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Numerical Exploration of Soliton Creation

Henry Lamm∗ and Tanmay Vachaspati†
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We explore the classical production of solitons in the easy axis O(3) model in 1+1 dimensions,
for a wide range of initial conditions that correspond to the scattering of small breathers. We
characterize the fractal nature of the region in parameter space that leads to soliton production and
find certain trends in the data. We identify a tension in the initial conditions required for soliton
production – low velocity incoming breathers are more likely to produce solitons, while high velocity
incoming breathers provide momentum to the final solitons and enable them to separate. We find
new “counter-spinning” initial conditions that can alleviate some of this tension.

PACS numbers: 11.27.+d,14.80.Hv

I. INTRODUCTION

Perturbative field theory is an expansion around a sin-
gle vacuum state but many field theories admit multiple
degenerate vacua. Excitations in such field theories in-
clude solitons that interpolate between different vacua
in addition to the particle excitations around a single
vacuum. While solitons and particles are distinct exci-
tations, it is generally possible to transition from one to
the other. For example, a soliton and anti-soliton are
able to annihilate and produce particles. Here we shall
be concerned with the reverse process in which we start
with particles and create a soliton-antisoliton pair.
The transition from particles to solitons (or vice versa)

has another layer of complexity because it is also a transi-
tion from a quantum system (particles) to a classical sys-
tem (solitons). A rigorous formalism to treat the transi-
tion is not known. While some attempts have been made
at semiclassical and quantum calculations [1–8], the most
straightforward approach at the current time is to treat
the entire process classically. Particles in the initial state
are replaced by classical field configurations that are non-
dissipative, like “breathers” of the sine-Gordon model [9],
or dissipative but long-lived, like “oscillons” [10–12] in
other models.
Previous work on the classical production of solitons

has mostly been carried out in the λφ4 model, which has
the virtue that it has the minimal structure necessary
for studying the process [10, 11, 13, 14]. However, the
simplicity of the model may also be a drawback, as addi-
tional degrees of freedom [9] or a more complex potential
[8, 12] may facilitate the production of solitons. Thus
we study soliton production in the easy axis O(3) model
(described in detail in Sec. II).
The easy axis O(3) model (or “O(3)z model”) in 1+1

dimensions has a number of features that make it suit-
able for studying soliton production. As the model has
two degenerate vacua, it contains kink solutions. Certain
subspaces of the model are equivalent to the classical
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sine-Gordon model. Thus the model also has breather
solutions that do not decay and can be used to mimic
incoming particle states. The O(3)z model has an addi-
tional “twist” degree of freedom that gives it more com-
plexity than the λφ4 model and brings it a bit closer to
models with ‘t Hooft-Polyakov magnetic monopoles, as
monopoles also carry a phase degree of freedom.
This paper is organized as follows. In Sec. II we de-

scribe the O(3)z model and in Sec. III we describe the
range of initial conditions that we use in our scatter-
ing simulations. Our numerical results are discussed in
Sec. IV and we conclude in Sec. V.

II. EASY AXIS O(3) MODEL

The O(3)z model in 1+1 dimensions is given by the
action

S =

∫

d2x

[

1

2
(∂µn)

2 − 1

2
(1− n2

3
)− λ(n2 − 1)

]

(1)

where n(t, x) is a vector field with Cartesian components
(n1, n2, n3) and λ is a Lagrange multiplier that forces n
to have unit magnitude: n

2 = 1. The potential term
reduces the O(3) symmetry to O(2)×Z2, corresponding
to symmetry under rotations in the n1-n2 plane and to
reflections of n3. There are two degenerate vacua: n =
(0, 0,±1).
After eliminating the constraint condition, the equa-

tion of motion is

�n+ (∂µn)
2
n− n3(ê3 − n3n) = 0 ,n2 = 1 (2)

where ê3 ≡ (0, 0, 1).
Alternately, the constraint can be solved ex-

plicitly in terms of angular variables, n =
(sin θ cosφ, sin θ sinφ, cos θ), to give the action

S =

∫

d2x

[

1

2
(∂µθ)

2 +
1

2
sin2 θ(∂µφ)

2 − 1

2
sin2 θ

]

(3)

which leads to the equations of motion

�θ + sin θ cos θ(1− (∂µφ)
2) = 0 (4)

∂µ(sin
2 θ ∂µφ) = 0. (5)
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The latter equation is of the form ∂µj
µ = 0 and so j0 =

sin2 θφ̇ is the charge density of a conserved current in the
model.
Let α ≡ 2θ and consider the case, φ = constant. Then

the equation of motion reduces to

�α+ sinα = 0 (6)

which is identical to the equation of motion for the sine-
Gordon model. (This can also be seen at the level of the
action.) Hence the O(3)z model inherits all the solutions
of the sine-Gordon model. In particular

θk(x) = 2 tan−1(ex) , φ = constant (7)

is a kink solution in which n is at the North pole in field
space at x = −∞ and at the South pole at x = +∞.
With our normalization, the energy of the kink is Ek =
2. The model also inherits the (boosted) sine-Gordon
breather solutions

θb(x, t) = 2 tan−1

[

η sin(ωT )

cosh(ηωX)

]

, φ = constant (8)

where

T = γ(t− v(x − x0)) (9)

X = γ((x− x0)− vt) . (10)

The parameter x0 is the initial position of the breather,
v its velocity, and γ = 1/

√
1− v2 its Lorentz factor. The

parameter ω is the oscillation frequency of the breather
and takes values in [0, 1], while η is defined by

η =
√

1− ω2/ω (11)

The typical waveform of a boosted breather can be seen
in Fig. 1.

The energy in a field configuration is given by

E =

∫

dx H(t, x) =

∫

dx

[

θ̇2

2
+

θ′
2

2
+ sin2 θ

φ̇2

2
+ sin2 θ

φ′2

2
+

1

2
sin2 θ

]

(12)

For a boosted breather, the energy evaluates to

Eb = 4γ
√

1− ω2 = 4γηω (13)

and the rest mass of the breather is

mb =
Eb

γ
= 4

√

1− ω2 = 4ηω (14)

Note that the energy of the breather is smaller for larger
ω and vanishes for ω = 1. If we choose initial conditions
on a great circle (φ = φ0, φ0 + π), the dynamics will also
be restricted to the great circle. Then the evolution is
exactly as in the sine-Gordon model. As the sine-Gordon
model is completely integrable [15], both the number of
kinks and the number of anti-kinks are conserved and
we can not create kinks (or antikinks) if there were none
in the initial conditions. Hence it is crucial to choose
initial conditions in which φ is not a constant i.e. that
the initial conditions be “twisted” in the φ direction.
A general feature in 1+1 classical field theory of inter-

est to us will be that the interaction force between two
static solitons separated by a distance L is proportional
to

F (L) ∝ e−L/a (15)

where a is a length scale, usually on the order of the
width of a soliton [16].
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FIG. 1: Field profile (θ) of a boosted breather at
different times over an oscillation period. The particular

parameters used are v = 0.9, ω = 0.90 which
corresponds to mb = 1.74.

III. CHOICE OF INITIAL CONDITIONS

Ideally we would like to start with initial conditions
that describe incoming particles in some energy range,
but then the initial condition would have to be described
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in terms of quantum field theory. On the other hand, the
final state of interest has kinks, and these are classical ob-
jects. So the creation of kinks from particles also involves
a transition from an initial quantum system to a final sys-
tem that contains classical elements, and a formalism to
describe such a transition is not known. The simplifica-
tion we will adopt is to consider initial conditions that
only contain breathers as, at least in the sine-Gordon
model, it has been shown that quantized breathers cor-
respond to particles of the theory in the low mass limit
[17].

Our choice of initial conditions consists of a train of

N left-moving breathers and N right-moving breathers.
The parameters mb and v characterize an individual
breather in the train. In addition, we can vary the
spacing of the breathers within a train, the number of
breathers in each train, and the relative twists of the
breathers. This last parameter is called ξ and is defined
by

ξ ≡ φL − φR

2π
(16)

where φL, φR are the initial constant values of φ for the
left- and right-moving breathers. Explicitly, the initial
condition is

θ(t = 0, x) =

N
∑

j=1

[θb(t = 0, x;−xj ,+v) + θb(t = 0, x; +xj,−v)] (17)

φ(t = 0, x) = πξ tanh(x/w) (18)

θ̇(t = 0, x) =
N
∑

j=1

[

θ̇b(t = 0, x;−xj , v) + θ̇b(t = 0, x; +xj ,−v)
]

(19)

φ̇(t = 0, x) = 0 (20)

where θb is the breather profile defined in Eq. (8) and the
initial position of the jth breather given by

xj = x0 + (j − 1)a. (21)

Here x0 is the initial position of the innermost breather
in the train and a is the spacing between the breathers in
a train. In our numerical runs, the parameter a is chosen
to be twice the width of a breather, a = 2w = 4/(γηω),
and x0 is chosen to be 4Ebw which is much larger than
the width of the breathers investigated. In the bulk of
our analysis, we start with φ̇ = 0, but in Sec. IVF we will
also describe some results with initial conditions φ̇(t =
0, x) 6= 0.
The initial conditions listed above are used to construct

the vector n(t = 0, x), which is then numerically evolved
using Eq. (2). The numerical evolution is done using the
explicit second order Crank-Nicholson method with two
iterations [18].
We wish to explore a large number of initial conditions

and to record only those initial conditions that lead to
kink formation. Hence we need to specify criteria to de-
cide if kinks were or were not produced in any given run.
To do this, for each time step, we checked for a transition
from cos θ = 0 to cos θ = −0.99. If this transition exists,
the point where cos θ = 0 is considered to be the location
of the kink at that time. By recording kink locations as
a function of time, we were able to reconstruct the kink’s
path and therefore its velocity. To explore parameter
space, we hold x0 and a fixed and scan over a range of the
4 parameters: ω (breather frequency), v (incoming veloc-
ity), ξ (twist), and N (number of breathers in a train).

To search this phase space for successful kink produc-
tion, we used two different methods. For coarse grained
searches, we used the MULTINEST software to find large
clusters of conditions that lead to success [19, 20]. For
fine grained searches at low mass, we scanned the initial
conditions uniformly in steps of ∆v = 0.002, ∆ξ = 0.001
and ∆ω = 0.01. The ranges we explore are shown in Ta-
ble I. We also show the corresponding range of the mass
(mb) and the Lorentz factor γ. (mb and γ are derived
from the ranges of ω and v.)

Parameter Range

ω 0.500-0.990

v 0.100-0.990

ξ 0.000-0.500

N 1-20

mb 0.565-3.500

γ 1.005-7.088

TABLE I: Range of initial conditions that we explore.
For reference, the rest energy of a kink is 2.

We now describe our numerical results.

IV. NUMERICAL RESULTS

In Fig. 2 we show a sample event where a kink-antikink
pair is produced. In the center we have the time evolution
of the n3 field. One should note that while the breathers
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are initially moving with the same velocity, interactions
within a train change the separation and relative velocity
between breathers. The importance of this effect will be
discussed in Sec. IVE. The vector field n(t, x) is shown
to the left and right of Fig. 2 at the initial and final times
respectively.

We start by showing the cumulative result from all
runs in the left panel of Fig. 3. Plotted is the number of
successful kink production events versus the energy per
incoming breather, after summing over all other parame-
ters in the ranges shown in Table I. These results shows
a peak in production when the energy of an individual
breather in the train is exactly the kink energy. This sug-
gests that kink production is dominated by the collision
of just two breathers scattering into a kink-antikink pair.
However, we will show that multi-particle interactions
within the train are critical to the success of these colli-
sions and that having Eb ≈ 2 is not a sufficient condition
for kink production.

In the right panel of Fig. 3 we further partition the
data of the left panel of Fig. 3 by the mass of the incom-
ing breather but only for N = 4. In this plot we see that
there is a distribution of energies for which kink produc-
tion occurs, but the distribution is more narrowly dis-
tributed at smaller masses. In other words, if the incom-
ing breather has small mass, it’s energy must be picked
more precisely. While the general distribution of ener-
gies seems to be smooth and peaked around Eb = 2, for
a given mass of a breather there is a structure of clear
peaks where success occurs, and a slight change in the
energy can dramatically changes the success rate.

Fig. 3 provides a summary of all our runs but loses in-
formation about the effects of varying parameters on kink
production. In order to untangle some of these effects,
we investigated the case of N = 4. This condition was
chosen as a balance between the increased number of suc-
cesses that comes from having larger N , and the simpler
dynamics afforded by the few-body collisions of small N .
For N = 4, we were able to find hundreds of successful
initial conditions. From these results, we computed the
velocity of the outgoing kinks as a function of the initial
conditions. For three values of mb, the outgoing kink
velocities are plotted in Fig. 4.

A few distinct features can be seen in Fig. 4. With
increasing breather mass, we see that the likelihood of
producing kinks increases, but the range of velocities
that yield kinks in the final state shift to higher values.
Breather velocities where solitons are produced are found
to form bands, reminiscent of [14] where the annihilation
of solitons into particle-like states was considered. The
chaotic results – note the hole at vb = 0.7, ξ = 0.1 in the
middle panel – also bear a qualitative resemblance to the
production found in [11].

In these plots, the likelihood of kink production is sup-
pressed in a region around ξ ≈ 0.25 − 0.35 except at
higher velocities where kink production is relatively in-
sensitive to changes in twist. Another interesting feature
is found by considering the dependence of clustering in

the (mb, vb) plane. In Fig. 5, we plot the outgoing kink
velocity for ξ = 0.10. Notice the counter-intuitive trend
that for decreasing breather mass, mb, successful kink
production requires a decrease in the incoming velocity.
This is the same dependence found in the λφ4 model
[10] and suggests a difficulty in the production of soli-
tons from quantum particles as we will discuss below.
Also of interest in Fig. 5 is the appearance of two

bands, one at high mb and another at low mb. Inside
of each band, we see that increasing the breather mass
requires an increase in velocity for kink production to be
successful. The optimal velocity for kink production is a
function of breather mass, and it increases within a band,
but then has a large discontinuous jump as we cross from
one band to another.
Next we focus on the kink velocity, vk, in the runs

that successfully produced a kink-antikink pair. Fig. 6
shows the dependence of vk on the parameters mb, vb
and ξ, where we fix N = 4. For example, the left-most
panel shows that for mb = 1.74 and N = 4, most of the
successful runs produced kinks with velocity≈ 0.7. As we
decrease mb, the velocity of the outgoing kinks decreases
e.g. at mb = 1.47, the peak occurs at vk ≈ 0.6. At
mb = 1.12, the success rate for kink productions very low
and the outgoing kink velocity has decreased to ≈ 0.3.
Similarly, the center and right-hand panels of Fig. 6 show
the dependence of vk on vb and ξ.
The trends in Fig. 6 can be quantified, as in Fig. 7,

where we show how the mean value of vk depends on mb,
vb, and ξ. Linear fits give

〈vk〉vb,ξ = (0.56± 0.04)mb + (−0.34± 0.05) (22)

〈vk〉mb,ξ = (1.12± 0.04)vb + (−0.20± 0.03) (23)

where the subscripts refer to the parameters over which
the data is accumulated. If we choose parameters such
that the mean vk is very small, it implies that any kink-
antikink pairs that are produced will re-annihilate. Ex-
trapolation from the above fits then suggests that kink
production will be suppressed for mb < 0.6 ± 0.1 and
vb < 0.18 ± 0.03. As a function of ξ we see that vk
doesn’t seem to vary dramatically, but we do note a slight
increase in vk for ξ = 0.25− 0.35.

A. Chaotic structure

One way to quantify the chaotic nature of conditions
is to consider the fractal dimension of plots of the out-
going kink velocities, vk, as a function of the initial con-
ditions as shown in Fig. 4. Following the ideas of [11],
we investigate a specific type of fractal dimension, the
Minkowski-Bouligand dimension or the box-counting di-
mension. This dimension is defined by

Dbox = lim
r→0

logn(r)

log 1/r
(24)
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FIG. 2: The center panel indicates in color the n3 field as a function of time (horizontal axis) and space measured in
units of breather width(vertical axis) for the collision. Left and right panels are the vector field n configurations at
t = 0 and t = 140 respectively. The parameters for this scattering are N = 4, mb = 1.57, vb = 0.55, and ξ = 0.1. The

final state contains a kink-antikink pair located at x ≈ ±6.4w, where w is the width of the incoming breather.
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FIG. 3: Number of produced kinks vs. the energy of a
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dataset. A strong peak is seen around the mass of a
kink, Ek = 2. In the right-hand figure, we plot the
number of produced kinks vs. energy of a single

breather, split into groups by breather mass, summed
over vb, ξ but with N = 4.

where n(r) is the number of boxes of side length r that
are required to cover the outline of the shape considered.
For a shape lacking fractal properties in 2D (e.g. a circle)
we get Dbox = 1; while an area filling shape (e.g. a
disc) has Dbox = 2. A fractal shape in 2D has 1 <
Dbox ≤ 2. While Eq. (24) is the formal definition of the
box-counting dimension, in practice it can be difficult to
extract from data. Instead, since we expect the scaling
of the boxes with r to be of the form

k(1/r)DL = n(r) (25)

where DL is called the local dimension and has a weak
dependence on the box size for small r. Rearranging this
equation we see that

−DL log(r) + log(k) = log(n(r)) (26)

So the local dimension will be given by

DL = −d log(n(r))

d log(r)
(27)

TABLE II: Mean value and standard deviation of the
mean for the box counting fractal dimension, Dbox, as a
function of breather mass, mb. We note that this is in
general smaller than a similar value (1.770± 0.011) for

the λφ4 model found in [11]

mb Dbox

1.74 1.58 ± 0.03

1.66 1.54 ± 0.04

1.57 1.60 ± 0.04

1.47 1.62 ± 0.06

1.38 1.42 ± 0.05

1.25 1.23 ± 0.10

and should be approximately Dbox for small r. In Fig. 8
we plot the number of boxes needed to bound the area
in Fig. 4 as a function of the side length. We have found
that for increasing mb there is a marked deviation from
Dbox = 1.
We compute DL at each box size by taking 2nd or-

der central finite differences and, for averaging over all r
values, we arrive at a good estimate of box counting di-
mension, Dbox. The results for Dbox are shown in Table
II for several mb.

B. Dependence on Breather Mass

We expect that it is more difficult to produce kinks
with low mass breathers than it is with high mass
breathers. This expectation is seen to be correct in Fig. 9.
We see that the success rate fluctuates around some value
formb > 2, where we note that the kink energy is Ek = 2.
While for mb < 2, the success rate decreases exponen-
tially with decreasing mb. In the right panel of Fig. 9,
we searched the mb < 2 region more densely and fit the
drop off with exponential and Gaussian profiles, with the
Gaussian being marginally better in the low mass region.
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for ξ = 0.10. Successful kink production occurs in two
bands that are well separated.

Focusing on the low mass region of Fig. 9, we see that
the lowest mass at which soliton production is achieved
is mb = 0.9. Due to the exponential fall-off at small
breather mass, it would be very difficult to produce kinks
using breathers of yet lower mass and a random choice
for the other parameters.

C. Dependence on Incoming Breather Velocity

Another important parameter for soliton production is
the initial breather velocity. From Fig. 4 we see that kink
production occurs when the incoming breather velocities
lie in certain bands. These bands are insensitive to the

breather mass and survive even after we sum over all mb

and ξ as seen in Fig. 10 where distinct peaks are present.
From our simulations, for a fixed breather mass, it is

possible to calculate a mean breather velocity, 〈vb〉ξ, at
which kink production is most likely. This value is found
by accumulating the data from successful kink produc-
tion over all twists and then finding the average breather
velocity. The data is plotted in Fig. 11. The depen-
dence of 〈vb〉ξ on mb is found to be linear in the region
of 1.2 < mb < 2 with a fit

〈vb〉ξ = (0.43± 0.02)mb + (−0.04± 0.02) (28)

Extrapolating to low mass, we obtain a mass cutoff at
mb = 0.09 ± 0.05. This bound is much lower, hence
weaker, than the bound of mb = 0.6 obtained by requir-
ing that the outgoing kinks have a non-zero velocity (see
above Eq. 22).
We therefore see that for breathers of lower mass to

produce kinks, the velocity at which they must be col-
lided is lower. But with lower breather velocity, the out-
going kink velocity also decreases, and at some point
the kinks cannot escape and instead they re-annihilate.
These results together indicate that kink production will
be highly suppressed in low mb regions in the (mb, vb)
parameter space.

D. Dependence on Twist

An intuitive understanding of how the success of pro-
duction should depend upon ξ is not obvious, but a few
simple characteristics are expected. For ξ = 0, 0.5, the
dynamics is the same as in the sine-Gordon model and we
therefore expect there to be no kink production at these
points. From Fig. 12, we see that this is in fact true.
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range mb ∈ (0.9, 1.8) for all vb, ξ and N = 4

In the same figure, we see that even for small deviations
from the sine-Gordon model, the production rate is quite
large.

In previous sections, it has been seen that in a region
located around ξ = 0.25−0.40 various interesting features
occur. We have shown that the likelihood of production
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FIG. 11: 〈vb〉ξ vs. mb for N = 4. From the fit, we see
that at mb = 0.09± 0.05, 〈vb〉ξ → 0 which suggests that
kink production with such low mass breathers is highly

suppressed.

is decreased in this region (Fig. 4) and that the average
outgoing kink velocity is slightly increased (Fig. 7). From
Fig. 12 we see that the production count decrease in this
region is over 40%, indicating some interesting physics
must be occurring.
To understand the strange effects observed at ξ =

0.25 − 0.40 on twist, we investigated the case of two
breathers whose centers of energy are initially at rest.
Previous calculations have found that the force between
two breathers in the sine-Gordon model is to first order
[21]

F = ∓16η4ω2e−2ηω|L| (29)

where the negative (positive) sign indicates attraction
(repulsion) for in-phase (out-of-phase) breathers, and L is
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FIG. 13: Time evolution of the separation distance
between two breather center of energies for

ξ = 0, 0.10, 0.20, 0.30, 0.35, 0.40, 0.50 for mb = 1.74, 1.25.
Below a critical value of ξ ≈ 0.35− 0.40 the force is
attractive and the breathers oscillate about a shared

center; above the critical value, the breathers repel and
move apart.

half the distance between the breathers. Since the phase
of the breathers also corresponds to ξ = 0 for in-phase
breathers and ξ = 0.5 for out-of-phase breathers, we ex-
pect that the force should be attractive for low twist, and
repulsive for high twist in the O(3)z breather case. In [9],
the time delay was numerically investigated for the O(3)z
model and it was found that for ξ = 0.2− 0.4 there was
dramatic increase in time delay over the ξ = 0, 0.5 cases.
Both of these works seem to indicate that at interme-
diate values of ξ there is something different about the
breather interactions.

We have studied the dynamics of two initially static
breathers for two different values of mb and for various
values of ξ. The results in Fig. 13 show that there is a
critical value of twist at which the force changes from
being attractive to being repulsive. The critical value
depends on mb and is larger for lower mass breathers.
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This suggests that the observed drop in kink production
around ξ ≈ 0.3 might be correlated with the lack of in-
teraction between breathers at the critical twist.

E. Dependence on Number of Breathers

As one might expect, increasing the number of
breathers in the initial train of breathers increases the
chances of kink production. This data is shown in
Fig. 14. The shown fit corresponds to logarithmic growth
of successful kink production events with the number of
breathers. So the gain in kink production depends weakly
on the number of breathers. This agrees with our ear-
lier discussion in the context of the left panel of Fig. 3,
where we suggested that it is the energy per breather
that is important for kink production and not so much
the total energy in the train of breathers.
To further understand the effects of N , we investigated

a set of initial conditions where for N = 4 we know soli-
tons are produced, and then we varied N . We found, as
seen in Fig. 2, that the solitons were produced in the colli-
sion of the second breathers in each train before the third
and fourth had had a chance to collide. This result is at
first troubling because for the cases of N = 1, 2, 3 it is
found that no kinks are produced. So the fourth breather
in the train is critical to kink production. The exact role
that the fourth breather plays is not clear to us though
some possibilities come to mind. The fourth breather
may influence the forward breathers in the train prior
to the collision and change some of their characteristics,
and this is what enables kink production. Another pos-
sibility is that the collisions of the number two breathers
produce a proto-kink pair which requires additional mo-
mentum transfer via the fourth breather to grow into a
kink-antikink pair.

We speculate that the diminishing return on success
of additional breathers arises from the limitation im-
posed on interaction between breathers based on their
initial spacing in the trains. Although the numbers of
breathers increases, the distance between the beginning
and end of the train also increases. Since the force be-
tween breathers is generically exponential with distance
(i.e. Eq. 15), breathers that are sufficiently far away have
little effect on each other.

F. Other Initial Conditions

In Sec. III, it was discussed that there is a freedom in
choosing φ̇(t = 0). In the previous discussions we have

only studied the simplest case of φ̇(t = 0) = 0. Here we
consider two other possible set of initial conditions. The
first type is the “co-spinning” initial conditions

φ̇(t = 0, x) = vφ (30)

where vφ is some constant velocity and all the breather
trains rotate have the same velocity in the φ variable. Ad-
ditionally, we considered “counter-spinning” initial con-
ditions

φ̇(t = 0, x) = vφ tanh(x/w) (31)

where the left-moving and right-moving breather trains
have opposite velocity in the φ direction. These choices
both introduce another free parameter into the initial
conditions, namely, the initial φ velocity vφ. On inclu-

sion of a φ̇ term into the equations of motion, the sine-
Gordon breathers are no longer exact solutions, but from
our simulations they are found to still be long-lived.
Spinning initial conditions may also be viewed as

charged initial conditions, following the remark below
Eq. (4). Co-spinning initial conditions correspond to
like charges on the incoming breather trains; counter-
spinning initial conditions correspond to opposite charges
on the breather trains. We have run our simulations for
the co-spinning and counter-spinning initial conditions
with vφ = 0.1, mb = 1.36, and N = 4 and some of the
results are shown in Fig. 15. The co-spinning initial con-
ditions have only 80% of the number of successful kink
production events as the non-spinning initial conditions
for the same phase space search. Furthermore, the distri-
butions in breather velocity and twist are shifted to lower
values and have smaller spreads. The mean outgoing kink
velocity is also decreased. Putting these trends together,
we conjecture that co-spinning initial conditions suppress
kink production, but additional study should be under-
taken to confirm this.
Counter-spinning initial conditions appear to have ex-

actly the opposite effects. The spread in breather ve-
locities and twist increased, and the final kink velocities
also increased. For the same parameter space search,
counter-spinning runs were more successful than non-
spinning runs by a factor of 1.4, suggesting that such
initial conditions may be worth exploring further.
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mb = 1.36, v = 0.1, and N = 4.

V. CONCLUSIONS

We have numerically explored a wide range of scatter-
ing initial conditions in the O(3)z model that can lead to
the production of a kink-antikink pair. Our initial state
consists of two oppositely moving trains of breather so-
lutions. There are several general features that we have
observed that we now summarize: (i) the region in pa-
rameter space that leads to kink production has fractal
structure, (ii) smaller breathers need to be scattered at
smaller velocities, (iii) when kinks are produced, their
outgoing velocities increase in proportion to the incoming
breather train velocity, (iv) twist is essential for kink pro-
duction in this model but the outcomes are not strongly
sensitive to the exact value that we choose, and (v) the
force between breathers vanishes for a certain value of the
twist. Putting together points (ii) and (iii) we conclude
that small breather velocities are necessary for building
kinks, while large breather velocities help to separate
them. Hence there is tension in the requirements for

successful kink production and we can expect that the
process will be highly suppressed when the breather mass
is small compared to the kink mass.
These pessimistic conclusions are somewhat offset by

our finding that counter-spinning initial conditions can
enhance kink production. Further exploration of such
initial conditions may lead to better understanding of
when kinks can be (more easily) produced.
Finally we observe that, since the sine-Gordon model

is embedded inside the O(3)z model, and soliton oper-
ators have been constructed in the sine-Gordon model
[22], it is possible that similar operators can be found in
the quantum O(3)z model. Then it is conceivable that
kink production can be studied in the O(3)z model by
quantum field theory methods or on a lattice.
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