the decay[79]. As originally observed in ref.[63] and analyzed

in detail in refs.[61, 78], quantum entanglement leads to decoherence in neutrino oscillations

which is a result that has been confirmed more recently in [62, 80] within a different approach.

In this article, we generalize the quantum field theoretical Wigner-Weisskopf method

introduced in ref.[61] to describe (pseudoscalar) meson decay via charged current interactions

in the standard model, including all aspects of the interactions both for Dirac and Majorana

neutrinos. An alternative formulation is offered in ref.[62]; however, the full quantum field

theoretical Wigner-Weisskopf method not only illuminates clearly the quantum entanglement

and correlations between the charged lepton and neutrino states both in momentum and

helicity, but also allows a systematic study of Dirac and Majorana fermions including the

dynamics of ν ↔ ν oscillations and |∆L| = 2 processes discussed in detail in section (V).

12



A. Production from meson decay:

In appendix B (see also ref.[83] for more details), we implement a quantum field theoretical

version of Wigner-Weisskopf theory and we find the Schroedinger picture quantum state that

results from pseudoscalar meson decay which is given by

|M−
~p (t))〉 = e−iEM (p) t e−ΓM (p) t

2 |M−
~p (0)〉 −

∑

~q,αj,h,h′

{
Uαj Π

P
αj MP

αj(
~k, ~q, h, h′)Fαj[~k, ~q; t]

× e−i(Eα(k)+Ej(q))t |l−α (h,~k)〉 |νj(h′,−~q)〉
}

; ~k = ~p+ ~q , (III.1)

where

ΠP
αj =

1

[8V EM(p)Eα(k)Ej(q)]
1

2

. (III.2)

Although we consider plane wave states, the generalization to wave-packets is straight-

forward and we comment on the wave-packet approach in section (VIB). The produc-

tion matrix element MP
αj(
~k, ~q, h, h′) is given by (II.7), (see eqn. (B.23) in appendix (B))

ΓM(p) = mMΓM/EM(p) where ΓM is the decay width in the rest frame of the meson, and

Fαj[~k, ~q; t] =
1− e−i

(
EM (p)−Eα(k)−Ej(q)

)
t e−ΓM (p) t

2

EM (p)−Eα(k)− Ej(q)− iΓM (p)
2

. (III.3)

The second term in (III.1) reveals that the emerging charged lepton and neutrino are

entangled both in momentum and in helicity.

The factor Fαj[~k, ~q; t] encodes the time dependence of the production process. In order

to understand the content of this factor, consider the case ΓM = 0. In this case,

Fαj[~k, ~q; t] = e−i(EM−Eα−Ej)
t
2

2i sin
[
(EM − Eα −Ej)

t
2

]

[
EM − Eα − Ej

] t→∞→ 2πiδ(EM −Eα −Ej) (III.4)

namely, in the long time limit, this function describes energy conservation at the production

vertex. The width of the decaying meson state determines a time (or energy) uncertainty

and, either for a narrow width or large time, the function Fαj[~k, ~q; t] is strongly peaked at

Eα + Ej ≃ EM which describes approximate energy conservation within the time or width

uncertainty.

In a typical experiment, the charged lepton produced by pion (kaon) decay is stopped

shortly after the end of the pion decay pipe, at which point the correlated quantum state

13



after the neutrino state is disentangled by the observation, capture or absorption of the

charged lepton at tc.

If the charged lepton lα is observed, or absorbed with momentum ~k and helicity projection

hi at time tc, the wave function is projected onto the state 〈l−α (hi, ~k)| and the correct (anti)

neutrino state that propagates is given by

|ν̃(~q; hi)〉 = −e−iEα(k)tc
∑

j,h′

Uαj Π
P
αj MP

αj(
~k, ~q, hi, h

′)Fαj[~k, ~q; tc] e
−iEj(q)tc |νj(h′,−~q)〉 ,

(III.5)

where ~q = ~p−~k. This neutrino state still carries the label hi as a consequence of the helicity

entanglement with the measured charged lepton.

We note that if MP
αj ,Fαj, Ej are all independent of the mass of the neutrino, j, these

factors can be taken out of the sum and the resulting (anti) neutrino state is proportional

to the familiar Pontecorvo coherent superposition of mass eigenstates. We will analyze

this approximation below after assessing the total transition amplitude from production to

detection; however, before doing so, it proves illuminating to understand the normalization

of the state (III.5).

Nν(~q; hi) ≡ 〈ν̃(~q; hi)|ν̃(~q; hi)〉 =
∑

j,h′

∣∣Uαj

∣∣2 ∣∣ΠP
αj MP

αj(
~k, ~q, hi, h

′)
∣∣2
∣∣∣Fαj [~k, ~q; tc]

∣∣∣
2

. (III.6)

In the narrow width limit, the function
∣∣∣Fαj [~k, ~q; tc]

∣∣∣
2

becomes∝ δ
(
EM(p)−Eα(k)−Ej(q)

)

and the proportionality constant can be obtained by integrating this function in the variable

E = EM(p)− Eα(k)− Ej(q), from which we find
∣∣∣Fαj[~k, ~q; tc]

∣∣∣
2

=
2π

ΓM(p)

[
1− e−ΓM (p)tc

]
δ
(
EM(p)− Eα(k)−Ej(q)

)
. (III.7)

Therefore

Nν(~q; hi) =

[
1− e−ΓM (p)tc

]

ΓM(p)

∑

j,h′

∣∣Uαj

∣∣2 ∣∣ΠP
αj MP

αj(
~k, ~q, hi, h

′)
∣∣2 2π δ

(
EM(p)− Eα(k)−Ej(q)

)
.

(III.8)

In appendix (C), we obtain the relation between the normalization (III.8), the partial

and total decay width of the meson and the number density of charged leptons produced

by meson decay during a time tc. While ref.[13] discusses the normalization of the neutrino

state2, to the best of our knowledge, the relation of the neutrino normalization to the number

2 See section (8.1.1), pages 285,286 in ref.[13].
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density of charged leptons produced has not been recognized previously.

B. Detection via a charged current vertex:

In what follows we assume the neutrino to be described by a Dirac fermion, extending the

discussion to Majorana fermions in section (V). We note here that the Dirac or Majorana

nature is irrelevant for the ∆L = 0 process considered here but plays a nontrivial role in

section (V).

Consider the case in which the (anti)neutrino is detected via a charged current event

ν N → l+β N
′ at a detector situated at a baseline L (fig.(2)).

M−

l−α

ν
W

N

N ′

l+β

L

tc

FIG. 2: Production viaM− → l−α ν detection via a charged current vertex ν N → l+β N ′ at a baseline

L with N,N ′ nucleons or nuclear targets. The charged lepton l−α produced with the antineutrino

is observed, absorbed or decays at a time tc.

The Schroedinger picture quantum states that describe the initial and final states are

|i〉 = |ν̃ ;N〉 = |ν̃〉 ⊗ |N〉D ; |f〉 = |l+β ;N ′〉 = |l+β 〉 ⊗ |N ′〉 (III.9)

where |ν̃〉 is given by (III.5), the state |N〉D describes a nucleon or nuclear target localized

at the detector and the outgoing charged lepton is measured with helicity hf . The transition

amplitude in the Schroedinger picture is given by

Ti→f = 〈f |e−iH(tD−tc)|i〉 ≃ −ie−iEF tD

∫ tD

tc

eiEF t′〈f |Hi e
−iH0t′ eiH0tc|i〉 dt′ (III.10)

where EF = Elβ + EN ′ is the total energy of the final state, and H0, Hi, H are the unper-

turbed, interaction and total Hamiltonians respectively. To obtain this expression we have
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used e−iH(tD−tc) = e−iH0tD U(tD, tc) e
iH0tc and U(tD, tc) is the usual time evolution operator

in the interaction picture.

Up to an irrelevant overall phase we find

Ti→f =
∑

j,h′

ΠP
αjUαj MP

αj Fαj Gβj 〈l+β ;N ′|Hi|νj,h′ ;N〉 (III.11)

where ΠP
αj is given by eqn. (III.2), we have suppressed the indices to avoid cluttering the

notation and introduced

Gβj = e
i
2
(EF−EN−Ej)(tD+tc)

2 sin
[
1
2
(EF − EN −Ej)(tD − tc)

]

[
EF − EN − Ej

] . (III.12)

The relevant interaction Hamiltonian is given by

Hi = U∗
βj

√
2GF

∫
Ψνj(~x)γ

µLΨlβ(~x)J (N,N ′)
µ (~x)d3x+ h.c. (III.13)

where J (N,N ′)
µ (~x) is the hadron current with matrix element3

〈N |J (N,N ′)
µ (~x)|N ′〉 ≡

∑

P

jN,N ′

µ (P )√
4V ENEN ′

ei
~P ·~x . (III.14)

leading to the matrix element

〈l+β ;N ′|Hint|νj ;N〉 = U∗
βj Π

D
βj MD

jβ (III.15)

where

ΠD
βj =

1

[16V ENEN ′Eβ(k′)Ej(q)]
1

2

(III.16)

MD
jβ =

√
2GF Vj,h′(~q) γµLVβ,hf

(~k′) jN,N ′

µ (P ) ; ~q = ~k − ~p = ~P + ~k′ . (III.17)

Therefore, the total transition amplitude from production to detection is given by

Ti→f =
∑

j,h′

Uαj Π
P
αj MP

αj Fαj Gβj U
∗
βj Π

D
βj MD

jβ (III.18)

where we have suppressed all the arguments to simplify notation. The factors Fαj and Gβj

encode the time dependence of the production, measurement of the charged lepton produced

3 This matrix element may be written in terms of vector and axial vector form factors, but such expansion

is not necessary in our analysis.
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with the (anti) neutrino and final detection processes and the energy uncertainty from the

finite lifetime of the parent meson. As noted above (see eqn.III.4 ), Fαj describes nearly

energy conservation in the long time narrow width limit but includes the energy uncertainty

from the width of the decaying state. Similarly

Gβj
t→∞→ 2πδ(EF − EN − Ej) (III.19)

describes energy conservation at the detection vertex in the long time limit.

The phases in these factors encode the information of interference effects between the

different mass eigenstates.

In order to isolate the contribution of these factors there are several approximations that

are dictated by the experimental aspects:

Approximations:

1. For neutrino masses consistent with oscillation experiments utilizing baselines of a few

hundred meters, namely mj ≃ eV, and typical neutrino energy from meson decay,

& 30 MeV, the neutrinos are ultrarelativistic so we can approximate Ej(q) = E(q) +

m2
j/2E(q) with E(q) = q. Obviously, this approximation is valid for even higher

energies and longer baselines so that the results may be extrapolated appropriately.

2. We neglect the neutrino masses in the factors Ej(q) in the denominators in ΠP
αj ,Π

D
βj

(eqns.III.2,III.16).

3. We also neglect the mass dependence of neutrino spinors V, which depend upon the

mass through the factor εj(q) = mj/(Ej(q) + q) (see (A.8,A.9)). Neglecting the neu-

trino masses in the spinors leads to the production and detection matrix elements

MP ,MD to be independent of the neutrino masses, therefore independent of the

label j.

4. Neglecting the neutrino mass, the negative chirality (anti) neutrino only features a

positive helicity component, therefore only h′ = + remains in the sum. This is,

obviously, a consequence of εj ≪ 1.

Under these approximations and the unitarity of the mixing matrix U , the normalization

Nν(q) (III.6) of the neutrino state |ν̃(~q)〉 becomes

Nν(q) =

∣∣ΠP
α MP

α

∣∣2

ΓM(p)

[
1− e−ΓM (p)tc

]
2π δ

(
EP) ; EP = EM − Eα −E . (III.20)
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The time dependent factors Fαj, Gβj feature phases whose interference leads to the oscil-

lations in the transition probabilities, therefore the terms m2
j/2E(q) must be kept in these

phases.

Under these approximations, the factors ΠPMP and ΠDMD can be taken out of the sum

and the final result for the transition amplitude factorizes into production, propagation with

oscillations, and detection contributions:

Ti→f =

[
ΠP

α MP
α

]

︸ ︷︷ ︸
Production

[
∑

j

Uαj Fαj Gβj U
∗
βj

]

︸ ︷︷ ︸
Propagation−Oscillations

[
ΠD

β MD
β

]

︸ ︷︷ ︸
Detection

(III.21)

The transition probability is given by

|Ti→f |2 =
∣∣∣ΠP

α MP
α

∣∣∣
2 [∑

j

∑

i

UαjU
∗
αi FαjF∗

αiGβjG
∗
βi U

∗
βjUβi

] ∣∣∣ΠD
β MD

β

∣∣∣
2

(III.22)

where Fαj ≡ Fαj [~k, ~q, tc] is given by (III.3) evaluated at t = tc and Gβj is given by (III.12).

It proves convenient to introduce:

EP = EM(p)− Eα(k)− E(q) ; ED = EF − EN − E(q) . (III.23)

For mj ≪ E(q) and narrow width ΓM ≪ EM , the products FαjF∗
αi are sharply peaked at

EP , becoming nearly energy conserving delta functions in the long time and small width

limit (see (III.4)). Similarly, GβjG
∗
βi is sharply peaked at ED. Each term F , G describe

approximate energy conservation at the production and detection vertices respectively. In

order to extract the coefficients of the energy conserving δ(EP), δ(ED), we integrate the

respective products with a smooth initial and final density of states that are insensitive to

ΓM and ∆j (for details see ref.[61]). We find

FαjF∗
αi =

2π

ΓM(p)

[
1− e−i∆ijtc e−ΓM (p)tc

]

1 + iRij
δ(EP) (III.24)

were we have introduced

∆ij =
δm2

ij

2E(q)
; Rij =

∆ij

ΓM(p)
=

δm2
ij

2ΓMMM

EM(p)

E(q)
; δm2

ij = m2
i −m2

j , (III.25)

similarly

GβjG
∗
βi = 2π i ei∆ijtc

[
1− ei∆ij(tD−tc)

]

∆ij
δ(ED) . (III.26)
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As usual, one is interested in obtaining the transition rate; therefore, we focus on

d
dtD

|Ti→f |2 for which we need

d

dtD

(
GβjG

∗
βi

)
= 2π δ(ED) ei∆ijtD (III.27)

Separating the diagonal i = j from off-diagonal terms in the sums in (III.22), and using the

result (III.20) for the normalization of the (anti) neutrino state, we find the transition rate

d

dtD
|Ti→f |2 =

[
Nν

]
Pα→β

[
dΓνN→lβN ′

(2π)6V 2 d3k′d3P

]
(III.28)

where
dΓνN→lβN ′

(2π)6V 2 d3k′d3P
=
∣∣∣ΠD

β MD
β

∣∣∣
2

2π δ(ED) (III.29)

is the double differential detection rate for νN → l+βN
′ for an incoming massless neutrino,

and Pα→β is the flavor transition probability

Pα→β =
∑

j,i

UαjU
∗
βjU

∗
αiUβiIij (III.30)

where Iij are the interference terms

Iij = ei∆ijtD

[
1− e−i∆ijtc e−ΓM (p)tc

1− e−ΓM (p)tc

][
1− iRij

1 +R2
ij

]
; Iji = I∗ij . (III.31)

Unitarity of the U matrix allows to write

Pα→β = δα,β − 2
∑

j>i

Re
[
UαjU

∗
βjU

∗
αiUβi

]
Re
[
1− Iij

]

−2
∑

j>i

Im
[
UαjU

∗
βjU

∗
αiUβi

]
Im
[
Iij

]
. (III.32)

In the above expressions we have implicitly assumed Dirac neutrinos, the case of Majorana

neutrinos is obtained by the replacement (see eqns. (II.3,II.4)) U → Ũ ; Ũαj = Uαj e
iφj/2 ∀α

from which it is obvious that the CP-violating Majorana phases do not play any role in

να → νβ oscillations.

The possibility of CP violation in the neutrino sector from Dirac phases is encoded in

the imaginary part in (III.32) since for the transition probabilities for να → νβ it follows

that Uαi → U∗
αi. Therefore decoherence effects in the imaginary part of Iij lead to possible

suppression of CP-violating contributions in the transition probabilities.
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The transition rate (III.28), along with (III.32), are some of the important results of

this article; the factorized form of (III.28) is a consequence of the approximations described

above. The origin of the prefactor Nν is clear, it is the normalization of the neutrino state

that emerges from disentangling the charged lepton in the production process, since this is

the correct neutrino state that propagates to the detector and triggers the charged current

reaction that yields the measured charged lepton in the final state. The interference terms

(III.31) encode the decoherence effects arising from the finite lifetime of the source and the

energy uncertainty associated with the time scale in which the charged lepton produced in

a correlated quantum state with the neutrino is observed (or captured). This decoherence

can be understood clearly in two limits:

• When ∆ij ≪ ΓM it follows that Rij → 0 and Iij is the usual interference term.

In this limit the energy uncertainty associated with the lifetime of the source does

not allow to separate the mass eigenstates and the coherence of the superposition of

mass eigenstates is maintained. However, in the opposite limit, ∆ij ≫ ΓM , the factor

Rij ≫ 1 and the interference term is suppressed. In this limit, the lifetime of the

source is long, the corresponding energy uncertainty is small and the mass eigenstates

are separated in the time evolution and coherence between them in the superposition

is suppressed.

• In the limit ΓM → 0 it follows that

Iij → ei∆ij(tD−tc/2)
sin[∆ijtc/2]

[∆ijtc/2]
. (III.33)

There are two effects in this expression: 1) a shortening of the baseline by the distance

travelled by the charged lepton produced with the (anti) neutrino and 2) a suppression

factor associated with the time uncertainty: if ∆ijtc > 1, then the interference term is

suppressed, this is because if the charged lepton produced with the (anti) neutrino is

entangled all throughout the evolution at long time tc ≫ 1/∆ij the energy uncertainty

becomes much smaller than the difference in energy between mass eigenstates and

these are projected out by energy conservation which leads to their decoherence in

the superposition. This is another manifestation of energy conservation as encoded in
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Fermi’s Golden rule. In terms of the oscillation length, Losc
ij , defined as

∆ij =
δm2

ij

2E
≡ 2π

Losc
ij

(III.34)

the suppression factor 2 sin[∆ijtc/2]/∆ijtc < 1 when the stopping length scale Lc ≡
tc ≃ Lij . The case Γ → 0 is relevant for reactor experiments. See the discussion in

section(VIA).

The suppression factor associated with the lifetime is relevant in the case of possible new

generation of (sterile) neutrinos with masses in the eV range when produced in the decay

of pions or kaons.

For pion decay at rest, the typical energy of a (nearly massless) neutrino is E∗ ∼ 30MeV,

the pion width at rest Γπ = 2.5 × 10−8 eV and for one generation of sterile neutrino with

m4 ≫ m1,2,3 we find

R ≃ m2
4

2E∗ Γπ
≃ 2

3

(m4

eV

)2
, (III.35)

therefore, for m4 ≥ 1 eV, the suppression factor can be substantial and the transition proba-

bility is suppressed. For the decay of a pion in flight with a large Lorentz γ factor, the result

only changes by a factor 2 as can be seen as follows: consider a neutrino that is emitted

collinear with the direction of the pion in the laboratory frame (say along the z − axis), its

energy in the laboratory frame is

E = γE∗
(
1 + Vπ

)
(III.36)

where Vπ is the pion’s velocity, for γ ≫ 1 it follows that E ∼ 2γE∗. The width of the pion

in the laboratory frame is Γπ/γ; therefore, for neutrinos produced by pion decay in flight

with a large Lorentz factor

R ≃ 1

3

(m4

eV

)2
. (III.37)

In conclusion, for new generations of (sterile) neutrinos with masses in the eV range,

experiments in which oscillations are probed with neutrinos from pion decay feature the

suppression factors associated with the pion width. For Kaons, the situation improves

because in this case

ΓK ≃ 5 × 10−8 eV ; E∗ ≃ 235.5MeV

and for Kaon (DAR)

R ≃ 1

25

(m4

eV

)2
,

thus R < 1 for m4 ≃ few eV.
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IV. 3 + 2 AND 3 + 1 CASES IN THE “SHORT-BASELINE APPROXIMATION”:

In the “short-baseline” approximation, we assume that there are sterile neutrinos j =

4, 5 · · · with m4, m5 · · · ≫ m1, m2, m3 so that δm2L/E ≃ O(1) for L ≃ 10 − 1000mts

corresponding to short baseline experiments.

We begin by considering the 3 + 2 scenario from which we will extract the case 3 + 1.

3+2 case: In this case, m5, m4 ≫ m1, m2, m3 so that

Iij ≃ 1 , i, j = 1, 2, 3 ; Ii4 = I14 ; Ii5 = I15 , i = 1, 2, 3 . (IV.1)

Unitarity of the U matrix entails

3∑

i=1

U∗
αiUβi = δαβ − U∗

α4Uβ4 − U∗
α5Uβ5 . (IV.2)

Separating the terms with j = 4, 5 in (III.32), we find for α 6= β (appearance)

Pα→β = 4|Uα4||Uβ4|
[
|Uα4||Uβ4|+ |Uα5||Uβ5| cosφ54

] 1
2
Re[1− I41]

− 4|Uα4||Uβ4||Uα5||Uβ5| cosφ54
1

2
Re[1− I54]

+ 4|Uα5||Uβ5|
[
|Uα5||Uβ5|+ |Uα4||Uβ4| cosφ54

] 1
2
Re[1− I51]

+ 2
[
|Uα4||Uβ4||Uα5||Uβ5| sinφ54

]
Im
[
I41 − I51 + I54

]
. (IV.3)

where following [34] we have defined

φ54 = Arg
[
Uα5U

∗
β5U

∗
α4Uβ4

]
, for α = e , β = µ , (IV.4)

and used Im[Iij] = −Im[Iji]. We note that interchanging α↔ β (e↔ µ) is equivalent to the

exchange 4 ↔ 5, namely φ54 → −φ54 = φ45 which leaves the result (IV.3) invariant since

Re[Iji] is even and ImIji odd respectively under i ↔ j. If φ54 6= 0, there is CP-violation in

the neutrino sector because φ54 → −φ54 for ν → ν oscillations since this implies that the

elements of the mixing matrix Uαi → U∗
αi.

The 3+2 case effectively describes mixing between three species; consequently, it features

only one effective CP-violating angle.

For α = β (disappearance), we find
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Pα→α = 1− 4

{
|Uα4|2

[
1− |Uα4|2 − |Uα5|2

] 1
2
Re[1− I41]

+ |Uα4|2|Uα5|2
1

2
Re[1− I54]

+ |Uα5|2
[
1− |Uα4|2 − |Uα5|2

] 1
2
Re[1− I51]

}
, (IV.5)

which does not feature a contribution from the CP-violating angle.

3+1 case: This case is obtained from the 3+2 case above by setting Uα5 = 0 ∀α, leading
to the appearance probability (α 6= β) ,

Pα→β = 4|Uα4|2|Uβ4|2
1

2
Re[1− I41] , (IV.6)

and the disappearance (survival) probability (α = β)

Pα→α = 1− 4|Uα4|2
[
1− |Uα4|2

] 1
2
Re[1− I41] . (IV.7)

The 3 + 1 case effectively describes mixing between two generations and, consequently,

does not feature any CP-violating contribution. For this case, it is often convenient[13] to

introduce the effective mixing angles

sin2 2θαβ ≡ 4|Uα4|2|Uβ4|2 , α 6= β (IV.8)

sin2 2θαα ≡ 4|Uα4|2
[
1− |Uα4|2

]
, α = β . (IV.9)

V. MAJORANA STERILE NEUTRINOS AND |∆L| = 2 ν ↔ ν OSCILLATIONS:

In the previous section we have assumed that sterile neutrinos are of the Dirac variety;

however, if neutrinos are Majorana fermions, new processes, such as neutrino-less double

beta decay (see[84] for recent reviews) and ν ↔ ν oscillations, are available. As discussed in

ref.[64], ν ↔ ν oscillations have the potential to reveal CP-violating Majorana phases and,

to make clear the Majorana nature of the mixing matrix, we write it as Ũ following eqn.

(II.3).

These processes can be understood by considering the full interaction Hamiltonian in-

cluding the the hermitian conjugate of the one displayed in (III.13), namely
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Hi = Ũ∗
βj

√
2GF

∫
Ψνj(~x)γ

µLΨlβ(~x)J (N,N ′)
µ (~x)d3x

+ Ũβj

√
2GF

∫
Ψlβ(~x)γ

µLΨνj(~x)J † (N,N ′)
µ (~x)d3x . (V.1)

The first line yields the ∆L = 0 ν ↔ ν oscillations just as for the Dirac case discussed in the

previous section. The second line contributes to the detection process only for Majorana

neutrinos and yields the |∆L| = 2 contribution, as can be simply understood from the

following argument pertaining to Majorana fermions: the production Hamiltonian (II.1)

is determined by charge conservation: a π− decays into a negatively charged lepton l−α ,

thus requiring the Ψlα in (II.1), the Ψνj creates a neutrino (same as an antineutrino for

Majoranas) with an operator b̂†~k,h that multiplies a charge conjugate spinor U c
h (
~k) (see the

expansion (A.17) in appendix A). Using the first line in (V.1), the neutrino is destroyed

at the detection vertex using a b̂~k,h of the Ψνj which also multiplies the spinor U c
h (
~k) along

with the creation of positively charged lepton l+β . Therefore, this ∆L = 0 contribution is the

same as that for a Dirac neutrino and features the product ŨαjŨ
∗
βj , which is insensitive to

the Majorana phase. However, the neutrino in the intermediate state can also be annihilated

by using a b̂~k,h from Ψνj in the second line, which now multiplies the spinor Uh(~k), along

with the creation of a negatively charged lepton l−β from Ψβ. This contribution features the

product ŨαjŨβj = UαjUβj e
iθj and manifestly displays the Majorana phase. This process is

depicted in fig.(3).

M−

l−α

ν
W

N

N ′

l−β

L

tc

FIG. 3: |∆L| = 2 process from Majorana neutrinos. The charged lepton l−α produced with the

neutrino is observed, absorbed or decays at a time tc and another charged lepton l−β is detected.
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The CP-conjugate process π+ → l+α ν → νN → N ′ l+β with |∆L| = 2 features the product

Ũ∗
αjŨ

∗
βj showing that the Majorana phase is also CP-violating. It is convenient to introduce

σ̃µ = (1,−~σ) (V.2)

we now find for the transition matrix element Ti→f from the initial (i = π−N) to the final

(f = l−α l
−
βN

′) state

Ti→f =
√
2FMGF

∑

h

∑

j

ŨαjŨβj

(
U †

lα,h′

)
L

(
σ̃ · JM

)(
U c
h,j(~q)

)
L
Fαj Π

P
αj

×
(
U †

lβ ,h′′

)
L

(
σ̃ · J (N,N ′)

)(
Uh,j(~q)

)
L
Gβj Π

D
βj (V.3)

where again we suppressed arguments to simplify notation. The sum over helicity states h

can be carried out straightforwardly using the results of appendix (A), we find (no sum over

α, β)

Ti→f =
[
T αβ
−+ − T αβ

+−

] ∑

j

ŨαjŨβj
mj

2Ej(q)
Fαj Gβj , (V.4)

where we have introduced

T αβ
ab ≡

√
2FMGF 2E(q) ΠP

α ΠD
β

[(
U †

lα,h′

)
L

(
σ̃·JM

)
va(~q)

][(
U †

lβ ,h′′

)
L

(
σ̃·J (N,N ′)

)
vb(~q)

]
; a, b = −,+

(V.5)

where the Weyl spinors v±(q) are the helicity eigenstates (A.12). Here, E(q) = q for massless

neutrinos and T αβ
ab do not depend on the mass eigenstate label j. In arriving at expressions

(V.4,V.5) we have written ΠP
αj Π

D
βj = ΠP

α ΠD
β 2E(q)/2Ej(q) where the Π

P
α ΠD

β now correspond

to the phase space factors (III.2,III.16) for massless neutrinos, namely Ej(q) → E(q) = q.

The amplitudes T αβ
ab have a simple interpretation: T αβ

−+ is the amplitude for the combined

process π− → l−α ν , νN → l−βN
′ and T αβ

+− for the process π− → l−α ν , νN → l−βN
′ where ν, ν

are massless left handed neutrinos (and right handed antineutrinos), corresponding to the

ν ↔ ν mixing that violates lepton number by two units. These two amplitudes contribute

coherently to the process π−N → l−α l
−
βN

′ and are added (with their respective signs) in the

total amplitude. The mass dependence in the transition amplitude is a consequence of a

helicity change in the ∆L = 2 process ν ↔ ν̄.

The expression (V.4) is generally valid for arbitrary masses of Majorana sterile neutrinos

and, with a simple modification of the final state, also describes the ∆L = 2 processes

studied in ref.[60].
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Proceeding as in the ∆L = 0 case, we finally find for the transition rate

d

dtD
|Ti→f |2 = Υαβ P

|∆L|=2
α→β , no sum overα, β (V.6)

where

P
|∆L|=2
α→β =

∑

j,i

ŨαjŨβjŨ
∗
αiŨ

∗
βi

mjmi

4EjEi
Iij , (V.7)

is the ν ↔ ν transition probability with |∆L| = 2 and

Υαβ =
∣∣∣T αβ

−+ − T αβ
+−

∣∣∣
2
[
ΠP

α

]2

ΓM(p)

[
1− e−ΓM (p)tc

]
2π δ

(
EP)

[
ΠD

β

]2
2π δ(ED) (V.8)

encodes the transition matrix elements for production and detection. We note that unlike

the ∆L = 0 case, here there is no factorization of production and detection, this is a

consequence of the fact that ν ↔ ν oscillation implies helicity change (and a mass insertion)

and both helicity changing contributions contribute coherently to the total amplitude as

explained above. A similar observation was pointed out in ref.[85]. We are not concerned

here with Υαβ but with the transition probability P
|∆L|=2
αβ , which can be written as

P
|∆L|=2
α→β =

∑

j

|Uαj |2 |Uβj|2
m2

j

4E2
j

+ 2
∑

j>i

Re[ŨαjŨβjŨ
∗
αiŨ

∗
βi]

mjmi

4EjEi
Re[Iji]

+ 2
∑

j>i

Im[ŨαjŨβjŨ
∗
αiŨ

∗
βi]

mjmi

4EjEi

Im[Iji] , (V.9)

Just as in the ∆L = 0 case, the main difference with the usual quantum mechanical case

is the replacement

ei∆ijL → Iij = ei∆ijL

[
1− e−i∆ijLc e−ΓM (p)Lc

1− e−ΓM (p)Lc

][
1− iRij

1 +R2
ij

]
, (V.10)

where ∆ij;Rij are given by eqn. (III.25) where the extra factors describe decoherence effects

associated with the lifetime of the decaying meson and the measurement of the charged

lepton partner of the produced neutrino.

To be sure if the absolute mass scale of the new generation of sterile neutrinos is ≃ eV

then the factor ≃ m2/E2 . 10−14 makes the |∆L| = 2 contribution all but unobservable

with the current (and foreseeable) facilities for short-baseline experiments with m ≃ eV.

However, oscillation experiments measure the squared mass differences ; therefore, in absence

of a determination of the absolute scale of masses, there remains the possibility that new
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generation of sterile neutrinos may be heavy but nearly degenerate so that the difference

in squared masses is small and lead to interference and oscillations on the length scales of

short baseline experiments and P
|∆L|=2
α→β is not negligible .

3+2 and 3+1 schemes: Under the assumption that m4, m5 ≫ mi, i = 1, 2, 3, the con-

tribution from active-like mass eigenstates is clearly subleading for the |∆L| = 2 transitions;

therefore, keeping only the two largest mass eigenstates

P
|∆L|=2
α→β = |Uα5|2 |Uβ5|2

m2
5

4E2
5

+ |Uα4|2 |Uβ4|2
m2

4

4E2
4

+ · · ·

+ 2|Uα5||Uβ5||Uα4||Uβ4| cos(δ54 + θ54)
m5m4

4E5E4
Re[I54] + · · ·

+ 2|Uα5||Uβ5||Uα4||Uβ4| sin(δ54 + θ54)
m5m4

4E5E4

Im[I54] + · · · (V.11)

where the dots stand for the contributions from i = 1, 2, 3, U is the Dirac mixing matrix

(II.3) and

δ54 = Arg
[
Uα5Uβ5U

∗
α4U

∗
β4

]
, for α = e , β = µ (V.12)

is a Dirac CP-violating phase different from the φ54 that enter in the ∆L = 0 case (IV.4)

and θ54 = θ5 − θ4 with θj the Majorana CP-violating phases (II.3).

The 3 + 1 scheme is obtained simply by setting Uα5 = 0 ∀α in which case there are no

oscillations to leading order in m/E.

VI. ANALYSIS OF DECOHERENCE EFFECTS IN ACCELERATOR EXPERI-

MENTS:

The decoherence effects associated with the lifetime of the source and the measurement

(or capture) length scale of the charged lepton emitted with the (anti) neutrino are encoded

in the quantities Re[Iji] , Im[Iji] given by eqns. (VI.3,VI.4) the latter one determines

the suppression of the CP violating contributions from these decoherence effects. In this

section we compare these terms to the familiar ones obtained from the quantum mechanical

description of neutrino oscillations (VI.6) as a function of the neutrino energy for fixed

baselines.

Introducing

∆ji(E) =
δm2

ji

2E
; Rji =

δm2
ji

2EΓM(p)
; δm2

ji = m2
j −m2

i , (VI.1)
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and replacing as usual

tD → L ; tc → Lc (VI.2)

we find

Re[Iji] =
1

1 +R2
ji

1

1− e−ΓM (p)Lc

[(
cos
[δm2

ji

2E
L
]
+Rji sin

[δm2
ji

2E
L
])

−

e−ΓM (p)Lc

(
cos
[δm2

ji

2E
(L− Lc)

]
+Rji sin

[δm2
ji

2E
(L− Lc)

])]
, (VI.3)

Im[Iji] =
1

1 +R2
ji

1

1− e−ΓM (p)Lc

[(
sin
[δm2

ji

2E
L
]
−Rji cos

[δm2
ji

2E
L
])

−

e−ΓM (p)Lc

(
sin
[δm2

ji

2E
(L− Lc)

]
−Rji cos

[δm2
ji

2E
(L− Lc)

])]
. (VI.4)

we note that
δm2

ji

2E
Lc ≡ Rji ΓM(p)Lc (VI.5)

this relation highlights that there are only two combination of parameters that determine

the corrections, namely Rji and ΓM(p)Lc; furthermore, ΓM(p)Lc ≡ Lc/lM(p) where lM(p)

is the decay length of the meson in the laboratory frame. We would like to point out that

similar results have been obtained in refs[62] in which wave packets are analyzed throughout

the production/detection process whereas our results are obtained in a completely different

manner. In our treatment, we did not attempt to include localization wavepackets for the

pion and, in the WW treatment, the pions would be the only source where an introduction

of wavepackets would be appropriate. The usual decay matrix elements for pion decay from

quantum field theory were used and a full discussion of wavepackets is available in refs[62].

In absence of the decoherence contributions, the usual expressions emerge, namely

Re[Iji] = cos
[δm2

ji L

2E

]
; Im[Iji] = sin

[δm2
ji L

2E

]
, (VI.6)

with
δm2

ji L

2E
= 2.54

(
δm2

ji

eV2

)(
L

km

)(
GeV

E

)
. (VI.7)

Whereas the length scale Lc is determined by the particular experimental setting and is

therefore a parameter, the width of the parent particle is a function of the neutrino energy

through the Lorentz factor as follows.
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In the rest frame of the decaying meson, its width is ΓM and the antineutrino (neutrino)

is emitted isotropically with an energy E∗
j =

√
q∗2 +m2

j with q∗ given by (II.13); in the

laboratory frame, where the meson is moving with velocity VM , the width is ΓM/γ and the

energy of an anti (neutrino) collinear with the meson is blue shifted to

E = γE∗(1 + VM) (VI.8)

where we have neglected the mass of the neutrino. Therefore

γ(E) =
E2 + E∗2

2EE∗
; E∗ < E (VI.9)

hence

Rji(E) =
δm2

ji

4E∗ ΓM

(
1 +

E∗2

E2

)
. (VI.10)

In the analysis below, we focus on neutrinos from Pion decay and the analysis for Kaon

decay is similar. Using the Pion decay width, Γπ = 2.5 × 10−8 eV, as a benchmark, we

obtain

Rji(E) =
1

3

(
δm2

ji

eV2

)(
30MeV

E∗

)(
Γπ

ΓM

)(
1 +

E∗2

E2

)
. (VI.11)

An illuminating interpretation of the results (VI.3,VI.4) emerges by defining4

cos[θji(E)] =
1√

1 +R2
ji

; sin[θji(E)] =
Rji√
1 +R2

ji

, (VI.12)

in terms of which we find

Re[Iji] =
1√

1 +R2
ji

1

1− e−ΓM (p)Lc

{
cos
[δm2

ji

2E
L−θji(E)

]
−e−ΓM (p)Lc cos

[δm2
ji

2E
(L−Lc)−θji(E)

]}

(VI.13)

Im[Iji] =
1√

1 +R2
ji

1

1− e−ΓM (p)Lc

{
sin
[δm2

ji

2E
L−θji(E)

]
−e−ΓM (p)Lc sin

[δm2
ji

2E
(L−Lc)−θji(E)

]}
.

(VI.14)

While the general case must be studied numerically, the limit ΓMLc ≫ 1 provides a most

clear assessment: as compared to the usual quantum mechanical expression (VI.6), the

4 Note that sign
(
θij
)
= sign

(
δm2

ij

)
.
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decoherence factors result in i) a suppression of the transition probabilities ≃ 1/
√

1 +R2
ji

and ii) an overall energy dependent phase shift θji(E).

For example, for a sterile neutrino mass ms & 1 eV ≫ m1,2,3 from π decay, it follows that

1 . R thus from (VI.11,VI.12) π/4 . θji . π/2. Trying to fit the mass (and mixing angles)

by using the usual expression (VI.6) would imply an effective δm2
eff = δm2 − 2E θ(E)/L.

For example, for accelerators experiments with E ≃ GeV , L ≃ 1Km, such a fit would lead

to 2E θ(E)/L ≃ eV2 and a large underestimate of the sterile neutrino mass and the mixing

and CP-violating angle.

A similar interpretation holds for the imaginary part (VI.14), which is associated with

CP-violating amplitudes, the suppression factor would result in an underestimate of CP-

violation if the usual quantum mechanical expression (VI.6) is used in fitting experimental

data. For both cases, if the product ΓMLc & 1 then the usual quantum mechanical formulae

will not be valid and decoherence effects must be considered.

This simpler case illustrates that for short baseline accelerator experiments in which neu-

trinos are produced from the decay of pions and are designed to reveal oscillations of new

generations of sterile neutrinos with masses in the eV range, the decoherence aspects as-

sociated with the pion lifetime and the stopping length scale of the muon comparable to

the decay length of the pion may lead to substantial corrections to the quantum mechanical

oscillation probabilities. A more reliable assessment is obtained numerically below for dif-

ferent experimental situations and, in these investigations, we focus on sterile mass ranges

that are relevant for current accelerator searches rather than masses relevant to structure

formation.

MiniBooNE/SciBooNE: For MiniBooNE/SciBooNE, antineutrinos are produced pri-

marily from π− → µ−νµ, Pions decay in a decay tunnel ≃ 50mts long and muons are

stopped in the “dirt” at a typical distance ≃ 4mts beyond the decay tunnel5, therefore in

this situation Γπ(p)Lc ≃ 1. The SciBooNE detector is at a distance L = 100mts from the

production region, in between the end of the decay tunnel and MiniBooNE, whose detector

is at a baseline L = 540mts, and the neutrino energy range (for both) is 0.3 ≤ E . 1.6GeV.

Figs. (4-6) show the comparison between the CP-even and odd parts with (modified) and

without (QM) the decoherence corrections for MiniBooNE for ms = 1, 2, 3 eV respectively

5 D.B. is indebted to William C. Louis III for correspondence clarifying these aspects.
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and figs. (7-9) show the same comparison for SciBooNE parameters with L = 100m and

same energy range and values of ms.
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FIG. 4: CP-even/odd parts of transition probability for MiniBooNE parameters: L =

540m,ΓπLc ≃ 1 for ms = 1eV. Solid line (modified) Re[1 − Is1]/2 dashed line (Qm) is the

quantum mechanical result sin2[m2
s/4E].
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FIG. 5: Same as Fig.(4) for MiniBooNE for ms = 2eV.

These figures confirm the interpretation of the decoherence modifications in terms of an

overall suppression of the amplitude and a phase-shift that leads to an offset in the position

of the peaks with respect to the quantum mechanical result. Since the mixing angle is

extracted from the maximum amplitude of the probability and the mass from the position
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of the peaks, a fit with the quantum mechanical formula would underestimate both the

mixing angle and the mass as analyzed above. A similar conclusion applies to the CP-

violating angle. For MiniBooNE, the suppression and off-set are small when δm2 . 1 eV2,

resulting in an underestimate of about 3 − 5% in amplitude and mass as shown in fig. (4)

but is larger at SciBooNE as shown in fig. (7), but for δm2 = m2
s ∼ 3 eV2, fig. (6) for

MiniBooNE reveals ∼ 15% suppression in the amplitude with a similar underestimate in the
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mass (off-set).

Pions and Kaons (DAR): Recent proposals [56, 57] for high intensity sources to study

sterile-active oscillations with pions and kaons (DAR) motivate a study of the decoherence

effects in these experiments. For (DAR) the energy is fixed at E = E∗ and presumably the

baseline L is also fixed, we take L = 30m as a middle-range indicative value for the purpose

of our analysis, other values can be explored numerically. What is less clear is the value

of the product ΓMLc which will ultimately depend on the experimental design. Namely,

the muons (or charged leptons in general) must be stopped at distances much less than the
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baseline and that ΓLc ≪ 1 in order for decoherence effects to be minimal. We study the

possibible ranges ΓMLc ≪ 1,≃ 1,≫ 1 respectively as a function of ms. For π −K (DAR)

it follows that E∗
π = 29.8MeV ; E∗

K = 235.5MeV respectively for which we find the ratio

(VI.11) to be

Rπ(E
∗
π) =

2

3

(
m2

s

eV2

)
; RK(E

∗
K) =

1

25

(
m2

s

eV2

)
(VI.15)

The comparison between the modified results (VI.3,VI.4) and the usual quantum mechan-

ical results (VI.6) are displayed in figs. (10-15) for π,K (DAR) for a baseline representative

L = 30m.
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FIG. 10: π (DAR) CP-even and CP-odd contributions for ΓπLc = 0.01 vs ms. The solid line

(modified) shows Re[1− Is1] where Re[Is1] is given by (VI.3,VI.4), the dashed line is the quantum

mechanical result (VI.6) for δm2
s1 = m2

s.

It is clear from this analysis, both for π,K (DAR), that decoherence effects are very

small and the modified result is indistinguishable from the usual quantum mechanical results

(VI.6) whenever ΓMLc ≪ 1 but become large for ΓMLc & 1. The decay length for π,K are

lπ = 7.8m, lK = 3.7m respectively; therefore, in order for the usual quantum mechanical

results (VI.6) to describe a correct fit to the experimental data, the design must ensure that

charged leptons (mainly µ) be stopped at distances Lc ≪ lπ, lK respectively, namely a few

cm beyond the stopping target of the mesons.

Long baseline experiments: For long baseline experiments, the decoherence terms do

not contribute. This is because these experiments study oscillations with δm2 ∼ 10−3 eV2
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FIG. 11: Same as fig. (10) with ΓπLc = 1.
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FIG. 12: Same as fig. (10) with ΓπLc = 100.

and E ≃ few GeV for which L ≃ 300 − 1000 km, an example of such experiment is Minos

in which pions produce neutrinos as in MiniBooNE/SciBoone. In these experiments, R .

10−3 ; ΓMLc . 1 so that ∆ijLc ≪ 1; therefore, decoherence effects are all but negligible

generally for long baseline experiments.
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mechanical result (VI.6) for δm2
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FIG. 14: Same as fig. (13) with ΓKLc = 1.

A. Reactors vs. accelerator experiments

The suppression of the transition probabilities through the decoherence effects depend

both on the lifetime of the parent particle and the stopping distance of the charged lepton

which is produced along with the (anti) neutrino via the charged current interactions. This

establishes a fundamental difference between accelerator and reactor oscillation experiments :
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whereas in accelerator experiments neutrinos are produced via the decay of short lived

mesons with typical lifetimes ≃ 10−8secs and widths ≃ 10−8 eV, in reactors the (anti) neutri-

nos are produced via the β decay of long-lived unstable nuclei 235U , 238U , 239Pu , 241Pu[22, 23]

with typical lifetimes in the range between hundreds and thousands of years. Furthermore,

in current short baseline accelerator experiments such as MiniBooNE/SciBooNE, pions de-

cay in a decay pipe and muons are stopped at short distances beyond the decay pipe so

that ΓπLc ≃ 1; in reactor experiments, muons are stopped in the reactor core on distance

scales so that ΓLc , ∆jiLc ≪ 1. Our study above clearly shows that under this circum-

stance the modifications from decoherence are negligible and the transition probabilities

are indistinguishable from the quantum mechanical result. Therefore, we conclude that the

quantum mechanical fit to the oscillation probabilities in reactor experiments is always jus-

tified, whereas in accelerator experiments, decoherence effects both from the lifetime of the

parent meson and the stopping length scale of the charged lepton partner are substantial for

ms & 1 eV and a fit to the usual quantum mechanical transition probabilities both for CP-

even/odd contributions may substantially underestimate masses, mixing and CP-violating

angles.
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B. Wave packets:

Our study is restricted to plane waves to exhibit the main results and conclusions in

the clearest possible setting. As has been argued in the literature[86–93], wave packet lo-

calization may be an important ingredient in the description of neutrino oscillations. The

localization length both of the production and detection regions define momentum uncer-

tainties that are important in the conceptual understanding of the interference phenomena.

A wave packet description should also be implemented in the measurement or stopping (dis-

entanglement) of the charged lepton, which we treated as an event sharp in space time at a

time scale tc and distance Lc, a wave packet treatment would smear these scales over a lo-

calization length scale of the wave packet, which is determined by the measurement process

(or perhaps the mean free path of the charged lepton in the stopping material).

The typical analysis of neutrino oscillations in terms of (Gaussian) wave packets [86–93]

clarifies that neutrino wave-packets evolve semiclassically, the center moves as the front of a

plane wave with the group velocity and is modulated by a Gaussian envelope which spreads

via dispersion. Wave packets associated with the different mass eigenstates separate as they

evolve with slightly different group velocities and, when their separation becomes of the

order of or larger than the width of the wave packet, the overlap vanishes and oscillations

are suppressed ∝ e−(L/Lcoh)
2

, where Lcoh ≃ σ E2
ν/δm

2 and σ is the spatial localization scale

of the wave packet. This suppression becomes important when Lcoh . L, which for δm2 ≃
eV2, E & 30MeV, L ∼ 100 − 600m implies σ . 1 − 5 × 10−13m which, while much bigger

than nuclear dimensions, is much smaller than atomic scales. If a firm assessment confirms

that neutrino wavepackets are produced with such localization length or smaller, then this

decoherence effect must be introduced in the oscillation probability.

As discussed in [86] the wave packet description also features another source of decoher-

ence in the localization term, which suppresses coherence when σ > Losc ∼ E/δm2 which is

unlikely to be relevant in short baseline accelerator experiments. A complementary inter-

pretation of decoherence for ΓM . δm2/2E in terms of wave packets is discussed in ref.[86]:

if a neutrino wavepacket produced by the decay of a parent particle of width ΓM is assigned

a localization length, σ ≃ 1/ΓM , then the condition for decoherence from the localization

term, σ ≃ Losc, becomes equivalent to ΓM ≃ δm2/2E which is recognized as R ≃ 1 in our

discussion. Although we do not see an obvious relation between the results obtained above
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with the non-perturbative field theoretical Wigner-Weisskopf method and the interpretation

of a wavepacket with localization length 1/ΓM , our results are certainly in agreement with

this interpretation; however, we emphasize that the analysis above also reveals another scale

that is important for decoherence, namely Lc, which is the length scale at which the charged

lepton that is emitted along with the neutrino is observed or absorbed. As pointed out

above there are two important dimensionless quantities that determine decoherence in the

plane wave limit: R and ΓMLc.

VII. CONCLUSIONS AND FURTHER QUESTIONS.

Motivated by the cosmological importance of new generations of heavier sterile neutrinos

and recent proposal for high intensity sources, this article focuses on two different aspects

related to the search of sterile neutrinos: 1) a proposal to search for heavy (≃ MeV-range)

sterile neutrinos by studying the production of negative helicity charged leptons in π−, K−

decay at rest (or positive helicity in the decay of π+, K+) as a complement to the search

for monochromatic lines in the muon (or electron) spectrum, and 2) an assessment of the

impact of decoherence effects from the lifetime of the parent meson and the stopping distance

scale of the charged lepton on the experimental fits for sterile neutrinos masses, mixing and

CP-violating angles in short baseline experiments.

Massive sterile (anti) neutrinos produced in π−, K− decay at rest (DAR) lead to a negative

helicity (positive if the decay is π+, K+) component of the charged lepton produced in the

decay. For searches of heavy sterile neutrinos from π−, K− decay at rest, we obtain the

branching ratio for charged leptons to be produced with negative helicity (or positive helicity

for the decay of π+, K+). This branching ratio determines the abundance of the negative

helicity states in the production process and we suggest that a Stern-Gerlach type filter with

a magnetic field with a gradient along the direction of the collimated charged lepton beam

emitted back to back with the (anti) neutrinos allows to spatially separate the different

helicity components. A combined measurement of the monochromatic line for the charged

lepton and the ratio of abundances of the spatial domains yield simultaneous information on

the mass and the absolute value of the mixing matrix element. This setup is most sensitive

for heavy sterile neutrinos with massms in the MeV range. The ratio of abundances between

the negative and positive helicity states is determined by the branching ratio (II.15), shown
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in fig. (1) (divided by |Uls|2), which, in combination with the search for monochromatic

lines allows, to extract both the mass and the element of the mixing matrix |Uls|2 by fitting

both the energy and abundance with the branching ratios.

Upper bounds on the sterile-active mixing matrix elements from previous experimental

searches allow us to estimate the upper bounds for the branching ratios for the different

processes, these are given by

Br−−
π→µ ν̄s . 10−8 − 10−7 ; 3MeV . ms . 33MeV (VII.1)

Br−−
π→e ν̄s . 10−8 − 10−6 ; 3MeV . ms . 135MeV (VII.2)

with the electron channel providing the largest window of opportunity because of the larger

phase space. For K-(DAR), we find

Br−−
K→µ,e ν̄s

. 10−9 − 10−6 for

{
4MeV . ms . 360MeV (µ− channel)

4MeV . ms . 414MeV (e− channel)
. (VII.3)

These upper bounds estimates suggest that these searches could be implemented in the next

generation of high intensity experiments.

Short baseline experiments target new generation of sterile neutrinos in the mass range

≃ eV as suggested by the LSND, MiniBooNE results and reactor anomalies. In current

accelerator experiments, (anti) neutrinos are produced from the decay of pions or kaons either

in flight, as in MiniBooNE/SciBooNE, or at rest, as recent proposals suggest. We recognized

two sources of decoherence that impact the interpretation of the data and experimental fits

to extract masses, mixing and CP-violating angles: a) the width of the parent meson ΓM

introduces an energy (or time) uncertainty and b) the stopping distance Lc of the charged

lepton that is produced in a quantum entangled state with the (anti) neutrino, decoherence

effects are encoded in two different dimensionless quantities,

Rij(E) =
δm2

ij

2EΓM

; ΓMLc . (VII.4)

The usual quantum mechanical formula for the oscillation probabilities are modified as

follows:

ei
δm2

ij L

2E → ei
δm2

ij L

2E

[
1− e−ΓM (p)Lc

(
1+iRij

)

1− e−ΓM (p)Lc

][
1− iRij

1 +R2
ij

]
(VII.5)

We study the impact of the decoherence effects both for Dirac and Majorana neutrinos,

addressing in particular CP-violating effects as well as ν → ν oscillations and |∆L| = 2
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transitions in the case of Majorana neutrinos. In all cases, we find that, for Rij ,ΓMLc & 1,

the oscillation probabilities are suppressed and the oscillatory functions feature energy-

dependent phase-shifts that results in an overall off-set that impacts the determination of

the mass. If these decoherence effects are neglected in the experimental analysis and the

data are fit with the usual quantum mechanical oscillation probabilities the masses, mixing

and CP-violating angles are underestimated.

In particular, on MiniBooNE/SciBooNE, for example, neutrinos are produced from pion

decay for which we find R ≃ 1/3
(
δm2/eV2

)
and ΓMLc ≃ 1, with one sterile neutrino with

ms ∼ 3 eV, fitting with two-generation mixing underestimates sin2(2θ) and δm2 by nearly

15%. Similar underestimates follow for CP-violating angles and |∆L| = 2 processes in 3+ 2

schemes.

We also conclude that reactor and (current) accelerator experiments are fundamentally

different in that the lifetime of the decaying parent particles in reactor experiments is hun-

dreds to thousands of years, compared to pion or kaon lifetimes, and charged leptons (muons)

are stopped within the core so that for reactors ΓLc,∆ijLc ≪ 1 and decoherence effects

are all but negligible, unlike the situation for example for MiniBooNE/SciBooNE. We also

suggest that next generation of high intensity experiments in which (anti) neutrinos are pro-

duced from π,K (DAR), decoherence effects may be suppressed considerably by designing

the experiment so that the charged leptons produced with the neutrinos (mainly muons) are

stopped on distances much smaller than the decay length of the mesons, in which case the

usual quantum mechanical oscillation probabilities furnish an accurate description of mixing

and oscillations.
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Appendix A: Quantization: Mesons, Dirac and Majorana neutrinos

We quantize the (pseudo) scalar and fermion fields in a quantization volume V . The

charged (complex) (pseudo) scalar field is as usual

M(~x, t) =
∑

~p

1√
2V EM(p)

[
Â~p e

−iEM (p) t + B̂†
−~p e

iEM (p) t
]
ei~p·~x (A.1)

where EM
p =

√
p2 +m2

M with mM the mass of the corresponding meson. It follows that

JM
µ (~x, t) =

∑

~p

pµ√
2V EM(p)

[
Â~p e

−iEM (p) t − B̂†
−~p e

iEM (p) t
]
ei~p·~x (A.2)

It proves convenient to introduce the combinations

M+(~p, t)±M−(~p, t) =
(
Â~p e

−iEM (p) t
)
±
(
B̂†
−~p e

iEM (p)t
)
. (A.3)

For Fermi fields we work in the chiral representation,

γ0 =


 0 −1
−1 0


 ; γi =


 0 σi

−σi 0


 ; γ5 =


 1 0

0 −1  (A.4)

and for a generic Fermion f , either for charged lepton or Dirac neutrinos of mass mf , we

write

Ψ(~x, t) =
∑

h=±

∑

~k

ψ(~k, h, t)√
2V Ef(k)

ei
~k·~x (A.5)

For Dirac fermions of mass mf

ψ(~k, h, t) =

[
b̂~k,hUh(~k) e

−iEf (k) t + d̂†
−~k,h

Vh(~k) e
iEf (k) t

]
(A.6)

where Ef (k) =
√
k2 +m2

f and the spinors Uh,Vh are eigenstates of helicity with eigenvalue

h = ±1, these are given by

U+(~k) = Nf

(
v+(~k)

−ε(k) v+(~k)

)
; U−(~k) = Nf

(
−ε(k) v−(~k)

v−(~k)

)
(A.7)

V+(~k) = Nf

(
ε(k) v+(~k)

v+(~k)

)
; V−(~k) = Nf

(
v−(~k)

ε(k) v−(~k)

)
(A.8)

where

Nf =
√
Ef(k) + k ; ε(k) =

mf

Ef (k) + k
(A.9)
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and v±(~k) are helicity eigenstates Weyl spinors:

v+(~k) =

(
cos θ

2

sin θ
2
eiφ

)
; v−(~k) =

(
− sin θ

2
e−iφ

cos θ
2

)
(A.10)

where

~k = k
(
sin θ cosφ, sin θ sinφ, cos θ

)
. (A.11)

A useful representation is

v+(~k) =

(
1 + ~σ · ~̂k

)
√
2(1 + cos θ)

(
1

0

)
; v−(~k) =

(
1− ~σ · ~̂k

)
√

2(1 + cos θ)

(
0

1

)
. (A.12)

The Weyl spinors (A.10) satisfy

v†h(
~k) · vh′(~k) = δh,h′ (A.13)

Majorana fields are charge self-conjugate and generally obey

ψc = iγ2 ψ∗ = eiξ ψ (A.14)

with ξ an arbitrary (real) phase, which we choose ξ = 0. In the chiral representation (A.4)

writing

ψ =

(
ψR

ψL

)
(A.15)

it follows that

ψc =

(
iσ2 ψ∗

L

−iσ2 ψ∗
R

)
(A.16)

Therefore, a Majorana field is obtained by combining the positive frequency component with

its charge conjugate as the negative frequency, namely

χ(~x, t) =
∑

h=±

∑

~k

1√
2V Ef (k)

[
b̂~k,hUh(~k) e

−i(Ef (k) t−~k·~x) + b̂†~k,hU
c
h (
~k) ei(Ef (k) t−~k·~x)

]
(A.17)

where

U c
+(
~k) = Nf

(
ε(k) v−(~k)

v−(~k)

)
; U c

−(
~k) = Nf

(
v+(~k)

ε(k) v+(~k)

)
(A.18)

and we have used the property

(
iσ2
)
v∗+(

~k) = −v−(~k) ;
(
iσ2
)
v∗−(

~k) = v+(~k) . (A.19)
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In particular the negative chirality component of the Majorana neutrino is

χL(~x, t) =
1√
V

∑

~k

[
Ef(k) + k

2Ef (k)

] 1

2
[(

− b̂~k,+ ε(k) v+(
~k) + b̂~k,− v−(

~k)

)
e−i(Ef (k) t−~k·~x)

+

(
b̂†~k,+ v−(

~k) + b̂†~k,−ε(k) v+(
~k)

)
ei(Ef (k) t−~k·~x)

]
(A.20)

From the representation (A.12), it follows that

v†h(−~k) · vh(~k) = 0 ; h = ± . (A.21)

It is straightforward to confirm that the Hamiltonian for the Majorana fields

1

2

∫
d3xχ†(~x, t)

[
− i~α · ~∇+ βmf

]
χ(~x, t) =

∑

k,h

Ef(k) b̂
†
~k,h
b̂~k,h (A.22)

where the zero point energy has been subtracted.

Appendix B: Wigner-Weisskopf method for M → lν:

The purpose of this appendix is to provide technical details of the Wigner-Weisskopf

approximation as applied to the M → lν̄ process. For a more extended discussion see

refs.[61, 83].

The total Hamiltonian is given by H = H0 +Hi, where H0 is the free Hamiltonian and

Hi is the interaction part. The time evolution of a state in the interaction picture is given

by

i
d

dt
|Ψ(t)〉I = ĤI |Ψ(t)〉I (B.1)

where ĤI(t) = eiĤ0tĤi(t)e
−iĤ0t. The formal solution of (B.1) is given by

|Ψ(t)〉I = Û(t, to)|Ψ(to)〉I (B.2)

where Û(t, to) = T (e−i
∫ t
to

ĤI (t
′)dt′) . Expanding the state |Ψ(t)〉I in the basis of eigenstates

of H0 we have

|Ψ(t)〉I =
∑

n

Cn(t)|n〉 (B.3)

where Ĥ0|n〉 = En|n〉. It is straightforward to show that
∑

n |Cn(t)|2 = const which is a

consequence of unitary time evolution.
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Now consider the initial state at time t = 0 to be one meson state of definite momentum,

namely

|Ψ(t = 0)〉I = |M〉~p =
∑

n

Cn(t = 0)|n〉 (B.4)

which gives the initial condition Cn(t = 0) = δn,M~p
.

From eq.(B.1), upon expanding in basis states, it follows that

d

dt
Cn(t) = −i

∑

m

〈n|HI(t)|i〉Cm(t) (B.5)

The interaction Hamiltonian (II.1) connects the initial meson state, |M~p〉 to lep-

tonic/neutrino states, {|l〉 ⊗ |ν̄〉}. These states in turn are coupled back to |M~p〉 via

HI , but also to other multiparticle states which describe processes that are higher order in

perturbation theory. However, we will only be considering states connected to |M~p〉 via first

order in perturbation theory. The case that will be of interest to us will be M → lν̄ and is

shown in Figure (16).

|M〉~p
|l〉~k,h |M〉~p

|ν̄j〉~q,h′

|l〉~k,h

|ν̄j〉~q,h′

~k = ~p + ~q

〈lν̄j|HI |M〉 〈M |HI|lν̄j〉

FIG. 16: Transitions |M〉 → |l〉|ν̄j〉

Considering the set of equations for these states, we obtain

d

dt
CM(t) = −i

∑

κ

〈M |HI(t)|κ〉Cκ(t) (B.6)

d

dt
Cκ(t) = −i〈κ|HI(t)|M〉CM(t) (B.7)

where |κ〉 is the intermediate state, |lα(~k, h)〉|ν̄α(~q, h′)〉. Using the initial conditions for t = 0,

one obtains

Cκ(t) = −i
∫ t

0

dt′〈κ|HI(t
′)|M〉CM(t′) , (B.8)

which when inserted into (B.6) leads to
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d

dt
CM(t) = −

∫ t

0

dt′
∑

κ

〈M |HI(t)|κ〉〈κ|HI(t
′)|M〉CM(t′) = −

∫ t

0

dt′ΣM(t− t′)CM(t′) (B.9)

Where the meson self energy has been introduced

ΣM (t− t′) ≡
∑

κ

〈M |HI(t)|κ〉〈κ|HI(t
′)|M〉 =

∑

κ

|〈M |ĤI(0)|κ〉|2ei(EM−Eκ)(t−t′) (B.10)

This self-energy is recognized as the one-loop retarded self energy with the |l〉|ν〉 intermediate

state.

Solving eq.(B.9) produces a solution for the time evolution of the meson amplitude. We

can use the solution for CM(t) to obtain an expression for the amplitudes Cκ(t) which allows

for computation of the probability of occupying a particular state at any given time. We may

solve eq.((B.9)) either via Laplace transform, or in the case of weak coupling, a derivative

expansion which yields the same result at long times (t≫ 1/mM). Here, we follow the latter

method which is the original Wigner-Weisskopf approximation.

We begin by defining the quantity

W0(t, t
′) =

∫ t′

0

dt′′ΣM (t− t′′) (B.11)

so that

d

dt′
W0(t, t

′) = ΣM (t− t′) , W0(t, 0) = 0 (B.12)

Integrating eq.(B.9) by parts yields

d

dt
CM(t) = −

∫ t

0

dt′ΣM(t− t′)CM(t′) = −W0(t, t)CM(t) +

∫ t

0

dt′W0(t, t
′)
d

dt′
CM(t′) (B.13)

The first is term second order in HI whereas the second term is of fourth order in HI

and will be neglected. This approximation is equivalent to the Dyson resummation of the

one-loop self energy diagrams. Thus to leading order, eq.(B.9) becomes

d

dt
CM(t) +W0(t, t)CM(t) = 0 , (B.14)

where
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W0(t, t) =

∫ t

0

dt′ΣM(t− t′) =

∫ t

0

dt′
∑

κ

|〈M |ĤI(0)|κ〉|2ei(EM−Eκ)(t−t′) (B.15)

Inserting a convergence factor and taking the limit t→ ∞ consistently with the Wigner-

Weisskopf approximation, we find6

W0(t, t) = lim
ǫ→0+

i

∑
κ |〈M |ĤI(0)|κ〉|2
EM − Eκ + iǫ

= i∆EM +
ΓM

2
(B.16)

where

∆EM ≡ P
∑

κ

|〈M |ĤI(0)|κ〉|2
EM − Eκ

, (B.17)

is the second order shift in the energy which will be absorbed into a renormalized meson

energy and

ΓM ≡ 2π
∑

κ

|〈M |ĤI(0)|κ〉|2δ(EM − Eκ) (B.18)

is the decay width as per Fermi’s Golden rule. Therefore in this approximation, we arrive

at

CM(t) = e−i∆EM te−
ΓM
2

t . (B.19)

Inserting this result into eq. (B.8) leads to

Cκ(t) = −i〈κ|HI(0)|M〉
∫ t

0

dt′e−i(EM+∆EM−Eκ−i
ΓM
2

)t′

= −〈κ|HI(0)|M〉
[
1− e−i(EM+∆EM−Eκ−i

ΓM
2

)t

EA +∆EM −Eκ − iΓM

2

] (B.20)

Defining the renormalized energy of the single particle meson state as Er
M = EM +∆EM

and passing to the Schroedinger picture |M(t)〉S = e−iĤ0t|M(t)〉I , we find that

|M−
~p (t)〉S = e−iĤ0t

[
CM(t)|M〉 +

∑

κ

Cκ(t)|κ〉
]

= e−iEr
M te−

ΓM
2

t|M−
~p (0)〉 −

∑

κ

〈κ|HI(0)|M−
~p 〉
[
1− e−i(Er

M−Eκ−i
ΓM
2

)t

Er
M −Eκ − iΓM

2

]
e−iEκt|κ〉

(B.21)

6 The long time limit in the Wigner-Weisskopf approximation is equivalent to the Breit-Wigner approxi-

mation of a resonant propagator[83].
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The interaction Hamiltonian for M → lαν̄α is given by eqn. (II.5) and the quantization

from Appendix A leads to the matrix element

〈l−α ν|HI(0)|M−
~p 〉 =

FM√
V

∑

j

Uαj
Uα,h(~k)γ

µLVj,h′(~q)pµ√
8EM(p)Eα(k)Ej(q)

; ~k = ~p+ ~q (B.22)

which yields our final result for the entangled quantum state resulting from meson decay

|M−
~p (t))〉 = e−iEM (p)te−ΓM (p) t

2 |M−
~p (0)〉 − FM

∑

~q,αj,h,h′

Uαj
Uα,h(~k)γ

µLVj,h′(~q)pµ√
8V EM (p)Eα(k)Ej(q)

×
[
1− e−i(Er

M (p)−Eα(k)−Ej(q)−i
ΓM
2

)t

Er
M(p)−Eα(k)− Ej(q)− iΓM

2

]
e−i(Eα(k)+Ej(q))t|l−α (h,~k)〉|ν̄j(h′,−~q)〉

(B.23)

Appendix C: On the normalization (III.6):

The normalization of the disentangled neutrino state (III.6) has another important inter-

pretation, it is recognized as the number density of charged leptons produced from the decay

of the meson. To see this, consider the expansion of the Dirac field for the charged lepton

as in eqn. (A.6) where b̂†~k,hi
creates a charged lepton l− with momentum ~k and helicity hi.

The number operator for particles is n̂~k,hi
= b̂†~k,hi

b̂~k,hi
and its expectation value in the full

meson state (III.1) is given by

nl
~k,hi

≡ 〈M−
~p (t))|n̂~k,hi

|M−
~p (t))〉 =

∑

j,h′

∣∣Uαj

∣∣2 ∣∣MP
αj(
~k, ~q, hi, h

′)
∣∣2

8V EM (pEj(q)Eα(k)

∣∣∣Fαj[~k, ~q; tc]
∣∣∣
2

(~q; hi) ,

(C.1)

which is recognized as the normalization (III.6), namely

Nν(~q; hi) = nl
~k,hi

. (C.2)

From the definition of the partial width ΓM−→l−α νj
(p, hi, h

′) of meson decay into a lepton

α of helicity h and neutrino eigenstate νi of helicity h
′

ΓM−→l−α νj
(p, hi, h

′) =
1

2EM(p)

∫
d3q

(2π)3

∣∣MP
αj(
~k, ~q, hi, h

′)
∣∣2

2Ej(q)2Eα(k)
2π δ

(
EM(p)−Eα(|~p−~q|)−Ej(q)

)

(C.3)

and the total decay width

ΓM(p) =
∑

j,h′

∣∣Uαj

∣∣2 ΓM−→l−α νj
(p, hi, h

′) , (C.4)
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it follows that the total number of charged leptons produced at time tc is given by

V
∑

hi

∫
d3q

(2π)3
nl
~k,hi

= V
∑

hi

∫
d3q

(2π)3
Nν(q, hi) =

[
1− e−ΓM (p)tc

]
(C.5)
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