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We present the theory of a supersymmetric ghost condensate coupled to N = 1 supergravity. This
is accomplished using a general formalism for constructing locally supersymmetric higher-derivative
chiral superfield actions. The theory admits a ghost condensate vacuum in de Sitter spacetime.
Expanded around this vacuum, the scalar sector of the theory is shown to be ghost-free with no
spatial gradient instabilities. By direct calculation, the fermion sector is found to consist of a massless
chiral fermion and a massless gravitino. By analyzing the supersymmetry transformations, we find
that the chiral fermion transforms inhomogeneously, indicating that the ghost condensate vacuum
spontaneously breaks local supersymmetry with this field as the Goldstone fermion. Although
potentially able to get a mass through the super-Higgs effect, the vanishing superpotential in the
ghost condensate theory renders the gravitino massless. Thus local supersymmetry is broken without
the super-Higgs effect taking place. This is in agreement with, and gives an explanation for, the
direct calculation.

I. INTRODUCTION AND SUMMARY

It was shown in [1] that certain scalar field theories with higher-derivative kinetic terms can, when coupled to
gravity, possess a vacuum that is ghost-free but violates the Null Energy Condition (NEC) of general relativity. These
“ghost condensate” vacua have a number of important applications. For example, ekpyrotic [2-4] and other bouncing
theories [5-8] of the early universe require that spacetime “bounce” from a contracting to an expanding phase, perhaps
even oscillating cyclically [9, 10]. From the point of view of low-energy effective field theory, these cosmologies require
some form of matter that naturally violates the NEC without introducing any ghosts or singularities in spacetime.
Such forms of matter are rare-ghost condensates [1] and the closely related Galileons [11] are currently the only
known scalar field examples. Ghost condensates were introduced in this context in new ekpyrotic cosmology [12].
It was shown [12-14] that, given the appropriate potential and kinetic energy functions, the early universe can go
through a contracting ekpyrotic phase where a nearly scale-invariant spectrum of scalar perturbations is produced [15]
(with characteristic non-Gaussian signatures [6, 14, 16-21]), followed by a ghost-condensate phase where the universe
bounces and enters the present epoch of expansion.

All of the above theories involve scalar fields coupled to gravity in the early universe and, hence, it seems essential
to understand their ultra-violet (UV) behavior. The quantum divergences of both scalar theories and gravity are
under better control within the context of supersymmetry, supergravity and string theory. With this in mind, ghost
condensate theories were extended to global supersymmetry in [22]. Specifically, the globally N = 1 supersymmetric
Lagrangian of a single chiral supermultiplet—containing a complex scalar with two real components ¢ and &, a Weyl
fermion y and an auxiliary field F—was generalized to include higher-derivative kinetic terms. This theory manifested
the ghost condensate vacuum which, due to the appropriate choice of higher-derivative interactions, retained the
auxiliary field structure of F', was free of spatial gradient instabilities of ¢ and had a canonical kinetic energy for
the second real scalar £&. The kinetic energy of the fermion evaluated in this condensate vacuum is ghost-free but
has a negative spatial gradient term which, perhaps, is physically acceptable. Be that as it may, to resolve this last
issue the global supersymmetry construction was extended to more generic higher-derivative interactions in [23]. This
led naturally to a globally N = 1 supersymmetric theory of conformal Galileons [23]. Within this context, it was
shown that the ghost condensate still persisted with all of the appropriate properties of the original supersymmetric
theory but, now, with a correct sign fermion kinetic energy as well. A final, and important, property of the globally
supersymmetric ghost condensate vacuum is that it spontaneously breaks supersymmetry. This occurs, not through
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an expectation value for the F' term, but, rather, due to the explicit time-dependence of the scalar condensate.

These globally supersymmetric condensate theories, although using their eventual interaction with gravity as a
motivation for some of their properties, were not a complete coupling to supergravitation. In this paper, we accom-
plish this by explicitly coupling the higher-derivative chiral superfield Lagrangians introduced in [22] to local N =1
supergravity. Explicitly we will do the following. After reviewing both scalar and globally supersymmetric ghost con-
densates in Sections II and III respectively, the basic N = 1 supergravity ghost condensate Lagrangian is introduced.
This is accomplished in Section IV using the general formalism of higher-derivative chiral superfield actions coupled
to N = 1 supergravity introduced in [24, 25]. We begin by constructing the Lagrangian, both in superfields and
components, for a single chiral superfield with the simplest higher-derivative kinetic term coupled to supergravity.
By appropriately choosing the Kéahler potential-in the present paper we do not require a superpotential-solving for
the auxiliary fields and Weyl rescaling, the proposed component field supergravity Lagrangian for a ghost condensate
theory is presented. This is shown to indeed admit a ghost condensate vacuum in de Sitter spacetime with vanishing
gravitino and x fermions. The quadratic scalar Lagrangian is evaluated in the condensate vacuum exposing two
possible problems—a potential gradient instability in the scalar ¢ and an unacceptable kinetic energy for its partner
scalar field &, which we address later in the paper.

In the following subsection, the gravitino and x kinetic energies and mass terms are presented. By appropriate
field redefinition, these are diagonalized and shown to correspond to a massless fermion x and a massless gravitino.
This result is then interpreted and explained within the context of the fermion supergravity transformations, which
are reviewed in Appendix A. As in the global case, the supergravity ghost condensate spontaneously breaks super-
symmetry due to the explicit time-dependence of the scalar ¢. This renders the supersymmetry transformation of x
inhomogeneous-signaling the breaking of supersymmetry. However, we show that, as in a Minkowski spacetime vac-
uum, the gravitino can be redefined so that it transforms homogeneously. Hence, x is the massless Goldstone fermion.
The super-Higgs effect is discussed in detail. We find that, even though supersymmetry has been spontaneously bro-
ken, the gravitino remains massless due to the vanishing of the superpotential and thus the usual super-Higgs effect
(by which the gravitino becomes massive) does not take place. These results give an explanation for those obtained by
direct diagonalization of the quadratic fermion Lagrangian. Having understood the fermion kinetic and mass terms,
we then return in the next subsection to the problems of the ¢ spatial gradient instability and the wrong sign £ kinetic
energy. We present explicit additional supersymmetric terms that, when added to the supergravity Lagrangian, solve
both of these problems. Their effect on the ghost condensate vacuum is to make a small shift in the scales of both the
condensate and the de Sitter spacetime. The calculation of the requisite component field Lagrangians is presented in
detail in Appendix B. Finally, it is shown that these additional terms, while possibly modifying the coefficients of the
diagonal gravitino and y kinetic energies, still leave the gravitino and x as massless fermions. This is accomplished
using the generalized fermion transformations presented in Appendix A.

The results of this paper prove the existence of a consistent N = 1 supergravity ghost condensate theory. Although
ghost-free, the y kinetic energy continues to manifest a negative spatial gradient term. It is of interest, therefore,
to extended and generalize the results of this paper to a theory of supersymmetric conformal Galileons coupled to
supergravitation—this will appear elsewhere. It is of interest to note that conformal scalar Galileons can occur on
the worldvolume of branes [26] and AdS “kink” solitons [27]. Furthermore, it was shown in [28] that the bosonic
components of N = 1 supergravity Galileons also appear naturally on the worldvolume of BPS wrapped five-branes
in heterotic superstring constructions [29-33]. It is tempting to conjecture, therefore, that string soliton worldvolume
theories can manifest a ghost condensate solution-thus naturally violating the NEC in a UV complete superstring
context. This is presently under study.

II. SCALAR GHOST CONDENSATION

Let gmn be a (— 4+ ++) Lorentz signature metric of four-dimensional spacetime with coordinates 2™ and consider
a real scalar field ¢. Denote its standard kinetic term by X = —%(8@2. A ghost condensate vacuum arises from
higher-derivative theories of the form

L==gP(X), (IL.1)

where P(X) is an arbitrary differentiable function of X. In a flat Friedmann-Robertson-Walker (FRW) spacetime

with metric ds* = —dt? +a(t)?d;jdz'dx? , and assuming ¢ to be dependent on time alone, the scalar equation of motion
becomes
d ( 3p q's) 0 (I1.2)
—la = . .
ar\"



Clearly this has a trivial solution when ¢ = constant. Of more interest is the solution with non-constant ¢, but for
which

1
X = §¢2 = constant, Px =0. (IL.3)

Denoting by Xext a constant extremum of P(X), the equation of motion admits the ghost condensate solution
¢p=ct, (I1.4)

where ¢? = 2 X ext.
The explicit time-dependence of this solution spontaneously breaks Lorentz invariance and leads to a number of
interesting properties. First of all, evaluating the energy and pressure densities one finds

p=2XPx—-P, p=P = p+p=2XPx. (1L.5)

Since by definition X > 0, it follows that the Null Energy Condition (the NEC corresponds to the requirement
p+p > 0) can be violated if P x < 0. That is, if we are close to an extremum for P(X), then on one side the NEC
is satisfied while on the other it is not. Correspondingly, since Einstein’s equations imply H= —%(p + p), it is now
possible to obtain a non-singular bouncing universe-where H increases from negative to positive values. Crucial in
determining the viability of this theory is the question of whether or not this NEC-violating solution is “stable”. To
this end, let us expand Lagrangian (II.1) to quadratic order in perturbations around the ghost condensate,

¢ =ct+op(z™) . (IL.6)
We find that

1 ( 9 _

—= = 3 (@XPxx + Px)(#0)* — Px06"00,) . (IL7)
/=g 2

As a result of Lorentz breaking, the coefficients in front of the time and space pieces are unequal. By inspection, one

sees that the condition for the absence of ghosts is that

2XPxx+Px >0, (11.8)
which can be achieved around a local minimum
RXX >0 (11.9)

even in the NEC-violating region where P y is small but negative. Henceforth, one imposes (I1.9) in addition to (II.3)
on the ghost condensate vacuum. This feature is arguably the most striking property of ghost condensate theories,
namely, that the NEC can be violated without the appearance of ghosts.

However, in the NEC violating region the coefficient in front of the spatial derivative term in (II.7) has the wrong
sign. Therefore, the theory suffers from gradient instabilities. These can be softened by adding (small) higher-
derivative terms—not of the P(X) type-to the Lagrangian, such as —((¢)?. These modify the dispersion relation for
0¢ at high momenta and suppress instabilities for a short—but sufficient—period of time. In a cosmological context,
there are additional constraints arising from a study of the growth of cosmological perturbations, which imply that a
non-singular bounce must be fast in order to avoid perturbations from becoming uncontrollably large [34, 35]. The
bottom line is that bouncing universe solutions via a ghost condensate are admissible, but the bounce is required to
occur on a fast time-scale—for more details, see [12].

III. REVIEW OF GLOBALLY N =1 SUPERSYMMETRIC GHOST CONDENSATION
A. Higher-Derivative Chiral Superfield Lagrangians

As shown in [22], the scalar ghost condensate theory can be extended to global N = 1 supersymmetry. In this
paper, we will adopt the notation and conventions of Wess and Bagger [36]. A point in flat N = 1 superspace is

labelled by the ordinary spacetime coordinates ™ and the Grassmann spinor coordinates 8%,0;. One can define
superspace derivatives
_ 0

8 s m P _ PN M
Da = % + 1Uad9 8m Da = —% — 19 Uadam (IIIl)



satisfying the supersymmetry algebra
{Dq, Dy} = =207 O, - (I11.2)
A chiral superfield ® is defined by the constraint that
Ds® = 0. (I11.3)
It can be expanded in terms of # 6, as

i _

00 mo™0 | I11.4
7500 (I11.4)

where the component fields are a complex scalar A(z), an auxiliary field F(x) and a spinor x,(z), each being functions
of the ordinary space-time coordinates z". Spinor indices which we do not write out explicitly are understood to be
summed according to the convention x0 = xy“f, and Y0 = ya0.

The highest (0000) component of a superfield is automatically invariant under supersymmetry transformations
(up to a total spacetime derivative) and, thus, can be used to define a supersymmetric Lagrangian. To isolate the
highest component, one can either integrate over the four fermonic coordinates of superspace with the differential
d*0 = d?60d?0, or act on the superfield with four superspace derivatives D>D?. Both procedures are equivalent. As an
example, the ordinary supersymmetric kinetic Lagrangian for chiral superfield (II1.4) is given by

_ 1 __
® = A+i00™0A m + 000004 + 00F + V20x —

Loto = /d49 TP = 1P |yp55= —0A- OA* + F*F + %(x,mamx — X" Xm) - (IIL.5)

Defining the complex scalar A in terms of two real scalars ¢, £ as

1
A=—(p+if) , I11.6
50+ (11L.6)
this Lagrangan becomes
1 1 . i i .
Loty = —5(3@2 - 5(35)2 +FTE A+ g(X,mU X = x0"X,m) - (IIL.7)

Clearly (IT1.5) is the global N = 1 supersymmetric extension of X = —%(8@5)2 appearing in the scalar ghost condensate
Lagrangian.

To continue, one must provide a global supersymmetric extension of X2 as well. This was analyzed in [22] and
found, to quadratic order in the spinor y, to be given by

1 _ _
Lpspepet bot = ED‘I’D‘I’D‘I’TD‘I’T’eeéé
= (0A)*(0A*)> — 2F*FOA - DA* + F**F*?

1

2

YO A AT, — i O YA AT, + % Xo" (A%, OA — A, [1A%) (IIL8)

+%(FDA — OFOA)YY + %(F*DA* —OF"9A )y

(X0 5 0" X ) A AT+ %(Xyngngmglg)AymAj}

1 1
+§FA7m()25m0")Z7n —X.n@"o"x) + §F*Afm(x,na"a—mx %
3i i
F S F F (0™ = X0 Km) + 5 X X(FF = F*Fon)
Written in terms of ¢, £ using (IIL.6), the pure A term in this Lagrangian becomes

(04)*(0A%)? = i(&b)‘* + 3(85)4 (00)2(9€)? + (06 - DE)?. (I11.9)

1

2
It follows that (IIL.8) is a gobal N = 1 supersymmetric extension of the X? term in the scalar ghost condensate
Lagrangian. As discussed in [37], there is an alternative supersymmetric extensions of X? given by

1 _ _
—1—6(<1> —®N)2DDODDPT | (I11.10)



However, (I11.8) has two properties that render it the appropriate choice. First, it uniquely has the property that
when the fermion y is set to zero, the only non-vanishing term is the top 006 component. This makes (IIL.8) useful
in constructing higher-derivative terms that include X2, a property we will need below. Second, when extended to
supergravity—as we will do in the next section—only (III.8) leads to minimal coupling of ¢, £ to gravity. The Lagrangian
(IT1.10), on the other hand, produces a derivative interaction ¢?(9¢)?R of the chiral scalars with the Ricci scalar R.

B. The Supersymmetric Ghost Condensate

Using (IT1.5),(T11.7) and (IIL.8),(I11.9), one can now present the global N = 1 supersymmetric extension of the

prototypical scalar ghost condensate Lagrangian P(X) = —X + X2, with X,y = % Since this scalar Lagrangian is

purely kinetic with no potential energy, there is no need to consider a superpotential W. This simplifies things, as
W=0 = F=0 (II1.11)

in the supersymmetric extension. The result, to quadratic order in the fermion Yy, is then given by

1 _ —
[£SUSY  _ ( —_otp 4+ 1_6D<1>D<I>D<I>TD<I>T)}

06000
= 5000 + 1(06)" + 3(90)? + 1(06)" — S(967(9E)? + (99 - 06 (11L.12)
i m .- m - 1 i m g m
= 506m0™X =X Xm) = 5(0)*5 (Xm0 "X = X" Xm)

no_m

1 - m . —,n
- ¢m¢,n§(x o™X —xo"x").

It was shown in [22] that the associated equations of motion continue to admit a ghost condensate vacuum of the
form

p=ct, =0, x=0 (I11.13)

for arbitrary real constant c. Recalling, however, that Py must vanish in a cosmological context, we henceforth
restrict to ¢ = 1.

To assess the stability of the supersymmetric ghost condensate, one can expand in small fluctuations around this
background as

The result, to quadratic order, is

LY = (5¢)° + 069700,

+ 0-(56)% +oct8¢, (I1L.15)
+ %% (5)(,0005)2 - 5)(005)_(70) - %% (5)(71-01'5)2 - 5)(01'5)211-) .

Each line illustrates an important issue to be addressed in supersymmetric ghost condensation. Note from the first
line that d¢ has a ghost-free time derivative term, but that the spatial gradient term is vanishing. This reproduces
the standard result for a scalar ghost condensate at the minimum of P(X). It follows from the discussion in Section
IT that d¢ will develop a small, negative spatial gradient term in the NEC violating region where P x < 0. For the
scalar ghost condensate, this is easily cured by including other higher-derivative terms not of the P(X) type-the
simplest being —([J¢)2. This gradient stabilizing term can be extended to global N = 1 supersymmetry using the
fact, stated above, that when the fermion y is set to zero, the only non-vanishing term in D®D®DdT Dd' is the top
0000 component. The appropriate extension was computed in [22] and shown to be

— L DODIDP! Dot ({D, DY{D,D}(® + @T))leé = —(04)? (i(aqs)‘* +L(@6)4
+(06 - 9€)* = 5(00)%(9¢)°) , (ITL.16)

where we have set F' = 0 and kept only those terms required to analyze the existence and stability of the ghost
condensate. We have not displayed terms quadratic in the fermion x since each is multiplied by at least one power



of ¢ and, hence, will vanish in the condensate vacuum. When this is added to Lagrangian (IT1.12), the modified
equations of motion for the component fields continue to admit the ghost condensate solution (II1.13) with ¢ = 1.
Expanding around this vacuum using (I11.14) and (9¢)? = —1, we find to quadratic order that (I11.16) becomes
1
4

Hence, the first line in the component field Lagrangian is now

(C0)* . (ITL.17)

£SUSY _ (5¢)2 +0- 6¢715¢Z _ %(D(‘M))Q o, (111.18)

which softens gradient instabilities by modifying the dispersion relation for ¢, just as in the usual non-supersymmetric
ghost condensate [1]. We note that the coefficient in front of the ((J¢)? term has been chosen for convenience here.
A wide range of numerical values is in fact possible — see [12] for a detailed description of the associated bounds.

The second line in (II1.15) indicates that the time derivative term in the §¢ kinetic energy vanishes, while the spatial
gradient term has the wrong sign. This result is new to the supersymmetric extension and, again, must be cured by
adding supersymmetric higher-derivative terms. Using the unique properties of D®DP DO DB, these were derived
in [22] and, to quadratic order in &, found to be

+1%2D<I>D<I>D<1>T1’)<I>T ({Da D}(@ — @"){D, D}(@' — q))) ’69@@

—%D@D(I)D(I)TDCI)T ({D. D} (@ +@"){D, D}(@ — @) ({D, D}(@ + 0"){D, D}(2" - @))|
= —2(09)"(9€)* — (99)"(9¢ - 9€)*. (I11.19)

Again, we have displayed only those terms required to analyze the existence and stability of the ghost condensate.
When these are added to the Lagrangian, the modified equations of motion continue to admit the ghost condensate
vacuum (I11.13) with ¢ = 1. Expanding around this vacuum using (IT1.14), (IT11.19) becomes

—2(056)% — (66)? . (I11.20)
Hence, the second line in the component field Lagrangian is now
LUSY — L (56)2 - 5E ..., (II1.21)

which is a Lorentz invariant, correct sign kinetic energy for 6¢.

Finally, consider the x kinetic terms in the third line of (II11.15). Although the coefficients are of equal magnitude, the
time derivative term is ghost-free while the spatial gradient term has the wrong sign. Using globally supersymmetric
extensions of P(X) theories, we have been unable to change the sign of the fermion spatial gradient term while
leaving the time derivative term ghost-free. As discussed in [22], we remain agnostic about whether or not this wrong
sign spatial fermion kinetic term is a physical problem. This issue will be further explored within the context of
the spontaneous breaking of both global and local supersymmetry. It might be worth pointing out though that by
extending the ghost condensate model to Galileon theories, the same vacuum solution admits correct-sign, ghost-free
fluctuations [23].

For completeness, we present the entire globally supersymmetric extension of the ghost condensate theory, combining
all of the terms discussed independently above. The result is

1 _ —
L39SV = —01 |gy5 +7 DEDPDS D! |ggss

_ _ _ _ 2
+D®DPDD DDT| — % ({D, DY{D,D}(® + qﬂ))

+%{D, D}(® — ®"){D, D}(®" — ®) (I11.22)

1

515 (1D, D} (@ + @1 (D, D) (® - @T))Q]

0000
In components, writing out all the terms that are relevant for a stability analysis in a ghost condensate background,
this corresponds to

[SUSY  _ +%(5¢)2 + i(aqﬁ)‘l - £(5¢)4(D¢)2



+ (99)*(9€)* — 2(0¢)*(9€)* + (9 - 9€)* — (9¢)* (99 - O€)* (ITL.23)

N =

(9€)* ~

1
(o™X = x0"Xn) (= 1= 5(96)?) = b3 (X0 X = X0 %") -

+
DN = DN =

C. A New Form of Supersymmetry Breaking

The supersymmetric ghost condensate manifests another important property. Consider the supersymmetry trans-
formation of the spinor,

ox = iV20"COm A+ V2F . (I11.24)

Ordinarily, spontaneous breaking of supersymmetry is achieved by having a non-zero, constant vev of the dimension-
two auxiliary field F', thus rendering the transformation inhomogeneous. The spinor x then becomes the Goldstone
fermion of the spontaneously broken supersymmetry.

With the supersymmetric ghost condensate, we find ourselves in a new situation. In this vacuum, the vev of F'
vanishes. Now, however, supersymmetry is broken by the scalar field A getting a non-zero and, moreover, linearly
time-dependent vev (A) = (¢)/v/2 = ¢/+/2, where we restore the arbitrary dimension-two constant. Therefore,

ox = iV20™CO,A =i0"Ce . (II1.25)

As previously, the fermion transforms inhomogeneously and, hence, supersymmetry is spontaneously broken. For the
ghost condensate, however, the inhomogeneous term arises from the linear time-dependent vev of ¢ rather than from
the F-term. The scale of supersymmetry breaking corresponds to the scale of the ghost condensate. It is of interest
to explore this mechanism within the context of supergravity. There, one might expect the Goldstone fermion to be
eaten by the gravitino, and to render the latter massive. However, because of the wrong-sign spatial kinetic term
of the spinor and other properties of the ghost condensate background—as discussed in the previous subsection—there
may well be subtleties involved. We will return to this intriguing question in the next section.

IV. THE GHOST CONDENSATE IN N =1 SUPERGRAVITY

In this section, we couple the globally supersymmetric Lagrangian given in (II1.22) to N = 1 supergravity and discuss
the ghost condensate vacuum in this context. As above, only those terms in the component field Lagrangian that
have up to two fermions are presented—since this is all that is required to discuss the supergravity ghost condensate.

A. The Chiral Superfield Lagrangian in Supergravity
In [24], it was shown that a global N = 1 supersymmetric Lagrangian of the form

1 L
L5VSY — K(®,®) |00 +ED<I>D<I>D<I>TD<I>TT(<I>, 7,0, ®,0,0") | 4055

+(W(@) oo +WH(@") lgg ) . (IV.1)

where K is any real function of ®,®f, T is an arbitrary hermitian function of ®,®! with any number of their
spacetime derivatives (with all derivative indices contracted) and W is an arbitrary holomorphic function of ®, can be
consistently coupled to supergravity'. This was accomplished within the context of curved superspace, following the
notation and formalism introduced in [36]. Suffice it here to say that a point in curved N = 1 superspace is labelled

by (2™,0%,04) and that the chiral projector is D? —8R, where Dy is a spinorial component of the curved superspace
covariant derivative Dy = (D,, Dy, D) and R is the curvature superfield?. In its component expansion, R contains

I Related work of interest includes [38-44].
2 All covariant derivatives used in this paper contain the superspin connection only. The U (1) connection associated with Kéhler
transformations—sometimes absorbed into the covariant derivatives in [36]-are, in this paper, always written out explicitly.



the Ricci scalar R and the gravitino v,,, as well as the auxiliary fields of supergravity—namely a complex scalar M
and a real vector b,,. The components in the © expansion of R are

1 1 . _
R= —EM - gea(ama&ba%abﬁ — 100" Ve M + ithgab®)
+0%0 (173 L5067 s — S MM* — pob, 4 Lie,m D, b7 (IV.2)
« 12 61 a0 abf 9 18 a 616a m .
Lo o L a7 are L abed [T -~ aB a -a)
- 121/}a1/) M + 121/}a Oada 1/}0 b 485 [waagb 1/)cdﬁ + 1/}a Uaab¢cd } .

A second superfield that we will need is the chiral density £. This contains the determinant of the vierbein e?, as
well as M and 1,,. Its component expansion is

26 — e(1 0% 05 S — 090, [M* F Poac®s Byjbﬂ ). (IV.3)
In terms of these quantities, the N = 1 supergravity extension of Lagrangian (IV.1) is
LAVERA /d2@28[§(@2 —8R)e /3 — é(ﬁ — 8R)(DODIDH DPIT)
+W(<I>)} +he. (IV.4)
Partially expanded in component fields, this becomes

[SUGRA _ [_ 3—326(D2@2e*K/3) +il%ezﬁad6m“(Da@2e*K/3) _ ge(M* - Pad ) (D% K/3)
—éeM(DQe’K/?’) - iie(&a(ia)a(paeff(/b’) - ie(%bab&“ + 1M a5 + itheb®) " (Dae K/3)
+%eD2@2(D®D®@¢T@®TT) - 1—1661(1/116“)0‘2)&@2 (DODIDPDDIT)
+ée(M* + 146", ) D*(DEDPDRIDOIT) + 2—146MD2 (DODIDI DT T)} ’ +h.c.

1 1 1 1 - - *
+€( — 57?, — §|M|2 + gbaba + Zaade(q/)a&bwcd - waglﬂ/}cd))eiK(A’A )/3 (IVS)

+eFOW (A) + eF* (9W(A))* — %ex282W(A) - %e;‘(?(a?W(A))*
—%eixa“d—}aaW(A) - %ei)’(&“wa(aW(A))*
—e (M* + /‘Laaab"zb) W(A) —€ (M + waaab"/}b) W(A)*

where | specifies taking the lowest component of the superfield and

wmna = bmd}na - ﬁnd}mav ﬁm1/)na = 8m1/}na + ¢nﬂwm5a . (IVG)

Since we are interested in the supergravity extension of the ghost condensate, we can, as in the globally supersymmetric
case, set W = 0. It then follows from their equations of motion that both

F=M=0 (IV.7)

in our zero-fermion background. This simplifies the Lagrangian (IV.5), which now becomes
[SUGRA _ [_ 3_326(D2@267K/3) _i_il_?’GeJ)ad&am(Da@zefK/g) _ ge&ac?ab&b(@ze*m?’)
+i£e(1/3a6“)“(l>ae"‘/ %) - %e(waba%“ +ivab®) " (Dae™K7?)
+%e732252 (DODIDI DI T) — %ei(zﬁaa“)apaﬁ (DODIDIDHIT)
+%ezﬁa&ab&b7§2 (DODIDI DT T)] ‘ +h.c. (IV.8)



1 1 1 - - «
+6( - 57?/ + gbaba + ZEude(waa'bwcd - 1Z)ao'bwcd))e_K(A7A )/3 .

Note that the auxiliary field b, = e]'b,, remains undetermined. To proceed, one must evaluate the lowest component
of each superfield term.
Evaluating the first term in (IV.4), we find after integration by parts that

1 svgra _ 1 200009 (72 —K/3
—Liiens = | [ ?e2e2 (D — 8R)e %) 4 he.

1 1 1 - _ .
= ( - §R+ gbaba + Z‘Eade(waa—bwcd - waabwcd))e_K(A)A )/3

+3|10A (e K/3) sar + 10 (Ao(eK/3) 4 — A o (e7K/3) 4)
- i%b“(wax@—mm — Yax(e /%) 4-)
— V22X Y (€KY 4 — N 2XG T P (7 E/3) 4- (IV.9)

_ ig‘/)aaabUC?/;bAyc(efK/g),A - igﬁaﬁab&‘:wa*,c(e*K/ ?).ar
- %Xa“xba(e*K/3)7AA* - ig (X0 ™D X + X5"€a" D) (e */3) 44
+ gﬁA*,bﬂfan&aX(e_Km),AA* + gﬁA,bJ)a&bU‘lﬁ(e_K/B),AA*
SO 40— S A () g
+ igxa“j((A*,a(e_KB),AA*A* - A,a(e_K/3),AAA*)

Note that this corresponds to the supergravitational —X term in (II1.22) if one chooses

K(®,07) = 0T, (IV.10)

The second term in (IV.4) depends on the arbitrary hermitian function T'. As a first step, let us choose T' = 7/16
where 7 is a real constant. For 7 = 1, the second term in (IV.4) corresponds to the supergravitational X2 term in
(II1.22). Tt is useful, however, to introduce 7 as a “marker” indicating the component terms arising from this part of
the Lagrangian. We will set 7 = 1 at the end of the calculation. Evaluating this second term gives

1 1 T — ST
g,cgggggmm = - ( ~ 5 / d?02&(D? — 8R)(DPDIDD Dd' )) +he.

- (+ T D*D2(DODODD Do) (10,6%)*Dy D*(DPDIDO D)

29
+ 57 Pad ™D (DEDDP D)) ‘ +he

T.
_ﬁl

= +7(0A)%(0A*)? — %\/iTﬁaﬁaach*,C(aAF — %\/iTXUCawaA,C(aA*)Q

— V21 (DA )P A ™ — V21 (0A)? A" "X

—%TXUG)ZAﬁaememA*yb + %TXUG)_(AyaA*ﬁbbb (IV.11)
+%TXO’G)_(A*7a€bm'DmA7b + %TXJG)ZA*_,aAﬁbbb

—iT(Dmx)ab)_(A’mA*,b + ﬁT&aﬁcab)ZA’aA*ﬁbAyc + %T}‘(&bacﬁaxbcA’aA*_,b

HrX (DmX) A ™ Ay + V21x0 5 P A A y A

—%Txoaﬁbam('Dm)Z)A@A*)b - 1—12TXUa5bUC)ZbcA7aA*)b

+%T(Dmx)om6boa)ZA*)aA)b — 1—127XU66b0a)ZbCA*7aA7b )

The basic N = 1 supergravity Lagrangian for the ghost condensate is obtained by adding (IV.9) and (IV.11). Note
that it contains the supergravity auxiliary field b,,, which can be eliminated from the Lagrangian using its equation
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of motion. This is found to be

3. _ N _ 3 o
b, = — 5i (Aym(e K/3y 4 — A% (e K/3),A*) /3 Zxo’mx(e K/3) ya-ek/3

+ 3V (D 0) 4 — (o) ) 73

- ZTXUGP_C(A,aA*,m + A A el (IV.12)
+ %Txaaﬁmab)_(AﬁaA*ybeK/?’

K/3 .

1
+ gT(Xaaﬁbomx + Xm0 oY) A A" pe

Plugging (IV.12) back into the sum of the Lagrangians, and keeping only the terms containing at most two fermions,
this results in the expression

1 1 _ _ L
g,cggfgg =- / d2®28[g(D2 — 8R)e K/3 — %(DQ - 8R)(D<1>D<1>D<I>TD<1>T)} +h.c.
1 1 _ _ .

= ( - 57?' + Zaade(waa'bd}cd - 1/}ao'bwcd))eiK(A7A )/3 + 3|8A|2(67K/3),AA*
_ \/ixo'mnd}mn(eiK/g),A _ \/5)_(5'mn1/_)mn(eiK/3),A*

3 - 3 -
_ i§¢aaabgc¢bA,c(e_K/3),A _ i§¢a5'ab5'c1/)bA*,c(e_K/3),A*

3
+i5 (X0 ea DX + X0 ea" D) (™), 440

3 3 _
+ 5\/§A*,b¢a0b5ax(e_K/3),AA* + 5\/§A,b¢a5b0ai(e_K/3),AA*

3 _ 3 N _
= S04 (€77) 4a = S(0AT) (/%) ava-

B ac( ax (w—K/3 ~K/3
tigxe X(A ale ), Aa-a- — Aale ),AAA*)

1 — 1

+7(0A)(DA*)? — 5\/57%5‘106;@4*,0(3,4)2 — 5\/§Txocﬁaz/1aA7c(aA*)2
— V27 (A" A x ™ — V21(0A)2 A* h™x
—%TXUa)_(AyaememA*ﬁb + %TXU“)ZA*yaememAyb (IV.13)
—iT(DmX)Ub)ZA’mA*7b + \/iTzZaﬁcob)ZA’“A*7bA)c
—|—i7'xab(Dm)_<)A*’mA7b + ﬁTXUba'Cl/}aA*’aAybA*ﬁc
_%Txaaﬁbam(Dm)Z)AﬁaA*yb + %T(Dmx)amﬁbaa)ZA*ﬁaAﬁb

+ 2(OAI) 4 — (@A) (1) 40) e

- Zﬁ(Av"@(e-K/S),A — AP 40 ) (bx (€% 4 — (e ) 4 )02

3. - L -
- gixe X(A,a(e K/3)7A—A ale K/3)7A*)(e K/3)7AA*eK/3

- ;iTXUaX(A*,a(aA)Q(e_KB),A — A0 (0A7)? (e 5/%) g )/

- giTXUU’)Z(A@(e_K/g))A - A*,a(e_K/3)7A*)|6A|QeK/3 .
To go to Einstein frame and to render all fields canonically normalized, we now Weyl rescale as
en® N oK/ @
x T e K12y (IV.14)

WEYL
e
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and shift

SHIFT
Vm

2
— Um +1\é_UmD_CK,A* : (IV.15)

For the sum of terms not proportional to 7, this results in

SUGRA 2 ~K/3
c ISR oyl = [ / o2 (D8R 0|  the

=— 573 — K 4a-|0A)? (IV.16)
—iK Aa-XG " DinX + " 61 Dot
— %\/iK aas A X E Wy — %\@K Aas A XG0 Py

See [36] for details. After Weyl rescaling, the terms proportional to 7 become

1 _ L
cgggggm@ S [ / d2028(~ )(D2 — 8R)(D®DIDI D)+ hee.

Weyl

- +T(8A)2(8A*)2 - 5\/%;&5%0;3,4*,0(3,4)2 - %\/ﬁTxocﬁaz/JaA7c(8A*)2
— V21 (0A" )2 A ™ — V21(0A)? A" ™Y

—%TXUG)_(Ayaebm('DmA*ﬁb) + %TXU‘I)ZA*,aebm (DimAy)

- %TXUG)_(AﬁaA*ﬁbK’b + %TXO’G)_(A*ﬁaAﬁbK’b

—iT(Dmx)anf(A’mA*’" + ﬁT&aﬁcabXA’“A*ybAﬁc

+ ETXU AR AT K+ %TXUCbU“)ZA7CA*7aK,b (IV.17)
+1TXU (Dmx)A*’mA b+ \/_TxobﬁcwaA*’“A,bA*)c

- ETXO’ XA A . K* 67’xaaabch*7cA7aKﬁb
—57')(0”6‘107” (Dimx)ApA* o+ %T(Dmx)amﬁpaq)ZAﬁpA*yq

+ %Txacﬁba“)_(KyaA*ybAﬁc — %TXU“6bJC)ZK7aA7bA*7C

Bt R(A" (04 (e 1%) 4 — A,4(04") (T3 40 )eR

— SO X (A 0%) 4 A (e 40 )| DAPS

To arrive at this result, we used

1 1
D A b VﬂL e_K/6 (DnA,b - EK,nA,b + EeblA)m(K,mgnl - K,lgnm))

D, N e KN2(D e — 112KnX + 112 X2 (™) (K mgnt = K 1gnm)) (IV.18)
Dyt 2 e KDy — Ky = 5 (0™ 1 (K gt — K agun)
This follows from the definitions
wng® = %(Uml)ﬁawnmla DX = 9nx™ + X wip® (IV.19)
and the fact that under (IV.14)
Wrmt 5 B3 (Wi + %K,mgnz - %K,lgnm) . (IV.20)

The effect of the shift (IV.15) on (IV.17) actually sums to zero.
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B. The N =1 Supergravity Ghost Condensate

The supergravity extension of the prototype scalar ghost condensate P(X) = —X + X? is the sum of (IV.16) and
(IV.17), where we take

K(®,0") =—-0d!,  7=1. (IV.21)

That is,

1 _ + 1 _ _
L3V e = 5 [ / d2026(D? — 8R) (3e‘1’¢’ /3 _ ﬁ(pcbpq)mmqﬂ))}wgyl +he. (IV.22)

It follows from (IV.16), (IV.17) and (IV.21) that the purely bosonic part of this Lagrangian is

1 1
LU o = —5 R+ 0APH(0A)*(0A") + ... (Iv.23)

Defining A = %@ + i), this becomes?®

L L5V v = — 3R+ 5(00)° + 1(00)* (v 24)
(06" + 3(06)" — 5(09)2(06)" + (99 9E)? + ...

. 1
2
The remaining terms in the Lagrangian are at least quadratic in the fermions x, vy,. The Einstein and gravitino
equations can be solved in a flat FRW spacetime ds* = —dt? + a(t)?§;jdz’dz’ with a vanishing gravitino v, = 0.

The ¢, £ and x equations of motion continue to admit a ghost condensate vacuum of the form
p=ct, £=0, x=0 (IV.25)

where, to be consistent with the coupling to dynamical a(t), one must set ¢ = 1. The scale factor is that of a de Sitter
spacetime, which—in its flat slicing—is given by

At (IV.26)

a(t) =e
The choice of the £ sign corresponds to an expanding or contracting space respectively; in this paper, we focus on the
expanding branch. To assess the stability of the supergravity ghost condensate, one can expand in small fluctuations
around this background. Considering scalar fluctuations

=1+ 36(t,7), €= 0L, (1v.27)

only, the result to quadratic order is

1 . )
“L70 e = (00)* + 006700,
+ 0-(66)2 +6676¢; . (IV.28)

As in the globally supersymmetric case, both lines illustrate important issues to be addressed in supergravity ghost
condensation—that is, the d¢ spatial gradient instability and the unacceptable d¢ kinetic terms respectively. We will
present the solution to both of these problems later in the paper. Now, however, we turn to a discussion of the
fermions in the background of the ghost condensate.

3 Our conventions for gravity are adapted to those of Wess and Bagger [36]: in terms of affine connections, the Riemann tensor is defined

as RmnPs = —0mIbs + 0,18, — antl_‘fw + Fﬁtf‘fns, and the Ricci tensor is given by Rmn = RPppm. In terms of the spin connection,

the Riemann tensor is Rmn® = Omwn®® — 8pwm® + wm *Cwneb — wn*Cwmeb.



13
C. The Fermion Lagrangian and the Super-Higgs Effect

For a discussion of the fermions in the ghost condensate vacuum, the relevant part of Lagrangian (IV.22) is*

1 1 . o
EE%Z?/ITQWC}/I = Eaklmn (7/}k51Dm¢n - 7/}kUle1/)n)
i 1
+ %(xoml?mx + X" Dmx) (1 + 5(8@2) (IV.29)
i o=n n =
+ §¢7m¢,n (XU (Dmx) + xo (DmX))
1 . 1 1
+ 5 (xo™a" P + xa" 0" ") <9mp¢,n + 59mnd(06)° — 3 gnp¢>,m(6¢)2> +..

where g, is the FRW metric. For the time-dependent vev ¢ = t, (0¢)? = —1. Hence, the first and second/third
lines correspond to unmixed ¥, and x kinetic energies respectively. However, the ghost condensate induces a mass

mixing term between y and t,,. Using ¢"¢" = —¢™" 4+ 2¢™", the mass term can be rewritten as
1 m S 1 mn ——mn,J,
70m O™ +XP™) = S (X0 ™y + X" Pn) (IV.30)

or, more simply,

1 _
—10m(xa" 7" Pn + X" ). (IV.31)

Let us try to eliminate this mass mixing by redefining the gravitino. As we will discuss below, the supersymmetry
transformations suggest the field redefinition
7 2 n -
wma = d]ma - me@,n%ﬂx ) . (IV32)

Using the fact that the second partial derivative on ¢ vanishes, the v, kinetic term transforms into

1 S 5 g )= ! D othn — D01 Do )
Egklmn (1/}k5’le1/)n — 1/1k0'le1/)n) = Efklmn (1/1k5'le1/)n - 1/}kUle1/)n)

+ 2ightmn (UjkﬁleDn(éb,pUp?_C) - @kUleDn(Qbyp&pX)) (IV.33)
4 gghlmn (Dk (X0”¢.5)51 Dy Dy (6.407%) — D ()25P¢7p)aleDn(¢yq6qX)) .

Furthermore, employing the relation

R
(D Dy, — Dy D) x = g mn X (IV.34)
which is valid for maximally symmetric spacetimes, and the fact that R = —1 for our de Sitter background, the ,,

kinetic term becomes

1 S = AN Do — 1 Dot
Eaklmn (1/}k5’le1/)n — 1/JkUle1/)n) = §5klmn (1/1k5'le1/)n - 1/}kUle1/)n)

1 -
P G SR oY (1V.35)

i
+ 7 ((— (90 Dix0” x + 20,6 Dixa?x — (96)*Dixe* x + 20,6 Dixa?x ) -

4 To find the ghost condensate background, it is consistent to set the auxiliary fields M = F = 0 since M and F are sourced only by
terms of quadratic and higher order in fermions. However, one might wonder whether it is necessary to include the M- and F-terms
in the calculation of quadratic fermionic fluctuations around this background. Luckily, we do not have to do this. In the absence of a
superpotential, all terms arising from the substitution of M and F into the action are fourth-order and higher in fermions and, hence, do
not contribute to the present calculation. This follows from the results of Appendix B and from the analysis of the equation of motion
for F' detailed in [24].
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Since we are only working to quadratic order in fermions, the second term on the right-hand side can be written as

1 = ~ 1 _

200 (010507 X+ B0 X)) = 470, (X0 B + X D) (IV.36)
where we have anti-commuted the fermions, used the definition of ™ and relabeled indices. Note that this term
exactly cancels the x, ¥, mass mixing term (IV.31). Furthermore, the remaining terms in (IV.35) do not introduce
mixing of the 1,,, x kinetic energies. It follows that in the ghost condensate vacuum, using (9¢)? = —1 and the

redefined gravitino ﬁm, the quadratic fermion terms in (IV.29) reduce to

1 1 -
gﬁggﬁémyl =+ fmmn (1/)k5'le7/}n - 1/JkUsz1/)n)
i
+ 5 (x0" DX + X0 D) (IV.37)

+ip""dn (X0" (Dimx) + x0" (DmX)) + - ..

This Lagrangian describes a) a massless gravitino z/NJm with Lorentz covariant kinetic energy and b) a massless fermion
x with kinetic terms whose Lorentz invariance is broken in the ghost condensate background. We note that after the
field redefinition of the gravitino, the kinetic terms for x now appear with an additional overall multiplicative factor
of 2.

Given this result, one can analyze the super-Higgs effect within the context of the supergravity ghost condensate.
We know from the discussion in Subsection III C that the ghost condensate spontaneously breaks global N = 1
supersymmetry. What happens when this is generalized to supergravity? We showed in [22] and Appendix A that
the variations of the fermions y and ), under local supersymmetry—after Weyl rescaling and using the solutions for
the supergravity auxiliary fields M and b,, appropriate to a bosonic background—are given by

Sx = V20" COmA + V2e5/5¢CF (IV.38)
St = 2(Don + i(KyA(?mA C Ko O AT))C 4 iKW | (IV.39)

for arbitrary Kéhler potential K, superpotential W and chiral auxiliary field F. Since we are interested in supersym-
metry breaking in the vacuum, we have ignored all terms proportional to the component fermions on the right-hand
side of the variations. In pure two-derivative chiral theories coupled to supergravity—that is, not in the ghost con-
densate case-spontaneous breaking of supersymmetry is achieved as follows. One chooses a non-vanishing W for
which 1) the potential energy is minimized by having the scalar A be a constant, and 2) when evaluated at this
minimum F = — K44 eX/3(D4W)* # 0, where DAW is the Kéhler covariant derivative of W. The non-vanishing
F-term in (IV.38) then renders the y transformation inhomogeneous, spontaneously breaking supersymmetry, while
the transformation of a redefined gravitino t,,, vanishes. Therefore,  is the massless Goldstone fermion while t,, is
the physical gravitino. Generically, W # 0 in the vacuum giving the gravitino a non-vanishing mass

my s = KW (IV.40)

As first discussed in [45], in the process the Goldstone fermion x gets “eaten” by the now massive gravitino. This is
the super-Higgs effect. Note, however, that if W = 0 in the vacuum-but with DW # 0—the gravitino mass vanishes
even though supersymmetry is spontanecously broken. Although this is generically not the case, it is possible to find
theories where this does occur.

Let us now return to the supergravity ghost condensate vacuum. In this case we choose the holomorphic function
W = 0, from which it follows that F' = 0. However, A now develops a non-zero, linearly time-dependent vev
(A) = (¢)/V/2 = ct/\/2, where we restore the dimension-two constant c. The x transformation in (IV.38) then
becomes

ox = iV20™COmA =i0%Ce . (IV.41)

As previously, the fermion transforms inhomogeneously and, hence, supersymmetry is spontaneously broken. For the
ghost condensate, however, the inhomogeneous term arises from the linear time-dependent vev of ¢ rather than from
the F-term. Now consider the gravitino transformation (IV.39). Recalling that we choose K = —®®T in the ghost
condensate, and using W = 0 and (A) = ct/+/2, it follows from (IV.39) that

6Um = 2(Dpy + i(K,AamA — K 40, A*))( = 2Dy (IV.42)
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Note that, in addition to the term proportional to W vanishing, the factor K 419, A—K 4-0,, A* in the first term is also
zero in this vacuum. Be this as it may, the de Sitter spacetime covariant derivative D,,,(q = 0o — %wmpl(apl)aﬁ (s
does not vanish, as

wioj = i H, (IV.43)

and, hence, 1,,, transforms inhomogeneously. However, in analogy with the ordinary two-derivative case, let us redefine
the gravitino as in (IV.32). It is straightforward to shown that in the ghost condensate background

6 =0. (IV.44)

This then identifies x as the massless Goldstone fermion and U as the physical gravitino. The generic expression for
the gravitino mass was given by (IV.40). In the ghost condensate, however, W = 0 and, hence,

That is, the breaking of local supersymmetry via a ghost condensate is analogous to two-derivative supergravity
theories with a superpotential for which DW # 0 but W = 0 in the vacuum. This result for the supergravity ghost
condensate is completely consistent with-and gives a physical explanation for-the above calculation of the quadratic
fermion Lagrangian (IV.37). There we found, after appropriate redefinition of the gravitino, that the mixed x, ¥,
mass terms exactly cancelled and that there were no diagonal xx or 151/; masses—exactly as expected from the variations
(IV.41),(IV.44) and (IV.45).

D. Scalar Field Stability Analysis

Recall from (IV.28) that, when expanded around the ghost condensate vacuum, the quadratic d¢ part of the
Lagrangian is

1 . p

;E:?Z?ﬁéwey] = (60)* 4+ 0-5¢"6¢; + ... . (IV.46)
This is analogous to the globally supersymmetric case discussed in Subsection III B and, for the same reasons as
discussed there, ¢ will develop a small, negative spatial gradient term in the NEC violating region where P x < 0. This
problem was overcome in the global supersymmetry case by adding the term (II1.16) to £5V5Y | It is straightforward
to generalize this to the supergravity case with the addition of the term

1 _ _L
-3 / d?02£(D? — 8R)(DODIDPIDPITy) + h.c. (IV.47)
where
K o - . 2
Ty = 55 ({D° Da}{Da, D*H(@ + 01)) (IV.48)
and where & is a real number. Note that in Subsection III B we (somewhat arbitrarily) set the parameter kK = —1/4.

This reflected the fact that, in the globally supersymmetric case, the exact value of this parameter is irrelevant to the
discussion. However, as we will see, this is not the case when coupled to supergravity. We calculate (IV.47),(IV.48)
in terms of component fields for F' = M = 0 and to quadratic order in fermions y and 1, in Appendix B. It suffices
here to present only those terms required to analyze the existence and stability of the ghost condensate. These are

1 _ L
-= { / 42628 (D? — 8R)DIDIDE DO/ T, | [+he.
€

Wey

=r(0¢)* ((0¢)" + (9€)" — 2(99)*(98)* + 4(9¢ - 9€)?) . (IV.49)

The remaining terms are at least quadratic in the fermions x and ,,,. When this is added to the Lagrangian (IV.24),
the equations of motion for the component fields are modified. We restrict our attention to gravity and the scalar ¢,
since these are the only non-vanishing fields in the ghost condensate background. The relevant part of the Lagrangian
is

L= 24 (007 + 1(00)* + 5(09)*(C0)" (1V.50)

-
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The associated equations of motion are

0 = —06(1+(36)%) — 20" ¢ im0 — 86" ¢ ., (00)* — 4k(D0)*(O¢)*
—8k(96)°0h ™™ G + 166G Py O + 85(36)* TP 6™ b
+8K(8¢)2D¢ ¢7n¢;nmm + 85(8¢)2¢7n¢;nm¢;ppm

+85(00)2 "™ G & ™ rim + 26(08) Din ™ (IV.51)
Grn = ¢mbn(1+(00)” + 4r(99)*(0¢)*)

—%gmn(aaﬁ)?(l + %(%)2 = 26(09)*(0¢)* — 16606 ¢ 1,5 — 4K(09)*¢:s* ¢ .r.)

—8k(00)°0¢ ¢ (dyrmb.n + Gyrndm) — 26(00) (¢ rimdn + ¢ rnom) (IV.52)

where G,,,, is the Einstein tensor®. We are interested in the question of whether these equations of motion still admit
a ghost condensate/de Sitter solution. Therefore, we look for a solution where ¢ is constant and the metric is a de
Sitter space with constant Hubble parameter H. With this Ansatz, the equations of motion greatly simplify to

0=1-¢% — 9k¢° + 6k, (IV.54)
12H? = 3¢% — 2¢*. (IV.55)
The first equation is quartic in q52, where the solution of interest is the one that reduces to ¢2 =1 as k — 0. This

solution then allows one to calculate the Hubble rate using the second equation. For small k—which, from an effective
field theory point of view, is the case of real interest—a perturbative solution is easy to derive. It is given by

(@) = 1-3k+0(x%), (IV.56)
2 1 1 2

Thus, the effect of adding the stabilizing term for ¢ is to shift the parameters of the ghost condensate/de Sitter
solution without altering its qualitative features®. We now explicitly demonstrate the stability of ¢. Expanding about
this new vacuum using (IV.27), the ¢ part of the component field Lagrangian becomes

£3VORA = Z(3(9) — 1)(56)” + 5 (L~ ($)7)6666,5 + K05 + .. (IV.58)

For small k, this leads to the dispersion relation
3
w e —k(Gk + k). (IV.59)

Thus, to tame instabilities, one must require 1) x < 0 and 2) that || be sufficiently large. For a discussion of the
allowed phenomenological range of x, see [12]. Happily, the required values of |x| are still sufficiently small to allow
the above perturbative expansion. To apply ghost condensate theory to models of a bouncing universe, one introduces
a potential which causes (¢)? to be slightly lowered. This has the consequence that the NEC is then violated. In
this case, it may happen that the k? term in the dispersion relation (IV.59) switches sign. This signals a gradient
instability at long wavelengths and, correspondingly, the bounce must occur on a fast time-scale. However, at short
wavelength (large k) one can see that the introduction of the ((J¢)? term indeed stabilizes the ghost condensate.

5 To derive the Einstein equations, the identity

é
5gmn

4
[v=arne = [V=a(=Gomn o+ 2506+ foumn

T (f8n) = 5 ValFom) + 5 9mn VP (f0)) (1v.53)

is useful-where f is a scalar function of the fields. The first term on the right-hand side arises from varying /—g, while the second line
comes from varying the metric inside of the connection in the ¢ term.

6 One might ask what the solution becomes for large x. By inspection, we see that in this regime the solution is approximately (;52 ~3/2
with H2 very small. Thus, for large &, one obtains a kind of ghost condensate in Minkowski spacetime. However, one should refrain
from taking the ((J¢)? term too seriously when s is large-since it leads to fourth-order equations of motion. Hence, it only makes sense
from an effective field theory point of view, in which case its coefficient must be small for consistency.
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We now turn our attention to the second scalar, £. The second line

1 . _

g,cg’i?ﬁg{%yl =+ 0- (82580 + ... . (IV.60)
in (IV.28) indicates that, when expanded around the ghost condensate, the time derivative term in the 6¢ kinetic energy
vanishes, while the spatial gradient term has the wrong sign. This result is analogous to the globally supersymmetric
case discussed in Subsection IIT B, and was cured by adding the supersymmetric higher-derivative terms (I11.19) to
L5USY Tt is straightforward to generalize this to the supergravity case by adding

—% /d2@25(@2 — 8R)(DPDIDP DD T;) + h.c., (IV.61)

where

Te  =+27{D* Ds}(® — ®){Da, D*}(® — ®)
_2710({Da, D} (@ + @1){Da, DO} — @T))Q, (IV.62)

to LSVGEA Note that each of the two terms can be multiplied by an independent real coefficient. However, modulo
the comment below, this is not necessary to understand the their effect on the ghost condensate and, to leading order,
the ¢ kinetic energy. Hence, as in the globally supersymmetric case, we set them to unity for simplicity. One can
calculate (IV.61),(IV.62) in terms of component fields for FF = M = 0 and to quadratic order in fermions x and .,
. It suffices here to present only those terms required to analyze the existence and stability of the ghost condensate.
These are

—Si [ / d?*02£(D? — 8R)DODIDI DO T +h.c.

e Weyl

= —2(09)"(0¢)* — (96)" (96 - 0€)* . (1V.63)

The remaining terms are at least quadratic in the fermions x and %,,. When these are added to the Lagrangian,
the modified equations of motion continue to admit the same ghost condensate/de Sitter vacuum as the one derived
above in Egs. (IV.56) and (IV.57). Expanding around this vacuum using (IV.27), the fluctuation Lagrangian for &
becomes

TLSUORA = (= D L)+ 28— () 007 + (5 4 5 ()7 — 20 )EiE +
=t (1= gr 002 (67 — oe7e:) + ... (IV.64)

Thus the scalar £ is rendered completely stable by the addition of these terms. Moreover, for small || the fluctuations
are approximately canonical. In fact, one can make them exactly canonical by choosing appropriate, x-dependent
coefficients for the two terms in T¢. These enter the overall factor multiplying (6€)? — 6¢%6¢ ; and can be adjusted to
set this factor to unity.

E. The Modified Fermion Lagrangian and Super-Higgs Effect

Having resolved the d¢ spatial gradient and 0§ wrong sign kinetic problems in the supergravity context, one must
re-examine the question of the fermion Lagrangian and the super-Higgs effect in the presence of the additional terms
(IV.47),(IV.48) and (IV.61),(IV.62). In principle, this is a difficult calculation, requiring the evaluation of all terms
quadratic in the fermions y and 1,,. As can be seen, for example, by examining the T}y Lagrangian in Appendix
B, although some fermion terms vanish in the ghost condensate vacuum, some, both kinetic and mass terms, are
non-zero. Evaluating each of these, inserting them into the complete supergravity Lagrangian and then diagonalizing
all fermion kinetic energy and mass terms is a lengthy undertaking. Happily, to understand the essential physics, it
is unnecessary to carry this out.

Recall from the discussion in Subsection IV C that one can decide the fermion masses by analyzing the behavior
of their transformations under local supersymmetry. In (IV.41) and (IV.42) we presented the supersymmetry trans-
formations in the ghost condensate situation where W = F' = M = b,,, = 0. Since (IV.25) continues to be valid, and
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since (in a bosonic background) the b, equation of motion is unchanged by the higher-derivative terms (IV.47),(IV.48)
and (IV.61),(IV.62), it follows that the x and 1), variations remain

ox = iV20™(OmA =i0"Ce (IV.65)
and
m = 2D ( . (IV.66)

respectively. As previously, it is straightforward to define a new physical gravitino 1/~Jm which transforms homoge-
neously. The required definition is given by Eq. (IV.32) but where now ¢ and the connection w,, are evaluated in the
shifted vacuum. Since the fermion transformation (IV.65) is inhomogeneous, supersymmetry is spontaneously broken
with a massless Goldstone fermion . Furthermore, since W = 0 in the ghost condensate vacuum, the mass of the
physical gravitino v, is

We can conclude from these arguments that, even in the presence of the additional terms, the quadratic fermion

Lagrangian will describe a massless Goldstone fermion x and a massless gravitino ¥, with diagonal kinetic energies.
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Appendix A: The Weyl Rescaled Fermion Supersymmetry Transformations

Prior to Weyl rescaling, the fermion supersymmetry transformations—see equations 18.23 and 19.14 in Wess and
Bagger [36]—are given by

ox = V20" (O A+ V2F, (A1)

5 2D,,¢ — iep® (%MUGC_ + b+ %b%‘acﬁa) , (A.2)

where we have dropped all component fermions on the right-hand side of the variations since these vanish in the vacua
of interest and ( is the supersymmetry parameter. Note that our parameter is minus the one in equations 18.23 and
19.14 of Wess and Bagger—a convention adopted later in their book. Weyl rescaling is performed via

WEYL
e — eK/GeZ

n ?

X ey (A3)

—
WEYL
e ™

and
¢ e (A.4)
Then the Weyl rescaled variations are
e K25y v, = 1V20%, e K/0CeK129, A 4+ /2¢eR/12F, (A.5)
2, = 265712 (D€ + %K,mg - %(ga"l)K,ngml) (A.6)

e, apk/o (%M%EQK/H +bpemeK/0ceKN2 %ecnbne—x/ecacﬁaex/m)
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It is important to note that there are additional terms that arise from Weyl rescaling the covariant derivative D,,(* =
O + CPwng® with w,g® = $(0™") 3 Wy using

1 1
Wnml —Y) eK/S(wnml + EK.,mgnl - EK,Zgnm) (A7)
As discussed previously, the gravitino must also be shifted as
2/] SHIFT wm —i—liKA*UmX (Ag)

6

in order for the fermionic kinetic terms to be in canonical form. For the supersymmetry transformation of v,,, this
means that

V2 .
_K,A*0m6XWEYL . (Ag)

62/1777,WEYL — 6meEYL+SHIFT +1 6

Therefore

— i gL 5VP
5meEYL+SHIFT 51/)mWEYL -1 6 K,A*E Um755XWEYL

1 a

:2( m (e + 12KmCO‘ Cﬂ(a"l)ﬁ Kyngml)
: 1 et =3 a 1 c —Ba

—1i (gMeK/Ge 'Vam,m(ﬁ + b C* + §b (o Cwaﬁ >

—iQK g 2P O, A+ 2B K6

G A€ amw iv2(°e 05500 A™ + (e

zz(Dmga df on LN, ) (A.10)
: 1 et =3 a 1 c —Ba

—i (gMeK/Gf 70,50+ b+ ZHC 0 570 )

1 .
+—C5 n _5O‘KA*3 A* — 316K/6 o, CﬁKﬁA*F*

T34%m
_2Dm<a——cﬁ T 0m (K 40, A — K -0, A")
1' K/6 @ _ﬁ * @ n —50{
_§1e e'ygm’wc (M+K7A*F)_ b + bC’Y Ty | -

In the case of pure two-derivative chiral supergravity coupled to a superpotential, the solutions for F, M and b,,
are given by

F = —KAY KB (D W) (A.11)
M+ K 4-F* = N = —3e5/3wW (A.12)
by = %(K,AamA — K -0 AY). (A.13)

Plugging these solutions into (A.5) and (A.10), we obtain

Sxweve = 1V20"COmA — V2K AN K12(D W) ¢, (A.14)
1 _
51/}mWEYL+SHIFT = 2(Dm + Z(K,AamA - K,A*amA*))C + ieK/2WUm< . (A15)

These reproduce the x and 1, supersymmetry variations given in equations 23.5 and 23.6 of [36].

For the higher-derivative supergravity Lagrangians coupled to a superpotential introduced in [24]-and used to
discuss the ghost-condensate vacuum in this paper—the solutions of the M and b,, equations of motion, when all
component fermions are set to zero, continue to be given by (A.12) and (A.13). This was proven in [24] for any
higher-derivative addition to the Lagrangian of the form D®DPDPTDOIT, where T is an arbitrary hermitian function
of ®, &' with any number of their spacetime derivatives. For example, note that in the 7' = 7/16 case discussed in
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Subsection IV A of this paper, the solution for the b, equation of motion is given in (IV.12). When the component
fermions are set to zero, this becomes

by = —gi (Aym(e’K/?’)yA - A*ym(e’K/3)1A*) eK/3 = %(K,AamA — K 4O A") (A.16)

which is identical to (A.13). However, as discussed in detail in [24, 25|, the equation of motion for the auxiliary field
F is now generically cubic and is no longer solved by (A.11). Putting (A.12), (A.13) into (A.5) and (A.10), but for
an arbitrary solution F', the fermion variations become

5XWEYL = i\/iaméamA + \/§€K/6CF y (A.l?)
1 _
51/)mWEYL+SHIFT - 2(Dm + Z(K,AamA - K,A*amA*))C + ieK/2WO'm< (A18)

for any Kéahler potential K and superpotential W. These are the transformations used in (IV.38) and (IV.39) in the
text to analyze supersymmetry breaking and the fermion masses in the supergravitational ghost-condensate theory.

Appendix B: Component Expansions

In this Appendix, we provide details about the component expansions of the higher-derivative superfield expressions
that we employ in this paper. For completeness and potential future use, we will at first keep the terms that involve
the auxiliary fields M and F. Note that we work only to quadratic order in fermions throughout. The component
expansion of a general higher-derivative term in our formalism is given by

—é / d?02£(D? — 8R)(DODIDIDIIT) + h.c.
=+ 16{(0A)*(0A")* — 2|10AP|F|* + |F|*}T|
— AV2{(DA) A" a5 0" X + (0A*) A pihao®GX I T | +i4V2|FI*{ F*1p06"X + F1poo"X } 7|
+ V2| FP{A a5 "X + A% p1pa0 G X JT| + 14V2A A" { F*906"0°5"x + Fipao®5o°x T
+18bg{ F* A™X? — FAU?}T| — 8{FaA'X? + F* 4 A~ X} T|
+ 8{F*x?ea "D A" o + FXPea " Din Ao }T| — 16V2{ (0A)* A" *Xhy + (0A*)2 Ao} T|
— 8x0 Xba| F|> + 2%ixo"X{ FF* . — F*F,}T| + %exabpzb“{AyaA*yb + AyA* )T
+i8x0 X[ A" wes " DAy — Aue " D A, }T| — i16A o A" ,{ (D" x)0"x + (D*X)5"X } T|
+ ?xa“&cab)szaA*,bbcT] — i24|F|*{x0°(Dcx) + X°(Dex) } T
+32{F* A" ox0®(Dyx) + FA X0 (Dpx) }T| — 184, A* 1 {x05°0°(DexX) + X6°05*(Dex) } T|
— iggabcdxadxA,aA*,bbcT} + gxaaxbawm?:ﬁ} — 24V2IFP{AXtha + Ao X } T |
+i8V2{(9A)? A" y(X5")* DT | + (0A*)? A o(x0")s DT |}
— 8V2A A W {F* (x0°5") Do T| + F(x5°0%)s DT}
—i8V2|F|{ A0 (X6") D T| + A* o(x0*)a DT |} — 8V2|F[*{ F*x*DoT| + Fxa DT}
+2(0A)°X° DD T | + 2(0A)*X*Da DT | — 2(F*)*x*D*DoT| — 2F2* D DT |
+idxo" X {F*A,.D*DT| — FA* ;D DT |}
—i2{ F* A" ,x? — FA . * o2, D*DOT| + 02, DD
— 44 L A% 4 (x0") s {DDT| + D*DT| } (67 %)
— 4|FP{X*DaDT| X + XaDaDT| X} (B.1)
With M and F set to zero, this expression reduces to

—8i / d?02&(D? — 8R)(DPDIDP DOIT) pr—p—o + h.c.

e
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=+ 16(0A)*(0A*)*T| +i8x0"X{A* aes " DAy — A ey " D A, }T|
— AV2{(0A)? A" 10a5"0"X + (0A*)? A pihao "X I T | + gxaaxbamAFT\
— 16V2{(0A)? A" *Xtha + (0A™)2 Ao X }T| — 1164, A" 1 {(D*x)o’x + (D*X)a" X} T|
+ %GXaaacabgAﬂA* vbeT |+ @exabgba{A oAb+ AyA* )T
—i84 A" y{x0?5"0°(Dex) + X605 (Dex) } T| — adexadxA A* b T
+i8V2{(9A)? A" ,(x5") DT | + (DA*)? A o (x0™) dD T\}
+ 2(8A)2’2DQD T| +2(0A*)*x*Ds DT |
— 44 A" 4 (x0") o {DDT| + DDT| } (0"%)a (B.2)

The stabilizing terms that we require in order for the scalar field fluctuations to be well-behaved correspond to the
choice

T =271 [{D*, Da}{Da, D}(@ + 1) ’
+ 27D, Dy }(® — ©T){D,. D} (®' — @)
_ 910 [{D“,@a}(®+¢T){Da,l§é‘}(¢—CIJT)r (B.3)
— 970 :D“Da(q) + @T)} * { 22D (@ — ol D, (a! — )
e :D“(@ + H)D, (@ — qﬂ)} ’ (B.4)

r 2
—_9275[pp, & + D“Daqﬂ 92 [D“(I)Darb + D oD, dt — 20D, B

9t :Daqma@ - D%TD@@T} g (B.5)

We will split this up according and first consider( cf. (IV.48)),
T,=2 ({Da Da}{ Do, DV} (® + <1>T))2 - g[D“Da(fb—i- ot (B.6)
Since we restrict to terms with at most two fermions overall, we see from (B.1) that we need to evaluate the expressions

DD, ®|,., DaD*Dy®|,;, D*DaD*Dy®|; to the order in fermions indicated by the subscript (e.g. “2f” standing for
“two fermions”). We obtain

_ 1 R
D Do®|,; =" Dy A4 2\/§anwa - 5\/i(Dax)w
_i\/ﬁwaxba + L\/ﬁwaaagc be (B.7)

DoD"Do®|,, = \/_|M|2xa+ \/_bb{é It — (6°5") " H(D

+_\/§(€amDmbb){5aﬁnab_ (c25? ﬁ}xg - —be{5 Bpab _ (sbza 5}%;3

1 .
_EA daaabb{é ﬁn ﬁ}d)ﬁ 6\/§Xababa + ﬁeamDmDaXa
1 o . am a
+6M*A,b(ab5a¢a)a — Pga F* — EMF(UGW)Q —1(e"™ Dy, Ap) (6"9")a (B.8)
a T \/5 * a.— 1 * amr — 1 * a —
D, DD, == M ba(09%)a — 6\/§M (0°DaX)a — 6\/§M (0N (B.9)
« a 16 a 8 2 16 a * 16 a 4 * _am
DD, D*Do®| :EFb b, — §F|M| + ElA)ab M* — Elb F,— gM "D A 4

8 2
—GiF e Dby — SATM y — 4e" "Dy P (B.10)



@ a 8 * 4 * a * 4 * _am * 2 *, M *
DD, D Daq>T|Of:§F(M )2+§1A Wb M7+ M D AT o 4 S AVTM

- 2 2 2 i
Do DD Do ®| ), = { — GMFby —ig|MPA, +i5MFo+ gMF|o

D a 2 * Tk 4 2 Ax 2 * Tk 1 * *
D, DD Daqﬂyofz{— GMF by —ig|MPPAT y — i M F* o = S M* o F

4 4
—i§bdbdA*7a +ig AT b — 2ie"™D,,, (s " Dp A* )
4 / 2 /
+i§‘€a denaa’bcedemA*,b + igga denaa’A*,bedembc} Uga
Then
K am * 2
Tyl :g{ - (e D(Ag+ A ,a))
K€" D Ay DD ® | + 26" Dy A* y DD @ |,
— 8k Dy A, D Dyl + 26D, A" D Dy, }
DaTy|,; :Eebm’Dm(AJ, n A*,b){DaDaDarbylf + DQD“D,I@T}M}
D DaTy oy =7 Din(A + A* 4){ D*DaD*Dy | + DD DDyl
DaDaTs|y :geb DnlAp + A" 4){ DaDaD D + DaDaD* D0 }
i.e.
m * 1 am *
T¢’2f ( ’ D (A7b + A 7b)){§6 Dm(A,a + A ,a)
: T
- L\/5]\/[)(‘7(11/)(1 - gﬁ(DaX)d)a
——\/—waxb + 55 \/—waa“a Xbe
—ﬁﬁM*x&“wa - §ﬁ¢“(bax>
VI by — Va0 0 Kb )
6 24
DQT¢|H:gecmDm(A,c—i-A*,c){ VM PXa + fbb{a et — (0°6%)a” Y (Daxs)
i
+—\/§(eamz>mbb){5aﬂ @ (0%5?) ﬂ}xﬂ——be{a Bpat — (0°6) 0 Ybag
__A doaabb{é ,877 ,B}wﬁ 6\/§Xababa + \/ieampmﬁaXa

+EM*A,IJ(O' 6'(1"/111)& - waaF@ -

5 . R .
—iM*ba(UaX)a - %\/iM*(UaDaX)a - %\/iM*,a(UafC)a}

6

16

D DTy =3¢ Din(A e + A*,C){g
16 4

— —ib"F, — -M*e""D,, A,
3 El

2

—giFeamDmba — gA’mM*ﬁm — 4eamDmEa

8 4 4 2
+_F(M*>2 4 —IA* abaM* 4 _M*eamDmA* N + _A*,mM* m}

9 9 ’ 3 ’ 3 ’

K 2 2 2 i
—Seemp (A, + A%, { — ZMFb, —iZ|MPPA, +i=MF o+ ~MF

1€ (Ae+ A% ,) 9 19| | 7—0—13 ,+3 ,

2 4 2 i
— SM*F*b, —i=|M|?A* , —i=M*F* , — -M* ,F*
9 19| | 9 13 ) 3 ’

aM F(0a0")a = (" DAy ) (0"

1
Fb"b, — §F|M|2 + §1A7abaM*

22

(B.11)

(B.12)

(B.13)

(B.14)
(B.15)
(B.16)

(B.17)

(B.18)

(B.19)

(B.20)
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4 d * 4 * c . bm n *
— 1§b baA* o +1§A Db — 21" Dy (€ D A" )

4 ’ 2 ’
+i5e Mg boed " D A + 22" bcdnaa,A*,bedembc}agd (B.21)

The Te-terms from (IV.62) read in components
Te = —27%(D*® — D*®@') (D, ® — D, ")
—274(D*®D,d — D"®'D,d1)? (B.22)
Tely == 272(A™ = A™) (A = A" ) +272V2(A™ = A7) (X = XUm)
27 (AMA,, — AVAY )

+273V2(AM Ay — AVTMAT ) (A X — AT X)) (B.23)
D,T¢ = — 27 (DyD"®D,® + D, D*®'D,d" — D, D*®D, 0" — D*®D, D, ")
-273(D"®D,® — D*®'D,d") (D, D*®D, P — D, D" &' D, D) (B.24)

. 1 1
DoTe|, = — 2_1(\/§D Xa +1—\/_bd(0 7"Y)a +iZ\/§baxa —ig\/ibd(aaﬁdx)a

n i%\/ﬁ(a“)z)aM*) (A — A)

—272(AA, — A" A% ) (V2D o + 1—\/_bd(a 7X)a
+ %\/iba;(a _ %ﬁbd(aaa ValAa + %\/i(aag)aM*A*,a) (B.25)
D DoTe| )y =— 271 (A" — AY*) (D*DoD,®| ,, — D*DaDa 21| )
—273(A%A, — AV A" ) (DODy D ®D,®| , — D Do D@D, 0| ) (B.26)
= 271(A4 - A% (1§Fba +4F , + §M*[A,a +A%,))
+272(A% A, — AVUA* ) (ingbA,b +4FbAy + §M*[(aA)2 + (04%)%)) (B.27)

One can see explicitly see from the above expressions that the contributions of the Ty- and T¢-terms to the equation
of motion of b, vanish in the ghost condensate background, where (¢ = x =9y =M = F = 0.
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