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Abstract

General features of information transfer between quantum subsystems, via unitary

evolution, are investigated, with applications to the problem of information transfer from

a black hole to its surroundings. A particularly direct form of quantum information trans-

fer is “subsystem transfer,” which can be characterized by saturation of a subadditivity

inequality. We also describe more general unitary quantum information transfer, and cat-

egorize different models for black hole evolution. Evolution that only creates paired exci-

tations inside/outside the black hole is shown not to extract information, but information-

transferring models exist both in the “saturating” and “non-saturating” category. The

former more closely capture thermodynamic behavior; the latter generically have enhanced

energy flux, beyond that of Hawking.

1. Introduction

The black hole information problem1 appears to be a central conceptual problem in a
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1 For reviews, see [1-4].



quantum formulation of gravity. Our existing framework for physics - local quantum field

theory (LQFT) – has been argued to predict that black hole evaporation either leads to

violation of quantum mechanics[5] and energy conservation[6] , or to black hole remnants

with unboundedly large number of internal states, producing catastrophic instabilities.2

If one assumes that quantum mechanics is valid, without unphysical instabilities, this

apparently contradicts the locality property of LQFT, and thus calls for a different under-

lying quantum framework. In quantum mechanics, this should be given in a Hilbert space

description. Such a framework should then reproduce LQFT as an excellent approximation

in familiar circumstances, e.g. those avoiding ultra-planckian collisions. This fits into a

picture where the fundamental quantities are defined as quantum objects, such as states

in Hilbert space, and not in terms of spacetime.

Additional structure is needed to characterize the physics; a particular problem is that

of recovering locality to an excellent approximation. One way to define a basic notion of

localization, in such a framework, is by specifying smaller tensor factors of a given Hilbert

space. These can be thought of as corresponding to different “regions.” Indeed, in LQFT,

the field operators localized to a given region produce such a factor structure, underlying

the algebraic approach to LQFT[9].3 Thus, a proposal is that part of the basic framework

for gravity is a network of tensor factors[11].

In this approach the basic “stuff” is quantum information, and it is conserved un-

der unitary quantum-mechanical evolution, defined in an appropriately general sense. In

LQFT, locality also constrains such evolution, and we likewise expect constraints here.

As a concrete example, one can explore these ideas in the case of black hole evolution.

A basic hypothesis is that we should think of the black hole and its surroundings as

corresponding to subsystems of a larger quantum system, yielding a tensor factor structure.

The problem, then, is to understand unitary evolution of the combined system. Part

of this problem then becomes a more generic problem in quantum information theory:

characterizing unitary information transfer between two subsystems.

When a black hole evaporates and shrinks, one expects the number of internal states

of its Hilbert space to also decrease, to avoid the problems noted above. Thus, we consider

unitary evolution where the product structure also evolves with time. As this happens,

quantum information must transfer from the black hole states to the exterior states.

2 See, e.g., [7,8].
3 Banks[10] has also explored using tensor factor structures to give a holographic description

of space time.



We wish to further characterize and constrain the evolution relevant for black holes,

and more generally quantum gravity. In addition to basic information theory constraints,

which we will explore, we also wish to describe a framework that matches onto an LQFT

description in appropriate circumstances. One might expect that in particular this means

there is a good LQFT approximation for states outside the black hole, and even for states

that an observer would measure falling into the black hole. The requirement, to approxi-

mately match LQFT evolution about a semiclassical geometrical background, appears to

be a powerful constraint – indeed it is not at the outset clear it can be satisfied, in a

consistent general framework.

Another way to describe the approach we take is to think of it as an effective quantum

theory description of black holes and their evolution. A black hole is expected to have a

finite number of states, and we can parameterize unitary evolution describing interaction

with its surroundings. However, since there are a number of powerful constraints on this

evolution, the approach is potentially more powerful than simply an effective description.

To motivate this statement, recall that the problem of parameterizing quantum evolu-

tion consistent with Poincaré invariance and locality essentially produces the structure of

LQFT. Likewise, here, we might expect to have sufficient constraints to learn a great deal

about the more basic structure of the theory.

In outline, the next section describes more details of the black hole states and evo-

lution, setting up the essential problem, and also constraining possible unitary evolution.

Section three focuses on general quantum information-theoretic results characterizing in-

formation transfer between subsystems and is largely independent of the black hole story;

those interested primarily in information-theoretic issues should read this section first,

consulting the other sections for cultural references. In particular, we characterize evolu-

tion in terms of a minimal form – “subsystem transfer,” which saturates a subadditivity

inequality – and departures from that, and also compare the role of such transfer to that

of scrambling. Section four then extends these basic ideas and constraints into the black

hole context, and in particular investigates existing classes of models for such evolution.

We also discuss the question of whether physical constraints imply evolution that is close

to saturating subsystem transfer. The appendices contains further technical details and

proofs.



2. Framework

If nature is quantum-mechanical, at a minimum[12] we expect it to be described in

terms of a Hilbert space of quantum states. In LQFT, this space of states is supplied by

a Fock space construction or interacting generalization. However, it has been argued (see

[13-17]) that no such local description is consistent with quantum mechanics together with

basic properties of gravity, and in particular black holes.

Therefore, we seemingly need a quantum theory that doesn’t originate in LQFT.

However, there are strong constraints – one being the statement that LQFT emerges as an

excellent approximation in familiar circumstances. A generic quantum mechanical system,

even with sufficiently large Hilbert space, would not exhibit this behavior. A particular

constraint – though one which we expect to be subtly violated – is that of spacetime

locality. Generic nonlocality contradicts our experience, and treated as a modification

of a quantum field theory framework, leads to trouble with causality, and consequent

paradoxes. A difficult question is how to achieve approximate locality, without having the

precise locality of LQFT.

Ref. [11] proposed that a more general structure, implementing a coarser notion of

localization, is provided by a Hilbert space with certain tensor factors. Specifically, the

tensor factors might be thought of as associated with states in different “regions” of space-

time. Such a structure arises with Fock space of LQFT, but clearly can be more general.

In addition, a full statement of approximate locality involves restriction of the unitary

evolution, so that “distant” elements of the tensor factor structure don’t strongly interact.

Ref. [11] proposed that these elements could provide a framework for a complete theory of

quantum gravity.

If such a structure is relevant to quantum gravity, it should in particular supply a

description of quantum evolution of a black hole. Ref. [18] gave illustrative simple models

for such unitary evolution, on a restriction of the Hilbert space, and ref. [11] proposed a

more general description of the possible Hilbert space structure, and unitary evolution,

for describing black holes. This paper will explore further constraints on such evolution,

arising from various physical and mathematical criteria. In order to do so, we first review

aspects of the Hilbert space structure described in [18,11].



2.1. Hilbert spaces and unitary evolution for black holes

Consider the space of states of a black hole, interacting with its surroundings, in,

e.g., asymptotically flat space. We will assume that this is a Hilbert space, with states

contained in a tensor product

H ⊂ HBH ⊗Hext , (2.1)

corresponding to a description at a particular “time.”4 This is a non-trivial assumption

about the quantum mechanical configurations of the system, but we deem it as plausible

and worth exploring.

The description at a different time is related by a unitary operator. More precisely,

this evolution map may change the factors in (2.1), and in particular their dimensions.

But, we assume that it is one-to-one on the image of physical states H, and preserves the

inner product. These thus preserve quantum information; knowledge of the current state

allows postdiction of prior events. While technically such maps are only isometries[19], we

refer to them as “unitary.”

Thus, most generally we are describing interacting quantum subsystems of a larger

system, such that the size of the subsystems can change through evolution. In a pure state,

the “missing” information from one subsystem is given by the von Neuman entropy of its

density matrix, ρi

Si = −Tr(ρi ln ρi), (2.2)

One key feature is that Si ≤ ln dim(Hi), which allows one to place a lower bound on

various subsystems.

We expect additional structure in order to capture the physics of black holes. First,

while LQFT evolution contradicts unitarity[5], we do expect the evolution of low-energy

states of Hext far from the black hole to have an excellent LQFT description. Moreover,

for a large black hole, we expect a good approximate LQFT description of some features

of the nearby external states, and of the states “inside” the black hole – for example of

measurements of an infalling observer, before collision with the strong curvature region.

For unitarity’s sake, we do however expect possible departures from a LQFT descrip-

tion for the black hole and near states and their evolution. We will make the apparently

4 While we expect to have more general notions of time, for simplicity, this may be taken to be

time at infinity. Then in a geometrical description there is the question of choosing the particular

time slice. In the present framework, we expect changes of this slice could correspond to unitary

equivalences, as briefly outlined in ref. [11].



reasonable assumption that the only significant departures affect these two subystems, and

thus further divideHext intoHnear⊗Hfar. Concretely, we don’t expect unitary evolution of

a solar-mass black hole here to nonlocally relay information to Alpha-Centauri – although

we propose that small departures from LQFT are possible on the scale corresponding to

the Schwarzschild radius, R ∼ 1 km, under appropriate circumstances. Specifically, we

expect significant modifications of HBH , and assume that the unitary evolution coupling

this space with the black hole “atmosphere” Hnear departs from that of LQFT, but that

the couplings of Hnear with Hfar are for practical purposes well-approximated by LQFT.

2.2. LQFT evolution

If we seek a minimal departure from LQFT, let us first recall how it describes BH

evolution, and, following [18,11], ask what modifications may be needed.

Time evolution can be described in the ADM formalism [20]. Consider perturbations

about a spherically-symmetric metric,

ds2 = −N2dT 2 + gxx(dx+NxdT )(dx+NxdT ) + r2(T, x)dΩ2 (2.3)

where N and Nx are the usual lapse and shift functions, respectively. Here a choice of time-

slicing has been made; T labels the constant time slices and x is a coordinate parameterizing

the radial direction along the slice. Different time slicings are possible; nice slices[21] clearly

exhibit the tension between LQFT and unitarity. An explicit construction of such slices is

given in [11], in the approximation of static geometry. These slices asymptote to constant

Schwarzschild-time slices at infinity, and asymptote to a constant radius inside the horizon,

thus avoiding the singularity.

LQFT can be set up by quantizing on this slicing. It is simplest to consider a scalar

quantum field, although other fields can be treated, including metric perturbations. In the

scalar case, we expand the field in a basis of mode functions, and creation and annihilation

operators

φ(x, T,Ω) =
∑

il~m

(
ail~muil(x)

Yl~m(Ω)

rD/2−1
+ h.c.

)
. (2.4)

It is particularly helpful if the mode functions are chosen to be approximately localized in

position and momentum, subject to uncertainty-principle constraints. For example, one

such construction is the windowed Fourier transform[22,23,11]

uja =
1√
ǫ

∫ (j+1)ǫ

jǫ

dkeik(x−2πa/ǫ) , ũja =
1√
ǫ

∫ (j+1)ǫ

jǫ

dke−ik(x−2πa/ǫ) , (2.5)



where ǫ is a resolution parameter and j, a index the localization in the radial momentum

and radial position, respectively. Clearly other approximately localized bases exist.

Such localized modes give us a way to decompose the Hilbert space into H(T ) =

HBH(T )⊗Hnear(T )⊗Hfar(T ) at a given time. In particular, we think of states associated

with modes localized within a few times the Schwarzschild radius, but outside the horizon,

as comprising Hnear(T ). This decomposition changes with time – as noted in our general

discussion of (2.1).

The Hawking radiation can be exhibited in terms of a particular entangled state in

HBH ⊗ Hext. An important condition for determining this state is that the infalling

observer sees no high-momentum excitations near the horizon – these modes are in their

vacuum. But, evolution of this state produces correlated pairs of excitations, with one

partner of each pair escaping as a quantum of Hawking radiation, and one falling into

the BH interior. Since the high-momentum modes are in their vacuum, it is useful to

introduce a high-momentum cutoff to describe this state. Specifically, focusing on the

outgoing, near-horizon modes, this state takes the form[11]

|ψ〉HR =
∏

jl

A(T )∏

a

(
S|0̂〉|0〉

)
jal
|0〉A(T ) . (2.6)

Here a < A(T ) is needed for the high-momentum cutoff, with A(T ) = ǫ(T +kR)/(2π),

and k a constant determined by the cutoff momentum. The corresponding short-

wavelength modes are in their vacuum, |0〉A(T ). S is a squeeze operator, of the form

Sjal = exp
{
z(ωj)

(
b̂†jalb

†
jal − b̂jalbjal

)}
, (2.7)

with

tanh z(ω) = e−βω/2 . (2.8)

In keeping with conventions used in [23,4], hatted quantities correspond to inside states.

This construction is particularly explicit in two-dimensional models[23].

The Hawking radiation can be described by a density matrix, formed by tracing out

the black hole interior states. This results in a thermal density matrix5

ρ(T ) =
1

Z

∑

{njal},a<A(T )

e−βH |{njal}〉〈{njal}| (2.9)

5 This discussion neglects reflection – see [11] for more discussion.



where njal are mode occupation numbers. As T grows, so does A(T ), and the entropy (2.2)

of (2.9) grows. If one considers evolution to time scales comparable to the evaporation time,

Tevap ∼ RSBH , with SBH the Bekenstein-Hawking entropy, the von Neumann entropy will

be of size SBH . This represents the missing information. Since local evolution apparently

forbids its escape while the black hole is larger than the Planck scale (and leaving it

behind in a remnant leads to other problems, see e.g. [7,8]), this parameterizes the unitary

violation of LQFT.

An essential aspect of the problem arises from the growth of the internal Hilbert space

HBH with time, and this in turn is forced by unitary local evolution because information

is forbidden by locality from escaping.

2.3. Models for evolution

If the dynamics can indeed be described in terms of subsystems (2.1), we need unitary

evolution such that the dimension of HBH shrinks, while unitary evolution transfers its

information to Hext. Here, apparently, evolution must depart from that of LQFT. A basic

goal of this paper is to refine understanding of possible such evolution.

Important constraints were outlined in [11]. First, we seek Hilbert spaces and evolu-

tion with “least possible” deviation from LQFT, which we expect to work well in familiar

circumstances. One reasonable expectation is that black holes have familiar general fea-

tures, both for outside and infalling observers. We might also expect that at least at the

coarse-grained level, and at sufficiently early times, black holes evaporate approximately

thermally as predicted by Hawking. These, together with the demand of unitary evolution

of the black hole, with shrinking HBH , apparently provide nontrivial constraints.

Indeed, in characterizing the evolution we also use constraints from information the-

ory. Information theory traditionally deals with finite dimensional spaces, but the LQFT

Hilbert space (Fock space) is infinite dimensional. Many results in information theory

extend to infinite dimensional Hilbert spaces, but the proofs are often substantially more

obfuscated or non existent†.
However, there are well-motivated reasons to expect that for our purposes we only need

to consider finite-dimensional Hilbert spaces. First, as has been noted, we seek a description

where HBH is finite-dimensional. Secondly, we have suggested an apparently reasonable

† Fortunately, strong subadditivity remains true in infinite dimensions [24], as does Klein’s

inequality, which is used to prove strong subadditivity



assumption that it only interacts significantly with the black hole atmosphere Hnear; usual

LQFT evolution then carries the information outward (or, brings information in from

Hfar). Since Hnear is the space of states corresponding to the region from the horizon to

a few times larger radius, the LQFT description of this space is finite-dimensional in the

presence of a UV cutoff. In order not to introduce major deviations from the Hawking

radiation – which would be seen by an infalling observer as high-energy particles – we

might expect modifications of LQFT only to affect excitations at wavelengths longer than

such a cutoff, say A(T ) of (2.6). Thus, the unitary information transfer takes place between

finite-dimensional Hilbert spaces.

In fact, an even stronger possible condition[18,11] is that the departures from LQFT

only affect quanta seen by infalling observers to have energies < K/R, with K a modest

number, say K < 5. This makes such modifications appear very innocuous to infalling

observers. In this case, the dimension of the relevant part of Hnear is correspondingly

small, with ∼ K2/(2π) modes.

Indeed, the basic features we have described suggest simplified toy models for black

hole evolution, and such toy models have been explored in [4,18,25,11]. Specifically, the

thermal factor with temperature T ∼ 1/R tells us that quanta with asymptotic energies

≫ 1/R have exponentially suppressed amplitudes, and gray body factors suppress emission

with energies ≪ 1/R. Indeed, in practice it is useful to take the arbitrary resolution

parameter in (2.5) to be ǫ ∼ 1/R. Then, we find that one particle with energy ∼ 1/R is

emitted for each time ∼ R. The simplest model[4] forgets all but occupation number zero

or one of one such mode, and replaces the thermal factor by one; in this case, evolution

through a time ∼ R maps the initial state |φ〉 of HBH ⊗Hext by

|φ〉 → |φ〉 |0̂0〉+ |1̂1〉√
2

. (2.10)

This is a simplified form of evolution corresponding to shifting the cutoff in (2.6); the hat-

ted/unhatted qubits correspond to modes just inside/outside the horizon. Such toy qubit

models can be generalized, and their generalizations can be used to explore modifications

to and information-theoretic constraints on evolution.



2.4. Paired states, a no-go theorem, and Schrödinger’s cat in a black hole

The evolution of eq. (2.10) corresponds to an increase of the entropy of the external

state of one bit per time step, mirroring the more general statements made below eq. (2.9).

We would like to understand what kinds of modifications to evolution avoid the increase

in entropy, and in fact reduce the entropy of the external state.

Note a prominent feature of the Hawking state is the pairing between internal and

external quanta, seen in eqs. (2.7) and (2.10). Indeed, this pairing is part of an expla-

nation for why the infalling observer sees nothing violent: it can be shown[16] that while

interactions between that observer and individual blue-shifted Hawking particles inside or

outside the horizon can be large, there are cancellations between the interactions with the

inside and outside modes.

This suggests considering modifications that retain this pairing. Ref. [4] considers

small admixtures of (|0̂0〉− |1̂1〉)/
√
2, and argues that small corrections of this form to the

toy Hawking evaporation (2.10) do not decrease the entropy of the external state.

In fact, there is a much more general result, that does not rely on smallness of correc-

tions, but only on this pairing property. Specifically, begin with a state of the form (2.6),

which is a linear combination of a countable number of basis states. Because they are

countable, they can then be well ordered in some manner. An arbitrary black hole pure

state (including matter that made the original black hole, infalling Hawking particles, and

outgoing Hawking particles) can be written as

|φ〉 =
∑

i,j

C′
i,jψ̂

′
iχ

′
j (2.11)

where ψ̂′
i and χ′

j are orthonormal bases for HBH and Hext, respectively. By choice of

new bases ψ̂i and χj for HBH and Hext, respectively, this can be put in the Schmidt

decomposed/singular value form

|φ〉 =
∑

k

Ckψ̂kχk (2.12)

where for each k, Ck ≥ 0 .

Consider a general time evolution, in which new particles are emitted in states with

internal/external pairing, |n̂n〉. Here the integer n can either label different modes, or their



occupation numbers, or even more general paired quantum numbers. A general evolution

to such states is
χi → χi

ψ̂i → ψ̂0
i |0̂0〉+ ψ̂1

i |1̂1〉+ ψ̂2
i |2̂2〉+ ...

(2.13)

We could also consider unitary evolution of the χi. But that does not change the analysis

since we can always choose to use the evolved χi in the analysis (as long as this evolution is

largely independent of the black hole, as we expect for Hawking particles emitted some time

ago, which have long since left the black hole vicinity). The ψ̂n
i are just some (generally

not normalized) linear combination of ψ̂i. Unitarity preserves norms, so for each i,

∑

n

||ψ̂n
i ||2 = 1 . (2.14)

Combining (2.12) and (2.13), the new state is

|φ〉′ =
∑

i

Ci

(
ψ̂0
i |0̂0〉+ ψ̂1

i |1̂1〉+ ψ̂2
i |2̂2〉+ ...

)
χi

=

(∑

i

Ciψ̂
0
i χi

)
|0̂0〉+

(∑

i

Ciψ̂
1
i χi

)
|1̂1〉+ ...

= Λ0|0̂0〉+ Λ1|1̂1〉+ ...

(2.15)

with Λn =
∑

i Ciψ̂
n
i χi.

In the case of the Hawking state, Λn = (e−βEn)Λ0. The Hawking pair factors out,

and it is clear that every pair increases the entanglement entropy between the inside and

outside.

Since Hawking’s result is not exact, many have speculated that small corrections,

contributing to many Hawking pairs, may allow information escape. As noted, ref. [4]

explored this in such paired models by adding a small admixture of (|0̂0〉 − |1̂1〉)/
√
2 that

could depend on the internal state of the black hole. It then showed that the entropy

increases by at least ln(2) − 2ǫ for each pair (where ǫ ≪ 1 is a parameter that defines

the size of the perturbation), demonstrating that such small perturbations cannot restore

unitarity.

The broader result states that for general evolution of the form (2.15), the entropy

of the external state cannot decrease – independent of the question of smallness of the

corrections. The proof appears in appendix A. So, one finds that the real issue is not



smallness of the corrections, but the evolution into paired states of internal and external

particles.

At first glance, this may seem like an odd result. For example, consider a unitary

operator that maps
|0̂0〉 → |0̂0〉 ;
|1̂0〉 → |1̂1〉 .

(2.16)

A CNOT gate does this, and is known to be unitary. It certainly seems that the outside

observer can uniquely determine the initial state of the interior based on what is observed

coming out. Unfortunately, this is an illusion that stems largely from the fact that this

operator is a legitimate classical cloner. The No Cloning Theorem, of course, prohibits

quantum cloning. To see that this evolution doesn’t extract the information, consider its

action on the following orthogonal states: 1√
2

(
|0̂0〉+ |1̂0〉

)
and 1√

2

(
|0̂0〉 − |1̂0〉

)
. In both

cases, the outside observer measures a density matrix proportional to the identity - what

comes out is in fact indistinguishable from uniform noise.

These observations extend that of the earlier proven No Hiding Theorem [26]. This

states that if all density states ρI on some subspace I unitarily map to the same density

state ρO on O, then all the information about I resides in H/O. More intuitively, this

theorem prevents generic quantum information from hiding purely in the correlations be-

tween two subsystems of a Hilbert space (i.e. local measurements in either or both Hilbert

spaces reveal nothing about the information hidden). What we’ve proven is stronger: even

if ρO is allowed to depend on ρI , ρO does not contain the information if the evolution

involves paired states.

Note parenthetically that the preceding comments connect to recent discussion of the

question of measuring Schrödinger’s cat inside a black hole[27]. If |0̂〉 and |1̂〉 represent
“live” and “dead,” respectively, then evolution (2.16) would allow an external observer to

measure whether the cat is alive or dead. But, such evolution is not sufficient to transfer the

quantum information of the state from inside the black hole to the outside, and arbitrary

measurements of the state of the cat can’t be performed from measuring the outside bits.

This example thus illustrates the importance of complete quantum information transfer

for unitary black hole evolution.

This discussion should make it clear that there are important constraints to be satisfied

in order to restore unitarity to black hole decay, and in particular that one needs to go

beyond even large departures from the Hawking result which involve paired quanta. Classes

of models that do so were given and illustrated in [18,11], and will be discussed below. But,



a first question is how to generally characterize the type of information transfer needed,

and refine our understanding of physical constraints on unitary evolution of black holes.

We next turn to these general information-theoretic considerations.

3. Characterizing Information Transfer

Motivated by the preceding discussion, we are interested in a general characterization

of quantum information transfer between subsystems of a quantum system, via unitary

evolution. In order to discuss this in a general setting, in this section we will use A in

place of the black hole Hilbert space HBH, and B in place of the external Hilbert space

Hext (or Hnear). Thus, we consider unitary maps

U : A⊗B → A′ ⊗B′ (3.1)

that transfer quantum information from a subsystem A to a subsystem B. The information

capacity of each system is given in terms of its dimension as ln |A|, ln |B|. In general, we

allow the dimensions of A and B to change. In fact, the terminology “unitary” is a minor

abuse, as the map U may not be onto A′ ⊗B′; more precisely we consider maps that are

isometries.

Making contact with standard notions of quantum information theory, each such uni-

tary (3.1) can be characterized as a set of quantum channels from A → B′. To see this,

start with an initial density matrix ρ = ρA ⊗ |φB〉〈φB |, with ρA on A and |φB〉 a ba-

sis state on B, that maps to ρ′ under unitary action. Each φB then labels a channel

TrB(ρ) = ρA → TrA′(ρ′). These channels are time dependent; part of the time evolution

derives from the change due to the unitary action, and part from allowing the dimensions

of A and B to change.

The space of unitary transformations is large, but a number of them don’t transfer

information. For example, unitaries of the form UA ⊗UB , which can be described as local

unitaries, do not do so. Of course, one of the reasons the von Neumann entropy (2.2) is

useful in characterizing information content is its invariance under such local unitaries.6

6 For a simple example, consider the transfer of information from one qubit to another. A

generic unitary acting on this system is described by SU(4). Of its 15 generators, only 3 are

nonlocal [28]. Of those, only 1 or 2 actually characterize information transfer. This is a substantial

simplification of the original problem of characterizing all possible unitaries.



There is also a particularly simple class of transformations that do transfer information

between subsystems. For example suppose that A is a tensor product, A = A1 ⊗A2, with

bases |i1〉, |i2〉 for the two factors, and let |φ〉B be an arbitrary state of B. Then, consider

a unitary U that maps to A′ = A1, B
′ = A2 ⊗B via

|i1i2〉A|φB〉 → |i1〉A′ |i2φ〉B′ . (3.2)

In other words, it simply transfers the subsystem A2 between the subsystems. We will refer

to such a transformation as subsystem transfer; a special case is qubit transfer. Clearly

subsystem transfer can be generalized to also include the action of local unitaries before

or after the transfer.

Obviously there are other, more complicated, forms of information transfer. We would

like to better understand the features of and constraints on such transfer.

3.1. Tracking information transfer with a reference Hilbert space

While entropy is a useful characteristic of information transfer, more refinement is

possible. Suppose there is a subsystem, say A, whose information we want to track. To do

so, as described in [29], introduce an auxiliary subsystem C with the same dimension |A|
as the subsystem. Then, choose an orthonormal basis for each and consider a maximally

entangled state of A and C:

|ψ〉 = 1√
|A|

|A|∑

i=1

|iA〉|iC〉 . (3.3)

Evolution acting on A is extended by trivial evolution on C; if U is a unitary acting on A

(possibly together with other subsystem of the full system),

U → U ⊗ IC . (3.4)

The correlations with the |iC〉 can be used to track where the quantum information in A

goes, under evolution; picturesquely, we can think of these correlations as ‘ropes’ between

these states and the corresponding states in A, or their images. If, after evolution, there

are correlations between C and some other subsystem B of the full Hilbert space, those

characterize the quantum information transfer to that subsystem from A.

For example, suppose that we start with uncorrelated state of two subsystems A and

B; the general such state is of the form |ψA〉|φB〉, and can be formed as a superposition of



|iA〉|φB〉. Information can be encoded in A by taking different superpositions of these, and

it can be transferred to B by action of a general unitary (3.1). Thus, consider introducing

the tracking state (3.3):

|ψ〉|φB〉 ∈ HA ⊗HB ⊗HC , (3.5)

and its corresponding density matrix ρABC = |ψ〉|φB〉〈φB|〈ψ|. From this, we can find the

density matrices of the different subsystems, e.g. ρA = TrBC ρABC , ρB = TrAC ρABC ,

ρAB = TrC ρABC , etc. Due to lack of correlations between A and B, ρB is a pure state; its

entropy (2.2), vanishes: SB = 0. Likewise ρAC is pure, but ρAB and ρA are mixed, with

entropy SAB = SA = ln |A|, representing the correlations with the auxiliary subsystem C.

Now, evolve via a unitary (3.1), (3.4). If ρB remains pure, information has not been

transferred B. But, if after evolution SB 6= 0, correlations have been transferred to or

formed with B. Note that SAB stays fixed at ln |A|0, by unitarity of U⊗1C . No information

transfer takes place between A⊗B and C: the latter is just a tool used in tracking.

While SB 6= 0 indicates that correlations have been formed with B, that does not

mean information has been transferred “out of” A; it could for example reside in non

trivial correlated states of the two subsystems. One way to diagnose this is to look at SA.

Its decrease, representing a decrease of correlation between A and C, is an indication of

information transfer out of A. Indeed, we see that SA defined in this fashion is a good

measure of the amount of information in subsystem A. In particular, evolution to SA = 0

corresponds to complete transfer of the information from subsystem A to subsystem B.

These entropies obey a triangle inequality[30]:

|SA − SB | ≤ SAB ≤ SA + SB , (3.6)

and the rightmost inequality is the subadditivity inequality. We can rewrite this as SB ≥
SAB − SA, and interpret it as saying that if correlations with A are decreased by (3.4),

there is a lower bound to the increase of the correlations with B. Exceeding this lower

bound is caused by entanglement between A and B. Correspondingly, one defines the

mutual information of A and B,

I(A : B) = SA + SB − SAB , (3.7)

which parameterizes the correlations between A and B.

We might ask if there is a “minimal” form of information transfer, that produces

final states saturating the subadditivity inequality, that is, so that the mutual information

I(A : B) stays fixed at zero. It turns out that there is – and this is subsystem transfer.



3.2. Saturation of subadditivity implies subsystem transfer

The preceding statement takes the form of a theorem.

THEOREM Consider evolution (3.1), (3.4) of |ψ〉|φB〉, where |ψ〉 is the tracker state
(3.3). Suppose that ρAB after evolution saturates subadditivity. U can then be expressed,

up to local unitaries, in the canonical form (3.2) for subsystem transfer.

Saturation of subadditivity, SAB = SA + SB holds if and only if[31] ρAB = ρA ⊗ ρB.
If the eigenvalues of ρA are {ρi}, and of ρB are {σj}, then the eigenvalues of ρA ⊗ ρB are

{ρiσj}.
On the other hand, the evolution of |ψ〉|φB〉 takes the form

U(|ψ〉|φB〉) =
1√
|A|

(
|ψ1〉|1C〉+ . . .+ |ψ|A|〉||A|C〉

)

with

|ψi〉 = U(|iA〉|φB〉) ,

(3.8)

giving the density matrix

ρAB = TrC(U |ψ〉|φB〉〈φB|〈ψ|U †) =
1

|A|
(
|ψ1〉〈ψ1|+ . . . |ψ|A|〉〈ψ|A||

)
(3.9)

So, the eigenvalues of ρAB are |A| copies of 1/|A|.
This means all the nonzero eigenvalues of ρA are the same, and the same applies to

ρB. Since we know their respective entropies, their eigenvalues must be |A|/k copies of

k/|A| and k copies of 1/k, respectively, with k an integer that divides |A|.
Indeed, this follows from a corollary:

Corollary: In this context, saturation of subadditivity is equivalent to SB = ln k and

SA = ln |A|
k
.

In one direction, this follows because ρA and ρB are proportional to the identity,

and their respective entropies must be ln of corresponding integer dimensions. Saturation

implies that the product of these integers is |A|. In the other direction, SA + SB =

ln |A|
k

+ ln k = ln |A| = SAB, so subadditivity is saturated.

This then implies that ρA is spanned by the kets/bras of an |A|/k dimensional subspace

of A, {|1̂〉 . . . | ̂|A|/k〉}. Similarly, ρB is spanned by the kets/bras of a k dimensional subspace

of B, {|1〉 . . . |k〉}. Since their tensor product spans ρAB, U (A⊗ |φB〉) = {|1̂〉 . . . | ̂|A|/k〉}⊗
{|1〉 . . . |k〉}.



Now that we have a basis for the image of A⊗|φB〉, we can apply the inverse operator

U−1 acting on the image to find a basis for A ⊗ |φB〉. This new basis will in general not

correspond to the original basis for A mentioned in the setup. Appropriately labeling this

basis then expresses U in canonical form. To put this more concretely,

|1̂⊗ 1〉 ⊗ |φB〉 = U−1(|1̂〉 ⊗ |1〉) U−1

←− |1̂〉 ⊗ |1〉
|1̂⊗ 2〉 ⊗ |φB〉 = U−1(|1̂〉 ⊗ |2〉) |1̂〉 ⊗ |2〉

...
|1̂⊗ k〉 ⊗ |φB〉 = U−1(|1̂〉 ⊗ |k〉) |1̂〉 ⊗ |k〉
|2̂⊗ 1〉 ⊗ |φB〉 = U−1(|2̂〉 ⊗ |1〉) |2̂〉 ⊗ |1〉

...

| ̂|A|
k ⊗ k〉 ⊗ |φB〉 = U−1(| ˆ|A|

k 〉 ⊗ |k〉) | ˆ|A|
k 〉 ⊗ |k〉

(3.10)

With this labeling of the new basis, U is manifestly subsystem transfer:

|1̂⊗ 1〉 ⊗ |φB〉 → U → |1̂〉 ⊗ |1〉
|1̂⊗ 2〉 ⊗ |φB〉 |1̂〉 ⊗ |2〉

...
|1̂⊗ k〉 ⊗ |φB〉 |1̂〉 ⊗ |k〉
|2̂⊗ 1〉 ⊗ |φB〉 |2̂〉 ⊗ |1〉

...

| ̂|A|
k ⊗ k〉 ⊗ |φB〉 | ˆ|A|

k 〉 ⊗ |k〉

(3.11)

Specifically, a subsystem of dimension k leaves subsystem A and enters B.

A basis for A naturally given by the physics of the problem may not be the same as

that in which the subsystem transfer takes this canonical form. For that reason, it is nice

to have a basis-independent test of whether such a basis exists, in the form of saturation

of the subadditivity inequality.

We should also note what the theorem does not say. In particular, we have kept the

initial state of B, |φB〉 fixed, though arbitrary. This means that we have only investigated

a single quantum channel, as described above. To test a different channel, we could check

whether subadditivity is saturated for |ψ〉|φ′B〉. If it is, then the map U is subsystem

transfer in both cases. But, the subsystem that is transferred could be a different subsystem

depending on |φB〉 vs. |φ′B〉. So, each channel should be checked inividually. Furthermore,

since the transferred subsystems can in general differ, action on |ψ〉(|φB〉+ |φ′B〉)/
√
2 will

not correspond to subsystem transfer. Nonetheless, this can be a useful result.



3.3. Saturating vs. non-saturating transfer

While subsystem transfer is the simplest form of unitary information transfer, and

as we have shown follows from saturation of the subadditivity inequality in (3.6), clearly

there are more general forms of information transfer that produce states not saturating this

inequality. One question is whether we expect unitary black hole evolution to be simple

saturating subsystem transfer, or not. A second question is to better understand the more

general forms of evolution. We turn first to the latter.
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Fig. 1: An illustration of basic bounds on information transfer. We assume

that SA decreases linearly to zero. SB is bounded below by the lower solid

(blue) line, corresponding to I(A,B) = 0 (saturation), and bounded above by

the upper solid (red) line, corresponding to maximal nonsaturation.

First, note that the discrete nature of subsystem transfer means that continuous evo-

lution accomplishing it will, at intermediate stages, not saturate subadditivity. A simple

illustration of this is the continuous transfer of one bit:

|0̂0〉 → |0̂0〉 ;
|1̂0〉 → cos τ |1̂0〉+ sin τ |0̂1〉 .

(3.12)



At τ = π/2, subsystem transfer has completed, but at intermediate stages the two systems

are entangled in a more complicated way and I(A : B) 6= 0.

As another illustrative example of non-saturating tranfer, consider (2.16), which we

can characterize with our method of tracking information. Here, SB increases, indicating

information transfer to B. But, SA does not decrease commensurately – the information

has not been transferred out of A. Instead, it resides in correlations of the two systems.

Indeed, in (2.16) the evolution produces “extra” excitation, in that two bits are in the

excited state “1.” This is another sense in which the information transfer is non-minimal.

Saturation is a condition for minimal, direct transfer. Non-saturation corresponds to

production of “extra” entanglement, for a given amount of transferred information.

Maximal nonsaturation

To further illustrate these considerations, we might ask whether there is a maximal

departure from saturation, that is, one maximizing the mutual information I(A : B). To

begin with, a bound on this can be found as follows. Since the combined state ρABC we

consider is pure, the leftmost inequality (3.6) implies SB = SAC . Then, the rightmost

subadditivity inequality (3.6) implies

SB ≤ SA + SC = SA + ln |A| . (3.13)

Thus the mutual information satisfies the bound

I(A : B) = SA + SB − SAB ≤ SA + (SA + ln |A|)− ln |A| = 2SA . (3.14)

A unitary maximizes I(A : B) iff (3.13) is saturated. The complete state is pure,

so saturation of (3.13) implies saturation of strong subadditivity[24] (using SAB = SC ,

SBC = SA),

SAB + SBC − SABC − SB ≥ 0 . (3.15)

A lemma given in appendix B then implies that the unitary takes the simple form

1√
|A|

∑

i

|iA〉|iC〉|φB〉 → |ψAL〉 ⊗
1√
|A|

∑

i

|iR〉|iC〉 . (3.16)

Here B must decompose as B = HL ⊗ HR. The state |ψAL〉 is in A ⊗ HL, and has no

entanglement with C, and |iR〉 ∈ HR. Thus all the information has transferred out of

the subsystem A, but entanglement between A and B remains. Removing the reference

subsystem, this evolution is

|iA〉|φB〉 → |ψAL〉 ⊗ |iR〉 (3.17)



In the limit that SA → 0, HBL is trivial ; the result is saturating transfer that transfers

everything. This is consistent since I(A : B) ≤ 2SA = 0. This is illustrated in fig. 1. Of

course, SB ≤ ln |B| (see green line, fig. 1), so unitary evolution is only possible if the final

dimension of B is as large as the initial dimension of A.

Note also that deviation from saturation is bounded by the entropy SB . Specifically,

for the evolution (3.4),

I(A : B) = SB + (SA − log |A|) ≤ SB . (3.18)

3.4. Scrambling vs. transfer

We close this section by touching on another aspect of unitary evolution of coupled

subsystems. First, in considering general evolution (3.1), distinct forms of evolution are

scrambling, and information transfer; moreover in time-dependent evolution these can

have different time scales. Scrambling of A[32-34] corresponds to mixing of the degrees of

freedom of A, and thus is represented by a local unitary. Note that its definition is basis

dependent (as is the definition of a scrambling time), since it can be undone by a unitary

change of basis. Transfer of information between the subsystems A and B, as we have

described, may take place on an independent time scale. (Of course, information transfer

contributes to scrambling of the composite system.)

Both can be relevant if we want to see how fast a given degree of freedom is transferred,

since that depends both on how fast it scrambles with the rest of A, and on how fast the

transfer from A to B takes place. The former dependence is because scrambling can move

a given bit into a subspace that then undergoes transfer. These basic points arise in the

context of models for black hole evolution.

4. Characterizing Unitary Black Hole Evolution

We now turn to discussion of how the preceding considerations apply in the context

of describing possible black hole evolution. Let us first summarize some expectations and

assumptions, following[11].

First, we assume unitary evolution of the form (3.1), coupling subsystems correspond-

ing to the black hole and its environment:

U : HBH ⊗Hext →HBH
′ ⊗Hext

′ . (4.1)



We expect a sequence of such transformations, which might for example be parameterized

by a quantity identified as “time at infinity.”

We assume that HBH decreases in dimension with evolution. One natural proposal is

that ln |HBH| is equal to the Bekenstein-Hawking entropy SBH (M) corresponding to the

decreasing mass of the black hole, although one may wish to consider more general time

dependence. This requires a significant departure from the semiclassical picture, since the

latter describes many more states of the black hole. This can be seen by starting with

a black hole of mass M0, and describing it in a nice-slicing[21,11]. After evaporation to

M ≪ M0, in the nice slice description one has O(exp{S(M0)}) internal states, correlated
with the outgoing Hawking radiation.

Another apparently reasonable assumption is that the external Hilbert space lies in a

decomposition

Hext ⊂ Hnear ⊗Hfar . (4.2)

The idea behind this is that the states and evolution on Hfar are described by LQFT, as

long as we consider low energy states without strong gravity effects. Evolution of the “black

hole atmosphere” Hnear may depart from that of LQFT, in particular through couplings

to the states of HBH. A simplest alternative to consider is that the states of Hnear are

otherwise well-approximated by LQFT, although other alternatives might be considered,

for example in proposals with large departure from semiclassical black hole geometry near

the horizon[13,14,35]. Likewise, a simplest alternative is that the couplings between Hnear

and Hfar are well-approximated by LQFT evolution.

A key question is the evolution of HBH, and its coupling to Hnear. In LQFT, this

evolution does not allow quantum information transfer from HBH to Hnear, and this results

in buildup of states in HBH. Thus, LQFT evolution needs to be modified, along with the

description of Hnear, noted above. Nonetheless, one might seek a “most conservative,”

minimal departure from LQFT in describing this evolution. For example, we might expect

the states of an infalling observer and her immediate surroundings to be well-described by

LQFT, until either they impact strong curvature, in some gauge choices, or until a long

time has elapsed in other gauges such as the nice slicings. But, ultimately, unitary decrease

in the size of HBH requires information transfer to Hext, and this is apparently outside a



LQFT description. While such evolution seems to violate locality, it does not necessarily

violate causality[36].7

Thus, unless motivated otherwise by other compelling considerations, we seek unitary

evolution with minimal deviation from LQFT. Basic aspects of the semiclassical approxi-

mation are the presence of the horizon, and that the atmosphere is essentially featureless to

an infalling observer; departure from this would seem surprising. There is potential tension

between this statement and the statement that information is transferred into Hnear; for

example, transfer into highly blueshifted Hawking modes would lead to a large departure

from the Hawking state, and potentially painful effects for infalling observers. But, in

the context of more general unitary evolution, we can examine the proposal[18,11] that

information transfer only occurs to “soft” states of Hnear, that is, those that correspond

to quanta of moderate wavelength, and thus to particles that an infalling observer doesn’t

see as highly energetic. Then, with the required information transfer rates, the alteration

of the Hawking state can have minimal impact on these observers.

One expects that other physical requirements should be added to this list (see e.g.

[11]), but we next turn to discussion of some simple models of unitary black hole evolution

exhibiting some of these features, and the considerations of the preceding discussion.

4.1. Page’s random unitaries, and subadditivity

An early description of one kind of unitary evolution is Page’s [37]. This analysis

assumes that there are black hole and radiation subsystems, with respective dimensions

|HBH| = exp{SBH} and |Hrad| = exp{Srad}, and that these dimensions change so that

N = |HBH| × |Hrad|, (4.3)

remains constant. Page does not describe more details of the states or dynamics, but

does consider properties of a random pure state in the product Hilbert space, resulting

from random unitary evolution. A particular question is the entanglement entropy of

such a state, as a function of the changing dimension |HBH|. Under these conditions, he

finds that the entropy of the radiation subsystem increases, until the dimensions of the

7 A brief explanation of this is that while in Minkowski space, Lorentz symmetry transforma-

tions can convert evolution outside the light cone into evolution backwards in time, the global

symmetries of a black hole background do not include such transformations – the black hole can

be thought of as choosing a frame.



two subsystems become comparable, after which the entropy of the radiation subsystem

decreases to zero.

Since the dimension of the full Hilbert space remains constant under the unitary

evolution, and initially the radiation system is empty, we see that what is being assumed

is an example of subsystem transfer: degrees of freedom (or subsystems) are being directly

transferred from the BH subsystem to the radiation subsystem. In particular, the entropies

are at the maximum possible, given by the dimensions of the subsystems, if all states are

tracked with the auxiliary subsystem.

4.2. Unitary models approximating LQFT

One would like to go further, and give a more detailed description of the internal

and external Hilbert spaces and their evolution, that ultimately fits in a consistent frame-

work for quantum gravity, and matches LQFT evolution in appropriate circumstances.

Specifically, we might investigate how these could more-or-less closely match semiclassical

expectations, such as benign evolution for infalling observers, and radiation that approxi-

mates Hawking’s.

In the context of qubit models, [18] provides such examples, and [11] explains how

these are generalized to more realistic degrees of freedom.

One type of evolution is described in (4.18) of [11], and generalizations. The simplified

qubit version of this kind of evolution takes the form

|0̂〉|0̂〉|â〉|a〉 → Û |â〉 ⊗ N
(
|0̂〉|0〉+ e−βω/2|1̂〉|1〉

)
⊗ U |a〉 ,

|0̂〉|1̂〉|â〉|a〉 → Û |â〉 ⊗ |0̂〉|1〉 ⊗ U |a〉 ,
|1̂〉|0̂〉|â〉|a〉 → Û |â〉 ⊗ |1̂〉|0〉 ⊗ U |a〉 ,

|1̂〉|1̂〉|â〉|a〉 → Û |â〉 ⊗ N
(
e−βω/2|0̂〉|0〉 − |1̂〉|1〉

)
⊗ U |a〉

(4.4)

for a single time step transferring one bit of information, with normalization factor

N = (1 + e−βω)−1/2 . (4.5)

This evolution saturates subadditivity. This can be seen directly by defining |0̃〉|0̃〉 =
N (e−βω/2|1̂〉|1̂〉 + |0̂〉|0̂〉) and |1̃〉|1̃〉 = N (e−βω/2|0̂〉|0̂〉 − |1̂〉|1̂〉). This basis exhibits the

evolution of (4.4) as subsystem transfer of one qubit. This can also be seen more indirectly

by noticing that this map includes all possible states and preserves dimension. One way to



describe this model is to say that the usual Hawking pair that appears arises from an initial

“vacuum” state of the black hole. But, as the interior piles up with other states, either

partners of previously-emitted Hawking particles, or from infalling matter, the black hole

behavior changes. In the absence of rapid scrambling (which can be described via Û), this

model will take quite some time before the internal space starts coming out, prolonging

semiclassical behavior. With rapid scrambling, the information begins to come out on

the scrambling time scale, and in this sense the semiclassical approximation breaks down

equally quickly. This discussion illustrates the separation between the roles of information

transfer, and scrambling.

A second type of model is (4.19) of [11], and generalizations, whose simplified qubit

form is

|q̂1q̂2〉|â〉|a〉 → Û |â〉 ⊗ N
(
|0̂〉|0〉+ e−βω/2|1̂〉|1〉

)
⊗ |0̂′0̂′′〉|q′1q′′2 〉 ⊗ U |a〉 . (4.6)

Here the information from internal degrees of freedom imprints on modes q′1, q
′′
2 that do

not otherwise have large excitation in the Hawking state. This model does not saturate

subadditivity and so is not simple subsystem transfer. It can however be thought of as a

combination of subsystem transfer of the information of two qubits, followed by Hawking

pair production. In this sense, it is similar to (3.16). This model can be described by saying

that Hawking production behaves normally, but there is an additional flux of information

(hence energy) from the interior of the black hole. In the limit of a large black hole and

slow evaporation rates, this evolution can still be rather innocuous, and not introduce large

stresses near the horizon. A necessary condition for unitary evolution ending with a pure

exterior state is that the information transfer rate exceed the rate of new entanglement

being created by the Hawking pairs.

These models merely serve as particular examples; as noted they can be generalized to

more realistic multi-mode models[11], and in the absence of further constraints, evolution

could even include both. We next turn to further comments on general features of black

hole evolution.

4.3. Scrambling and transfer

Section 3.4 makes the general distinction between information scrambling and transfer

in the context of interacting subsystems; let us consider their roles when a black hole

interacts with its environment. Note that one characteristic of the two types of evolution is



the timescale on which they operate. To illustrate this, let us compare various semiclassical

predictions with the unitary models that we have described.

In the semiclassical description of black hole evolution first given by Hawking, the

transfer time is effectively infinite: the information never transfers to the external state

(though the calculation certainly fails once the black hole reaches Planck size). The scram-

bling time, however, appears gauge-dependent, in accord with the general discussion of

sec. 3.4. Specifically, if we base our description on a set of “nice” spatial slices, which are

chosen to avoid the strong curvature region (for more details see [11]), the excitations have

frozen time evolution on the slice and in particular never scramble. On the other hand,

if we use a “natural” slicing[36,11], such as described by observations of a collection of

satellites freely falling into the black hole, semiclassical evolution of inside particles termi-

nates on timescales ∼ R where they encounter strong curvature. It is not unreasonable to

assume that degrees of freedom then scramble, in the absence of a concrete description.

These nice and natural slicings are expected to be related by a unitary transformation –

modulo details of Planck scale dynamics.

For the Page dynamics summarized above, the scrambling time is short, as is the

transfer time. Namely, Page assumes the action of a general random unitary on the internal

state, and transfer that begins immediately. However, as Page shows, the amount of

information that is transferred out is very small until the black hole and exterior subsystems

are of comparable size.

In the models described in sec. 3.3, information transfer from internal degrees of

freedom is immediate. However, this does not mean that a given bit that has fallen in

(or is paired with an outgoing Hawking quantum) immediately begins to transfer. At one

extreme, consider (4.4) where Û is simply nice-slice evolution of LQFT. A given bit then

freezes, until it hits the leftmost position in the state, and is transferred according to (4.4).

If there are O(SBH) total bits, this can take a time ∼ RSBH . Similar considerations hold

for (4.6).

Alternately, Û could describe more rapid scrambling, resulting in more rapid transfer

of a given bit.8 If one only had the picture motivated by natural slices, one might in

fact conjecture rapid scrambling. But, if the nice slice picture is valid, it suggests that

there is a gauge where the scrambling is slow. While one might consider transfer acting

8 After a long enough time, information of a given bit can be recovered on the scrambling time

scale [29].



on any of the bits, generalizing (4.4) or (4.6), the picture where they only transfer after a

long time, when they have reached the “leftmost” position, is in a sense “closest” to the

vanishing transfer and scrambling of the semiclassical nice-slice picture. Indeed, this can

be motivated by noting that there are arguments[38,36] that the perturbative nice-slice

state fails to describe the black hole quantum state after a time ∼ RSBH . But, one can

also consider an intermediate continuum of more rapid scrambling and transfer times in

investigating models for the true non-perturbative dynamics.

4.4. The question of saturation

In describing information transfer from a black hole to its surroundings, a first question

to answer is how close the transfer is to the saturation of subadditivity, described in section

3.2. As shown there, saturation implies that the information transfer is simple subsystem

transfer, essentially direct transfer of degrees of freedom (or quanta), whereas departure

from this would indicate transfer involving more complicated interactions. We have noted

that either kind of transfer can be described; the former was assumed in [37], but more

detailed models are given for both saturating and non-saturating evolution in [18,11].

There are motivations for expecting that the information transfer is near saturation.

One reason for this is that, as noted in section 3.2, departure from saturation involves extra

excitation. If we imagine that information transfer from a black hole is a small correction

to semiclassical evolution, due to a weak effect, this suggests it involves minimal extra

excitation.

A second argument arises from the discussion of section 4.5 of [11], and from the

discussion of section 3. Suppose that the information transfer from the black hole to

surroundings is only via couplings to Hnear, that it takes the form

1√
|A|

∑

i

|iC〉|iA〉 ⊗ |φnear〉 ⊗ |φfar〉 →
1√
|A|

∑

i

|iC〉 ⊗ U(|iA〉|φnear〉)⊗ |φfar〉 , (4.7)

and that subsequently information transfers unitarily to Hfar e.g. through evolution of

LQFT form. If, as we have discussed, the relevant modes of Hnear span a space with a

relatively small dimension, as summarized in section 2.3, this limits the departure from

saturation. One can think of this limitation as arising from the limited “bandwidth” of

communication through Hnear to the rest of Hext. Specifically, the constraint of small

|Hnear| combined with (3.18) limits the deviation from saturation at each step of the evo-

lution. Essentially, information transfer to the environment only results from interactions



with the BH atmosphere, and restricting the relevant modes of the latter limits the transfer

and its deviation from minimality.

Note that saturation of subadditivity is closely connected with the usual thermo-

dynamic condition of statistical independence of subsystems; in particular, for vanishing

mutual information, SAB = SA + SB . For a hot body that radiates subsystems (photons,

etc.), one typically assumes such independence.

Also, we saw in (4.6) that deviation from saturation can produce extra energy flux.

Indeed, recall that in general SA + SB ≥ SAB = const., with equality corresponding to

saturation. So, deviation from saturation increases in a process where ∆(SA +SB) > 0. If

energy is conserved, this corresponds to

dE

dSB
< − dE

dSA
. (4.8)

Specifically, if the energy per bit of excitation of B is ∼ β−1 ∼ 1/R, then dE/dSA <∼ −β−1.

If so, the black hole can radiate all of its energy before SA goes to zero, returning us to

the paradoxes of remnants or information loss. The only obvious way to avoid this is if in

the non-saturating case, the typical excitation energies of B quanta are lower than ∼ β−1.
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Appendix A. No information escape via paired states

In this appendix, we provide the proof of the statement, given in section 2.4, that

information cannot escape the black hole if corrections take the form of paired Hawking-

like states, (2.13) – even if such corrections are large.

This result follows from strong subadditivity (3.15), which can be written equiva-

lently[31]

SAB + SBC ≥ SA + SC . (A.1)



Setting A = χold (preexisting state outside black hole), B = χnew (new outgoing parti-

cle(s)), and C = ψ̂new (new inside particle(s)), gives

S(χold ∪ χnew) + S(pair) ≥ S(χold) + S(ψ̂new) , or,

S(χall) ≥ S(χold) +
[
S(ψ̂new)− S(pair)

]
.

(A.2)

Looking back at (2.15), we see that the density matrix for the pair is

ρpair =



〈Λ0||Λ0〉 〈Λ0||Λ1〉 · · ·
〈Λ1||Λ0〉 〈Λ1||Λ1〉 · · ·

...
...

. . .


 . (A.3)

Looking at (A.3), we see that the density matrix for the new inside state is

ρnewin =



〈Λ0||Λ0〉 0 0

0 〈Λ1||Λ1〉 0

0 0
. . .


 . (A.4)

Since the density matrix of the new inside state is just the diagonal of the density

matrix of the pair, it does not have a lower entropy. A proof of this claim is included

below. This implies that the square bracket in (A.2) is bounded from below by zero. Our

desired result is then

S(χall) ≥ S(χold) . (A.5)

Therefore, as claimed, the entropy of the black hole cannot decrease.

The necessary claim follows from Klein’s inequality. As a preliminary, let ρ be a

density matrix, and σ be its diagonal. Then Tr(ρ lnσ) = Tr(σ lnσ), as trivially follows

from diagonality of σ. Klein’s inequality states

Tr(ρ lnρ− ρ lnσ) ≥ 0 . (A.6)

So, combined with the preceding result, this implies that S(σ) ≥ S(ρ).

Appendix B. Canonical form of a unitary with maximal departure from satu-

ration

Ref. [39] proved that all tripartite states that saturate strong subadditivity (3.15) with

equality

SAB + SBC − SABC − SB = 0 (B.1)



have the following structure: HB can be decomposed HB =
⊕

j HLj
⊗HRj

and

ρABC =
⊕

j

qjρALj
⊗ ρRjC (B.2)

From this the following useful lemma can be proved.

Lemma: If ρABC is both pure and saturates strong subadditivity, then HB can be

decomposed HB = HL⊗HR such that ρABC = ρAL⊗ρRC ; furthermore, ρAL and ρRB are

both pure.

This is easy to see since purity of ρABC and concavity of entropy implies that there

is no sum over j. The final clause follows from additivity of entropy.

This lemma can be used to prove the canonical form (3.16) for a unitary with maximal

departure from saturation. The lemma implies that for the resulting state, B can be

decomposed as HL ⊗HR such that ρABC = ρAL ⊗ ρCR. Each of these factors are in turn

pure, so we have ρABC = |ψAL〉〈ψAL| ⊗ |ψRC〉〈ψRC |. So far, the unitary has the following

structure:

U :
1√
|A|

∑

i

|iA〉|iC〉|φB〉 → |ψAL〉 ⊗ |ψRC〉 . (B.3)

C is still maximally entangled, and maximally entangled bipartite states are unique up to

a choice of basis, so |ψRC〉 = 1√
|A|

∑
i |iR〉|iC〉. This suffices to prove the aforementioned

canonical form (3.16). As a final observation, there is still residual entanglement between

A and B determined by ρAL, but independent of the initial state on A.
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