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Abstract

Among the three forms of relativistic Hamiltonian dynamics proposed by Dirac in 1949, the

instant form and the front form can be interpolated by introducing an interpolation angle between

the ordinary time t and the light-front time (t + z/c)/
√
2. Using this method, we introduce the

interpolating scattering amplitude that links the corresponding time-ordered amplitudes between

the two forms of dynamics and provide the physical meaning of the kinematic transformations as

they allow the invariance of each individual time-ordered amplitude for an arbitrary interpolation

angle. In particular, it exhibits that the longitudinal boost is kinematical only in the front form

dynamics, or the light-front dynamics (LFD), but not in any other interpolation angle dynamics.

It also shows that the disappearance of the connected contributions to the current arising from

the vacuum occurs when the interpolation angle is taken to yield the LFD. Since it doesn’t require

the infinite momentum frame (IMF) to show this disappearance and the proof is independent of

reference frames, it resolves the confusion between the LFD and the IMF. The well-known utility of

IMF usually discussed in the instant form dynamics is now also extended to any other interpolation

angle dynamics using our interpolating scattering amplitudes.
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I. INTRODUCTION

When the particle systems have the characteristic momenta which are of the same order

or even much larger than the masses of the particles involved, it is part of nature that a

relativistic treatment is called for in order to describe those systems properly. In particular,

relativistic effects are most essential to describe the low-lying hadron systems in terms of

strongly interacting quarks/antiquarks and gluons in quantum chromodynamics (QCD).

For the study of relativistic particle systems, Dirac proposed the three different forms of the

relativistic Hamiltonian dynamics in 1949 [1]: i.e. the instant (x0 = 0), front (x+ = (x0 +

x3)/
√
2 = 0), and point (xµx

µ = a2 > 0, x0 > 0) forms. While the instant form dynamics

(IFD) of quantum field theories is based on the usual equal time t = x0 quantization (c = 1

unit is taken here), the equal light-front time τ ≡ (t+ z/c)/
√
2 = x+ quantization yields the

front form dynamics, more commonly called light-front dynamics (LFD), correspondingly.

Although the point form dynamics has also been explored [2], the most popular choices were

thus far the equal-t (instant form) and equal-τ (front form) quantizations.

A crucial difference between the instant form and the front form may be attributed to

their energy-momentum dispersion relations. When a particle has the mass m and the four-

momentum k = (k0, k1, k2, k3), the relativistic energy-momentum dispersion relation of the

particle at equal-t is given by

k0 =

√
~k2 +m2, (1)

where the energy k0 is conjugate to t and the three-momentum vector ~k is given by ~k =

(k1, k2, k3). However, the corresponding energy-momentum dispersion relation at equal-τ is

given by

k− =
~k2
⊥ +m2

k+
, (2)

where the light-front energy k− conjugate to τ is given by k− = (k0 − k3)/
√
2 and the

light-front momenta k+ = (k0 + k3)/
√
2 and ~k⊥ = (k1, k2) are orthogonal to k−. While

the instant form (Eq.(1)) exhibits an irrational energy-momentum relation, the front form

(Eq.(2)) yields a rational relation and thus the signs of k+ and k− are correlated, e.g.

the momentum k+ is always positive when the system evolve to the future direction (i.e.

positive τ ) so that the light-front energy k− is positive. In the instant form, however, no sign
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correlations for k0 and ~k exist. Such a difference in the energy-momentum dispersion relation

makes the LFD quite distinct from other forms of the relativistic Hamiltonian dynamics.

The light-front quantization [1, 3] has already been applied successfully in the context

of current algebra [4] and the parton model [5] in the past. With further advances in

the Hamiltonian renormalization program [6, 7], LFD appears to be even more promising

for the relativistic treatment of hadrons. In the work of Brodsky, Hiller and McCartor

[8], it is demonstrated how to solve the problem of renormalizing light-front Hamiltonian

theories while maintaining Lorentz symmetry and other symmetries. The genesis of the

work presented in [8] may be found in [9] and additional examples including the use of LFD

methods to solve the bound-state problems in field theory can be found in the review of

QCD and other field theories on the light cone [10]. These results are indicative of the

great potential of LFD for a fundamental description of non-perturbative effects in strong

interactions. This approach may also provide a bridge between the two different pictures

of hadronic matter, i.e. the constituent quark model (CQM) (or the quark parton model)

closely related to experimental observations and the QCD based on a covariant non-abelian

quantum field theory. Again, the key to possible connection between the two pictures is

the rational energy-momentum dispersion relation given by Eq.(2) that leads to a relatively

simple vacuum structure. There is no spontaneous creation of massive fermions in the

LF quantized vacuum. Thus, one can immediately obtain a constituent-type picture [11]

in which all partons in a hadronic state are connected directly to the hadron instead of

being simply disconnected excitations (or vacuum fluctuations) in a complicated medium.

A possible realization of chiral symmetry breaking in the LF vacuum has also been discussed

in the literature [12].

Moreover, the Poincaré algebra in the ordinary equal-t quantization is drastically changed

in the light-front equal-τ quantization [13] . In LFD, the maximum number (seven) of the

ten Poincare generators are kinematic (i.e. interaction independent) and they leave the state

at τ = 0 unchanged [14]. However, the transverse rotation whose direction is perpendicular

to the direction of the quantization axis z at equal τ becomes a dynamical problem in LFD

because the quantization surface τ is not invariant under the transverse rotation and the

transverse angular momentum operator involves the interaction that changes the particle

number [15]. Leutwyler and Stern showed that the angular momentum operators can be

redefined to satisfy the SU(2) spin algebra and the commutation relation between mass
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operator and spin operators [16];

[Ji,Jj] = iǫijkJk, (3)

[M, ~J ] = 0. (4)

Nonetheless, in LFD, there are two dynamic equations to solve:

J 2|H ; p+, ~p2⊥ >= SH(SH + 1)|H ; p+, ~p2⊥ > (5)

and

M2|H ; p+, ~p2⊥ >= mH
2|H ; p+, ~p2⊥ >, (6)

where the total angular momentum (or spin) and the mass eigenvalues of the hadron (H) are

given by SH and mH . Thus, it is not a trivial matter to specify the total angular momentum

of a specific hadron state.

As a step towards understanding the conversion of the dynamical problem from boost

to rotation, we constructed the Poincaré algebra interpolating between instant and light-

front time quantizations [17]. We used an orthogonal coordinate system which interpolates

smoothly between the equal-time and the light-front quantization hypersurface. Thus, our

interpolating coordinate system had a nice feature of tracing the fate of the Poincare algebra

at equal time as the hypersurface approaches to the light-front limit. The same method of

interpolating hypersurfaces has been used by Hornbostel [18] to analyze various aspects of

field theories including the issue of nontrivial vacuum. The same vein of application to study

the axial anomaly in the Schwinger model has also been presented [19], and other related

works [20–23] can also be found in the literature.

In the present work, we introduce the interpolating scattering amplitude that links the

corresponding time-ordered amplitudes between the two forms of dynamics. We exemplify

the physical meaning of the kinematic transformations in contrast to the dynamic transfor-

mations by means of checking the invariance of each individual time-ordered amplitude for

an arbitrary interpolation angle. Our analysis further clarifies why and how the longitudinal

boost is kinematical only in the LFD but not in any other interpolation angle dynamics

including IFD. In particular, we show the disappearance of the connected contributions to

the current arising from the vacuum when the interpolation angle is taken to yield the LFD.

Since we don’t need any infinite momentum frame (IMF) to show this disappearance and
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our proof is completely independent of reference frames, it resolves the confusion between

the LFD and the IMF that sometimes appears in the discussion on related topics. The well-

known utility of IMF usually discussed in the instant form dynamics is now also extended

to any other interpolation angle dynamics using our interpolating scattering amplitudes.

In the next section, Section II, we introduce the interpolating scattering amplitude that

links the corresponding time-ordered amplitudes between the two forms of dynamics and

show the disappearance of the connected contributions to the current arising from the vac-

uum when the interpolation angle is taken to yield the LFD. Taking just the simplest

possible example (viz. spin-less scalar particles) and keeping only the fundamental degrees

of freedom, i.e. particle momenta, we focus only on the essential part of the time-ordered

scattering amplitude, namely the energy denominators. In Section III, we discuss the kine-

matic transformations that allow the invariance of each individual time-ordered amplitude

for an arbitrary interpolation angle and present the explicit results of particle momenta

under those kinematic transformations. In this section, we also discuss a remarkable differ-

ence of the LFD result compared to the result for any other interpolation angle dynamics

including IFD and the role of the longitudinal boost that becomes kinematic only in LFD.

In Section IV, we explicitly show the invariance of the individual time-ordered amplitude

under kinematic transformations plotting the results obtained in Section III and extend the

well-known utility of IMF in IFD to an arbitrary interpolation angle dynamics. Conclusions

follow in SectionV.

II. INTERPOLATING SCATTERING AMPLITUDES

We begin by adopting the following convention of the space-time coordinates to define

the interpolating angle:

 x+̂

x−̂


 =


 cos δ sin δ

sin δ − cos δ




 x0

x3


 , (7)

and 
 x0

x3


 =


 cos δ sin δ

sin δ − cos δ




 x+̂

x−̂


 , (8)

in which the interpolating angle is allowed to run from 0 through 45◦, 0 ≤ δ ≤ π
4
. All

the indices with the wide-hat notation signify the variables with the interpolation angle δ.
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For the limit δ → 0 we have x+̂ = x0 and x−̂ = −x3 so that we recover usual space-time

coordinates although the z-axis is inverted while for the other extreme limit, δ → π
4
we have

x±̂ = (x0±x3)/
√
2 ≡ x± which leads to the standard light-front coordinates. Of course, the

same interpolation applies to the momentum variables:

 p+̂

p−̂


 =


 cos δ sin δ

sin δ − cos δ




 p0

p3


 . (9)

For any two interpolating four vector variables aµ̂ and bµ̂, the scalar product aµ̂b
µ̂ must be

identical to aµb
µ and is given by

aµ̂b
µ̂ = (a+̂b+̂ − a−̂b−̂) cos 2δ + (a+̂b−̂ + a−̂b+̂) sin 2δ − a1̂b1̂ − a2̂b2̂. (10)

We may define

C = cos 2δ, (11)

S = sin 2δ,

~a⊥̂ = a1̂x̂+ a2̂ŷ,

for shorthand notations and convenience, so that the Minkowski space-time metric gµ̂ν̂ =

(+̂, −̂, 1̂, 2̂) with interpolating angle may be written as

gµ̂ν̂ =




C S 0 0

S −C 0 0

0 0 −1 0

0 0 0 −1



= gµ̂ν̂ . (12)

Thus, the covariant and contravariant indices are related by

a+̂ = Ca+̂ + Sa−̂ ; a+̂ = Ca+̂ + Sa−̂ (13)

a−̂ = Sa+̂ − Ca−̂ ; a−̂ = Sa+̂ − Ca−̂

aĵ = −aĵ , (j = 1, 2).

As the coordinate variable x+ plays the role of the time evolution parameter and the canon-

ical conjugate energy variable is p+ = p− in LFD, we also take x+̂ to be the evolution

parameter and the conjugate energy variables with the corresponding subscripts, e.g., q+̂.

Now, we discuss the scattering amplitude of two spin-less particles, e.g. an analogue

of the well known QED annihilation/production process e+e− → µ+µ− in a toy φ3 model
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FIG. 1: Scattering amplitude of spinless particles.

theory, as depicted in Fig.1. In this work we do not involve spins and any other degrees of

freedom except the fundamental degrees of freedom, i.e. particle momenta, for the simplest

possible illustration.

Although we discuss here just this simple scattering amplitude, the bare-bone structure

that we demonstrate in this analysis will be commonly applicable to any extended calcu-

lation of amplitudes including other degrees of freedom. In particular, not only the basic

structure of the amplitudes but also the fundamental degrees of freedom to describe the

scattering process will prevail in such extension. Further complications from other degrees

of freedom beyond the particle momenta would appear separately without modifying the

energy denominator structure that we discuss in this work: e.g., the terms associated with

the spin degrees of freedom in QED would appear as the matrix elements in the numerator

but not in the denominator of the amplitude. The extension of the present work to the gauge

field theories involving other degrees of freedom such as QED and QCD is in progress. In

this work, we will focus on the basic structure of the scattering amplitudes, i.e. the energy

denominators, considering only the fundamental degrees of freedom, i.e. particle momenta.

Modulo inessential factors including the square of the coupling constant, the lowest or-

der tree-level Feynman diagram shown in Fig.1 is proportional to the propagator of the

intermediate particle, that is,

Σ =
1

s−m2
(14)

where s = (p1 + p2)
2 is the Mandelstam variable which is invariant under any Poincaré

transformations andm is the mass of the intermediate boson. Of course, the physical process

can take place only above the threshold s > 4M2, where M is the mass of the final particle

and anti-particle that are produced, e.g. like the muon mass in the e+e− → µ+µ− scatterring
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FIG. 2: Time-ordered amplitudes in IFD for the Feynman amplitude depicted in Fig.1.

process. In the IFD, where the initial conditions are set on the hyperplane t = 0 and the

system evolves with the ordinary time t > 0, this manifestly covariant Feynman amplitude

is decomposed into the corresponding two time-ordered amplitudes, graphically represented

in Fig.2(a) and Fig.2(b). These two time-ordered amplitudes correspond respectively to the

following analytic expressions:

Σa
IFD =

1

2q0

(
1

p01 + p02 − q0

)
, (15)

and

Σb
IFD = − 1

2q0

(
1

p01 + p02 + q0

)
. (16)

It is not difficulty to show that the sum of the time-ordered amplitudes is identical to the

manifestly covariant Feynman amplitude:

ΣIFD = ΣIFD
a + ΣIFD

b

=
1

2q0

(
1

p01 + p02 − q0
− 1

p01 + p02 + q0

)

=
1

s−m2
, (17)

where the conservation of the three momentum ~p1+~p2 = ~q as well as the energy-momentum

dispersion relation q0 =
√
~q2 +m2 in IFD is used to get the covariant denominator s−m2

in the last step.

To obtain the corresponding time-ordered amplitudes in an arbitrary interpolating angle

δ, we just need to change the superscript 0 of the IFD energy variables in the energy
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denominators to the superscipt +̂ and multiply an overall factor C to the amplitudes: i.e.

Σa
δ =

1

2q+̂

(
C

p+̂1 + p+̂2 − q+̂

)
, (18)

and

Σb
δ = − 1

2q+̂

(
C

p+̂1 + p+̂2 + q+̂

)
. (19)

The overall factor C is necessary because the energy of the particle with the four-momentum

pµ̂ in an arbitrary interpolation angle is given by p+̂ while the contravariant p+̂ used in

the interpolating amplitudes is related to the covariant p+̂ with the factor C as shown

in Eq.(13), i.e. p+̂ = Cp+̂ + Sp−̂. Note here that the factor S in front of the longitudinal

momentum p−̂ is irrelevant because the longitudinal momenta of the initial particles must be

cancelled by the longitudinal momentum of the intermediate particle due to the conservation

of the longitudinal momentum. Again, it is not so difficulty to show that the sum of the

time-ordered amplitudes for any angle δ is identical to the manifestly covariant Feynman

amplitude:

Σδ = Σa
δ + Σb

δ

=
1

2q+̂

(
C

p+̂1 + p+̂2 − q+̂
− C

p+̂1 + p+̂2 + q+̂

)

=
1

s−m2
, (20)

where we used the relation between the covariant and contravariant indices (see Eq.(13)) such

as q+̂ = Cq+̂+Sq−̂ and the conservation of momenta p1−̂+ p2−̂ = q−̂ and ~p1⊥̂+~p2⊥̂ = ~q⊥̂ as

well as the four-momentum scalar product relation (see Eq.(10)) to get the Lorentz invariant

denominator s−m2 in the last step. It is also rather easy to see that Eq.(20) becomes Eq.(17)

as C goes to the unity. In LFD however, i.e. as C goes to zero, the denominator in the

first amplitude Σa
δ=π/4, i.e. 1/(p+̂1 + p+̂2 − q+̂) = 1/(p+1 + p+2 − q+) goes to infinity due to

the conservation p+1 + p+2 = q+ but the multiplication of C = 0 with this infinity makes the

finite result 1/(s−m2), while the second amplitude Σb
δ=π/4 is wiped out due to C = 0. This

result is akin to the very well-known result from the work entitled “Dynamics at Infinite

Momentum” [24]. However, we would like to make it clear that the disappearance of the

second amplitude Σb
δ=π/4 in LFD is different from the usual IMF result obtained by taking

Pz → ±∞ with P ≡ p1+p2 for a shorthand notation (e.g. P 2 = s). As far as any correlation
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between the interpolation angle δ and the total longitudinal momentum Pz is avoided, our

derivation is completely independent of the frame and the only relevant parameter to show

this disappearance is the interpolation angle δ which has nothing to do with the choice of

reference frame. In Section IV, we will discuss the special case with a particular correlation

between δ and Pz and the associated treacherous point similar to the zero-mode issue in

LFD.

For the rest of this section, we elaborate more details of our derivations discussed above.

The dispersion relation q2 = m2 in terms of interpolating angle variables results in a

quadratic equation in q+̂ and q−̂ that can be solved for the energy variable q+̂ in terms

of momentum components q−̂ and ~q⊥ as well as mass m:

q+̂ =
−Sq−̂ ± ωq

C
, (21)

in which we introduced the notation

ωq =

√
q2−̂ + C

(
~q2
⊥̂
+m2

)
. (22)

For the physical solution with positive energy in Eq. (21), we must take

q+̂ =
−Sq−̂ + ωq

C
, (23)

which identifies ωq as

ωq = Cq+̂ + Sq−̂ = q+̂ . (24)

For δ = 0 and δ = π
4
, ωq becomes q0 =

√
~q2 +m2 and q+ = (q0 + q3)/

√
2 , respectively.

Using this variable ωq, we may rewrite Eqs. (18) and (19) as follows:

Σa
δ =

1

2ωqD+

Σb
δ =

1

2ωqD−
, (25)

where

D+ = P+̂ +
Sq−̂ − ωq

C

D− = P+̂ +
Sq−̂ + ωq

C
, (26)
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in which we used the longitudinal momentum conservation P−̂ = (p1)−̂ + (p2)−̂ = q−̂. The

sum of both contributions given by Eq. (20) can then be expressed as

Σδ = Σa
δ + Σb

δ

=
1

2ωq

(
1

P+̂ +
Sq

−̂
−ωq

C

− 1

P+̂ +
Sq

−̂
+ωq

C

)
, (27)

which is identical to the second line of Eq.(20). In Eq. (27), we can confirm Σδ = 1/(s−m2):

Σδ =
1
C(

P+̂ +
Sq

−̂

C

)2
−
(ωq

C

)2

=
1

CP 2
+̂
+ 2SP+̂q−̂ +

S2q2
−̂

C
− ω2

q

C

=
1

CP 2
+̂
+ 2SP+̂P−̂ − CP 2

−̂ − ~P2
⊥̂
−m2

=
1

s−m2
, (28)

where we used ω2
q = q2−̂ +C(~q2

⊥̂ +m2), P−̂ = q−̂ and ~P⊥̂ = ~q⊥̂. Using Eq. (27), we may now

recapture the instant form and light-front limits, as follows.

For the instant form limit (IFD), we have δ → 0 (i.e. C → 1 and S → 0) and ωq → q+̂.

In this limit, it is apparent that Eq. (27) becomes

Σδ→0 ≡ ΣIFD =
1

2q+̂

(
1

P+̂ − q+̂
− 1

P+̂ + q+̂

)
=

1

2q0

(
1

P0 − q0
− 1

P0 + q0

)
, (29)

where δ = 0 is taken in the interpolating angle variables.

For the light-front limit (LFD), δ → π
4
(i.e. C → 0 and S → 1), we expand ωq given by

Eq.(22) in the orders of C and get

ωq → q−̂ +
C

(
~q2
⊥̂ +m2

)

2q−̂
+O(C2). (30)

Substituting this expansion of ωq in the denominator of the first term in Eq. (27), we get

Sq−̂ − ωq

C
→ −

~q2
⊥̂ +m2

2q−̂
+O(C)

→ −
~q2
⊥̂ +m2

2q−̂
as C → 0. (31)

For the second denominator in Eq. (27), however, we get

Sq−̂ + ωq

C
→ 2

C
−

~q2
⊥̂ +m2

2q−̂
+O(C)

→ ∞ as C → 0. (32)
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Thus, in the light-front limit (C → 0), the contribution from the second diagram vanishes

and

Σδ→π

4
=

1

2q−̂

1{
P+̂ − (~q2

⊥̂
+m2)

2q
−̂

} =
1

P+

1{
P− − (~P2

⊥
+m2)

2P+

} , (33)

where q−̂ → q− = q+ and ~q⊥̂ → ~q⊥ are same with P+ and ~P⊥, respectively, due to the mo-

mentum conservation in LFD. Again, we would like to make it clear that the disappearance

of the second amplitude Σb
δ=π/4 in LFD is different from what has been known from the usual

IMF, i.e. Pz → ±∞. As we will discuss in the next section, Section III, the longitudinal

boost is kinematic in LFD so that the disappearance of the connected contribution Σb
δ→π

4

to the current arising from the vacuum is independent of Pz or the IMF. This is certainly

not the case for any other interpolation case, i.e. δ 6= π/4. The longitudinal boost becomes

dynamic for δ 6= π/4 and the contributions from Σa
δ and Σb

δ depend on Pz (or the reference

frames) and the well-known utility of IMF can be extended to an arbitrary interpolating

angle 0 ≤ δ < π
4
. We will discuss more on this point in Section IV after we present the

physical meaning of the kinematic transformations in Section III.

III. KINEMATIC TRANSFORMATIONS OF PARTICLE MOMENTA

As we presented in the previous section, Section II, the sum of all the time-ordered

amplitudes (just two in our example discussed in Section II) must be independent of the

interpolation angle δ and identical to the manifestly covariant Feynman amplitude. Although

the total amplitude is Poincaré invariant, the individual time-ordered amplitude is neither

invariant in general nor independent of δ. Thus, one may ask a question if the individual

time-ordered amplitude can be invariant at least under some subset of Poincaré generators.

The answer is yes and this issue is what we would like to address in this section. The

point is that the individual time-ordered amplitude would not change as far as the time

evolution parameter x+̂ doesn’t change so that the individual time-ordered amplitude would

be invariant under a certain transformation which doesn’t alter the time evolution parameter

x+̂. To the extent that the time evolution parameter x+̂ doesn’t change, all the momentum

components with +̂ such as q+̂ would not change because the same transformation rules apply
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to both the space-time coordinates and the four-momenta of the particles involved. Such

subset of the Poincaré group that doesn’t alter the time evolution parameter x+̂ is known

as the stability group. Since the transformations that belong to the stability group do not

modify the time evolution parameter x+̂, each time-ordered amplitude must be invariant

under these transformations. Individual time-ordered amplitudes represent the dynamics

given at each instant of time defined by the time evolution parameter x+̂ in the given form

of the relativistic quantum field theory. For this reason, it may be appropriate for the

transformations that leave each individual time-ordered amplitudes invariant to be called

as the kinematic transformations and the generators of those transformations belong to the

stability group deserve to be distinguished from the other Poincaré group generators. All

other Poincaré group generators besides the kinematic generators are dynamical and change

the contributions from each individual time-ordered amplitudes. In this section, we discuss

the kinematic transformations for an arbitrary interpolation angle δ. In particular, we take

the limits to δ = 0 and π/4 to discuss the fates of the kinematic transformations in the two

distinguished forms of the relativistic dynamics, IFD and LFD, respectively. Since we focus

mainly on the fundamental dynamic variables not involving any other degrees of freedom

(e.g. spins) in this work, our results of the kinematic transformations apply explicitly only

to the particle momenta.

The matrix of the homogeneous part of Poincaré group in the interpolating angle basis

may be written[17] as

Mµ̂ν̂ =




0 K3 D1̂ D2̂

−K3 0 K1̂ K2̂

−D1̂ −K1̂ 0 J3

−D2̂ −K2̂ −J3 0




(34)

where

K1̂ = −K1 sin δ − J2 cos δ ; K2̂ = J1 cos δ −K2 sin δ

D1̂ = −K1 cos δ + J2 sin δ ; D2̂ = −J1 sin δ −K2 cos δ . (35)

The kinematic generators Kĵ and the dynamic ones Dĵ, j = (1, 2), can also be written as

the combinations of E ĵ and F ĵ:

K1̂ = CF 1̂ − SE 1̂ ; K2̂ = CF 2̂ − SE 2̂

D1̂ = −SF 1̂ − CE 1̂ ; D2̂ = −SF 2̂ − CE 2̂ , (36)
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where

E 1̂ = J2 sin δ +K1 cos δ ; E 2̂ = K2 cos δ − J1 sin δ

F 1̂ = K1 sin δ − J2 cos δ ; F 2̂ = J1 cos δ +K2 sin δ . (37)

The interpolating operators E ĵ and F ĵ coincide with the usual Ej and F j of LFD in the

limit δ = π/4. As discussed in Ref.[17], the transverse boosts (K1, K2) are dynamic whereas

the transverse rotations (J1, J2) are kinematic in IFD (δ = 0), while the LF transverse

boosts (E1, E2) are kinematic whereas the LF transverse rotations (F 1, F 2) are dynamic

in LFD (δ = π
4
). One may note the swap of the roles between “boosts” and “rotations”

in the two forms of relativistic dynamics, IFD and LFD, and utilize it for some hadron

phenomenology[25].

We may check explicitly that the generators Kĵ given above satisfy the commutation

relation
[
Kĵ,P+̂

]
= 0 with the momentum operator P+̂ using Eq. (36) and the interpolating

Poincaré algebra presented in Ref.[17] :

[
Kĵ , P+̂

]
= C

[
F ĵ, P+̂

]
− S

[
E ĵ, P+̂

]

= C

(
−iP ĵ

S

)
− S

(
−iP ĵ

C

)
= 0. (38)

This means that each transformation of the form exp (−iωKĵ), (j = 1, 2), leaves the mo-

mentum operator P+̂ invariant. As a consequence if the momentum P +̂ is an eigenvalue of

the operator P+̂, P +̂ remains invariant under the cited transformations. Likewise, the plus

(+̂) component of any four vector is invariant under such transformations and the time x+̂

remains invariant as well. It verifies that the generators Kĵ are kinematic.

In a similar way, for the generators Dĵ, we may check explicitly that the commutators[
Dĵ,P+̂

]
are now nonvanishing:

[
Dĵ, P+̂

]
= −S

[
F ĵ, P+̂

]
− C

[
E ĵ, P+̂

]

= −S

(
−iP ĵ

S

)
− C

(
−iP ĵ

C

)
= iP ĵ . (39)

Since commutators above are not only nonvanishing but also proportional to P ĵ , each trans-

formation of the form exp (−iωDĵ), (j = 1, 2), develops transverse components of the

momentum and cannot leave the momentum P +̂ invariant. Thus, the generators Dĵ are

dynamic.
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Among the elements involved in the matrix given by Eq.(34), it is interesting to note that

the rotation around the longitudinal direction, i.e. J3, is unique because it doesn’t change

x+̂ and thus kinematic for any interpolation angle δ. However, the longitudinal boost K3

has a quite different characteristic compared to any other operators in Eq.(34). To see this,

let’s look at the commutator between P+̂ and K3 in the Poincaré algebra:

[
P+̂, K3

]
= iP−̂

= i
(
SP+̂ − CP−̂

)
, (40)

which leads to

[
P+, K3

]
= iP+ (41)

in the limit δ → π
4
. This shows that the longitudinal boost has a distinguished property

in the limit δ → π
4
, namely it becomes kinematic in this limit. Although the right hand

side of Eq.(41) doesn’t vanish, it yields the same P+ operator in the commutation relation.

This means that the eigenvalues of P+ operator, or the LF longitudinal momentum P+, are

just scaled by the factor eβ3 when it is boosted in the longitudinal direction by the rapidity

β3. By the same token, the LF energy P− is scaled by the factor e−β3 under the same

transformation due to the commutation relation in LFD,

[
P−, K3

]
= −iP− . (42)

It may be interesting to note that the algebra among P+,P− and K3 works just the sim-

ilar way as the algebra among the creation, annihilation and number operators in one-

dimensional simple harmonic oscillator. Due to the conservation of three momenta (P+, ~P⊥)

as well as the compensating scale factors of e−β3 and eβ3 between the LF energy (P−) and

the LF longitudinal momentum (P+), one can show that each individual LF time-ordered

amplitudes are invariant under the longitudinal boost K3. This may be also understood

from the intactness of the LF time x+ modulo the same scaling factor eβ3 for the LF lon-

gitudinal momentum under the K3 operation. With this reasoning, one may understand

that K3 becomes the kinematic generator in LFD although it is dynamical for any other

interpolation angle 0 ≤ δ < π/4. As the boost problem in IFD is one of the most difficult

problems to deal with in the relativistic many-body calculations, all of the boost operators

(K1, K2, K3) have been known as difficult operators in IFD. Since at least K3 can change its
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difficult characteristic to a good one, i.e. from dynamic to kinematic, and joins the stability

group in LFD, one may regard such dramatic character change of K3 in LFD as a kind of

“return of a prodigal son”. Of course, the community of LFD welcomes the addition of K3

in the stability group. For this reason, the number of kinematic generators in LFD is one

more than all other cases of interpolating angles in the range 0 ≤ δ < π
4
as shown in Table I

[17]. In terms of the time-ordered diagrams Σa
δ and Σb

δ that we discussed in the last section

(Section II), it means that Σa
δ and Σb

δ are not individually invariant under the longitudinal

boost K3 unless δ = π
4
. In terms of the vacuum property, it also means that the vacuum

in LFD is very different from the vacuum in IFD because the vacuum must be invariant

under different numbers of kinematic transformations. As summarized in Table I [17], the

number of kinematic generators is six in general for 0 ≤ δ < π
4
but it maximizes to seven at

δ = π
4
. One should note that the minimum three degrees of freedom are necessary to define

the hyper-surface of x+̂ in 3+1 dimension.

TABLE I: Kinematic and dynamic generators for different angles.

Angle Kinematic Dynamic

δ = 0 K1̂ = −J2, K2̂ = J1, J3, P1, P2, P3 D1̂ = −K1, D2̂ = −K2, K3, P0

0 < δ < π
4 K1̂, K2̂, J3, P 1̂, P 2̂, P−̂ D1̂, D2̂, K3, P+̂

δ = π
4 K1̂ = −E1, K2̂ = −E2, J3, K3, P1, P2, P+ D1̂ = −F 1, D2̂ = −F 2, P−

What Weinberg [24] showed in IMF was to take advantage of the dynamic property

of K3 (or the frame dependence of each individual time-ordered amplitudes) in the case

of δ = 0 and discard the time-ordered amplitudes connected to the current arising from

the vacuum in IFD, e.g. Σb
δ=0 = 0 in IMF for IFD. For δ = π

4
, i.e., in LFD, however,

K3 is kinematic and the corresponding frame dependence of each individual time-ordered

amplitudes cannot be applied. Instead, what we take advantage of in this work is that

the individual time-ordered interpolating scattering amplitudes are dependent on δ and the

time-ordered amplitudes connected to the current arising from the vacuum vanishes in the

limit δ = π
4
, e.g. Σb

δ=π

4

= 0 (and thus Σa
δ=π

4

= 1
s−m2 ) as we showed in Section II. Since

K3 is kinematic in LFD, each individual time-ordered amplitudes are invariant under the

longitudinal boost (or independent of the corresponding change of reference frames), e.g.

Σa
δ=π

4

= 1
s−m2 or Σb

δ=π

4

= 0 is independent of the total momentum Pz of the system. In
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the case of Σa
δ=π

4

= 1
s−m2 or Σb

δ=π

4

= 0, one may note that the individual time-ordered

amplitudes are indeed invariant under all Poincaré transformations because the first time-

ordered amplitude takes up the whole result of the Feynman amplitude. In the more general

case of LFD where a given physical process involves more than one non-vanishing time-

ordered amplitudes, the individual time-ordered amplitudes are not invariant under the

dynamic transformations D1, D2 and P− but invariant under the kinematic transformations

shown in Table I including K3 in LFD. For the interpolating scattering amplitudes of 0 ≤
δ < π

4
, the individual time-ordered amplitudes are not invariant under the four (instead

of three) dynamic transformations but invariant under the six (instead of seven) kinematic

transformations shown in Table I.

To discuss more details of the invariance of the individual time-ordered amplitudes un-

der the kinematic transformations, we now revisit the previous analysis[17] on the trans-

formations of the particle momentum components under the kinematic transformations,

Kĵ(j = 1, 2), and extend the analysis to include the effect of K3 transformation in order

to cover the case of time-ordered amplitudes in LFD. The transformations of the particle

momentum components under other kinematic transformations such as J3,P ĵ(j = 1, 2) and

P−̂ are rather trivial, in the sense that the particle momentum components P +̂ and P −̂ as

well as the magnitude |~P⊥| are invariant under these transformations, and we do not discuss

them here.

To analyze the particle momentum components under the Kĵ (j = 1, 2) and K3 transfor-

mations, we consider both the longitudinal transformation T3 = e−iβ3K3

and the transverse

transformation T12 = e−i(β1K1̂+β2K2̂). In particular, we follow the procedure set by Jacob

and Wick[26] in defining the helicities in IFD, namely T3 first and T12 later, as the spin in

the rest frame is initially aligned in the z-direction and the boost in the z-direction first

would not change the spin direction for the procedure of defining helicities. Although we do

not involve any spin degrees of freedom in this work, we adopt the same procedure to be

consistent when we extend this work later for the spinor case. As discussed in Ref.[25], this

procedure of applying T3 first and T12 later is common also in defining the LF helicities.

Having this is mind, we first apply T3 = e−iβ3K3

to each of the momentum operator

17



components (µ̂ = +̂, −̂, 1̂, 2̂):

T †
3Pµ̂T3 = eiβ3K3Pµ̂e

−iβ3K3

= Pµ̂ + i
[
β3K

3,Pµ̂

]
+

i2

2!

[
β3K

3,
[
β3K

3,Pµ̂

]]
+ · · · (43)

This yields

T †
3P+̂T3 = (cosh β3 − S sinh β3)P+̂ + C sinh β3P−̂

T †
3P−̂T3 = (cosh β3 + S sinh β3)P−̂ + C sinh β3P+̂

T †
3P ĵT3 = P ĵ , (ĵ = 1̂, 2̂) . (44)

If we apply T3 to the particle momentum state |P >, then the particle momentum state is

changed to the state |P ′ >, where |P > and |P ′ > are the eigenstates of the operator Pµ̂

with the eigenvalues of Pµ̂ and P ′
µ̂, respectively. From this, one can find that the operation

of T †
3Pµ̂T3 and Pµ̂ to the state |P > yields the eigenvalues P ′

µ̂ and Pµ̂, respectively. Thus,

the results given in Eq.(44) can be translated into

P ′
+̂

= (cosh β3 − S sinh β3)P+̂ + C sinh β3P−̂

P ′
−̂ = (cosh β3 + S sinh β3)P−̂ + C sinh β3P+̂

P ′̂j = P ĵ , (ĵ = 1̂, 2̂) . (45)

This result satisfies the energy-momentum dispersion relation as it should:

P ′
µ̂g

µ̂ν̂P ′
ν̂ = CP ′2

+̂ + 2SP ′
+̂P

′
−̂ − CP ′

−̂
2 − ~P′2

⊥̂

= CP 2
+̂
+ 2SP+̂P−̂ − CP 2

−̂ − ~P2
⊥̂

= M2 . (46)

Taking the limit δ → 0 in Eq.(45), we get

P ′0 = cosh β3P
0 + sinh β3P

3

P ′3 = cosh β3P
3 + sinh β3P

0

P ′j = P j, (j = 1, 2) , (47)

which are the usual Lorentz transformations along the z-direction in IFD. Taking the limit

δ → π
4
, on the other hand, we get

P ′− = e−β3P−

P ′+ = eβ3P+

P ′j = P j, (j = 1, 2) , (48)
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which are the expected results in LFD since P+ and P− are decoupled with the corresponding

scaling factors. This result confirms that T3 is kinematical in LFD.

After the T3 (longitudinal) transformation, we now take the T12 (transverse) transforma-

tion following the Jacob and Wick’s procedure as mentioned above. In Ref.[17], the effect

of T12 transformation on the momentum operator Pµ̂ was obtained as follows:

T †
12P+̂T12 = P+̂ + Sβ2

⊥
(1− cosα)

α2
P−̂ − S

sinα

α

(
β1P 1̂ + β2P 2̂

)

T †
12P−̂T12 = P−̂ cosα + C

sinα

α

(
β1P 1̂ + β2P 2̂

)

T †
12P ĵT12 = P ĵ − βj

sinα

α
P−̂ + Cβj

(cosα− 1)

α2

(
β1P 1̂ + β2P 2̂

)
, (j = 1, 2) (49)

where we have defined α =
√

C(β2
1 + β2

2) =

√
C~β2

⊥. It is interesting to note that this

result indicates a dramatic difference in the outcome of the particle momentum after the

application of the kinematic transformation T12 = e−i(β1K1̂+β2K2̂) to the particle in the rest

frame between IFD (δ = 0) and LFD (δ = π/4). The particle of mass M in the rest

frame (i.e. P 0 = M, ~P = 0) has the interpolating momentum components given by P+̂ =

M cos δ, P−̂ = M sin δ, ~P⊥̂ = 0. If we write the interpolating momentum components with

the prime notation after the T12 transformation, we get

P ′
+̂

= M

[
cos δ + S~β2

⊥
(1− cosα)

α2
sin δ

]

P ′
−̂ = M sin δ cosα

P ′̂j = −Mβj sin δ
sinα

α
(ĵ = 1̂, 2̂) , (50)

which shows that the particle can gain some longitudinal momentum although the trans-

formation T12 is transversal and the amount of the gained longitudinal momentum depends

on the interpolating angle δ. In IFD (δ = 0), the particle in the rest frame remains in the

rest frame since T12 is just a transverse rotation: i.e. P ′0 = M, ~P ′ = 0. However, in LFD

(δ = π
4
), the result given by Eq.(49) can be written as

P ′− =
M√
2

(
1 +

~β2
⊥
2

)

P ′+ =
M√
2

P ′j = −M√
2
βj , (j = 1, 2). (51)
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From this, we find the energy and longitudinal momentum components are related to the

transverse momentum ~P′⊥ = −M~β⊥/
√
2, i.e.

P ′0 = M +
~P′2

⊥
2M

P ′3 = −
~P′2

⊥
2M

(52)

which shows that the particle gains the longitudinal momentum − ~P′
2

⊥

2M
while the particle is

transversely boosted by T12 = ei(β1E1+β2E2). One should note that the LF transverse boosts

E1 = (J2 +K1)/
√
2 and E2 = (K2 − J1)/

√
2 involve not only K1, K2 (ordinary transverse

boosts) but also J1, J2 (ordinary transverse rotation) so that the particle’s moving direction

cannot be kept just in the transverse direction while the particle is transversely boosted.

This yields the momentum in the longitudinal direction as well as in the transverse direction.

It is also interesting to note that the relativistic energy-momentum dispersion relation works

although the particle energy takes a non-relativistic form:

(
P 0
)2 − ~P2 =

(
M +

~P2
⊥

2M

)2

− ~P2
⊥ −

(
−

~P2
⊥

2M

)2

= M2 . (53)

This may be regarded as another distinguishing feature of the LFD.

We now apply the T12 transformation subsequently after we do the T3 transformation

in order to combine the longitudinal boost and the transverse kinematic transformations,

i.e. TK = T3T12 = e−iβ3K3

e−i(β1K1̂+β2K2̂). This allows not only the transformation of the

unprimed Pµ̂ to primed P ′
µ̂ but also the subsequent transformation from the primed four-

momentum P ′
µ̂ to the double-primed four-momentum P ′′

µ̂ of the particle that we consider.

Under the TK transformation, we get

P ′′
µ̂ = T †

KPµ̂TK

= T †
12

(
T †
3Pµ̂T3

)
T12

= T †
12P ′

µ̂T12 . (54)
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From this, we get the following general transformation relations:

P ′′
+̂

= (cosh β3 − S cosα sinh β3)P+̂

+
[(
1− S

2 cosα
)
sinh β3 + S (1− cosα) cosh β3

] ~β2
⊥
α2

P−̂

− S
sinα

α

(
β1P

1̂ + β2P
2̂
)

P ′′
−̂ = C cosα sinh β3P+̂ + cosα (cosh β3 + S sinh β3)P−̂

+ C
sinα

α

(
β1P

1̂ + β2P
2̂
)

P ′′̂j = P ĵ − Cβj
sinα

α
sinh β3P+̂ − βj

sinα

α
(cosh β3 + S sinh β3)P−̂

+ Cβj
(cosα− 1)

α2

(
β1P

1̂ + β2P
2̂
)
, (55)

which of course satisfy the dispersion relation as expected:

M2 = CP ′′
+̂

2
+ 2SP ′′

+̂
P ′′
−̂ − CP ′′

−̂
2 − ~P′′2

⊥̂

= CP 2
+̂
+ 2SP+̂P−̂ − CP 2

−̂ − ~P2
⊥̂ . (56)

In the IFD limit, δ → 0, we note that α2 → (β2
1 + β2

2) =
~β2
⊥ and get

P ′′0 = cosh β3P
0 + sinh β3P

3

P ′′3 = cos β⊥ sinh β3P
0 + cos β⊥ cosh β3P

3 +
sin β⊥

β⊥

(
β1P

1 + β2P
2
)

P ′′j = P j − βj
sin β⊥

β⊥

(
sinh β3P

0 + cosh β3P
3
)

+ βj
(cos β⊥ − 1)

β2
⊥

(
β1P

1 + β2P
2
)
, (57)

where β⊥ =

√
~β2
⊥. Here, the transverse vector ~β⊥ = (β1, β2) can be represented by ~β⊥ =

θ(ẑ × n̂⊥) defining the angle θ and the rotation axis as the unit transverse vector n̂⊥ =

(n1, n2) because the kinematic transformations K1̂ and K2̂ are nothing but the ordinary

transverse rotations −J2 and J1, respectively, in IFD. Since ẑ × n̂⊥ = −n2x̂ + n1ŷ =

(−n2, n1), one may identify β1 = −θn2 and β2 = θn1 to rewrite Eq.(57) as

P ′′0 = cosh β3P
0 + sinh β3P

3

P ′′3 = cos θ
(
sinh β3P

0 + cosh β3P
3
)
+ sin θ (ẑ× n̂⊥) · ~P⊥

~P′′⊥ = ~P⊥ − (ẑ× n̂⊥) sin θ
(
sinh β3P

0 + cosh β3P
3
)

+ (ẑ× n̂⊥)(cos θ − 1)(ẑ× n̂⊥) · ~P⊥ . (58)

21



Taking n̂⊥ = ŷ (i.e. ẑ× n̂⊥ = −x̂), we have

P ′′0 = P ′0 = cosh β3P
0 + sinh β3P

3

P ′′1 = − sin θP ′3 + cos θP ′1 = − sin θ
(
sinh β3P

0 + cosh β3P
3
)
+ cos θP 1

P ′′2 = P ′2 = P 2

P ′′3 = cos θP ′3 + sin θP ′1 = cos θ
(
sinh β3P

0 + cosh β3P
3
)
+ sin θP 1 , (59)

where the boost in ẑ direction and the subsequent rotation around ŷ axis are manifest.

Next, we consider the other extreme that corresponds to the LFD, δ = π
4
. As δ →

π
4
, α → 0 and it leads to the following limits for the expressions that appear in the different

components of momentum given by Eq.(55):

(
1− S

2 cosα
) ~β2

⊥
α2

→
~β2
⊥
2

(1− cosα)

α2
→ 1

2
sinα

α
→ 1 . (60)

Using the usual LFD notations, we thus get

P ′′− = e−β3P− +
eβ3~β2

⊥
2

P+ − ~β⊥ · ~P⊥

P ′′+ = eβ3P+

~P′′⊥ = ~P⊥ − eβ3~β⊥P
+ , (61)

which satisfies the LF dispersion relation as expected

2P ′′+P ′′− − ~P′′2
⊥ = 2P+P− − ~P2

⊥ = M2 . (62)

In the case that the particle is at rest in the unprimed frame, i.e.

P+ = P− =
M√
2

~P⊥ = 0 , (63)

we obtain

P ′′− =
M√
2

(
e−β3 + eβ3

~β2
⊥
2

)

P ′′+ =
M√
2
eβ3

~P′′
⊥ = −M√

2
~β⊥e

β3 , (64)
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which can be translated into

P ′′0 = M cosh β3 +
M

4
~β2
⊥e

β3

P ′′3 = M sinh β3 −
M

4
~β2
⊥e

β3

~P′′⊥ = −M√
2
~β⊥e

β3 . (65)

From this, we may extend the relation between the energy and the transverse momentum

(as well as between the longitudinal momentum and the transverse momentum) given by

Eq.(52) as

P ′′0 = M cosh β3 +
~P′′2

⊥
2M

e−β3

P ′′3 = M sinh β3 −
~P′′2

⊥
2M

e−β3 . (66)

For β3 = 0, this equation is reduced to Eq.(52). As we explained about Eq.(52), the gained

longitudinal momentum is correlated with the transverse momentum due to the kinematic

transformation T12 = ei(β1E1+β2E2) in such a way that a paraboloid shape of surface (note

P ′′3 = − ~P′′
2

⊥

2M
for β3 = 0) can be drawn for the gained momentum components in the

momentum space as shown in Ref.[17]. In the case β3 6= 0, we find that the similar shapes

of paraboloids can be drawn. However, the corresponding paraboloids are shifted in the

longitudinal direction as β3 gets more positive values and the curvatures of the corresponding

paraboloids get modified as shown in Fig.3. This plot shows three surfaces corresponding to

three different values of β3 = 0, 1, 2, with the momenta scaled by the mass of the particle,

i.e. ~p = ~P ′′/M , where ~p = p1x̂ + p2ŷ + p3ẑ, in the range −4 < p1 < 4, −4 < p2 < 4 and

−12 < p3 < 4. We note that the p3 value of the lowest surface for p1 = p2 = 0 corresponds

to p3 = 0 due to the relation between p3 and ~p2
⊥ = (p1)2 + (p2)2 for β3 = 0 given by

Eq.(66). For the positive values of β3 as shown in Fig.3, the paraboloid of β3 = 0 is shifted

to upwards in pz and gets flattened due to the factors given by sinhβ3 and e−β3 in Eq.(66),

respectively. The top point of each paraboloid corresponds to the momentum gained by the

T3 = e−iβ3K3

transformation in IFD (see Eq.(47)). Although the particle at rest stays at rest

in IFD when only the kinematic transformation T12 (i.e. the ordinary transverse rotation in

IFD) is applied, the longitudinal boost T3 is dynamical in IFD so that it can generate the

longitudinal momentum of the particle. However, in LFD, both T12 and T3 are kinematic
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transformations and the entire momentum region of ~p can be covered by these kinematic

transformations.

!

FIG. 3: General kinematic transformation on a fixed interpolating front.
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IV. APPLICATION OF TRANSFORMATIONS ON INTERPOLATING SCAT-

TERING AMPLITUDES

In the previous sections, we discussed that the scattering amplitude in Fig.1 has two

non-vanishing time-ordered contributions in an arbitrary interpolating angle for the range

0 ≤ δ < π
4
including IFD (δ = 0) while in LFD (δ = π

4
) only the contribution of the

first diagram Fig.2a survives. We now apply the transformations of the particle momenta

that we obtained in the last section, Section III, to the scattering amplitudes and discuss a

quantitative measure on the invariance of the individual time-ordered amplitudes under the

kinematic transformations.

In order to see this in an arbitrary interpolating angle, let us first consider the expression

for D+ found in Eq. (26) under the transverse kinematic boost T12, i.e.

D′
+ = P ′

+̂
+

Sq′−̂ − ω′
q

C
, (67)

where the prime indicates the transformed frame variables via P ′
+̂
= T †

12P+̂T12, etc. This

quantity D′
+ expresses the difference between the interpolating angle energies of P ′

+̂
and q′

+̂

for the first diagram Fig.2a. Under T12 (see Eq. (49)), we get

D′
+ = P+̂ + S

(β2
1̂
+ β2

2̂
)

α2
(1− cosα)P−̂ − S

sinα

α
(β1̂P

1̂ + β2̂P
2̂)

− S

C

[
q−̂ cosα + C

sinα

α
(β1̂P

1̂ + β2̂P
2̂)

]
−

ω′
q

C

= P+̂ +
S

C
q−̂ −

ω′
q

C
, (68)

where we used α =
√

C(β2
1̂
+ β2

2̂
) and the momentum conservation P−̂ = q−̂. This means

that if ω′
q = ωq as defined by Eq. (22), then D′

+ = D+ and the first term by itself is

invariant under T12. We may use the solution in terms of q+̂ of the quadratric equation for

the dispersion relation and show ω′
q = ωq: i.e.

q+̂ =
ωq − Sq−̂

C
⇒ ωq = Cq+̂ + Sq−̂ (69)

so that

ω′
q = Cq′

+̂
+ Sq′−̂

= Cq+̂ + Sq−̂ = ωq , (70)
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according to Eq. (49). It is now manifest that D+ by itself is invariant under T12. Similar

manifestation can be obtained for D− for the second diagram Fig.2b.

Now, we apply the longitudinal boost T3 to the interpolating time-ordered amplitudes.

As we have already discussed in Section III, the longitudinal boost K3 is dynamical for any

δ in the range 0 ≤ δ < π
4
and becomes kinematical only at δ = π

4
. To exhibit this feature

quantitatively, we show Fig. 4 which plots Σa
δ and Σb

δ as functions of the initial particle total

momentum (~p1̂ + ~p2̂) · ẑ = Pz while (~p1̂ + ~p2̂) · x̂ = 0 and (~p1̂ + ~p2̂) · ŷ = 0 for convenience,

as well as the interpolation angle δ. The ranges of δ and Pz are taken as 0 ≤ δ < π
4
and

−4 ≤ Pz ≤ 4 in some unit of energy, e.g. GeV, respectively. For illustrative purpose,

we took s = 2 and m = 1 using the same energy unit. As clearly shown in Fig. 4, the

contributions from Σa
δ and Σb

δ are such that the sum of them yields a constant, independent

of Pz and δ. For δ = 0, Σa
δ and Σb

δ has the maximum and the minimum, respectively, at

Pz = 0. For δ = π
4
, Σa

δ is the whole answer and Σb
δ = 0. For positive values of momentum,

Pz > 0, the amplitudes Σa
δ and Σb

δ show a smooth behaviour (see also Appendix), while

for negative values of Pz we observe the presence of a J-shaped curve in the peak of Σa
δ

matched by a similar J-shaped curve in the valley of Σb
δ. We find that this J-shaped curve

of maximum/minimum is given by the function Pz = −
√

s(1−C)
2C

. This J-shaped curve is

plotted in Fig. 5. On this J-shaped curve, a stable maximum and minimum of Σa
δ and Σb

δ,

respectively, is present for the negative values of momentum Pz: i.e.

Σa
δ =

1

2m(
√
s−m)

,

Σb
δ = − 1

2m(
√
s+m)

,

Σa
δ + Σb

δ =
1

s−m2
. (71)

The J-shaped curve doesnt exist for the positive values of Pz because both amplitudes of Σa
δ

and Σb
δ are monotonically dependent on the two independent variables Pz and δ for Pz > 0.

One interesting point to observe in this J-shaped curve for negative values of momentum

Pz is that it is stable in the peak as well as in the valley as it is independent of the mass and

does not vanish as the momentum goes to the negative infinity. Thus, if the limit δ → π
4
is

taken in the exact correlation with Pz given by the J-shaped curve, i.e. Pz = −
√

s(1−C)
2C

C→0−→
−∞ , then the connected contribution to the current arising from the vacuum Σb

δ→π

4

does not

vanish but remains as a nonzero constant, i.e. − 1
2m(

√
s+m)

= − 1
2(
√
2+1)

≈ −0.207, although
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FIG. 4: Interpolating Amplitudes

this nonzero constant (i.e. the minimum of Σb
δ→π

4

) is cancelled by the same magnitude of

the constant (i.e. the maximum of Σa
δ→π

4

) given by 1
2m(

√
s−m)

= 1
2(
√
2−1)

≈ 1.207 to yield the

total amplitude 1
s−m2 = 1.

This may clarify the prevailing notion of the equivalence between IFD and LFD in the

IMF since it works for the limit of Pz → ∞ but requires a great caution in the limit of

Pz → −∞. Although the IFD in IMF is entirely symmetric between Pz = ∞ and Pz = −∞,

there is treacherous point Pz = −∞ in LFD. As far as the limit of Pz = −∞ is taken off

27



FIG. 5: J-shaped curve of maximum/minimum for Σa
δ and Σb

δ

from the J-shaped curve, i.e., without the specific correlation Pz = −
√

s(1−C)
2C

C→0−→ −∞, then

our result of Σb
δ=π

4

= 0 is valid. However, if the limit of Pz = −∞ is taken exactly with this

particular correlation, then the result Σb
δ=π

4

= 0 is not correct but should be modified to be

the nonzero minimum value of Σb
δ=π

4

= − 1
2m(

√
s+m)

6= 0. In this sense, the J-shaped curve

which we find in this work is singular. Nevertheless, even in this case, the sum of the two

amplitudes Σa
δ=π

4

+ Σb
δ=π

4

remains invariant as it should be.

V. CONCLUSIONS

In the present work, we discussed the fundamental aspects of the time-ordered scattering

amplitudes in relativistic Hamiltonian dynamics. Using the interpolating angle between IFD

and LFD, we presented a simple but clear example of interpolating scattering amplitudes

and demonstrated a physical meaning of kinematical transformations introduced often for-

mally in the stability group of Poincaré transformations. We confirmed the well-known IMF

result[24] for the IFD and extended it for any arbitrary interpolating angle 0 ≤ δ < π
4
. We

also showed that the disappearance of the connected contributions to the current from the
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vacuum in LFD is independent of the reference frame and should be distinguished from the

usual IMF result. We demonstrated that the longitudinal boost K3 joins the stability group

only in the LFD. We did this not only using explicit expressions of kinematic transformation

effects on the fundamental dynamical variables of physical momenta but also discussing the

interpolating time-ordered scattering amplitudes. The addition of K3 in the stability group

is a great advantage of LFD in hadron phenomenology[25].

Computing the individual time-ordered amplitudes for the whole range of total momen-

tum Pz and the interpolating angle δ, we showed not only the invariance of the sum of

time-ordered amplitudes but also the behavior of each individual time-ordered amplitudes

(see Fig. 4). Our work demonstrates a rather clear distinction between the well-known IMF

result in IFD and the LFD result on the disappearance of the connected contribution to the

current from the vacuum. Our result exhibits the J-shaped curve given by Pz = −
√

s(1−C)
2C

which reminds a treacherous zero-mode issue in LFD. The J-shaped curve provides a corre-

lation between the total momentum Pz and the interpolation angle δ. It traces the maximum

of the time-ordered amplitude Σa
0≤δ<π

4

as well as the minimum of the time-ordered amplitude

Σb
0≤δ<π

4

. Thus, if one takes the interpolating angle to the limit of π
4
in an exact correlation

with the limit Pz → −∞ following the J-shaped curve, then one should be careful not to

miss the contribution from the minimum value of Σb
0≤δ<π

4

which must be cancelled by the

maximum value of Σa
0≤δ<π

4

. Although our work is limited to a simple example without spins

or any other degrees of freedom except the particle momenta, the results seem to offer in-

teresting and significant aspects of the relativistic Hamiltonian dynamics which interpolates

between IFD and LFD.
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Appendix A: Interpolating Scattering Amplitudes in Infinite Momentum Frame

As we discussed in Section II, we can rewrite the interpolating time-ordered amplitudes

in the same form as in the IFD by changing the superscript 0 (i.e. the energy) to superscript

+̂ as well as multiplying an overall factor C. Then it follows that interpolating amplitudes

become IFD amplitudes as C → 1. In the LFD case as C → 0, the fraction 1
P+−q+

→ ∞
due to the conservation of P+ = q+ but the multiplication of zero and infinity makes the

finite 1
s−m2 just from the first diagram alone, while the second diagram vanishes since the

denominator P+ + q+ is nonzero. The disappearance of the connected contributions to the

current arising from the vacuum at C = 0 (LFD), i.e. Σb
δ=π/4 = 0, should be distinguished

from the similar disappearance of Z-graph in the IMF at C = 1 (IFD). In this Appendix,

we apply the longitudinal boost T3 (see Eq.(44)) and take a specific limit to an infinite

momentum frame, viz. (Pz, qz) ≡ (P 3, q3) → ∞, in order to discuss more details of the

disappearance of the connected contributions for the entire range of the interpolation angle

0 ≤ δ ≤ π
4
.

First of all, let us consider the case of the IFD (see Eq.(17)), where the longitudinal

component of interest is P−̂ = Pz ≡ P 3, etc. The time-ordered diagram of Fig.1 is dependent

on the reference frame:

Σa
IFD =

1

2q0

(
1

P 0 − q0

)
. (A1)

From the dispersion relation q2 = m2, the expansion of q0 for the IMF is given by

q0 =
√
~q2 +m2 =

√
q2z + ~q2

⊥ +m2,

= qz

{
1 +

~q2
⊥ +m2

2q2z
+O

(
1

q4z

)}
. (A2)

Similarly, from the dispersion relation P 2 = s, the expansion of P 0 for the IMF is given by

P 0 =

√
~P2 + s =

√
P 2
z + ~P2

⊥ + s,

= Pz

{
1 +

~P2
⊥ + s

2P 2
z

+O
(

1

P 4
z

)}
. (A3)

Substituting Eq. (A2) and Eq. (A3) into Eq. (A1), we get

Σa
IFD =

1

2qz

{
1 +

~q2
⊥
+m2

2q2
z

+O
(

1
q4
z

)}





1

Pz − qz +
~P2

⊥
+s

2Pz

− ~q2
⊥
+m2

2qz
+O

(
1
q3
z

, 1
P 3
z

)



 . (A4)
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Due to the three-momentum conservation, Pz = qz and ~P⊥ = ~q⊥, the result (A4) in the

IMF limit yields

Σa
IFD =

1

2q0

(
1

P 0 − q0

)
Pz=qz→∞−−−−−−→ 1

s−m2
. (A5)

Likewise, for the diagram of Fig.2b, we get

Σb
IFD =

1

2q0

(
1

P 0 + q0

)
Pz=qz→∞−−−−−−→ 0. (A6)

This reveals that the results (A5) and (A6) are frame-dependent.

Next, we consider what happens in the LFD case, where we have P− = P+ and q− = q+.

Independent of reference frames, i.e. regardless of the Pz value, the result is given by

ΣLFD ≡ Σa
LFD =

1

2q+


 1

P− − ~q2
⊥
+m2

2q+




=
1

2q+P− − (~q2
⊥ +m2)

. (A7)

Since q+ = P+, ~q⊥ = ~P⊥, we get

ΣLFD ≡ Σa
LFD =

1

2P+P− − ~P2
⊥ −m2

=
1

s−m2
. (A8)

This result is frame independent and thus valid even in the IMF limit, or Pz → ∞.

Finally, let us consider the case of an arbitrary interpolating angle in the range of 0 <

δ < π
4
. The contribution of diagram of Fig.2a is given by

Σa
δ =

1

2ωq

(
1

P+̂ +
Sq

−̂
−ωq

C

)
, (A9)

where ωq =
√
q2−̂ + C (~q2

⊥ +m2). Since P−̂ = q−̂ and ~P⊥̂ = ~q⊥̂, we can rewrite these

expressions as

Σa
δ =

1

2ωq

(
C

CP+̂ + SP−̂ − ωq

)
; ωq =

√
P 2
−̂ + C

(
~P2

⊥ +m2
)
. (A10)

Using Eq.(13), we can further reduce the time-ordered amplitude of Fig.2a as

Σa
δ =

C

2ωqP +̂ − 2ω2
q

. (A11)
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Since P +̂ = P 0 cos δ + P 3 sin δ from Eq. (7), we can express P 0 in terms of P 3 using the

dispersion relation P 2 = s as

P 0 = P 3 +
~P2

⊥ + s

2P 3
+O

(
1

(P 3)3

)

= Pz +
~P2

⊥ + s

2Pz
+O

(
1

P 3
z

)
. (A12)

Thus, we get

P +̂ = Pz(sin δ + cos δ) +
~P2

⊥ + s

2Pz

cos δ +O
(

1

P 3
z

)
, (A13)

and similarly

P−̂ = Pz(sin δ + cos δ) +
~P2

⊥ + s

2Pz

sin δ +O
(

1

P 3
z

)
. (A14)

The result given by Eq. (A14) is used to evaluate ω2
q :

ω2
q = P 2

z (sin δ+cos δ)2+
(
~P2

⊥ + s
)
sin δ(sin δ+cos δ)+C

(
~P2

⊥ +m2
)
+O

(
1

P 2
z

)
, (A15)

which leads to

ωq = Pz(sin δ+ cos δ) +

(
~P2

⊥ + s
)

2Pz
sin δ+

(
~P2

⊥ +m2
)

2Pz
(cos δ− sin δ) +O

(
1

P 2
z

)
, (A16)

where we used the identity

C ≡ cos 2δ = cos2 δ − sin2 δ = (cos δ + sin δ)(cos δ − sin δ) .

Putting all the ingredients to calculate the denominator, we obtain

2ωqP
+̂ − 2ω2

q = 2P 2
z (sin δ + cos δ)2 +

(
~P2

⊥ + s
)
(sin δ + cos δ)2 + C

(
~P2

⊥ +m2
)

− 2P 2
z (sin δ + cos δ)2 − 2

(
~P2

⊥ + s
)
(sin2 δ + sin δ cos δ)− 2C

(
~P2

⊥ +m2
)

+ O
(

1

P 2
z

)

= C(s−m2) +O
(

1

P 2
z

)
. (A17)

This leads to

Σa
δ =

C

2ωqP +̂ − 2ω2
q

Pz→∞−−−−→ 1

s−m2
. (A18)
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For the diagram of Fig.2b, since

2ωqP
+̂ + 2ω2

q = 4P 2
z (sin δ + cos δ)2 +

(
~P2

⊥ + s
)
(3 sin2 δ + cos2 δ2 + 4 sin δ cos δ)

+ 3C(~P2
⊥ +m2) +O

(
1

P 2
z

)
, (A19)

we get

Σb
δ =

C

2ωqP +̂ + 2ω2
q

Pz→∞−−−−→ 0. (A20)
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