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Abstract

General Relativity (GR), with or without matter fields, admits a natural extension

to a scale invariant theory that requires a dilaton. Here we show that the recently for-

mulated massive GR, minimally coupled to matter, possesses a new global symmetry

related to scaling of the reference coordinates w.r.t. the physical ones. The field en-

forcing this symmetry, dubbed here quasi-dilaton, coincides with an ordinary dilaton

if only pure gravity is considered, but differs from it when the matter Lagrangian is

present. We study: (1) Theoretical consistency of massive GR with the quasi-dilaton;

(2) Consistency with observations for spherically symmetric sources on (nearly) flat

backgrounds; (3) Cosmological implications of this theory. We find that: (I) The

theory with the quasi-dilaton is as consistent as massive GR is. (II) The Vainshtein

mechanism is generically retained, owing to the fact that in the decoupling limit there

is an enhanced symmetry, which turns the quasi-dilaton into a second galileon, con-

sistently coupled to a tensor field. (III) Unlike in massive GR, there exist flat FRW

solutions. In particular, we find self-accelerated solutions and discuss their quadratic

perturbations. These solutions are testable by virtue of the different effective Newton’s

constants that govern the Hubble expansion and structure growth.



1 Introduction and summary

An extension of General Relativity (GR) by a mass term, and more general polynomial

terms, is motivated by the cosmological constant, and dark energy problems. Such an

extension was thought to be impossible due to the loss of the hamiltonian constraint,

leading to the existence of a ghost-like degree of freedom, in addition to the conventional

5 helicity states of a massive graviton [1]; this 6th degree of freedom is referred to as the

Boulware-Deser (BD) ghost.

While the BD work established the loss of the hamiltonian constraint for a broad class

of theories, later it was shown in Ref. [2] that in all massive gravity theories the lapse

would necessarily enter nonlinearly at the quartic order in fields, suggesting inevitability

of the loss of the hamiltonian constraint, starting at the quartic order.

A loophole in these arguments was found in Ref. [3], by pointing out that in a special

class of theories the hamiltonian constraint may still be present even if the lapse enters

the hamiltonian nonlinearly. Moreover, Ref. [3] gave an order-by-order Lagrangian free of

the BD ghost in a particular limit, which prior to that was also thought to be impossible

[2].

Last but not least, in Ref. [4] the order-by-order Lagrangian of [3] was resummed into a

diffeomorphism invariant nonlinear theory, which was proposed as a ghost-free candidate

for massive GR. Moreover, it was shown in [4] that the theory, in the unitary gauge,

does exhibit the hamiltonian constraint in the quartic order, even though the lapse enters

nonlinearly beginning from that order.

The absence of the BD problem in the unitary gauge to all orders was established in

Refs. [5, 6], providing the proof of ghost-freedom in the full theory. It looks like this

can also be generalized to a full covariant hamiltonian beyond unitary gauge in which the

Stückelberg fields are retained [7], [8].

In the Lagrangian formalism on the other hand, the absence of the BD ghost is related

to a very special structure of the Stückelberg sector [4, 9]. Recently, Mirbabayi [10] has

uncovered a number of remarkable features of this sector: (1) He found that there is an

enhanced symmetry for quadratic fluctuations on an arbitrary background, but in the

leading order in the strength of the background. (2) He showed the absence of the BD

ghost in small fluctuations on any background. (3) Last, but not least, Mirbabayi showed

that the absence of the BD ghost in the decoupling limit is not only necessary, but is also

sufficient for its absence in the full theory away from the decoupling limit.

Since its formulation, and starting with Refs. [11] - [19], massive GR has been used

to study cosmology, black holes, and other exact or approximate solutions (see Ref. [20]

for a review of theoretical aspects of massive gravity and Ref. [21] for a review on phe-

nomenology of general massive gravity theories). One interesting feature of cosmology in
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massive GR is the absence of spatially flat and closed FRW solutions, while the obtained

inhomogeneous solutions may still well approximate the observed world [17]. There are

also self-accelerated solutions for which the metric can be brought to the FRW form at

an expense of having inhomogeneities in the Stückelberg fields [17, 22, 23]. Very interest-

ingly however, a solution with FRW symmetry does exist for open universe [24, 25] (for

subtleties on perturbations about these solutions, see [26, 27]).

Massive GR [4] has also been generalized to theories involving more fields. An arguably

simplest generalization is to introduce a scalar field the value of which sets the graviton

mass [17]. One may go further and introduce an additional dynamical tensor field to form

bi-gravity a la Ref. [28], but now using the ghost-free theory of Ref. [4] as a basis of the

construction, as was done in Ref. [29]. Such a bi-gravity, unlike the earlier versions [28],

was shown to be free of the BD ghost [29]; its various classical solutions have been studied

in [30, 31]. Furthermore, the tri-gravity generalization was also considered [32].

Most interestingly, Hinterbichler and R. Rosen (HR) [33], have recently shown that

there is a certain overarching order in the tensorial extensions: in D space-time dimensions

(D ≥ 3) there are at most D gravitons (one of them being massless) that can form

consistent interacting vertices of the tensor fields. HR proved this by reformulating the

theory in a vielbein formalism, where they showed that the hamiltonian construction gets

significantly simplified (see also references on earlier works using the first order formalism

in Ref. [33]; see Ref. [34] for further development of the HR construction.). As a bonus,

by considering compactifications of the Hinterbichler-Rosen module in various dimensions

one should be able to obtain consistent interacting theories of a finite number of tensors,

vectors, and scalars1.

In the present work, we would like to discuss a particular extension of massive GR by

an additional scalar field. While certain scalar extensions have already been discussed by

some of us in [17], here we introduce a special scalar σ that gives rise to a certain new

global symmetry of the Lagrangian. The symmetry transformation involves the scalar

itself, and the Stückelberg fields φa, a = 0, 1, 2, 3, that are necessary if one wishes to work

with a diffeomorphism-invariant action for massive GR. These four fields are scalars w.r.t.

diffeomorphisms, but do transform under the Poincaré group of the internal space of φa’s,

as emphasized by Siegel in [35]. The new global symmetry that we use as a building

principle for the action involving the scalar σ is realized as follows:

σ → σ − αMPl , φa → eαφa , (1)

1Owing to the fact that graviton mass scale and the compactification scale need not be related to each
other, the latter can be taken to be much smaller than 1/m, in which case all Kaluza-Klein modes could
be decoupled.

2



where α is an arbitrary symmetry transformation parameter. The rest of the fields in the

Einstein frame2, and the physical coordinates xµ, do not transform. This symmetry fixes

uniquely, modulo some irrelevant derivative terms, an extension of massive GR by the σ

field; in particular, one consequence of (1) is minimal coupling of matter to gravity in

the Einstein frame (unlike Brans-Dicke theories for instance, which have matter coupled

minimally to gravity in the Jordan frame).

To motivate the symmetry (1), we recall that massive gravity is built upon a reference

Minkowski space with the metric

grefµν =
∂φa

∂xµ
∂φb

∂xν
ηab , (2)

where ηab = diag(−1, 1, 1, 1) is the flat metric in the internal space of φa’s. The fields φa

can be regarded as arbitrary non-inertial coordinates of the reference Minkowski space3;

the transformation of φa’s in (1) is then just a rescaling of the reference space coordinates.

Thus, σ is a field that enforces invariance when the reference space coordinates get rescaled

w.r.t. the physical space coordinates, while all the other fields of the theory remain intact4.

Then, the following natural question arises: what is the relation, if any, of the σ field

to an ordinary dilaton?

To answer this question, we temporarily transform our action into the Jordan frame

in Sec. 2. Then, we find that σ indeed enters as an ordinary dilaton would in the purely

gravitational action. Hence, the obtained action is also invariant w.r.t. conventional

dilatations. In fact, the two global symmetries – dilatations and new global symmetry

(1) – are not independent, as far as the pure gravity action is concerned: the latter is a

linear combination of the former and a global subgroup of diffeomorphisms. However, and

perhaps not surprisingly, only one of these two global symmetries can be respected once

the matter field Lagrangian is introduced. We choose this symmetry to be (1), using it as

a guiding principle for constructing our theory with the matter fields. Thus, the obtained

full theory is not invariant under dilatations, but preserves (1).

This is easier to understand by returning back to the Einstein frame: there, the matter

fields are coupled to the physical metric in a canonical way, with no direct coupling to the

Stückelberg fields φa. If so, the matter Lagrangian in the Einstein frame cannot be directly

coupled to the σ field in a nonderivative way, since this would violate the symmetry (1).

2We define the Einstein frame in the standard way - the one for which the kinetic term for the graviton
has the usual Einstein-Hilber form; Jordan frame on the other hand will feature a kinetic mixing between
the scalar σ and the graviton.

3This does not mean, however, that the theory admits only Minkowski background; nontrivial back-
ground solutions do certainly exist.

4Likewise, φa’s can be regarded as target space coordinates, with the world-volume coordinates being
xµ, µ = 0, 1, 2, 3; in this case σ enforces that the rescaling of the target space w.r.t. the world-volume be
a symmetry.
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This is not the case, however, for an ordinary dilaton, which does couple to the matter

fields in the Einstein frame without derivatives, thus violating (1). Therefore, our σ is

not a dilaton, nevertheless, it is closely related to the latter (is identical to it in pure

gravity sector), so we will refer to it as “quasi-dilaton” in what follows (likewise, we will

occassionally refer to (1) as “quasi-dilatations”) .

Having established these properties, we move on to examine the theoretical consistency,

and then to deduce the physical consequences of massive gravity with the quasi-dilaton.

We start out by examining the absence of the BD ghost in the theory. We show that

the quasi-dilaton turns into the second galileon in the decoupling limit (the first one being

the helicity-0 mode of the massive graviton [36, 3]), and as such it acquires an additional

enhanced symmetry – the field-space galilean invariance:

σ → σ + cµx
µ + b , (3)

where cµ and b are arbitrary constants. As a result, the theory in the decoupling limit is

free of the BD ghost. We can therefore use Mirbababyi’s method to demonstrate that the

full theory, away from the decoupling limit, is also BD ghost-free. This is done in Sec. 3.

Consistency of massive gravity with the quasi-dilaton would also be expected if the

hamiltonian analysis of this theory were to be performed, since the quasi-dilaton does

not introduce any derivatives in the mass term, and has a canonical kinetic term in the

Einstein frame. Thus, we expect the constraint uncovered in [5, 6] to be only trivially

modified in a theory with the quasi-dilaton.

As we have already mentioned, we introduce couplings to matter in a minimal way so

that only the tensor field in the Einstein frame couples to matter fields; such a coupling

does not spoil the consistency of the theory described above.

As a next step we study phenomenological implications of the model, and in particular,

whether the theory is capable of recovering the predictions of GR. To this end, we check the

existence of the Vainshtein mechanism [37, 38]. Using the bi-galileon Lagrangian obtained

in the decoupling limit, we show that static sources do exhibit the Vainshtein mechanism

– the helicity-0 field is suppressed at observable scales. Hence, the model should pass all

observational tests of GR, at least for (nearly) flat backgrounds.

Furthermore, we discuss cosmology of the theory. We find that unlike massive GR,

it admits flat FRW cosmology; in particular, selfaccelerated vacua exist for a broad part

of the parameter space. We perform a preliminary examination of the fluctuations on

these de Sitter (dS) solutions and find that, unlike already existing examples in ghost-

free massive GR, in general both of the scalar degrees of freedom may propagate on such

backgrounds.

The paper is organized as follows. In Sec. 2, we introduce the theory of quasi-dilaton
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massive gravity. Section 3 deals with the analysis of the theoretical consistency of the

model, while the screening of extra scalar forces and cosmology are discussed in Sections

4 and 5 respectively.

We conclude the present section by fixing notation and conventions used in the rest of

the paper. As pointed out already, we use the mostly plus metric convention. The Levi-

Civita symbol, εµναβ , is normalized so that ε0123 = 1, while the symbol with upper indices

is obtained by using the inverse metric tensor gµν to rise the indices, and by multiplying

the expression by det(gµν), so that ε0123 = −1. Various contractions of rank-2 tensors will

often be denoted by square brackets as follows: Kµ
µ = [K], Kµ

νKν
µ = [K2], Kµ

αKα
βK

β
µ =

[K3], etc. The (ordered) index contractions on the epsilon symbols will be omitted alto-

gether; for example, εµαρσενβρσΠµνΠαβ ≡ εεΠΠ, as well as ε γαρ
µ ε βσ

νγ ΠαβΠρσ ≡ εµενΠΠ,

with an obvious generalization to terms with different number of Π’s.

2 Quasi-dilaton massive gravity

In this section we introduce the ghost-free model of quasi-dilaton massive gravity (QMG).

The theory is based on massive GR [3, 4], representing a consistent nonlinear extension of

the Fierz-Pauli theory [39]. We start out with a brief summary of these theories, followed

by the construction of QMG, which can be obtained by supplementing the gravitational

sector of massive GR with the global symmetry (1).

2.1 Massive GR

A generic theory of a massive graviton can be written in a manifestly diffeomorphism-

invariant way via an introduction of four spurious scalar fields, φa(x) [35, 40, 41]. One

defines a covariant tensor Hµν , related to the physical (coupled to matter) metric gµν as

follows:

Hµν = gµν − ∂µφ
a∂νφ

bηab , (4)

where a, b ∈ (0, 1, 2, 3) are internal indices counting the scalars and ηab = diag(−1, 1, 1, 1)

is the Minkowski metric in the internal space. In the unitary gauge, the scalars are frozen

to coincide with the corresponding coordinates φa(x) = δaµx
µ, however it is often more

helpful not to resort to any particular gauge.

A covariant action for a consistent massive graviton with mass m – the one that

propagates (at most) 5 degrees of freedom on a generic background, and in the presence

of matter, has the following specific form [4]:

S =
M2

Pl

2

∫

d4x
√
−g

[

R− m2

4
(U2(K) + α3U3(K) + α4U4(K))

]

+ Sm(g, ψ), (5)
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where K is a four-by-four matrix with the elements defined as

Kµ
ν = δµν −

√

gµα∂αφa∂νφbηab , (6)

and Ui are specific polynomials of the matrix K

U2 = 4([K2]− [K]2) = 2εµα..ε
νβ..Kµ

νKα
β (7a)

U3 = −[K]3 + [K][K2]− 2[K3] = εµαγ.ε
νβδ.Kµ

νKα
βK

γ
δ (7b)

U4 = −[K]4 + 6[K2][K]2 − [K3][K]− 3[K2]2 + 6[K4] = εµαγρε
νβδσKµ

νKα
βK

γ
δK

ρ
σ . (7c)

Furthermore, αi’s are two arbitrary parameters characterizing a given theory and Sm is

the action for matter fields ψ, minimally coupled to the metric gµν . The dependence on

the scalars φa comes in the graviton potential involving the K tensor 5.

As shown in [3], the defining property of the potential terms
√−g Ui, which is also

a necessary condition for the absence of the BD ghost in the decoupling limit around

Minkowski space-time, is that upon substitution

hµν ≡ gµν − ηµν = 0, φa(x) = δaµx
µ − ηaµ∂µπ, (8)

all terms of the type (∂2π)n, have to collect into a total derivative, thereby rendering the

potentially dangerous higher-derivative self-interactions of π nondynamical. This elimi-

nates the BD ghost from the theory in the DL, leading to a well-posed Cauchy problem

and a single propagating degree of freedom in π, describing the helicity-0 graviton. As

shown by Mirbabayi, the above necessary condition is also a sufficient one for the ab-

sence of the BD ghost in the full theory [10]. The polynomials Ui(K) are specifically

constructed to satisfy this property [3]: upon substitution (8), the tensor Kµ
ν reduces

to ∂µ∂νπ and the antisymmetric structure of the potential makes it manifest that all π

self-interactions indeed collect into a total derivative. In four dimensions there are four

independent such terms. The zeroth order one is just a cosmological constant. The coeffi-

cient of the quadratic terms normalizes the graviton mass, leaving two free parameters in

the theory. The Minkowski vacuum corresponds to φa = δaµx
µ, and the spectrum on flat

space consists of the five polarizations of a massive graviton, while the potential specifies

the consistent interactions of those.

5The square root of a matrix satisfies the property
√
A ·

√
A = A. In general, there are 16 choices for

the square root of a 4 × 4 matrix: the correct choice is the one with all four eigenvalues positive, as it is
implied by the minus sign in the definition of Kµ

ν .
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2.2 Adding the quasi-dilaton

We would like to promote the purely gravitational sector of the ghost-free massive GR to

a theory, invariant under the global rescalings of the four scalars φa w.r.t. the physical

coordinates, xµ (or, to put it in a different way, the dilatations in the internal space). To

this end, we introduce a canonically normalized field σ, and impose the global invariance,

realized in the Einstein frame as in (1). The extended massive gravity action which respects

this symmetry reads,

SE =

∫

d4x
M2

Pl

2

√
−g

[

R− ω

M2
Pl

gµν∂µσ∂νσ − m2

4

(

U2(K̃) + α3U3(K̃) + α4U4(K̃)
)

]

+

∫

d4x
√
−gLm(gµν , ψ) ,

(9)

where we have defined

K̃µ
ν = δµν − eσ/MPl

√

gµα∂αφa∂νφbηab . (10)

Note that the global symmetry (1) constrains the coupling of σ to gravity up to deriva-

tive terms. We will choose this symmetry as a guiding principle for constructing matter

couplings as well. In particular, we will couple the matter fields to the Einstein-frame

metric gµν in the minimal way, without any direct coupling to the Stückelberg fields φa.

This significantly constrains the interactions of σ with matter, allowing only for irrelevant

derivative interactions, which we will ignore in what follows.

Note that the global symmetry (1) is a linear combination of the global subgroup of

diffeomorphisms, xµ → e−αxµ, and dilatations, which are also a symmetry of the purely

gravitational sector and are realized in the Einstein frame as

xµ → eαxµ , gµν → e−2αgµν , σ → σ −MPlα , φa → eαφa . (11)

For constructing the couplings to matter however, we choose to explicitly break the di-

latation invariance (11), retaining (1) as the exact global symmetry of the action 6.

One interpretation of the theory (9) is the following. In massive gravity, we introduce

6In fact, the choice of (1) as the guiding principle for coupling the theory to matter can easily be
motivated from phenomenological considerations. Indeed, we cannot allow any O(1) coupling of matter
to σ, if it is to be stabilized/hidden from the experimental tests of gravity. One can easily see this from
the following reasoning. Massive gravity without the dilaton possesses a built-in property of screening
extra scalars from observations - the Vainshtein mechanism [37], which originates from the continuity of
the theory in the m → 0 limit, leading to the agreement of predictions of a massive theory with GR in
the massless limit. But if σ is to couple to matter, the massless limit of (9) will feature a free dilaton,
gravitationally coupled to external sources, modifying GR at O(1). In fact, even without coupling σ to
matter there still is a potential problem of hiding (one combination of) the scalars π and σ from solar
system tests. We will however show in Sec. 4 that the Vainshtein mechanism successfully takes care of
this issue.
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a fixed reference metric, which is usually chosen to be Minkowski. In QMG, the quasi-

dilaton appears in the action only through the combination gµν∂µφ
a∂νφ

b
(

e2σ/MPlηab
)

,

so we can think of it as the dynamical conformal mode of a field-dependent reference

metric. This situation is reminiscent of bigravity theories [29], in which the entire reference

metric is promoted to a dynamical field and the spectrum involves a massless and a

massive gravitons. However, this analogy might be somewhat misleading: in bigravity the

conformal mode would have a wrong sign kinetic term, whereas in QMG the quasi-dilaton

has a right-sign kinetic term as long as ω > 0; hence, the spectrum of the theory consists

of a massive graviton and a massless scalar (see Appendix A)7.

One can make a transition to the Jordan frame by performing the following conformal

transformation

gµν = e2σ/MPl g̃µν , (12)

under which the action becomes

SJ =

∫

d4x
M2

Pl

2

√

−g̃
[

e2σ/MPl

(

R̃+
(6− ω)

M2
Pl

g̃µν∂µσ∂νσ

)

− m2

4
e4σ/MPl (U2(K) + α3U3(K) + α4U4(K))

]

+
√

−g̃e4σ/MPlLm(g̃µν e
−2σ/MPl , ψ) .

(13)

Here g̃µν denotes the Jordan frame metric with the corresponding notation for the curva-

ture invariants constructed from it.

3 Consistency of QMG

In this section we study the consistency of QMG, which, as we show below, is closely

related to the consistency of massive GR. The latter theory was constructed to be ghost-

free in the decoupling limit [3, 4], and only later it was shown to be a consistent theory

at the full non-linear level via Hamiltonian [5], as well as Lagrangian [10] analyses . The

current understanding is that the decoupling limit predictions in the given class of theories

are rather powerful and already based on them one can make statements regarding the

consistency away from the limit [10].

With this in mind, we won’t repeat the full canonical treatment of QMG for showing

the presence of enough number of constraints, required for the absence of ghosts; the

situation is rather similar to what happens in ghost-free massive GR, since the presence of

7The term
∫

d4x e4σ/MPl

√

det∂µφa∂νφa is consistent with all the symmetries and requirements of the
theory and can be added to the QMG action (9) with an arbitrary coefficient (note that it is already
present in (9) as a part of U4(K̃)). However, we will not be exploring this option here (in massive gravity
without the quasi-dilaton, this term is trivial).
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the quasi-dilaton field causes minor modifications not affecting the conclusions regarding

the absence of ghosts in the theory. We will mostly be concerned with the decoupling

limit analysis, which is best for displaying the physical content. We also comment on the

robustness of this analysis for making predictions about the unitarity of the full theory

towards the end of this section.

3.1 The decoupling limit and Galileons

As mentioned above, we can gain a better physical intuition about the degrees of freedom

and nature of their interactions by working in the decoupling limit of QMG. The limit cor-

responds to zooming to energy scales well above the mass of the graviton, while decoupling

(at least as much as possible) gravity by sendingMPl → ∞. The degrees of freedom we will

concentrate on are the quasi-dilaton, the helicity-2 polarization of the graviton hµν and the

(canonically normalized) helicity-0 graviton π, defined by φa(x) = δaµx
µ− ηaµ∂µπ/MPlm

2.

We will ignore the helicity-1 polarization Aµ, since it is guaranteed to carry two degrees

of freedom (due to an enhanced U(1) symmetry in the decoupling limit) and guaranteed

not to couple to sources at the linear order. It enters the decoupling limit Lagrangian

only quadratically, making Aµ = 0 a consistent solution to the equations of motion. The

specific form of the potential
√−g U(K) guarantees that all dangerous self-interactions of

the helicity-0 mode, being total derivatives, are rendered non-dynamical and drop out of

the action, as discussed in the previous section. The decoupling limit is then defined as

follows:

MPl → ∞, m→ 0, Λ3 =
(

MPlm
2
)1/3

= fixed ,
Tµν
MPl

= fixed . (14)

In this limit, the Einstein frame Lagrangian (9) in terms of the canonically normalized

fields (with the metric perturbation normalized in the usual way, hµν → hµν/MPl), reduces

to the following expression,

LDL =− 1

4
hµν (Eh)

µν
− ω

2
∂µσ∂µσ

− hµν
[

1

4
εµενΠ+

(

3

16
α3 +

1

4

)

1

Λ3
3

εµενΠΠ+

(

1

16
α3 +

1

4
α4

)

1

Λ6
3

εµενΠΠΠ

]

+ σ

[

1

2
εεΠ+

(

3

8
α3 −

1

2

)

1

Λ3
3

εεΠΠ+

(

1

2
α4 −

3

8
α3

)

1

Λ6
3

εεΠΠΠ − α4

2

1

Λ9
3

εεΠΠΠΠ

]

+
1

MPl
hµνTµν (ψ) .

(15)
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Here Πµν = ∂µ∂νπ is the rank-2 tensor constructed from the second derivatives of the

helicity-0 graviton, Tµν is the matter stress-energy tensor, while

(Eh)µν = −1

2

(

�hµν − ∂µ∂
αhαν − ∂ν∂

αhαµ + ∂µ∂νh− ηµν�h+ ηµν∂
α∂βhαβ

)

(16)

is the linearized Einstein tensor on the Minkowski background.

The decoupling limit theory, despite the presence of higher derivatives in the action,

is consistent and does not propagate any additional ghost-like degrees of freedom. The

interactions between the helicity-2 and scalar gravitons come from the potential term in the

action and, being certain scalar-tensor generalization of Galileons, have been shown to be

ghost-free in [36] (in the antisymmetric form used above, it is obvious that the presence of

the Levi-Civita symbol forbids more than two time derivatives on any field in the equations

of motion). Quite remarkably, the sector of the theory involving the interactions of the

quasi-dilaton with the scalar graviton is nothing but a bi-Galileon theory, rendering the

decoupling limit of QMG completely free of ghosts.

3.2 Comments on the consistency of the full theory

The unitarity of QMG in the decoupling limit, as the experience with the ghost-free massive

GR indicates, can be considered as a strong hint of the absence of the BD ghost in the full

nonlinear theory. The canonical way of obtaining the number of propagating degrees of

freedom is resorting to the Hamiltonian analysis. Fortunately, the ghost-free massive GR

has been extensively studied in the Hamiltonian formulation [5] and the presence of just

enough number of constraints for the propagation of exactly five d.o.f.’s of a massive spin-2

particle has been shown. It is straightforward to see that the extra quasi-dilaton present

in the theory can not spoil these constraints, leading to the six propagating degrees of

freedom in QMG.

In fact, as shown in [10], already the special form of the decoupling limit (15) is

sufficient for proving the absence of the BD ghost in the full theory. At the quadratic

order, QMG propagates a massive spin-2 state plus a scalar σ (see Appendix A) and the

special Fierz-Pauli structure eliminates the potential BD ghost, which might nevertheless

show up at the nonlinear order in the pathological interactions of the helicity-0 graviton

either with itself or the rest of the fields; on generic backgrounds on the other hand,

if present, the BD ghost will reappear at the quadratic order giving a ghost pole to the

graviton propagator. The idea is then to study the theory around an arbitrary background

in a locally inertial frame. Showing the unitarity of the quadratic theory in this setting

can therefore be considered the proof of the absence of the ghost in the full theory. Let us

briefly review the argument. The form of the decoupling limit Lagrangian (15) significantly

10



constrains what the full theory can look like. Based solely on this limit, one can argue

that the part of the full action involving the ”vector” Aµ describing the deviation of the

four scalars from the unitary gauge φa = δaµx
µ − ηaµAµ, has the following schematic form

L ⊃ hµν (a1 εµενS + a2 εµενSS + a3 εµενSSS)

+ hFF (b1 + b2 ∂A+ . . . ) + σ (c1 εεS + c2 εεSS + c3 εεSSS + c4 εεSSSS)

+ σFF (d1 + d2 ∂A+ . . . )− 1

4
FF (e1 + e2 ∂A+ . . .) +

∑

m,n

hnσm + . . .

(17)

Here (ai, bi, ci, di, ei) are some constants, (m,n) denote arbitrary (semi)positive integers,

we have defined Sµν = ∂(µAν), Fµν = ∂[µAν], and ellipses denote the GR interactions along

with the σ kinetic term. The key insight of [10], based on the massive GR action without

the quasi-dilaton, is that on any background characterized by VEVs of the fields appearing

in (17), the specific form of the interactions guarantees that h00 and h0i perturbations

represent Lagrange multipliers in the quadratic lagrangian, while one combination of Aµ-

perturbations is non-dynamical, leaving five propagating degrees of freedom. One can see

from (17) that the interactions of σ with Aµ are just the “scalar versions” of those of

hµν , characterized by the same antisymmetric structure. Not surprisingly therefore, one

can straightforwardly see that exactly the same conclusions apply to QMG, leading to (at

most) six degrees of freedom (the massive spin-2 field and the quasi-dilaton) around an

arbitrary background - and therefore the absence of the BD ghost in the full theory.

4 Screening of Extra Forces

The presence of extra scalar degrees of freedom in QMG is potentially dangerous for phe-

nomenology, since gravitationally coupled scalars could lead to an unobserved long-range

fifth force. The same problem is at first sight present in QMG, since σ is a massless field

which mixes with the helicity-0 graviton and one combination of these two fields will couple

to matter; however, as we show in this section, this model possesses a built-in mechanism

for hiding the extra scalars it propagates. The indication of such screening, called the

Vainshtein mechanism [37], can already be read off the decoupling-limit lagrangian featur-

ing the Galileon interactions. Massive GR without the dilaton has been shown to possess

the Vainshtein screening for a vast part of the parameter space [3, 12, 15], and so have

the bi-Galileon theories [42]. Working in the decoupling limit of QMG which represents

a certain combination of these two theories, we show that the screening mechanism suc-

cessfully operates in this model as well; around localized sources both the quasi-dilaton

and the helicity-0 graviton profiles are significantly suppressed within a certain distance

11



r∗, the Vainshtein radius8, and the gravitational potential is completely determined by

the helicity-2 contribution, recovering GR in this region to a very high precision9. We

will concentrate on the decoupling limit analysis, since it completely captures all essential

aspects of the Vainshtein mechanism. This limit is a valid description of physics at dis-

tance scales Λ−1
3 ≪ r ≪ m−1, where the lower limit marks the regime in which quantum

corrections become important in the effective theory, while the upper one is due to the

definition of the DL. Moreover, we will make a particular choice of the parameters,

α3 = −4α4, (18)

for which the interactions between the helicity-2 and helicity-0 gravitons can be com-

pletely eliminated by a redefinition of the helicity-2 field [3]; as a result, the theory breaks

into separate helicity-2 and scalar sectors, the former characterizing the GR part of the

gravitational potential. To this end, we make the following redefinition of the helicity-2

graviton in the decoupling limit theory (15),

hµν → hµν + πηµν +
γ−
Λ3
3

πΠµν , (19)

under which the part of the lagrangian involving hµν reduces to the usual linearized GR

coupled to the external stress tensor, while the scalar sector lagrangian is given as follows:

Ls = −1

8
π

(

εεΠ+ 2
γ−
Λ3
3

εεΠΠ+
γ2−
Λ6
3

εεΠΠΠ

)

− ω

12
σεεΣ

+
1

2
σ

(

εεΠ− γ+
Λ3
3

εεΠΠ+ 4
α4

Λ6
3

εεΠΠΠ − α4

Λ9
3

εεΠΠΠΠ

)

+
1

MPl
πT +

γ−
MPlΛ

3
3

πΠµνT
µν .

(20)

Here we have defined γ± = 1 ± 3α4; also, Σµν ≡ ∂µ∂νσ and T ≡ ηµνTµν denotes the

trace of the matter stress-tensor. The above action involves kinetic mixing of the scalars,

however it will prove to be simpler to study the classical solutions in this non-canonically

normalized form.

8Which e.g. for ordinary sources like the Sun is much larger than the galactic scales.
9We stress again that the helicity-1 mode of the massive graviton is irrelevant in this context since it

does not couple to the external stress tensor at the linear level.
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The equations of motion for σ and π respectively are

− ω

6
εεΣ +

1

2
εεΠ− γ+

2Λ3
3

εεΠΠ+ 2
α4

Λ6
3

εεΠΠΠ − α4

2Λ9
3

εεΠΠΠΠ = 0 , (21)

− 1

4
εεΠ− 3γ−

4Λ3
3

εεΠΠ − γ2−
2Λ6

3

εεΠΠΠ +
1

2
εεΣ − γ+

Λ3
3

εεΣΠ

+ 6
α4

Λ6
3

εεΣΠΠ− 2α4

Λ9
3

εεΣΠΠΠ = − 1

MPl
T . (22)

For localized spherically symmetric, static configurations for which the only nonzero com-

ponent of the stress tensor is T00 = M̄δ(r)/r2, these equations can be integrated once,

which, in the spirit of Galileon theories, reduces them to algebraic equations for the first

radial derivatives of fields

ωλσ − 3λπ + 2γ+λ
2
π − 4α4λ

3
π = 0 , (23)

3

2
λπ + 3γ−λ

2
π + γ2−λ

3
π − 3λσ + 4γ+λσλπ − 12α4λ

2
πλσ =

(r∗
r

)3
, (24)

where we have used the following notation:

r∗ =

(

M̄

M2
Plm

2

)1/3

, λπ =
π′

Λ3
3r
, λσ =

σ′

Λ3
3r

.

Note that, in this basis, only π is coupled to sources and the correction to the gravitational

potential is entirely determined by its profile. One can express λσ in terms of λπ from the

σ - equation, which reduces the system to its final form10,

λσ =
1

ω

(

4α4λ
3
π − 2γ+λ

2
π + 3λπ

)

, (25)

3

2

(

1− 6

ω

)

λπ +

(

3γ− +
18γ+
ω

)

λ2π +

(

γ2− − 8γ2+ + 48α4

ω

)

λ3π

+
40γ+α4

ω
λ4π − 48α2

4

ω
λ5π =

(r∗
r

)3
. (26)

There are a number of observations one can make about the last equation. In the limit

of large distances, r ≫ r∗, the solution is obtained by simply neglecting all nonlinearities,

λπ ∼ (r∗/r)
3 and π has the usual Newtonian profile, modifying the gravitational force at

O(1) beyond the Vainshtein radius - a manifestation of the famous vDVZ discontinuity

[43, 44]. Moreover, from (26) one can see that ω > 6 is required for the extra scalar force

10It is worth to stress once again that we keep here the notation in terms of γ± not to overload the
expressions; one should however keep in mind that these constants really depend on α4.
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to be attractive in the vDVZ region. Not surprisingly, this coincides with the condition of

absence of a scalar ghost on Minkowski vacuum, which can be obtained by diagonalizing

the decoupling limit scalar action (20). On the other hand, well within the Vainshtein

radius r ≪ r∗, the largest nonlinearity on the l.h.s. (assuming ω ∼ 1) dominates and the

solution becomes

λπ ≃ −
(

ω

48α2
4

)1/5
(r∗
r

)3/5
⇒ π ≃ −5

7

(

ωr3∗
48α2

4

)1/5

Λ3
3r

7/5 , (27)

while the correction to the gravitational potential is tiny11

π

h00
∼

(

r

r∗

)12/5

. (29)

In fact, this screening is parametrically larger than in the DGP model [45, 46, 47], leading

to the impossibility of observing these corrections in the near future. Note that the seeming

enhancement for ω ≫ 1 of the correction to the Newtonian potential in (27) might be

misleading; for large values of ω the quasi-dilaton becomes decoupled and the predictions

of the theory should reproduce those of the ghost-free massive GR, for which the choice of

the parameters given in (18) leads to the scalar dynamics governed by quartic Galileon self-

interactions. This can be directly seen in (26), where, for ω → ∞, the leading nonlinearity

is precisely that coming from the quartic Galileon, leading to the corresponding screening

for π.

We have therefore shown that within the Vainshtein radius of a point source the grav-

itational force reduces to an excellent accuracy to the usual Newtonian attraction me-

diated by the helicity-2 polarizations of the graviton. Vainshtein screening is a robust

phenomenon and can be expected to work for a generic class of sources. Also, here we

have considered only a part of the parameter space, but we expect this mechanism to be

operative for a more general choice of parameters in the theory. We are not concerned

with a detailed analysis of the solutions at this stage, however what we have shown above

can already be considered a direct indication of the presence of a built-in mechanism for

screening extra scalars in QMG.

11Although the profile of σ is not probed by matter, it is interesting to observe that it is also screened
by the Vainshtein mechanism,

σ ∼ −Λ3

3r
9/5
∗

ω2/5
r1/5, (28)

being significantly suppressed with respect to the Newtonian potential within r∗.
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5 Cosmology

Another important property of QMG is the existence of homogeneous and isotropic flat

FRW solutions. In ghost-free massive GR, the same Hamiltonian constraint that removes

the dangerous BD ghost from the theory leads to overrestrictive cosmological implications.

Namely, it constrains the FRW scale factor to be independent of time, leaving Minkowski

space as the only flat homogeneous and isotropic cosmological solution [17]. However, in-

homogeneous/anisotropic solutions can arbitrarily closely approximate the standard FRW

cosmology for sufficiently small graviton mass, due to the continuity in the m → 0 limit

[17]. The improvement of the situation in QMG is achieved at an expense of the presence

of the quasi-dilaton in the theory; then, instead of constraining the scale factor to be a

constant, the extra constraint simply relates its time evolution to that of the quasi-dilaton,

implying the possibility for nontrivial flat FRW solutions. However, the following natural

question arises: for ω → ∞, the quasi-dilaton should decouple from the rest of the fields,

leaving the dynamics dominated by massive GR; how is then the ω → ∞ limit of the

homogeneous and isotropic FRW universe of QMG expected to reproduce the inhomoge-

neous cosmology of the former theory? The obvious clue to this seeming puzzle is that

there should be a certain kind of obstruction to QMG’s flat FRW cosmology for the values

of ω, greater than some critial value. We will explicitly see how this works below.

5.1 Cosmological solutions and self-acceleration

In the ghost-free massive GR without the quasi-dilaton, as mentioned above, the extra

constraint that removes the BD ghost also forces the trivial Minkowski space to be the

only homogeneous and isotropic flat FRW solution. In QMG however, the presence of

the extra scalar lifts this constraint, giving it a new rôle of relating the time evolution of

the scale factor to its own. In order to see how this works, one can concentrate on the

homogeneous and isotropic field configurations in the Einstein frame theory (9). We start

from the most general ansatz for flat solutions with this symmetry:

ds2 = −N2(t)dt2 + a2(t)d~x2 , φ0 = f(t) , φi = xi , σ = σ(t), (30)
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and substitute this into (9) to obtain the minisuperspace action12

S =
M2

Pl

2

∫

d4x

{

− 6
a

N

(

da

dt

)2

+
ω

M2
Pl

a3

N

(

dσ

dt

)2

+ 6m2

[

(2 + α3 + α4)a
3N −

(

1 +
3

4
α3 + α4

)

eσ/MPl

(

3a2N + a3
df

dt

)

+

(

1 +
3

2
α3 + 3α4

)

e2σ/MPl

(

aN + a2
df

dt

)

− 1

4
(α3 + 4α4) e

3σ/Mp

(

N + 3a
df

dt

)

+ α4e
4σ/MPl

df

dt

]}

+ Sm.

(31)

In what follows we assume the matter sector Sm to consist of a perfect fluid with the energy

density ρm and pressure pm. There are four fields in the above Lagrangian, however time

reparametrization invariance

t→ g(t), N → N

ġ(t)
,

guarantees that the a-equation of motion is redundant, being a certain linear combination

of the rest. Variation w.r.t. f gives the constraint equation

(

1 +
3

4
α3 + α4

)

a3eσ/MPl −
(

1 +
3

2
α3 + 3α4

)

a2e2σ/MPl

+
3

4
(α3 + 4α4) ae

3σ/Mp − α4e
4σ/MPl = k , (32)

where k is an integration constant. The Friedmann equation can be obtained by varying

w.r.t. N ,

3M2
PlH

2 + 3M2
Plm

2

[

(2 + α3 + α4)− (3 +
9

4
α3 + 3α4)

eσ/MPl

a

+ (1 +
3

2
α3 + 3α4)

e2σ/MPl

a2
− 1

4
(α3 + 4α4)

e3σ/Mp

a3

]

=
ω

2
σ̇2 + ρm ,

(33)

here and in what follows the dot denotes a derivative with respect to cosmic time, i.e.

σ̇ ≡ dσ/(Ndt) and consequently H ≡ ȧ/a = d ln a/(Ndt). Notice that eq. (32) is a fourth

order algebraic equation for a generic choice of parameters. However a very simple solution

12Note that we have retained the lapse N(t) in the action despite the fact that by time reparametrization
invariance it can be fixed to an arbitrary value as long as f(t) does not equal to one. However, keeping
it explicitly is quite convenient, since it allows to quickly derive a first-order Friedmann equation for the
scale factor.
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exists if k = 0, in which case the following ansatz can be used

eσ/MPl = ca(t) ,
dσ

dt
=MPlH, (34)

with c a constant to be determined below. For this ansatz, the Friedmann equation reads

(

3− ω

2

)

M2
PlH

2 = 3M2
Plm

2

[

1

4
(α3 + 4α4)c

3 − (1 +
3

2
α3 + 3α4)c

2

+ (3 +
9

4
α3 + 3α4)c− (2 + α3 + α4)

]

+ ρm ,

(35)

while c itself can be obtained from the constraint equation (32) with k = 0,

c

[(

1 +
3

4
α3 + α4

)

−
(

1 +
3

2
α3 + 3α4

)

c+
3

4
(α3 + 4α4)c

2 − α4c
3

]

= 0 . (36)

Before analyzing these equations more closely, it is timely to make an observation about

the Friedmann equation (35): its left hand side flips the sign unless ω < 6. This sign

flip is unacceptable if the theory is to describe real cosmology in the matter dominated

era in which case the right hand side is strictly positive. Therefore, quite interestingly,

we are led to conclude that the parameter space leading to self-accelerated vacua capable

of describing the universe is orthogonal to the parameter space for which the Minkowski

vacuum is ghost-free. This is also consistent with the expectation that for ω → ∞,

the sigma field decouples and one shouldn’t expect to have a homogeneous and isotroic

solution.

One obvious solution to (36) is c = 0 ⇒ σ → −∞. Substituting this value for the

quasi-dilaton background into the Friedmann equation, one obtains the conventional FRW

cosmology with an effective cosmological constant (energy density)

Λeff = −3M2
Plm

2 (2 + α3 + α4) , (37)

which is positive for the choice of parameters, such that

α3 + α4 < −2. (38)

A quick inspection of the Einstein frame action (9) reveals that at least at the level of the

background this is a well-defined solution, since (except for the quadratic kinetic term)

σ appears only through e+σ/MPl everywhere in the Lagrangian. One should however be

cautious about the zero expectation value of the latter quantity, since it multiplies the

entire action involving the perturbations of the auxiliary scalars, pointing towards an

infinitely strongly coupled vector/scalar graviton sector at the level of perturbations. We
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will not pursue this solution further in this paper.

Another solution is given by

c = 1 , (39)

which leads to a vanishing cosmological constant in eq. (35). One can show from the σ-

equation of motion (see below) that on this solution aḟ asymptotically approaches unity,

leading to a Lorentz-invariant Minkowski background at late times13. However, as we have

noted above, the absence of a scalar ghost requires ω > 6 on this background, whereas the

parameter space leading to a consistent cosmology is exactly orthogonal, ω < 6. Therefore,

the solution for which c = 1 is unacceptable from the consistency point of view and we

will discard it in what follows.

The remaining two solutions of the constraint equation are given by the following

expressions:

c2,3 =
3α3 + 8α4 ±

√

9α2
3 − 64α4

8α4
, (40)

which, when plugged back into the Friedmann equation (35), lead to an effective cosmolog-

ical constant, describing either de Sitter or anti-de Sitter spaces in the absence of matter.

It is straightforward to analyze these solutions for finding the parameter space with the

physical de Sitter vacua (i.e. the ones for which both the left and right hand sides of the

Friedmann equation are positive). The result is

α3 6= 0, 0 < α4 <
α2
3

8
. (41)

We therefore conclude that for the vast region of the parameter space given by the condi-

tions (41), there exist de Sitter solutions, capable of describing the late-time acceleration

of the universe.

For completeness, we also need to analyze the equation for ḟ . Varying the action w.r.t.

σ, we obtain

ω

a3
d

Ndt
(a3σ̇) + 3MPlm

2c

[(

1 +
3

4
α3 + α4

)

(3 + aḟ)− 2

(

1 +
3

2
α3 + 3α4

)

(1 + aḟ)c

+
3

4
(α3 + 4α4) (1 + 3aḟ)c2 − 4α4aḟc

3

]

= 0 , (42)

13A remark on physical equivalence of different solutions in the theory is in order here. The presence
of the global symmetry, the quasi-dilatations (1), allows us to shuffle any overall normalization between
the quasi-dilaton σ and the auxiliary scalars φa. The real invariant, both under the diffeomorphisms and
the quasi-dilatations, is e2σ/MPlgµν∂µφ

a∂νφ
bηab, leading to physical equivalence of spatially homogeneous

solutions with the same value for this invarant. It is therefore obvious, that the asymptotics of the solution
at hand, eσ/MPl = a, ds2 = −dt2+a2d~x2, φ0 = t/a, φi = xi is physically equivalent to the usual Minkowski
vacuum of the theory.
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which gives ḟ in terms of the scale factor. Using the constraint equation (36), this simplifies

to

aḟ = 1 +
ω

3κm2
(3H2 + Ḣ) , (43)

where

κ = c

[

3

(

1 +
3

4
α3 + α4

)

− 2

(

1 +
3

2
α3 + 3α4

)

c+
3

4
(α3 + 4α4) c

2

]

. (44)

As already noted above, the equation (43) shows that in the absence of a cosmological

constant, the solution approaches the Lorentz-invariant Minkowski background at late

times, which is unstable for the choice of parameters that can lead to realistic cosmolog-

ical backgrounds. We do not have such a problem, however, if the late-time solution is

cosmological constant dominated; this means that the most natural endpoint of the cos-

mological evolution in the theories at hand is one of the above-described self-accelerated

de Sitter backgrounds with tiny curvature ∼ m2.

5.2 Perturbations

Here we give some important, preliminary results on perturbations over de Sitter vacua,

obtained above. To summarize the results on the background evolution, in the (cosmic)

coordinates used in the previous subsection, the dS solution is (for simplicity, we will set

MPl = 1 from now on)

ds2 = −dt2 + a2(t)d~x2, φ0 = c̄

∫

dt

a(t)
, φi = xi, σ = ln(ca), (45)

where

c̄ = const = 1 +
ω

κ

H2

m2
, (46)

while c is given in (40) (subject to the conditions (41) for the dS space).

At the present intermediate stage, it will be more convenient to work in terms of

conformal time τ , transforming to an ”almost unitary” gauge in which the background

metric is gµν = a2(τ)ηµν and the auxiliary scalars are frozen to their background values

φ0 = c̄τ , φi = xi. We define the perturbations of the dynamical fields in this gauge as

follows,

gµν = a2(ηµν + hµν ), σ = ln(ca) + ζ. (47)
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The tensor K̃, up to quadratic order in perturbations is given by the following expression

K̃µ
ν = δµν − c a eζ

√

1

a2
(ηµλ − hµλ + hµρh λ

ρ + . . . )Σλν

= δµν − c (1 + ζ +
1

2
ζ2 + . . . )

√

Σµ
ν − hµλΣλν + hµρh λ

ρ Σλν + . . . ) (48)

where all indices are assumed to be raised/lowered with the flat Minkowski metric and

Σµ
ν ≡ ∂µφa∂νφ

bηab = diag(c̄2, 1, 1, 1). We will also need an expansion to the quadratic

order of the metric determinant

√
−g = 1 +

1

2
h+

1

8
h2 − 1

4
hµνhµν + . . . . (49)

The Einstein frame action we would like to perturb can be conveniently parametrized by

separating the pure general relativity sector in the following way

SE =
1

2

∫ √
−g [R− 6H2]

+
1

2

∫ √
−g

[

6H2 − ω

M2
Pl

gµν∂µσ∂νσ − m2

4

(

U2(K̃) + α3U3(K̃) + α4U4(K̃)
)

]

. (50)

where H denotes the Hubble parameter of a dS solution at hand. The first term describes

pure GR on dS space (with a CC, consistent with the expansion rate), while the per-

turbations of the rest of the lagrangian will describe deviation from GR. The quadratic

perturbations of the second line of (50) can be written as follows (note that the indices on

metric perturbations are not raised and prime denotes a derivative w.r.t. conformal time

τ)

S
(2)
E ⊃ 1

2

∫

d4x a4
{

ω

a2
(

ζ ′2 − (∂iζ)
2
)

+
ωH

a
(h00 + hii)ζ

′ − 2ωH

a
h0i∂iζ + (γ1h00 + γ2hii)ζ

+ γ3h
2
00 + γ4h00hii + γ5h0ih0i + γ6hijhij + γ7h

2
ii

}

, (51)

With the definitions

β0 = 4 + 3α3 + 4α4

β1 = 2 + 3α3 + 6α4

β2 = α3 + 4α4

β3 = 2 + α3 + α4 ,
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the coefficients appearing in the two forms of the action are

γ1 = 3m2κ

γ2 = −1

4
m2c

(

9c̄c2β2 − 4(1 + 2c̄)cβ1 + 3(2 + c̄)β0
)

γ3 =
ω

4
H2

γ4 = −m
2

2
κ

γ5 =
κ

1 + c̄
m2

γ6 =
1

16
m2

(

3c̄c3β2 − 2(1 + 3c̄)c2β1 + 3(3 + 2c̄)cβ0 − 24β3
)

− H2

4
(ω + 6)

γ7 =
1

16
m2

(

2c̄c2β1 − 3(1 + c̄)cβ0 + 12β3
)

+
H2

8
(ω + 6) .

The new decoupling limit

For analyzing the constraints on the parameter space, coming from the requirement of

the absence of ghosts on the dS vacua of QMG, we resort to the Stückelberg treatment of

the perturbations. To this end, it is useful to return to the cosmic coordinates and define

the metric perturbation in the standard way, gµν = gFRW
µν

+ hµν , with g
FRW
µν

denoting the

standard background FRW metric, given in (45). The (canonically normalized) metric

perturbation is decomposed as follows,

hµν = h̄µν +
∇µAν +∇νAµ

m
, (52)

where ∇ is a covariant derivative w.r.t. the background metric and Aµ denotes a canon-

ically normalized vector field, encoding information about the helicity-1 and helicity-0

modes of the graviton. Furthermore, the spatial part of the vector Aµ is decomposed into

the irreducible representations of the spatial rotation group as follows,

Ai = Si + ∂ib , ∂iSi = 0. (53)

We will start by examining the perturbation spectrum in the high frequency, decoupling

limit, defined as14

m→ 0, H → 0,
H

m
≡ u = fixed . (54)

The GR part of the action is invariant under the substitution (52), while the scalar con-

tribution to the perturbation lagrangian (51), after some rearrangements and using the

14Note that this decoupling limit differs from the one considered on Minkowski space above.
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explicit form for some of the γ-coefficients, is given in the limit (54) as follows15

Sdl
E ⊃ 1

2

∫

d4x

{

ω
(

ρ̇2 − (∂iρ)
2
)

+ p(∂iA0)
2 − 2qȦ0∆b+ r(∂0∂ib)

2

+ 4(γ6 + γ7)(∆b)
2

}

, (55)

where ρ = ζ + uA0 and the following notation for different coefficients has been used

p = ωu2 +
κ

1 + c̄
, q = κ

(

1− 1

1 + c̄

)

, r =
κ

1 + c̄
. (56)

There are a few important observations one can make about the lagrangian for scalar

perturbations (55). First, we see that ω > 0 is required for avoiding a negative kinetic

term for one of the scalars ρ. Moreover, another scalar A0 is non-dynamical on the dS

background! This is a clear manifestation (and a nice consistency check of the calculation)

of the BD ghost-freedom of the theory - there can only be a single helicity-0 graviton and

the fluctuations of the quasi-dilaton in the scalar sector propagating on any background.

Note that none of the scalars are coupled to the external stress tensor in the decoupling

limit, meaning that in the full theory their coupling to external sources is strongly sup-

pressed. This is a manifestation of the absence of vDVZ discountinuity. Last but not

least, integrating out the auxiliary field A0, one obtains for the kinetic term of the third

scalar

Sdl
E ⊃

(

r − q2

p

)

(∂0∂ib)
2 + . . . (57)

Using the explicit form of the constants (56) as well as the relation (46), one can check

that, the coefficient in front of the b - kinetic term vanishes! If the coefficient (γ6 + γ7)

of the last term in (55) were nonzero, one would conclude that the single scalar degree

of freedom ρ remains propagating for ω 6= 0 on any self-accelerating background (at

least at the quadratic level). Interestingly enough however, one can check by using the

background equations of motion that this coefficient vanishes16, so that this particular

decoupling limit has nothing to say about the dynamics of b; then this leaves an option

of two scalar modes potentially propagating on the self-accelerated background. A more

refined analysis, needed for uncovering this dynamics will be presented elsewhere17.

As a last step, we remark on one more possible constraint on the parameter space of

15In the decoupling limit (54), the scale factor can be replaced by unity up to the terms, suppressed in
this limit.

16We thank Claudia de Rham for pointing out that this has to be the case and Andrew Tolley for first
showing that this indeed is the case.

17The loss of dynamics for various degrees of freedom on non-trivial backgrounds has been already
encountered a number of times in the context of ghost-free massive gravity models [11, 18, 25, 27], as well
as ghosty extensions of the Fierz-Pauli model [48]. But as pointed out above, the present model, at least
for a certain parameter space, may avoid this problem.
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a consistent theory. It comes from demanding the absence of ghosts in the vector sector.

It is straightforward to see (see also [49], for example) that the relevant condition is

γ5 ≥ 0. (58)

One can check that it does not lead to any further constraints on top of (41). Moreover,

γ5 = 0 translates into the following condition on the parameters (consistent with (41))

α3 < −4, α4 = −1− 3

4
α3. (59)

In this part of the parameter space, the kinetic term for the vector perturbations on the

dS solution vanishes, leading to no propagating vector modes on the dS vacua of such

theories.

6 Conclusions and Future Directions

We have presented an extension of ghost-free massive GR by a scalar field, dubbed here the

quasi-dilaton, based on a new global symmetry (1) that appears in these theories. The

symmetry largely determines the form of the action, including the couplings of matter

to the rest of the fields. The theory enjoys all important properties of massive GR; it

possesses a Hamiltonian constraint, responsible for the absence of the Boulware-Deser

ghost; moreover, nonlinear dynamics of the helicity-0 graviton and the quasi-dilaton lead

to the presence of the Vainshtein mechanism, screening extra forces associated with these

fields at solar system distances.

Most interestingly, and unlike massive GR, the theory does admit flat FRW cosmol-

ogy with potentially interesting phenomenological implications. For a broad class of the

parameter space,

α3 6= 0, 0 < α4 <
α2
3

8
, 0 ≤ ω < 6, (60)

there exist selfaccelerated dS solutions with stable perturbations. Moreover, one combi-

nation of scalars becomes non-dynamical on these backgrounds (for a special choice of

parameters, vector modes can also be made non-dynamical).

Similar to massive GR, the extra scalars do not couple to matter in the decoupling

limit on self-accelerated backgrounds, implying a strong suppression for these couplings

in the full theory (and the absence of the vDVZ discontinuity on such vacua). This leads

to no easily observable fifth forces in the theory at hand.

Apart from the theoretical constraints, we anticipate a number of phenomenological

ones as well, bounding different parameters of the theory. One interesting phenomenolog-

ical implication of QMG for instance is a modified effective Newton’s constant, governing
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the expansion of the universe (different from the effective Newton’s constant for the solar

system processes, or growth of fluctuations); this can be seen e.g. from the Friedmann

equation (35). This would place mild constraints on the parameter ω, coming from the Big

Bang nucleosynthesis and CMB (essentially from the expansion rate at the corresponding

times).

We defer these and other phenomenological aspects of the model to a separate study.
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Appendix A

We show in this appendix that at the linear level, QMG propagates the five degrees of

freedom of a massive graviton plus a massless quasi-dilaton on Minkowski space. Instead

of adopting the canonical Hamiltonian approach, we will choose a quicker way, showing the

presence of just enough number of constraints and the corresponding dispersion relations

describing the desired degrees of freedom.

At the quadratic order, the Einstein frame Lagrangian (9) reduces in the unitary gauge

to the following expression,

2× L2 = −1

2
hµν (Eh)µν − m2

4

(

(hµν − 2σηµν )
2 − (hµµ − 2σηµµ)

2
)

− ω∂µσ∂µσ. (61)

It is convenient for the present purposes to work with a (Jordan frame) redefined spin-2

field, h̄µν = hµν − 2σηµν , in terms of which the Lagrangian rewrites as follows,

2× L2 = −1

2
h̄µν (E h̄)µν + 2h̄µν (∂µ∂νσ − ηµν�σ)−

m2

4
(h̄2

µν
− h̄2) + (6− ω)∂µσ∂µσ. (62)

The equations of motion for h̄µν and σ obtained by varying the latter Lagrangian are

given respectively as follows (we do not distinguish between the upper and lower indices
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for notational simplicity),

�h̄µν − ∂α∂µh̄αν − ∂α∂ν h̄αµ + ηµν∂α∂βh̄αβ + ∂µ∂ν h̄−ηµν�h̄−m2(h̄µν − ηµν h̄)

+4(∂µ∂νσ − ηµν�σ) = 0, (63)

(12− 2ω)�σ = 2(∂µ∂ν h̄µν −�h̄). (64)

Taking the divergence of the first equation yields the constraint,

∂µh̄µν = ∂ν h̄, (65)

while taking its trace it implies,

h̄ = 4
�

m2
σ. (66)

These constraints remove five degrees of freedom from the system, leaving 6 propagating

modes. Using (65) and (66) in the equations of motion, they can be reduced to the

Klein-Gordon form,

�σ = 0, (67)

(�−m2)

(

h̄µν − 4
∂µ∂ν
m2

σ

)

= 0 , (68)

indicating that the spectrum consists of five massive and one massless degrees of freedom.
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