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We present a new three-dimensional general-relativistic hydrodynamic evolution scheme coupled
to dynamical spacetime evolutions which is capable of efficiently simulating stellar collapse, isolated
neutron stars, black hole formation, and binary neutron star coalescence. We make use of a set
of adapted curvi-linear grids (multipatches) coupled with flux-conservative cell-centered adaptive
mesh refinement. This allows us to significantly enlarge our computational domains while still
maintaining high resolution in the gravitational-wave extraction zone, the exterior layers of a star, or
the region of mass ejection in merging neutron stars. The fluid is evolved with a high-resolution shock
capturing finite volume scheme, while the spacetime geometry is evolved using fourth-order finite
differences. We employ a multi-rate Runge-Kutta time integration scheme for efficiency, evolving
the fluid with second-order and the spacetime geometry with fourth-order integration, respectively.
We validate our code by a number of benchmark problems: a rotating stellar collapse model, an
excited neutron star, neutron star collapse to a black hole, and binary neutron star coalescence. The
test problems, especially the latter, greatly benefit from higher resolution in the gravitational-wave
extraction zone, causally disconnected outer boundaries, and application of Cauchy-characteristic
gravitational-wave extraction. We show that we are able to extract convergent gravitational-wave
modes up to (`,m) = (6, 6). This study paves the way for more realistic and detailed studies of
compact objects and stellar collapse in full three dimensions and in large computational domains.
The multipatch infrastructure and the improvements to mesh refinement and hydrodynamics codes
discussed in this paper will be made available as part of the open-source Einstein Toolkit.

PACS numbers: 04.25.D-, 04.30.Db, 97.60.Bw, 02.70.Bf

I. INTRODUCTION

Some of the most interesting relativistic astrophysi-
cal phenomena such as stellar collapse, black hole forma-
tion, or binary neutron star coalescence, require numeri-
cal simulations on large computational domains, involve
many different length scales, and are intrinsically three-
dimensional (3D). Due to their extreme nature in terms
of fluid densities and velocities, an accurate treatment
of general-relativistic (GR) gravity is required. Depend-
ing on the problem, magnetic field evolution and neu-
trino interactions may also be required. Thus, numerical
computations in relativistic astrophysics are truly multi-
physics, and as such, are especially demanding in terms
of computational modeling technology and resources.

Current state of the art 3D GR hydrodynamic simula-
tions in the context of stellar collapse [1–5] or binary neu-
tron star coalescence [6–13] (see [14] for a recent review)
are based on Cartesian grids with adaptive mesh refine-
ment (AMR). As the domain is enlarged or the resolution
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increased, such grids pose a serious bottleneck in terms
of the computational power that is required, even with
AMR. Since Cartesian grids scale as N3 in terms of the
numberN of grid points along one spatial direction in 3D,
available computational resources are rapidly exhausted
when additional points in each coordinate direction are
added. The symmetry of the computational problem,
however, is essentially spherical, at least at some distance
from the central region of the simulation. Thus, Carte-
sian grids are wasteful with respect to angular resolution
when the problem becomes symmetrically spherical.

For instance, stellar collapse proceeds in approximately
spherical or axisymmetric terms (e.g. [15–18]). At later
times, various hydrodynamic instabilities (e.g. convection
and instabilities of the shock) break this symmetry. The
global features, however, remain approximately spherical
or axisymmetric.

In the case of coalescing binary neutron stars, the
central region containing the two neutron stars is not
of spherical symmetry. At larger distances and in the
gravitational-wave (GW) zone, however, the problem
becomes spherical. The gravitational-wave extraction
zone must generally be located at large radii in order
to limit near-zone effects in the extracted wave. But
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even with more sophisticated techniques such as Cauchy-
characteristic extraction [19–24] that allow us to ex-
tract gauge-invariant GWs at future null infinity J +, it
is necessary to enlarge the domain sufficiently so that
constraint-violating modes generated at the outer bound-
ary are causally disconnected from the interior evolution
and the wave-extraction zone. These constraint-violating
modes are generated due to the lack of constraint-
preserving outer boundary conditions for the Einstein
equations (see [25] for a recent review) for certain types
of evolution systems (including the common BSSN sys-
tem), and travel at the speed of light [26, 27] to the inte-
rior of the domain. Without these systematic errors, the
evolution and wave extraction would generally be more
accurate. Furthermore, in case mass is ejected during
and after merger, enlarging refinement levels to track the
evolution of the ejected material becomes very expensive.

It therefore seems natural to apply spherical grids to
maintain high resolution also in the outer regions of the
domain. The computational effort when using spherical
grids scales linearly with the number of radial points N ,
assuming constant angular resolution. Thus, spherical
grids can give a tremendous performance improvement
when the domain is enlarged or the (radial) resolution
increased.

Spherical grids have been widely used for many astro-
physical problems, including stellar collapse (e.g., [28–
32]), core-collapse supernovae (e.g., [33–35]), oscillations
of neutron stars (e.g., [36, 37]), neutron star magneto-
sphere (e.g., [38]), accretion onto black holes [39], and
simulations of accretion disks (e.g., [40–42]). Unfor-
tunately, the standard spherical-polar coordinate sys-
tem imposes a serious difficulty along the axis and the
poles, where special care must be taken to regularize
the fields (e.g.,[43]). Recent approaches make use of im-
plicit Runge-Kutta methods that yield stable evolutions
in spherical coordinates without regularizations [44–46].
But even with these fixes, the angular and radial distri-
bution of grid points is non-optimal in the sense that they
cluster at the poles and at the coordinate origin. In ad-
dition, spherical grids are less suited in regions where the
underlying symmetry is non-spherical, e.g., in the vicinity
of a binary neutron star system, or the highly turbulent
and convective region behind the accretion shock in a
core-collapse supernova.

In order to handle multiple regions of different symme-
try within the same simulation, multipatch (sometimes
also called multiblock) schemes have been developed for
a wide range of physics and engineering applications.
The idea is to cover the simulation domain with mul-
tiple curvi-linear coordinate “patches”. Each patch is lo-
cally uniform. Diffeomorphic mappings from local to the
global coordinates enable to represent a wide range of
grid shapes in different regions of the simulation. One
such example is given in Fig. 1. In this setup, a cen-
tral Cartesian patch is surrounded by six “inflated cube”
spherical grid patches. This is a natural configuration for
our purposes. The aspherical region of a collapsing star

or a merging binary is best modeled by a central Carte-
sian patch, capable of AMR. The gravitational-wave zone
and/or the outer layers of a star are best modeled by
the more efficient spherical grids. This allows us to em-
ploy large domains at high resolution with modest com-
putational cost. Notably, the outer boundary can be
causally disconnected from the interior evolution and the
gravitational-wave extraction zone.

Within the context of numerical relativity and rela-
tivistic astrophysics, multipatch schemes have already
been successfully applied in a range of different problems
ranging from simulations of accretion disks [47, 48], hori-
zon finding [49], wave extraction [50], single black holes
[51, 52], orbiting black holes [53], relativistic fluid evolu-
tions on fixed backgrounds [54], elliptic and initial data
solvers [55–59], to characteristic evolutions of Einstein’s
equations [20, 60, 61]. Multidomain spectral methods
have been successfully applied to vacuum binary black
hole evolutions yielding high accuracy and efficiency [62–
67] using a dual-coordinate frame method [68]. The same
multidomain spectral code SpEC, coupled to a finite vol-
ume fluid solver, has also been used to simulate neutron
star black hole mergers [69–72]. Neither of the works
above, however, make use of AMR for the fluid fields, and
thus are limited in the respective range of astrophysical
applications. In particular, efficient simulations of stellar
collapse and black hole formation require AMR in the
central region of the collapsing star. Also, the near-field
region in simulations of binary neutron star coalescence
substantially benefit from AMR, in particular when ma-
terial is ejected in the post-merger phase.

In the context of vacuum binary black hole merger sim-
ulations, multipatch schemes combined with AMR have
been successfully applied [73–79]. We base our code on
the Llama infrastructure developed in [73], which makes
use of the Cactus computational toolkit [80] and the
Carpet AMR driver [81, 82]. We extend the original pure
vacuum scheme to include full matter dynamics using
the publicly available GR hydrodynamics code GRHydro,
which is part of the EinsteinToolkit [83]. We thus
present the first successful multipatch scheme capable of
AMR that can stably evolve fluid dynamics coupled to
fully GR spacetime dynamics.

In addition, we make a number of improvements: (i)
We extend the AMR driver Carpet to support cell-
centered mesh refinement, which allows us to apply re-
fluxing, a technique to maintain conservation of mass,
energy and momentum fluxes across mesh refinement
boundaries [84] (see [85] for a recent application to GR
hydrodynamics). This greatly improves conservation of
mass in our simulations of stellar collapse, especially in
the postbounce evolution. (ii) We apply enhanced PPM
(piecewise parabolic method) reconstruction [86, 87],
which significantly improves the numerical accuracy and
the behavior of the constraints. (iii) To improve the
execution speed of the simulations, we apply multirate
Runge-Kutta (RK) time integration (e.g. [88, 89]) in
which the spacetime is evolved with a standard fourth-
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order RK method, whereas the fluid is evolved with a
second order RK scheme without significant loss of accu-
racy. This reduces the number of intermediate steps in
the fluid evolution, which dominates in terms of proces-
sor cycles compared to spacetime evolution, in particular
when using a microphysical equation of state.

We apply the new code to a number of benchmark
problems, including the evolution of a single isolated and
perturbed neutron star, the collapse of a rotating stel-
lar core, the collapse of a neutron star to a black hole,
and the merger of a binary neutron star system. We
investigate the accuracy and convergence of each test
problem. This is an important code verification towards
our program to carry out fully 3D simulations of core-
collapse supernovae (see [90] for a recent application of
our scheme) and black hole formation in the context of
the collapsar scenario for long gamma-ray bursts. The
new multipatch scheme allows us to significantly enlarge
the computational domain by maintaining a fixed angular
resolution. This is useful in many ways: (i) we are able
to causally disconnect the outer boundary from the inte-
rior evolution and the gravitational-wave extraction zone,
thus avoiding systematic errors from the approximate
and non-constraint preserving artificial outer boundary
condition, (ii) we have a larger wave-extraction zone with
higher overall resolution, thus making it possible to ex-
tract higher-order than the dominant GW modes, (iii)
in binary neutron star mergers, ejected material can be
tracked out to large radii with relatively high resolution,
(iv) the number of mesh refinement levels can be de-
creased, leading to better parallel scaling. As a result,
our multipatch scheme can efficiently evolve models of
stellar collapse in full 3D (see also [90]), and is capable
of more accurate gravitational-wave extraction in models
of binary neutron star mergers. In the latter test prob-
lem, we extract convergent gravitational-wave modes up
to (`,m) = (6, 6).

This paper is organized as follows. In Sec. II A and
IIB, we first review the underlying hydrodynamic and
spacetime evolution systems and how we solve them nu-
merically. Subsequently, in Sec. II C, we present our ap-
proach to multipatches and their numerical implementa-
tion. We also discuss our implementation of cell-centered
AMR (Sec. IID), and describe multirate RK time inte-
gration (Sec. II E). Finally, in Sec. III, we present de-
tailed tests of isolated perturbed and unperturbed neu-
tron stars, collapsing stellar cores, neutron star collapse
to a black hole, and merging binary neutron stars. We
conclude and summarize our findings in Sec. IV. In an
appendix, we presents basic tests with shock tubes (Ap-
pendix A), we review the enhanced PPM scheme as de-
veloped in [86, 87] (Appendix B), discuss our treatment
of the artificial low-density atmosphere (Appendix C),
present an optimized ghost-zone update scheme to im-
prove the parallel scaling (Appendix D), describe our
volume integration scheme for overlapping grids (Ap-
pendix E), and investigate the influence of boundary ef-
fects on binary neutron star merger dynamics and wave

extraction (Appendix F).

II. METHODS

A. General-Relativistic Hydrodynamics

We base our code on the open-source GR hydrodynam-
ics code GRHydro that is part of the EinsteinToolkit
[91] and is described in [21, 83, 92].

We introduce primitive variables in the form of the
fluid density ρ, the fluid’s specific internal energy ε, and
the fluid 3-velocity as seen by Eulerian observers at rest
in the current spatial 3-hypersurface [93],

vi =
ui

W
+
βi

α
, (1)

where ui is the fluid 4-velocity, W = (1 − vivi)
−1/2 is

the Lorentz factor, and α and βi are lapse and shift,
respectively (to be introduced in Sec. II B). In terms of
the 3-velocity, the contravariant 4-velocity is then given
by

u0 =
W

α
, ui = W

(
vi − βi

α

)
, (2)

and the covariant 4-velocity is

u0 = W (viβi − α) , ui = Wvi . (3)

The evolution equations are written in the Valencia
form of GR hydrodynamics [94, 95] as a first-order hy-
perbolic flux-conservative evolution system for the con-
served variables D, Si, and τ which are defined in terms
of the primitive variables ρ, ε, vi,

D =
√
γρW,

Si =
√
γρhW 2vi,

τ =
√
γ
(
ρhW 2 − P

)
−D , (4)

where γ is the determinant of the 3-metric γij (see
Sec. II B), and the quantities P , and h = 1 + ε + P/ρ
denote pressure, and specific enthalpy, respectively. The
evolution system then becomes

∂U

∂t
+
∂F i

∂x i
= S , (5)

with

U = [D,Sj , τ ],

F i = α
[
Dṽ i, Sj ṽ

i + δ ijP, τ ṽ
i + Pv i

]
,

S = α

[
0, Tµν

(
∂gνj
∂xµ

− Γλ
µνgλj

)
,

α

(
Tµ0 ∂ lnα

∂xµ
− TµνΓ 0

µν

)]
. (6)
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Here, ṽ i = v i − βi/α, Γλ
µν are the 4-Christoffel sym-

bols, and Tµν is the stress-energy tensor. The pres-
sure P = P (ρ, ε, {Xi}) is obtained via our equation of
state module, which is capable of handling a set of dif-
ferent equations of state, including microphysical finite-
temperature variants. The {Xi} are additional composi-
tional variables of the matter such as the electron fraction
Ye, which are used for microphysical equations of state.
In the present work, however, we resort to simple (piece-
wise) polytropic and ideal gas (Γ-law) equations of state.

The above evolution equations are spatially discretized
by means of a high-resolution shock-capturing (HRSC)
scheme using a second-order accurate finite-volume algo-
rithm. The equations are kept in semi-discrete form and
first-order (in space) Riemann problems are solved at cell
interfaces with the approximate HLLE solver1 [97].

The states at cell interfaces are reconstructed using
a new and improved variant of the piecewise parabolic
method (PPM) [86, 87, 98]. As noted in [86, 87], the
original PPM (oPPM) scheme [98] has the side-effect of
flattening local smooth extrema which are physical, thus
limiting the accuracy. In the present context of simulat-
ing compact objects, one naturally has extrema at the
stellar center(s) where the matter density is largest. We
find that the oPPM scheme reduces the accuracy there,
which then strongly affects the overall accuracy of our
simulations (see Sec. III, and also Fig. 25). Ref. [86],
further refined by Ref. [87], suggests modifications to the
original limiter which can distinguish between smooth
maxima that are part of the solution, and artificial max-
ima that may be introduced at shocks and other discon-
tinuities. While smooth maxima need to be retained as
part of the solution, artificial maxima must be avoided to
suppress Gibbs phenomenon at shocks and other discon-
tinuities. We summarize the procedure for “enhanced”
PPM (ePPM) reconstruction in Appendix B.

We note that under certain conditions, the require-
ment that the modulus of the reconstructed primitive
velocity must stay below the speed of light c may be
violated. This can happen, since the primitive veloc-
ity is a bounded function (bounded by the requirement
viv

i ≤ c2), and the ePPM reconstruction scheme does
not enforce this constraint close to any occuring extrema.
Thus, the ePPM scheme may reconstruct velocity compo-
nents that result in a velocity modulus equal to or slightly
larger than the speed of light near extrema. To avoid this
problem, we reconstruct Wvi, i.e. the Lorentz factor W
times the primitive velocity vi. The quantity Wvi is un-
bounded and thus does not require special treatment near
extrema.

The time integration and coupling with curvature
(Sec. II B) are carried out with the Method of Lines [99]

1 More sophisticated Riemann solvers are available within
GRHydro. In our experience, however, HLLE is a robust and
fast choice. We find that more sophisticated solvers do not lead
to a significant accuracy improvement (see also, e.g., [96]).

(see Sec. II E).

After each evolution step, we compute the primitive
quantities from the evolved conserved quantities. Since
the primitive quantities are implicit functions of the con-
served ones, it is necessary to use a numerical root finding
algorithm. As described in, e.g. [83], this is done via a
Newton-Raphson scheme.

In some rare situations, the initial guesses for the
root finding procedure are not well-posed, and cause the
Newton-Raphson scheme to fail to converge. In partic-
ular, we find this behavior at the surface of a neutron
star, when the latter is threaded by an AMR boundary
and refluxing is active. In this case, we resort to a simple
bisection algorithm which converges more slowly, but is
more robust.

In regions of the computational domain, where we have
physical vacuum, we employ an artificial low density “at-
mosphere” (see Appendix C). In order to reduce the
influence of the artificial atmosphere on the curvature
evolution, we exponentially damp the stress-energy ten-
sor Tµν to zero outside a given radius. More specifically,
we introduce the radius dependent stress-energy damping
Tµν → λ(r)Tµν with the damping factor

λ(r) =


1 for r ≤ R0,
1
2

(
1− tanh

(
8r−4(R1+R0)

R1−R0

))
otherwise,

0 for r ≥ R1,

(7)

where the damping is applied between the two radii R0 <
R1.

At outer boundaries, we apply a copy-from-neighbor
(flat) boundary condition for the evolved fluid quantities.

Finally, in order to be compatible with multipatch dis-
cretization, we need to introduce additional coordinate
transformations as described in Sec. II C 3 below.

B. Curvature Evolution

The spacetime evolution is performed by a variant of
the BSSN evolution system [100–103] and is implemented
in the CTGamma curvature evolution code [73], which was
developed for arbitrary coordinate systems mapping the
spatial domain.

The standard BSSN system is derived from a 3+1 split
of spacetime resulting in a foliation in terms of spatial
hypersurfaces along a timelike vector field. It introduces
the following set of evolved variables

φ, γ̃ab, K, Ãab, Γ̃a, (8)
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which are solved according to

∂tφ =− 1

6
αK +

1

6
∂iβ

i, (9a)

∂tγ̃ab =− 2αÃab + βi∂iγ̃ab + 2γ̃i(a∂b)β
i (9b)

− 2

3
γ̃ab∂iβ

i,

∂tK =−DiD
iα+ α(AijA

ij +
1

3
K2) + βi∂iK (9c)

+ 4πα (ρADM + S) ,

∂tÃab =e−4φ(−DaDbα+ αRab)
TF + βi∂iÃab (9d)

+ 2Ãi(a∂b)β
i − 2

3
Aab∂iβ

i

− 8πe−4φα (Sab)
TF

,

∂tΓ̃
a =γ̃ij∂iβjβ

a +
1

3
γ̃ai∂i∂jβ

j + βj∂jΓ̃
a (9e)

− Γ̃i∂iβ
a +

2

3
Γ̃a∂iβ

i − 2Ãai∂iα

+ 2α(Γ̃aijÃ
ij + 6Ãai∂iφ−

2

3
γ̃ai∂iK)

− 16παγ̃aiSi,

where Da is the covariant derivative determined by
the conformal 3-metric γ̃ab, and “TF” indicates that the
trace-free part of the bracketed term is used.

Above, we show the “φ”-variant of the BSSN system.
Our curvature evolution code also provides the “χ”- and
“W ”-variants of the evolution system (see [73] for details).
Here, we employ the φ-variant.

The stress-energy tensor Tµν is incorporated via the
projections

ρADM :=
1

α2

(
T00 − 2βiT0i + βiβjT ij

)
, (10)

S := γ̃ijTij , (11)

Sa := − 1

α

(
T0a − βjTaj

)
, (12)

(Sab)
TF :=

(
Tab −

1

3
e4φSγ̃ab

)
. (13)

After each evolution step, the evolved curvature vari-
ables (8) are transformed (via an algebraic relation)
to the standard ADM variables {gij ,Kij} (e.g., [104]),
where gij is the (physical) 3-metric, and Kij the extrin-
sic curvature. The ADM variables are used to couple
the curvature evolution to the hydrodynamic evolution
scheme, i.e., our hydrodynamic scheme uses the physical
3-metric gij rather than the evolved conformal 3-metric
γ̃ab above.

The lapse gauge scalar α is evolved using the 1 + log
condition [105],

∂tα− βi∂iα = −2αK, (14)

while the shift gauge vector βa is evolved using the hy-

perbolic Γ̃-driver equation [106],

∂tβ
a − βi∂iβa =

3

4
Ba , (15a)

∂tB
a − βj∂jBi = ∂tΓ̃

a − βi∂iΓ̃a − q(r)ηBa , (15b)

where η is a parameter which acts as a (mass dependent)
damping coefficient. To avoid certain stability issues with
the gauge arising in the far-field regime [107], the damp-
ing coefficient is allowed to spatially change, either by
some dynamic evolution [108], or by a fixed prescription.
We use the simple prescription for a radial fall-off of q(r)η
with 0 ≤ q(r) ≤ 1 (see [107] for details). If not stated
otherwise, we use a fall-off radius of R = 250M�.

The 3+1 decomposition of the Einstein equations also
results in a set of constraint equations. The Hamiltonian
constraint equation reads

H ≡ R(3) +K2 −KijK
ij − 16πρADM = 0 , (16)

whereR(3) denotes the 3-Ricci scalar, and the momentum
constraint equations read

Ma ≡ Di(K
ai − γaiK)− 8πSa = 0 . (17)

We do not actively enforce the constraints during evolu-
tion, but rather check how well our numerically obtained
metric quantities satisfy the constraints over the course
of the evolution. Thus, this offers a valuable accuracy
monitor for the curvature evolution.

The spacetime equations are discretized using fourth-
order finite difference operators [109]. The finite differ-
ence stencils are centered. An exception are the advec-
tion terms of the form βi∂i, which use operators that are
upwinded by one stencil point towards the local direction
of the shift vector βi [73].

Consistent with the order of accuracy of spatial finite
difference derivatives, we also apply Kreiss-Oliger dissi-
pation [109] which is of one order higher than the spatial
discretization order. In the case of fourth-order differ-
encing, we thus apply fifth-order dissipation operators.
Dissipation is added to the right-hand-sides (RHS) of
the curvature evolution quantities at any time integra-
tion substep. The strength of the dissipation can be con-
trolled by a parameter εdiss ∈ [0, 1]. Unless otherwise
specified, we use εdiss = 0.1 throughout this work.

At outer boundaries, we impose a simple approximate
radiative boundary condition as described in [73]. Since
data from this condition are not strictly constraint sat-
isfying, constraint violating modes are generated at the
boundary, and travel with the speed of light [26, 27] to
the interior of the domain where they introduce a sys-
tematic error in the curvature evolution.

C. Multipatches

We build our code on the Llama infrastructure de-
scribed in detail in [73]. This infrastructure implements
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multipatches via an arbitrary number of curvi-linear
overlapping grid patches using fourth-order Lagrange and
second-order essentially non-oscillatory (ENO) interpola-
tion for exchanging data in inter-patch ghost zones be-
tween neighboring patches. In [73], only the pure vacuum
problem was considered. Here, we extend the multipatch
evolution scheme to include matter.

1. Patch Systems

A useful patch system is shown in Fig. 1: the central
Cartesian patch is surrounded by six spherical inflated-
cube patches. The nominal2 grids of the spherical
patches have inner radius RS, outer radius RB, radial
spacing ∆R1, which is allowed to stretch to ∆R2 within
some finite region, and angular resolution (∆ρ,∆σ) per
angular direction (ρ, σ). Note that the angles (ρ, σ) used
to define the local coordinates of each inflated-cube patch
do not coincide with standard spherical-polar coordinates
(see below). The central patch contains a hierarchy of
refined regions, allowing to place resolution where neces-
sary. This patch system is particularly useful in problems
with spherical symmetry at some radius from the central
source.

Each grid patch defines local uniform coordinates
(u, v, w) related to the global Cartesian (x, y, z) coordi-
nate space by a diffeomorphic relation. For the central
Cartesian patch depicted in Fig. 1, this relation is triv-
ially given by the identity function. The inflated-cube co-
ordinates, however, are defined by non-trivial coordinate
functions. For each angular patch, we define local an-
gular coordinates (ρ, σ) that range over (−π/4,+π/4)×
(−π/4,+π/4) and can be related to global angular coor-
dinates (µ, ν, φ) (see Fig. 1) which are given by

µ ≡ rotation angle about the x-axis = arctan(y/z),
(18a)

ν ≡ rotation angle about the y-axis = arctan(x/z),
(18b)

φ ≡ rotation angle about the z-axis = arctan(y/x).
(18c)

For each angular patch, we have two unique angles (ρ, σ)
out of the three global angles (µ, ν, φ) that parametrize
the local coordinates. For instance, for the patch normal
to the positive x-direction, we select

ρ ≡ ν = arctan(z/x), (19a)
σ ≡ φ = arctan(y/x), (19b)

R = f(r), (19c)

2 We define the nominal grid as the unique set of points covering
the entire computational domain, i.e. the nominal grid of a single
patch excludes ghost points (and additional overlap points; see
further below) that are shared with a neighboring patch.

where r =
√
x2 + y2 + z2. Similarly, the coordinates

of the patch along the positive y and z axes are
parametrized by (ρ, σ) ≡ (µ, φ) and (ρ, σ) ≡ (µ, ν), re-
spectively. The remaining three patches along the nega-
tive axes are related in a similar way.

In the radial coordinate direction, we apply radial
stretching with an appropriate stretching function R =
f(r). In the stretching region, the physical coordinate
radius is stretched, corresponding to a smooth decrease
in radial resolution from spacing ∆R1 to spacing ∆R2.
Outside the stretching region, we keep the radial spacing
constant. Details can be found in [73].

2. Spacetime Evolution Scheme

Here, and as described in [73], the spacetime evolu-
tion is solved in the global Cartesian (x, y, z) tensor ba-
sis, where the grid patches are generally distorted, i.e.,
they are not uniform. Derivatives are approximated via
finite differences in the local coordinate system (u, v, w)
of each grid patch, where, as required by our finite dif-
ference scheme, the grid patches are uniform. In order
to transform to the global tensor basis, Jacobian trans-
formations of the form J ij = ∂ui/∂xj are applied to the
first and second derivatives at each point,

∂

∂xi
=

(
∂uj
∂xj

)
∂

∂uj
, (20a)

∂2

∂xi∂xj
=

(
∂2uk
∂xi∂xj

)
∂2

∂u2
k

+

(
∂uk
∂xi

∂ul
∂xj

)
∂2

∂uk∂ul
,

(20b)

thus obtaining the derivatives in the global (x, y, z) co-
ordinate space. The Jacobians are precomputed at each
grid point. The main advantage of solving the equations
in the global (x, y, z) basis is simplicity. There is no need
for inter-patch coordinate basis transformations. Per-
haps more importantly, the existing code infrastructure,
and especially analysis tools, do not need to be changed,
since the assumption of a global Cartesian tensor basis is
still maintained.

3. Hydrodynamic Evolution Scheme

Finite volume schemes work well on general unstruc-
tured meshes. The original implementation of the hy-
drodynamic evolution code GRHydro, however, assumes
uniform coordinates. Without a major rewrite of the
code, we can keep our original scheme by solving the
Riemann problem in the local frame, where the coordi-
nates are uniform. This requires no changes to the core of
the scheme. Any computation simply carries over to the
local coordinate basis. Effectively, this means that the
primitive and conserved quantities are thus represented
in the local coordinate basis.
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FIG. 1. Depiction of a typical patch system used in our sim-
ulations. The upper figure schematically shows a z = 0 slice
of the employed grids: a central Cartesian grid (patch 0) is
surrounded by spherical inflated-cube grid patches (patches
1− 4 out of a total of six spherical patches). The central grid
is capable of AMR allowing to refine the resolution at the
central region of, e.g., a star where the density and curvature
gradients become large. RB and RS denote the radii of the
outer computational boundary and of the boundary between
spherical and Cartesian grids, respectively. The spherical grid
has a fixed angular resolution denoted by (∆ρ,∆σ), while the
radial resolution is allowed to stretch from radial resolution
∆R1 to ∆R2. The lower figure shows a radial R = const. shell
of the outer spherical grid, comprised of six inflated-cube grid
patches. Angular points can be uniquely determined by two
out of three angular coordinates (µ, ν, φ) (18). Interpolation
at patch boundaries reduces to 1D interpolation. Points are
almost uniformly distributed across the sphere.

Special attention is required when coupling the hydro-
dynamics solver to the metric solver (Sec. II C 2). The
metric solver explicitly computes the metric components
in the global frame and is thus generally incompatible
with the hydrodynamic quantities defined in the local
frame. We therefore introduce the additional step of
transforming the metric components to the local basis
before each hydrodynamic RHS step. Correspondingly,
after each hydrodynamic step, we need to compute the

TABLE I. Required quantities for the hydrodynamic evo-
lution scheme and their coordinate bases. A tilde denotes
quantities that need to be obtained by applying a Jacobian
transformation. The last four quantities are only required for
microphysical equations of state.

Quantity Type global local
metric tensor gij g̃ij
extrinsic curvature tensor Kij K̃ij

shift vector βi β̃i

lapse scalar α α
prim. density scalar ρ ρ
specific internal energy scalar ε ε
prim. velocity vector ṽi vi

cons. density densitized scalar - D
cons. internal energy densitized scalar - τ
momentum densitized vector - Si
stress-energy tensor tensor Tµν -
Lorentz factor scalar W -
pressure scalar P -
prim. electron fraction scalar Ye Ye
cons. electron fraction densitized scalar - Y con

e

temperature scalar T T
entropy scalar s s

stress-energy tensor Tµν in the global basis as required
by the metric solver.

Since the various analysis tools explicitly assume a
global coordinate frame for the primitive variables, we
introduce a separate set of global primitive variables. Ef-
fectively, this only requires extra memory for the primi-
tive 3-velocity {ṽi}, since the primitive density ρ and the
specific internal energy ε are scalars. In case of micro-
physical equation of states, no extra memory is required
for the temperature T , the entropy s, and the primitive
electron fraction Ye, since they are scalars as well. Once
the primitive quantities are known in the global frame,
the stress-energy tensor can be directly computed in the
global frame.

For clarity, we list the various quantities in their cor-
responding available coordinate basis in Table I.

4. Inter-Patch Interpolation and Coordinate
Transformation

Data in the ghost zones of a given grid patch are ex-
changed via high-order Lagrange polynomial interpola-
tion for those quantities that are smooth (such as the cur-
vature evolution variables), and optionally second-order
essentially non-oscillatory (ENO) interpolation [110] for
those variables that may contain discontinuities (such as
the hydrodynamic evolution variables). The scheme is
depicted in Fig. 2. Ghost points (indicated by empty
boxes) on some patch p must be interpolated from points
from a neighboring overlapping patch q. The inter-patch
boundary is indicated by a vertical line. For Lagrange in-
terpolation, in order to maintain maximal accuracy, we
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FIG. 2. Depiction of the second-order ENO inter-patch inter-
polation scheme used for the fluid variables between two over-
lapping patches p and q. The inter-patch boundary is indi-
cated by the vertical line. Each interpolated point in the ghost
zones (empty boxes) is obtained from an interpolation poly-
nomial whose stencil is selected based on the local smoothness
of the interpolated quantity. There are three possible choices:
left (L) stencil using blue and green points, right (R) stencil
using green and red points, and first-order (f) stencil using
only green points. Since none of the stencil points on p are
allowed to be inter-patch boundary points of p, we need to in-
troduce a certain number of additional overlap points (filled
boxes) to ensure that this is the case.
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FIG. 3. Coordinate systems and their transformations. Local
coordinates ui(p) and u

i
(q) of patches p and q, respectively, are

related via “local-to-local” transformations. “Local-to-local”
transforms are necessary for fluid variable inter-patch inter-
polation. The global Cartesian coordinates xi are used to
represent the curvature variables and to carry out any analy-
sis on the curvature or fluid variables, such as gravitational-
wave extraction, or fluid density oscillation mode analysis.
Therefore, “global-to-local” and “local-to-global” transforms
are necessary.

center the interpolation stencils around the interpolation
point. The ENO operator, on the other hand, is allowed
to use second-order off-centered Lagrange interpolation
stencils according to the local smoothness of the interpo-
lated fields [110]. In addition, we check if the interpolant
introduces a local maximum and switch to first order in
that case. In order to speed up the computation, we pre-
compute and store all possible stencil configurations for
each inter-patch ghost point.

To yield a consistent boundary treatment, we have to
ensure that an interpolation stencil does not contain any
ghost points from the source patch. For this to be the
case, we need to introduce additional overlap points (in-
dicated by colored boxes in Fig. 2) that lead to an over-

lap of the evolved region. Effectively, this means that the
equations are solved twice in the additional overlap re-
gion, which introduces a small computational overhead.

We note that quantities which are defined in the global
Cartesian tensor basis such as the curvature evolution
variables (8) do not need to be transformed between lo-
cal coordinates patches. In our present hydrodynamics
scheme, however, the evolved conserved variables are de-
fined in local coordinates. Hence, for inter-patch ghost
zone interpolation, they must be transformed between
local coordinate systems. Let us denote the local coordi-
nates of source patch p as ui(p), and the local coordinates
of target patch q as coordinates ui(q). In the Valencia for-
mulation of the hydrodynamic evolution equations (4),
the conserved density D is a densitized scalar: it trans-
forms as a scalar tensor density of tensor weight +1. Ac-
cordingly, the “local-to-local” transformation between lo-
cal coordinates u(p) of patch p and local coordinates u(q)

of patch q is given by

D(q) =

∣∣∣∣∣det
∂ui(p)

∂uj(q)

∣∣∣∣∣D(p) . (21)

Hence, after having obtained the interpolated value of D
in the “old” basis defined by the local coordinates of patch
p, we need to represent it in the “new” basis defined by
the local coordinates of patch q according to transforma-
tion (21), before we assign its transformed value to one
of the ghost points of q. Similarly, we also need to trans-
form the conserved 3-momentum Si, which transforms
as a densitized contravariant vector of tensor weight +1
according to

Sj(q) =

∣∣∣∣∣det
∂uk(p)

∂ul(q)

∣∣∣∣∣ ∂u
j
(q)

∂ui(p)

Si(p) . (22)

The various coordinate transformations that are re-
quired in our code are depicted in Fig. 3.

D. Cell-centered AMR and Refluxing

We introduce cell-centered AMR in combination with
a refluxing scheme at refinement level boundaries to en-
sure conservation of rest mass and – in the absense of GR
effects – also momentum and energy of the fluid [84, 111].
Because gravity leads to sources and sinks for fluid mo-
mentum and energy, these quantities are generally not
conserved in curved spacetimes. This is reflected in the
source terms of the fluid conservation laws (5), which are
zero only in flat space. The numerical fluxes in our finite
volume scheme between grid cells, however, must be con-
served. Since we employ subcycling in time where finer
grids take multiple small time steps for each coarse grid
time step [81], the conservation properties of our finite
volume approach do not hold at mesh refinement bound-
aries without refluxing.
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FIG. 4. Vertex-centered AMR (upper figure) versus cell-
centered AMR (lower figure). In cell-centered AMR, two fine
grid cell faces always coincide with a coarse grid cell face (red
line). Thus, it becomes possible to sum up the two fine grid
fluxes computed on cell faces to become one coarse grid cell
flux. Cell-centered quantities, however, always need to be in-
terpolated in the prolongation and restriction operation. In
the vertex-centered case, every second grid point coincides
with one coarse grid point. Thus, interpolation is not neces-
sary for every point, and restriction becomes exact.

In cell-centered AMR schemes, coarse cells are subdi-
vided into multiple smaller cells, ensuring that coarse grid
and fine grid cell faces align (see red line in the lower part
of Fig. 4). In contrast, the cell centers do not align. This
is different from vertex-centered AMR schemes, where
one aligns coarse and fine grid cell centers but not their
faces (red line in the upper part of Fig. 4).

One may argue that vertex-centered schemes are more
natural for wave-type equations such as the Einstein
equations, which is why vertex-centered refinement was
originally implemented in the Carpet AMR driver. How-
ever, refluxing requires cell-centered refinement, and this
comes with a certain added complexity that we describe
below.
a. Prolongation. Prolongation is the interpolation

from coarse to fine-grid cells. In a vertex-centered scheme
(and when assuming a refinement factor of two), every
second fine-grid point is aligned with a coarse-grid point,
and prolongation there corresponds to a copy. In be-
tween coarse-grid points, one needs to interpolate. Cur-
vature quantities are interpolated via a fifth-order La-
grange polynomial. Hydrodynamics quantities are inter-
polated via a second-order ENO interpolator [110] (also
see Sec. II C 3) to avoid oscillations near discontinuities.

In a cell-centered scheme, every fine-grid cell requires
interpolation. We interpolate curvature quantities via a
fourth-order Lagrange polynomial, and interpolate hy-
drodynamics quantities via a second-order ENO interpo-
lator.
b. Restriction. Restriction transfers fine-grid infor-

mation to the next coarser grid via a restriction operator
R, after both have been evolved in time, and are aligned
in time again. Different discretization errors will have
led to slightly different results, and one overwrites the

coarse-grid results by respective fine-grid results. For a
vertex-centered scheme, the restriction operatorR is triv-
ial, since each coarse-grid point is aligned with a fine-grid
point, and hence the variable on the fine-grid point can
simply be copied.

For cell-centered schemes, the restriction operator R is
non-trivial: it involves interpolation. We interpolate cur-
vature quantities via a third-order Lagrange polynomial.
Hydrodynamics quantities are averaged, corresponding
to linear interpolation. This is a conservative operation,
so that e.g. the mass in a coarse-grid cell is the sum of
the masses in all contained fine-grid cells.

The distinction between curvature and hydrodynamics
quantities is crucial to achieving high accuracy. If one
does not use higher-order operations for the curvature
quantities, then the accuracy of the overall simulation
is significantly reduced. On the other hand, one needs
to employ a conservative interpolation scheme for the
hydrodynamics quantities, but can accept a lower order
of accuracy there. For restricting curvature quantities,
we therefore use third-order polynomial interpolation.
c. Refluxing. Refluxing is an algorithm to ensure

flux conservation across mesh refinement boundaries
[85, 111]. Since coarse and fine grids are evolved in time
independently, it is not guaranteed that the fluxes leaving
the fine grid are identical to those entering an abutting
coarser grid. Fig. 5 illustrates the situation: two fine-
grid steps of stepsize ∆tl+1 are taken for one coarse grid
step of stepsize ∆tl. After coarse and fine grids have
been independently evolved, the fine-grid fluid state is
restricted on the coarse grid when both grids are aligned
in time again, as described above. Now, the fluid state of
a coarse grid cell at the boundary (blue cell in Fig. 5) was
updated from numerical fluxes between the original, i.e.,
non-restricted neighboring coarse-grid cells (flux through
red line in Fig. 5). The restricted fine-grid fluid state,
however, was computed from numerical fluxes between
neighboring fine-grid cells (fluxes through green line in
Fig. 5), which is not guaranteed to coincide with the orig-
inal, non-restricted coarse-grid flux. The true numerical
flux through the coarse/fine grid boundary of a coarse
cell, however, is given by the sum of all fine grid fluxes
through that boundary. The fluid state of a coarse-grid
cell at a mesh-refinement boundary therefore needs to be
corrected by the difference between the sum of the un-
derlying fine-grid fluxes and the original, non-restricted
coarse-grid flux. Only then it is guaranteed that the fluid
state of a coarse-grid cell at a mesh-refinement boundary
is a result of a conservative operation.

Refluxing integrates the coarse-grid and fine-grid fluxes
across these faces, and then adjusts the coarse grid cell
just outside the refined region according to the flux dif-
ference.

We outline the generic refluxing algorithm for a con-
served quantity f in the steps below.

1. We start with a fine grid level l + 1 and a coarse
grid level l which are momentarily aligned in time,
i.e. tli = tl+1

2j , where i denotes the i-th step on the
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FIG. 5. AMR time evolution, showing fluxes across cell faces,
for both coarse (upper row) and fine cells (lower row). Time
moves upwards; the fine grid (lower panel) takes multiple
steps for each coarse grid step (upper panel). In Berger-Oliger
AMR, the coarse and fine levels are evolved independently,
and the sum of the fine grid fluxes crossing the green faces are
not guaranteed to be equal to the coarse grid flux crossing the
red face. At the end of a time step, the neighboring bold-faced
coarse and fine cells may be in an inconsistent state, requiring
refluxing to add a correction to the light blue coarse grid cell.

coarse level, and j denotes the j-th step on the fine
grid. Due to subcycling in time, for any coarse-
grid time step, there are twice as many fine-grid
time steps, i.e. i = 2j.

2. At the refinement boundary (red line of Fig. 4, or
red and green lines in Fig. 5), we store integrated
coarse and fine grid flux registers3 I l and I l+1 for
some conserved quantity f . Due to the 2:1 mesh
refinement, there are four integrated fine grid flux
registers for every integrated coarse grid flux regis-
ter. (Only two are visible in Fig. 4). At tli = tl+1

2j ,
all registers are zero.

3. Each refinement level is independently integrated
forward in time until the two refinement levels are
aligned in time again, i.e., until we have tli+1 =

tl+1
2j+2. During each integration step, the hydrody-
namic evolution scheme computes fluxes F for a
quantity f located at all cell interfaces. At the re-
finement boundary, we use the computed fine grid
fluxes F l+1 on the fine grid cell interfaces, and

3 A flux register is a grid variable which stores the integrated flux
on cell interfaces which are on a mesh-refinement boundary.

coarse grid fluxes F l on the coarse grid cell inter-
faces to integrate coarse and fine grid flux registers
forward in time, i.e., we independently integrate

∂tI
l+1 = F l+1, ∂tI

l = F l , (23)

at the refinement boundary.

4. After restriction, when tli+1 = tl+1
2j+2, we use I l+1

and I l to compute a correction for conserved quan-
tity f . The correction is obtained as follows.

(a) The integrated fine grid flux register I l+1 is
restricted to the coarse grid via

I lfine = RII l+1 , (24)

whereRI denotes the cell interface restriction
operator. Note that since the flux registers are
stored on cell faces, this operator is different
from the restriction operator R used for the
fluid state vector.

(b) A correction Clf for conserved quantity f on
coarse grid level l is now obtained via

Clf = (I lfine − I l)/∆lx (25)

where ∆lx denotes the grid spacing of refine-
ment level l.

5. The correction Clf is added to the coarse grid cell
on level l next to the refinement boundary (blue
cell in Fig. 5), i.e.

f lcorrected = f l + Clf . (26)

This completes the refluxing operation. We repeat
the steps 1-5 until the evolution is complete.

The steps above are performed for any of the evolved
conserved quantities D, Si, τ , and Y con

e .
We note that the state thus obtained in the corrected

coarse grid cells may be thermodynamically inconsistent
in the sense that a solution for the primitive variables
can not be found (even with bisection as mentioned in
Sec. II A). We have found this behavior at the very steep
contact discontinuity near the surface of a neutron star,
which is expected with our atmosphere treatment, as we
discuss in Appendix C. In that case, we may not apply
refluxing when cells at atmosphere values are involved4.

E. Time Integration and Multirate Runge-Kutta
Schemes

We carry out time integration using the Method of
Lines (MoL) [99]. MoL is based on a separate treatment

4 Note that the atmosphere treatment is not conservative anyway.
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of the spatial derivatives (the right-hand sides), and the
time derivatives. This allows one to employ integration
methods for ordinary differential equations (ODE) such
as Runge-Kutta (RK) schemes for the time integration.

We evolve the spacetime and hydrodynamic sector of
our evolution system simultaneously using full matter-
spacetime coupling. The coupling between the two sec-
tors is achieved via source terms. The spacetime evolu-
tion is sourced by the stress-energy tensor computed by
the hydrodynamic sector. Vice versa, the hydrodynamic
part contains additional source terms which are a result
of the coupling to a curved spacetime metric. Written in
simplified form, our system is given by

∂tg = F(g,q) , (27)
∂tq = G(g,q) , (28)

where g denotes curvature evolution quantities, q de-
notes fluid evolution quantities, and F and G denote the
RHS functions.

Traditionally, spacetime metric and hydrodynamic
variables are evolved simultaneously using the same time
integration scheme. A standard choice in our case is the
classical fourth-order Runge-Kutta (RK4) method5. The
timestep is chosen such that the Courant-Friedrich-Lewy
(CFL) factor, defined as C = ∆t/∆x, becomes C = 0.4.
The CFL factor is limited by the stability region of the
numerical scheme, which in turn is limited by the speed
of light.

We observe two important points in our simulations.
First, the error in our numerical evolution is in most cases
not dominated by the time integration (see Sec. III). The
choice of ∆t is not guided by accuracy requirements, but
rather by the restrictions imposed by the CFL condition.
This is unfortunate since a larger timestep would speed
up our simulation with only small negative impact on
the accuracy. Second, we find that the CFL factor is
largely determined by the spacetime evolution. In the
Cowling approximation, i.e. when the spacetime sector is
not evolved and held fixed at its initial setup, we typically
can use more than twice as large CFL factors (up to
C ≈ 1) without encountering any numerical instabilities.

Since our timestep is fixed, rather than enlarging the
timestep ∆t (and hence C), we switch to the classical
second-order Runge-Kutta (RK2) method instead. This
scheme has a smaller stability region by roughly a factor
of two compared to RK4. Due to the less restrictive CFL
factor for the fluid evolution compared to the curvature
evolution, however, we can still use the same timestep as
for the curvature evolution with RK4. The advantage of
the RK2 schemes is that they require half as many RHS
evaluations compared to RK4. The accuracy of RK2,

5 The classical RK4 does not have the total variation diminishing
(TVD) property. Strictly, this property is necessary to avoid
artifical oscillations at shocks. In practice, we find that this is
not an issue.

TABLE II. Butcher tableau for an explicit multirate
RK4/RK2 scheme. The right table (separated by the double
vertical line) shows the coefficients bi (bottom line), ci (first
vertical column), and aij for the classical RK4 scheme. The
left table shows the corresponding RK2 coefficients evaluated
at timesteps that coincide with RK4 timesteps.

0 0
0 0 1/2 1/2
0 0 0 1/2 0 1/2
1 1 0 0 1 0 0 1/2

1/2 0 0 1/2 1/3 1/6 1/6 1/3

however, is typically much lower than that of an RK4
integration. In practice, we find that the reduction in
accuracy is not a severe limitation for most cases (see
Sec. III).

We therefore apply the RK2 integrator for the hydro-
dynamic sector, while maintaining the RK4 integrator
for the spacetime part.

A scheme for coupling different parts of a system of
equations with different RK integrators is given by mul-
tirate RK schemes (e.g. [88, 89]). Here, we make the
simple Ansatz of performing one RK2 intermediate RHS
evaluation for two RK4 intermediate RHS evaluations.
That is, the additional RK4 intermediate RHS evalua-
tions simply use the results from the last intermediate
RK2 step.

To be more explicit, given the equation

∂ty = f(t, y) , (29)

where f corresponds to the RHS, we write a generic RK
scheme according to

yn+1 = yn + ∆t

s∑
i=1

bi ki , (30)

ki = f(tn + ci∆t , yn + ∆t

s∑
j=1

aijkj) . (31)

The coefficients bi, ci, and aij can be written in the stan-
dard Butcher notation (see, e.g. [112]).

In our multirate scheme, we use two different sets of
coefficients. The coefficients for the RK2 scheme are ar-
ranged such that RHS evaluations coincide with RK4
RHS evaluations. We list the corresponding multirate
Butcher tableau in Table II.

F. Gravitational Wave Extraction

GWs are extracted in the wave-extraction zone of our
simulation. We define the wave-extraction zone as the
region on the computational grid which is at sufficient
distance from the gravitating source to avoid near-zone
effects, and at the same time offers sufficient resolution
to resolve the waves. Beyond the wave-extraction zone,
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we typically use radial stretching to gradually decrease
the radial resolution up to a certain radius (e.g., Fig. 1).

We use the techniques described in detail in [21].
Among those are (i) the standard slow-motion weak-
field quadrupole formalism (see e.g., [15, 16, 29, 113–
115]) which is purely based on the quadrupolar matter
distribution and does not take into account any curva-
ture effects, (ii) Regge-Wheeler-Zerilli-Moncrief (RWZM)
extraction based on gauge-invariant spherical perturba-
tions about a fixed Schwarzschild background (see [116]
for a review), (iii) Newman-Penrose extraction based on
complex spin-weighted components of the Weyl tensor
[73, 117, 118], and (iv) Cauchy-characteristic extraction
(CCE) [19–24] making use of nonlinear nullcone evolu-
tions of the Einstein equations out to future null infinity
J + (see [119] for a new high-order algorithm). Extrac-
tion technique (iv) is the only one capable of determining
the gravitational radiation content unambiguously and
without finite-radius and gauge errors [21–24].

The curvature-based techniques (ii)-(iv) require one or
two integrations in time in order to compute the strain,
which may lead to strong non-linear and unphysical arti-
ficial drifts. This can be overcome by the fixed frequency
integration (FFI) technique presented in [120]. FFI re-
quires the choice of a cut-off frequency f0, which ideally
must be below the physical frequency components con-
tained in the signal. For instance, for a typical binary
neutron star inspiral signal, fm0 < mΩorbital/2π, where
Ωorbital is the initial orbital frequency, and m is the as-
sociated harmonic m-mode number.

The energy and angular momentum that is lost due to
the emission of GWs can be computed in terms of spin-
weighted spherical harmonic coefficients of Ψ4 as derived
in [121, 122]. We use the expressions for the radiated en-
ergy flux dErad/dt and angular momentum flux dJrad/dt
in terms of the Weyl scalar Ψ4 from [122]. In the expres-
sions for dErad/dt and dJrad/dt, we evaluate the appear-
ing time integrals of the harmonic modes using FFI with
fm0 = mf0 for each given m-mode. In order to obtain the
total radiated energy Erad and angular momentum Jrad

from their fluxes, respectively, we time integrate in the
time domain6.

1. Numerical Setup

We report the numerical settings employed for the var-
ious wave extraction techniques that are used in this
work. Since we are not interested in the numerical
convergence properties of the wave extraction methods
themselves (this has been analyzed elsewhere, e.g. [21–
23, 50, 73, 74]), we stick to fixed settings for all test cases
and numerical resolutions considered in Sec. III. Guided

6 FFI cannot be applied since the radiated fluxes are non-
oscillatory.

by previous work [21, 23], we find that the numerical error
in the wave extraction is negligible provided appropriate
settings.

The most involved GW extraction technique is CCE. In
that method, we solve the Einstein equations along null
hypersurfaces between a worldtube Γ and future null in-
finity J +. The worldtube Γ is typically located at some
radius RΓ in the wave-extraction zone, and is simula-
tion dependent [23] (and references therein). Specific to
the present work, the CCE grid consists of Nr = 301
points along the radial direction. Each radial shell is
discretized by two stereographic patches comprised of
Nang = 81 points per direction per patch. At the inner-
boundary worldtube Γ, we use up to `max = 8 harmonic
modes for the decomposed Cauchy metric data. The
metric data is decomposed on spheres with Nθ = 120
and Nφ = 240 points in θ and φ direction, respec-
tively. The compactification parameter7 rwt is set to the
particular extraction radius for a given simulation, e.g.
rwt = 100M�. In all cases, the innermost radial com-
pactified coordinate point is given by xin = 0.49. To-
gether with an appropriate setting of rwt, this ensures
that the worldtube Γ is located close to the first few ra-
dial points on the characteristic grid. The timestep and
extraction radius must be picked on a case by case ba-
sis. The wave-extraction zone is always located on the
spherical “inflated-cube” grids. For the stellar collapse
model A3B3G3 (Sec. III B), the wave-extraction zone is
located between radii 1000M� < RΓ < 2500M�. For
all remaining tests, the wave-extraction zone is located
at 100M� < RΓ < 250M�. The wave-extraction output
frequency is dictated by the timestep of the spherical
“inflated-cube” grids.

The remaining wave-extraction techniques are much
simpler and only require single spheres at some finite ra-
dius R.

To project metric data from the 3D grid onto spheres,
we use fourth-order Lagrange interpolation.

G. Horizon Finding and Hydrodynamic Excision at
the Puncture

To track the appearance and shape of an apparent hori-
zon, we use AHFinderDirect [49, 123] which is part of the
EinsteinToolkit [83]. As soon as an apparent horizon is
found during an evolution, we excise the fluid variables
within a fraction of the radius of the apparent horizon
and set them to their corresponding atmosphere values.
We get stable evolutions when excising about 85% of the
interior of the apparent horizon volume.

In order to compute angular momentum JAH and mass
MAH of a black hole, we use the isolated / dynamical hori-
zon framework provided by QuasiLocalMeasures [124],

7 See [23] for a description of CCE relevant parameters.
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TABLE III. Initial parameters and properties of the (per-
turbed) TOV star used to construct the initial data. The
density perturbation is only applied in the perturbed TOV
test case. Units are in c = G = M� = 1, unless otherwise
specified.

Polytropic scale K 100
Polytropic index Γ 2
Central rest-mass density [M−2

� ] ρc 1.28× 10−3

ADM mass [M�] MADM 1.4002
Baryonic mass [M�] MB 1.5062
Equatorial radius [M�] ([km]) Re 9.586 (14.16)
Density pert. mode ` 2
Density pert. amplitude λ 0.01
Monopole fundamental mode [kHz] F 1.458
First overtone [kHz] H1 3.971
Quadrupole fundamental mode [kHz] 2f 1.586
First overtone [kHz] 2p1 3.726

which is part of the EinsteinToolkit. This framework
defines mass and angular momentum in terms of partic-
ular closed 2-surfaces, such as the apparent horizon.

The spherical surface defining the apparent horizon
shape uses Nθ = 41 points along the θ-direction and
Nφ = 80 points along the φ-direction.

III. RESULTS

We revisit a number of “benchmark“ problems com-
monly found in the literature: an isolated perturbed and
unperturbed neutron star, a rotating core collapse model,
a collapsing neutron star to a black hole, and a binary
neutron star coalescence. Basic code tests such as shock
tubes can be found in the Appendix. We describe our
analysis in more detail in corresponding sections below.

A. Isolated Neutron Star

We investigate convergence and accuracy of an iso-
lated unperturbed neutron star and an isolated perturbed
neutron star using full GR matter-spacetime coupling in
three spatial dimensions. The neutron stars are given by
the solution of the Tolman-Oppenheimer-Volkoff (TOV)
equations [125, 126].

This test aims at showing the correctness of our cell-
centered AMR scheme, and enhanced PPM reconstruc-
tion.

1. Initial Conditions and Equation of State

We use a polytropic equation of state P = KρΓ with
scale K = 100 and index Γ = 2 in the initial data con-
struction. Although this choice does not represent a real-
istic choice for real neutron stars, these parameters have
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FIG. 6. Unperturbed TOV star: normalized central density
ρc(t)/ρc(t = 0) − 1 on the three resolutions r0, r1, and r2
(top panel), difference in normalized central density between
low and medium resolutions, and medium and high resolu-
tion (center panel), and the L2-norm of the Hamiltonian con-
straint ‖H‖2 on all three resolutions (bottom panel). As the
resolution is increased, the amplitude of the central density
oscillations, the offset, and the slope decrease as expected.
The differences in resolutions of the central density are scaled
for second-order convergence. The L2-norms of the Hamilto-
nian constraint ‖H‖2 are scaled for first-order convergence.
The resolution study is performed using cell-centered AMR
and ePPM.
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FIG. 7. Unperturbed TOV star: the L2-norm of the Hamilto-
nian constraint ‖H‖2 (upper panel), and conservation of total
baryonic mass MB (lower panel) for different numerical se-
tups. We compare vertex-centered (vc) with cell-centered (cc)
AMR using oPPM and/or ePPM. In addition, we also show a
simulation with “ePPM, cc” using multirate time integration.
‖H‖2 is strongly effected by the choice of numerical scheme,
while MB is essentially uneffected. The setup “ePPM, cc”
performs best, while “oPPM, cc” performs worst. The stan-
dard scheme “vc, oPPM” used in other codes (e.g. [83, 92])
is slightly worse than the new scheme “ePPM, cc”. Multirate
time integration leads to nearly identical results.



14

0 1 2 3 4 5 6 7
1.20

1.28

1.36

r0 r1 r2

0.03
0.06 |r0− r1| |r1− r2| × 4.33
7.75

8.00

8.25

8.50
r0 r1 r2

20
40 |r0− r1| |r1− r2| × 4.33

−800
−400

0
400
800

pTOV
D

h +
,e

[c
m

]
ρ

c

[1
014

g
cm
−

3 ]
‖H
‖ 2

[1
0−

5 ]

σ
σ

t [ms]

r0 r1 r2

FIG. 8. Perturbed TOV star: the top panel shows the “+” po-
larization of the GW strainDh+,e as emitted in the equatorial
plane and rescaled by distance D for the three resolutions r0,
r1, and r2. The waveforms are computed with CCE. In the
panel below, we show the differences in GW strain between r0
and r1, and r1 and r2, where the latter is rescaled for second-
order convergence. In the third panel from the top, we show
the absolute central density evolution ρc(t) for the three res-
olutions. Below, we show the differences in central density
scaled for second-order convergence. In the bottom panel,
we show the L2-norms of the Hamiltonian constraint ‖H‖2.
Since the initial data for the perturbed case are not constraint
satisfying, the constraints do not exhibit clean convergence.
The convergence study is performed using cell-centered AMR
and ePPM.

been used in previous work (e.g. [36, 127]), and can be
used as code verification. During evolution, we use an
ideal fluid Γ-law equation of state with Γ = 2. The
key parameters are given in Table III. The initial data
are generated via Hachisu’s self-consistent field method
[128, 129] which requires as input the central density ρc
of the star, and a polar-to-equatorial axes ratio between
0 and 1 to define rotation. In the present case, we set
ρc = 1.28 × 10−3M−2

� and use an axes ratio of 1 (no
rotation). In the case of the perturbed TOV star, we
perturb the star by a spherical harmonic (`,m) = (2, 0)
density perturbation of amplitude λ = 0.01.
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FIG. 9. Perturbed TOV star: the impact of different numer-
ical settings on the L2-norm of the Hamiltonian constraints
‖H‖2 (upper panel), and on the conservation of baryonic mass
MB (lower panel). The setup using vertex-centered (vc) AMR
and oPPM (blue dashed curve) leads to larger constraint vi-
olations than the setup using cell-centered (cc) AMR and
ePPM. Multirate time integration does not change the ac-
curacy of the results. In all cases, MB is nearly equally well
conserved.
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FIG. 10. Perturbed TOV star: Power spectrum of ρ00, ρ20

and h+,e (individually scaled for better visibility), and the
first few fundamental neutron star oscillation modes (vertical
lines) computed in [36].

2. Numerical Setup

The grid is similar to the one depicted in Fig. 1, ex-
cept that here, we have just one refinement region. The
fine grid spacing is ∆x = 0.2M� for the low resolu-
tion (r0), ∆x = 0.125M� for the medium resolution
(r1), and ∆x = 0.1M� for the high resolution simu-
lation (r2). The fine grid extends to R = 11M� and
encompasses the entire star. The inter-patch bound-
ary between central Cartesian patch and outer spher-
ical grid is located at RS = 65M�. We use 15, 24
and 30 cells per angular direction per spherical patch
for the low, medium and high resolutions, respectively.
The radial resolution is chosen based on the Cartesian
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coarse grid resolution ∆r = 1.6M�, ∆r = 1.0M�,
and ∆r = 0.8M�, for low, medium, and high resolu-
tions, respectively. We use radial stretching outside the
wave extraction zone to efficiently extend the computa-
tional domain so that the outer boundary is causally dis-
connected from wave-extraction zone and interior evo-
lution. Accordingly, we stretch the radial resolution to
∆r = 6.4M�, ∆r = 4.0M�, and ∆r = 3.2M� for low,
medium, and high resolution simulations, respectively, in
the region between radii R1 = 100M� and R2 = 800M�.
The outer boundary is located at RB = 3500M�.

3. Discussion

a. Unperturbed TOV star. We first consider a sin-
gle isolated non-rotating, unperturbed TOV star with
parameters reported in Table III. In the top panel of
Fig. 6, we show the normalized central density evolution
ρc(t)/ρc(t = 0) as a function of time on the three reso-
lutions r0, r1, and r2, using our new cell-centered AMR
and enhanced PPM scheme. In an ideal setting, the cen-
tral density evolution should be constant as a function
of time since the TOV solution represents a static fluid
configuration. Numerical errors induced by interpolation
from the initial data solver grid onto the evolution grid,
however, lead to an artificial excitation of the star, and,
hence, to non-trivial central density oscillations, which
must converge to zero as the resolution is increased. Due
to the interpolation of the fluid initial data onto the evo-
lution grid, we observe a large initial spike and an over-
all offset in the density oscillations. We additionally see
an overall non-zero slope in the central density evolution
caused by numerical errors during evolution. As the res-
olution is increased, we consistently observe that the am-
plitudes of the oscillations decrease, the offset becomes
smaller, and the overall slope is reduced. In the center
panel, we show the difference in normalized central den-
sity ρc(t)/ρc(t = 0) between resolutions r0 and r1, and
r1 and r2. We perform a three-level convergence test by
computing the ratio of the differences in a given quantity
F between the three resolutions,

C =
|Fmedium − F low|
|F high − Fmedium| . (32)

The ratio C defines the measured convergence rate of the
solution (e.g. [104]). Given three resolutions with spac-
ing ∆xlow, ∆xmedium, and ∆xhigh, the theoretical conver-
gence rate for a particular order of convergence p can be
computed via

C =
|∆xpmedium −∆xplow|
|∆xphigh −∆xpmedium|

. (33)

Given our numerical resolutions, according to (33), we
expect that the difference between medium and high res-
olution, r1 and r2, decreases by a factor of C = 4.33 for

second-order convergence compared with the difference
between medium and low resolution, r1 and r0.

In the bottom panel of Fig. 6, we show the time evo-
lutions of the L2-norm of the Hamiltonian constraint
‖H(t)‖2 (16) for the three resolutions r0, r1, and r2.
As the resolution is increased, the error drops consistent
with first-order convergence, since the rescaled medium
and high resolution curves are on top of each other. We
note that while the fluid body itself is smooth, the sur-
face of the star is non-smooth, hence inducing a dominant
first-order error (compare Fig. 25).

In the top panel of Fig. 7, we show the L2-norm of the
Hamiltonian constraint ‖H‖2 of a static TOV star using
vertex-centered (vc) AMR, and cell-centered (cc) AMR.
Both AMR setups are run with the oPPM and ePPM
reconstruction method. In addition, we also perform a
simulation using cell-centered AMR and ePPM recon-
struction with multirate time integration. We observe
that the setup ”ePPM, cc” exhibits the lowest constraint
violations. The setup “ePPM, cc, multirate” is right on
top of the red curve, hence indicating comparable accu-
racy. The setup “vc, oPPM”, which is the setup used in
previous work (e.g. [1, 2, 21, 83, 92]) yields slightly less
accurate evolution. Finally, the setup “cc, oPPM” yields
significantly reduced accuracy compared to all other se-
tups. This is mainly due to the oPPM scheme, which is
known to reduce the order of accuracy at smooth max-
ima to first order (see Appendix B, Fig. 25). This effect
is not seen in the vertex-centered setup “vc, oPPM”, since
the central density is exactly located on a grid point.

In the bottom panel of Fig. 7, we show conservation of
mass for the considered numerical setups. In all cases, the
total mass loss is on the order of 10−7 over the course of
the evolution. Since the AMR boundaries are all located
in the vacuum region outside the star, refluxing at AMR
boundaries is not relevant. The mass loss is entirely due
to interaction with the artificial low-density atmosphere
in the vacuum region (see also Appendix C).
b. Perturbed TOV star. As a second test, we apply

an initial (` = 2,m) = (2, 0) density perturbation with
amplitude λ = 0.01 onto the same TOV star considered
above. A more complete study of this configuration in-
cluding variations on perturbation parameters has been
performed in [36, 127]. Numerical grids and setups are
identical to those of the static TOV star, and we perform
the same analysis as above. In addition, we also analyze
the non-trivial (`,m) = (2, 0) mode of the GW signal
that is induced by fundamental mode oscillations. In the
upper panel of Fig. 8, we plot the “+” polarization of
the GW signal Dh+,e as emitted in the equatorial plane
from the three resolutions r0, r1, and r2. Since only the
(`,m) = (2, 0) mode is excited, the entire wave signal can
be written as

Dh+,e = Dh20
+ −2Y20(θ =

π

2
, φ = 0). (34)

Here, D is the distance from the source. We compute h20
+

with CCE and use an FFI cut-off frequency of f0 = 812



16

Hz (see Sec. II F). We also show the differences of the
GW strain between low and medium, and medium and
high resolutions, where the latter is scaled for second-
order convergence. In addition, we show the central den-
sity evolution ρc(t) for the three resolutions which con-
verge. Similarly to the above, we plot the differences
between low and medium, and medium and high resolu-
tions scaled for second-order convergence. We also show
the L2-norm of the Hamiltonian constraints ‖H‖2 of the
three resolutions. Since the initial data solver does not
take into account the effects of the perturbation onto the
initial spacetime metric, the constraints do not converge
initially, and only slowly converge at later times. In the
present plot, we have not used any rescaling. We note,
however, that the slopes of the medium and high reso-
lutions are slightly smaller than for the low resolution
case.

When comparing the strain DhCCE
+,e as computed with

CCE to the strain DhQ+,e as computed from the RWZM
formalism, we generally find that the strain computed via
the RWZM formalism is prone to numerical noise. In ad-
dition, we find that the finite-radius error and gauge error
inherent in the waveform obtained from RWZM master
functions at radii R = 100M� and R = 250M� is on the
order of 10%. A similar behavior applies to the strain
DhNP

+,e as extracted via the NP formalism at a finite ra-
dius.

Finally, we also check that the correct fundamental
oscillation modes are excited. In Fig. 10, we compare
the frequency spectrum of the density ρ and the strain
Dh+,e to the eigenmodes found in [36]. In order to com-
pute the spectrum of ρ, we first project ρ from the 3D
grid onto spherical shells inside the star, and then de-
compose in terms of spherical harmonics. The vertical
lines in Fig. 10 correspond to the fundamental monopole
mode F and its first overtone H1, and the fundamen-
tal quadrupole mode 2f and its first overtone 2p1. As
expected, the spectrum of the strain Dh+,e and the
(`,m) = (2, 0) mode of the density ρ20 both peak at the
correct quadrupole eigenmode frequencies. Likewise, the
spectrum of the (`,m) = (0, 0) density mode correctly
peaks at the monopole eigenmode frequencies.

B. Rotating Stellar Collapse

We investigate convergence and accuracy of the bench-
mark rotating stellar collapse model A3B3G3, which has
been previously considered in the literature [28, 29]. This
tests the ability of the code to simulate the collapse of
a rapidly differentially spinning iron core in full 3D with
causally disconnected outer boundaries, albeit with sim-
plified microphysics. We show that due to larger wave
extraction radii, the waveforms extracted via curvature-
based methods such as CCE are more accurate than what
has been computed before [21].
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FIG. 11. Stellar collapse: The GW strain Dh+,e extracted
via the quadrupole formula (upper panel), the central density
ρc (third panel from the top), and the L2-norm of Hamilto-
nian constraint ‖H‖2, all on the three resolutions r0, r1, and
r2. The panels directly below the top panel and the third
panel from the top show the difference in strain and central
density between low and medium resolutions, and medium
and high resolutions. The differences are scaled for second-
order convergence. The L2-norm of Hamiltonian constraint
is scaled for first-order convergence. Before core bounce, the
constraint exhibits second order convergence. After shock for-
mation, the convergence rate is reduced to first order. The
convergence study is performed using cell-centered AMR and
ePPM.

1. Initial Data and Equation of State

For the purpose of this test, we employ a hybrid
equation of state [29, 30, 130] that combines a 2-piece
piecewise polytropic pressure PP with a thermal com-
ponent Pth, i.e., P = PP + Pth. To model the stiffen-
ing of the equation of state at nuclear density ρnuc

∼=
2 × 1014 g cm−3, we assume that the polytropic index Γ
jumps from Γ1 below nuclear density to Γ2 above. The
equation of state parameters are given in Table IV.

The initial data are constructed from n = 3 (Γ1,ini =
Γ1 = 4/3) polytropes in rotational equilibrium gener-
ated via Hachisu’s self-consistent field method [128, 129]
which not only provides fluid, but also spacetime cur-
vature initial data. While being set up as marginally
stable polytropes with Γ1,ini = 4/3, during evolution,
the initial sub-nuclear polytropic index Γ1 is reduced to
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FIG. 12. Comparison of vertex-centered (vc) AMR with
oPPM versus cell-centered (cc) AMR with ePPM for stellar
collapse model A3B3G3. We show the central density ρc (up-
per panel), tthe L2-norm of the Hamiltonian constraint ‖H‖2
(middle panel), and conservation of total baryonic mass MB

(bottom panel). Due to refluxing in the cell-centered case,
the mass is almost perfectly conserved, while in the vertex-
centered case, the mass is rapidly growing (bottom panel).
Due to ePPM, the constraints in the cell-centered case ex-
hibit almost no growth after core bounce, while in the vertex-
centered case with oPPM the constraints are clearly growing
(lower panel). The results are not changed when multirate
time integration is used. The comparison is done using base-
line resolution r1.

TABLE IV. Initial parameters and properties of the rotating
stellar collapse model A3B3G3. Units are in c = G = M� =
1, unless otherwise specified.

Polytropic scale K 0.4640517
Initial polytropic index Γ1,ini 1.3̄
Evolved polytropic index 1 Γ1 1.31
Evolved polytropic index 2 Γ2 2.5
Thermal polytropic index Γth 1.5
Central rest-mass density [M−2

� ] ρc 1.6193× 10−8

Axes ratio 0.93
Degree of differential rotation [km] A 500
Rotational / binding energy [%] T/|W | 0.9
Equatorial radius [M�] Re 1.0661× 103

Baryonic mass [M�] MB 1.4596
ADM mass [M�] MADM 1.4596
ADM ang. mom. [M2

�] JADM 2.4316
Spin a 1.1413

Γ1 < Γ1,ini to accelerate collapse. Following previous
studies [16, 28, 29], we use Γ2 = 2.5 in the super-nuclear
regime.

In the present test, we revisit model A3B3G3 from
[28, 29]. This configuration uses Γ1 = 1.31. It is strongly
differentially rotating, with its initial central angular ve-
locity dropping by a factor of two over A = 500 km. This,
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FIG. 13. The GW strain extracted Dh+,e from the rotat-
ing stellar collapse model A3B3G3 (upper panel). We show
the strain extracted via CCE from different worldtube loca-
tions RΓ = 1000M�, RΓ = 1500M�, and RΓ = 2500M�,
as well as the strain computed via the quadrupole formula.
Larger CCE worldtube radii permit lower FFI cut-off frequen-
cies without introducing unphysical drifts in the GW strain.
All waveforms extracted via CCE are in good agreement to
within a few percent with the waveform computed via the
quadrupole formula. The lower panel shows the differences in
strain amplitude of the inner extraction radii to the outermost
extraction radius. The differences converge as the extraction
radius is increased. The comparison is done using baseline
resolution r1.

in combination with T/|W | = 0.9%, leads to rapid rota-
tion in the inner core, resulting in a very strong GW
signal at core bounce and dynamics that are significantly
affected by centrifugal effects. It produces a “Type-I”
GW signal with a centrifugally-widened broad peak at
core bounce [28, 29].

2. Numerical Setup

We use five refinement levels located at the
center of the domain. The refinement boxes
of each level have a half-width of Rrl =
[192M�, 144M�, 98M�, 40M�, 12M�], respectively.
The coarsest level is comprised of cubed-sphere
multipatch grids (Fig. 1). The inner radius of the
spherical grids is RS = 384M�, and the outer bound-
ary is RB = 16000M�. Initially, only the coarsest
level is active. Additional levels are progressively
added as the central density increases during col-
lapse. The initial stellar radius of model A3B3G3 is
Re = 1066.1M� = 1574.84 km in the equatorial plane.
Thus, the inter-patch boundaries thread the star in
this particular setup. The finest refinement level is
picked such that the protoneutron star is fully contained
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on that level. The GW extraction zone extends to a
radius of R = 2500M�. Beyond that radius, we apply
radial stretching up to a radius R = 6000M�. In this
stretching region, the radial grid spacing is increased by
a factor of 16, and the resolution becomes too coarse for
reliable wave extraction.

For our baseline resolution (denoted by r1), we pick a
radial grid spacing of ∆r = 8.0M� on the non-stretched
spherical inflated-cube grids, and a Cartesian resolution
of ∆x = 8.0M� on the central Cartesian patch. Given
our five refinement levels above, this results in a reso-
lution of 0.25M� = 369.3 m for the protoneutron star.
The angular resolution of the cubed-sphere grids is set
to Nang = 30 cells per patch and direction. This makes
a total of Nang,total = 120 points across the equatorial
plane.

In addition to our baseline resolution r1, we also con-
sider a low resolution run r0, and a high resolution
run r2 to check for convergence. Resolution r0 uses
∆r = ∆x = 9.6M� and Nang = 24 (20% lower), and
resolution r2 uses ∆r = ∆x = 6.4M� and Nang = 36
(20% higher).

In all considered cases, we set the damping coefficient
of the Γ-driver gauge condition to η = 1/2. Dissipation is
set to εdiss = 0.1 on the fine levels, and εdiss = 0.01 on the
multipatch grid. The atmosphere level is set to be 10−10

of the central density, and we damp the stress-energy
tensor in the atmosphere using (7) with R0 = 1300M�
and R1 = 1400M�.

3. Discussion

In Fig. 11, we show convergence of the plus polariza-
tion of the GW strain Dh+,e measured in the equatorial
plane, the central density ρc, and the L2-norm of the
Hamiltonian constraint ‖H‖2. The GW strain is com-
puted using the quadrupole formula, though a similar
analysis and result apply to all extraction methods. All
three quantities are shown for the three resolutions r0,
r1, and r2, using multipatches, cell-centered AMR, re-
fluxing, and enhanced PPM (see Sec. III B 2). We align
the results from all three resolutions at the time when the
central density ρc reaches its maximum at core bounce.
We observe first order convergence in ‖H‖2 after core
bounce. In the prebounce phase, ‖H‖2 exhibits second-
order convergence. This behavior is expected since the
numerical scheme reduces to first order at the shock front
after bounce where the error are greatest.

In Fig. 11, we also show the absolute difference of the
GW strain Dh+,e and the central density ρc between low
(r0) and medium (r1) resolutions, and medium and high
(r2) resolutions. The convergence behavior of the two
quantities is less clean than what can be observed for
the Hamiltonian constraint due to their oscillatory na-
ture. The convergence is between the expected first and
second-order accuracy.

In Fig. 12, we compare vertex-centered AMR with

original PPM reconstruction versus cell-centered AMR
with refluxing and enhanced PPM. In addition, we show
the behavior of the latter case when multirate RK time
evolution is applied. As is clear from the bottom
two panels, the cell-centered scheme with refluxing and
enhanced PPM (“cc, ePPM“) outperforms the vertex-
centered scheme with original PPM (”vc, oPPM“). While
in the cell-centered case, ‖H‖2 essentially remains con-
stant after core bounce, it clearly grows in the vertex-
centered case. Even worse, the vertex-centered case ex-
hibits a rapid growth in total baryonic mass after core
bounce. The evolution with multirate RK performs
equally well as the ”cc, ePPM“ setup, which uses standard
RK4 time integration. The multirate setup offers a speed
up of ∼ 20% for the current test problem. The speed-
up can be significantly larger when full microphysics and
neutrino transport is employed (e.g. [90]).

In Fig. 13, we revisit our study of extracting gravi-
tational radiation using curvature-based methods [21].
In [21], we found a radial dependence of the accuracy
of the curvature-based extraction methods. This study
made use of purely Cartesian simulation domains, and
was thus limited in terms of possible domain sizes and
extraction radii. The maximum extraction radius was
limited to R = 1000M�. This is still fairly close and
means that the waveforms are extracted well inside the
star. Our curvature-based extraction methods, however,
assume vacuum, i.e. a vanishing stress-energy tensor at
the extraction location. In [21], we thus conjectured
that increased extraction radii that are located outside
the star would further improve the accuracy of the ex-
tracted waveforms. Given our new multipatch setup, we
can confirm this conjecture. We have placed three ex-
traction radii at R = [1000M�, 1500M�, 2500M�] in a
region with constant radial spacing ∆r = 8.0M� where
the radial direction is not yet stretched. The upper panel
of Fig. 13 shows the “+” polarization of the GW strain
Dh+,e measured in the equatorial plain extracted via
CCE. As a comparison, in the same panel, we also show
Dh+,e computed via the quadrupole formula. We apply
FFI to compute the strain Dh from Ψ4 extracted with
CCE (see Sec. II F). In [21], we conjectured that the
low cut-off frequency that must be picked for FFI can
be reduced as the extraction radius is increased. Here,
we confirm that this is indeed the case. While extrac-
tion radius R = 1000M� requires a low cut-off frequency
f0 = 100 Hz which is well inside the LIGO sensitivity
band, we find that at radius R = 1500M� we can get
away with f0 = 60 Hz. At radius R = 2500M�, we can
further reduce this to f0 = 30 Hz without introducing ar-
tificial non-linear drifts in the strain. In the bottom panel
of Fig. 13, we show the difference in GW amplitude of the
waveforms computed from the inner extraction radii to
the waveform computed from the outer most extraction
radius. We confirm that as the extraction radius is in-
creased, the differences further decrease similar to what
has been found in [21].

The waveform computed via the quadrupole formula
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does not suffer from amplification of low frequency errors
[21]. We observe that the waveforms extracted via CCE
at larger radius and decreased f0 more closely resemble
the monotonically rising signal in the prebounce phase
that the waveform computed via the quadrupole formula
exhibits. Overall, in accordance with [21], we still mea-
sure the same deviations between GW amplitudes com-
puted from CCE and the quadrupole formula to within a
few percent at core bounce. This is not surprising, since
the error in CCE due to different worldtube extraction lo-
cations is much smaller than the observed deviation from
the waveform extracted via the quadrupole formula.

Finally, we note that we have also computed the GW
strain via the RWZM formalism (not shown). In our
previous more detailed study on GW extraction in the
context of rotating stellar collapse [21], we found that
the RWZM formalism leads to waveforms which are con-
taminated by high frequency noise. Unfortunately, in
the current study, which allows us to use larger extrac-
tion radii than R = 1000M�, we find that the systematic
high-frequency noise inherent in the RWZM waveforms
is not reduced, but instead even increases with increased
extraction radius. As already conjectured in [21], this is
most likely due to the perturbative manner the waves are
extracted from the spacetime in the RWZM formalism.
In this formalism, the spherical background geometry is
projected out, which can result in very small values for
the aspherical perturbation coefficients that are prone to
numerical noise and cancellation effects. At larger radii,
the aspherical perturbations are even smaller since they
fall of as 1/r, and thus are harder to capture accurately.
The RWZM approach may therefore be less suited for the
extraction of the generally weak GW signals emitted in
core collapse.

C. Neutron Star Collapse

Three-dimensional collapse of an isolated neutron star
to a black hole is a valuable test of accuracy and con-
vergence of our code for black hole formation in massive
stars. We consider the uniformly rapidly rotating model
D4 previously studied in [5, 92] as a benchmark problem.
Apart from showing convergence and consistency with
previous results, we improve the simulations by causally
disconnecting the outer boundary from the interior evo-
lution and the wave-extraction zone. We show that cell-
centered AMR with refluxing leads to better conservation
of mass than vertex-centered AMR. We also employ CCE
for GW extraction.

1. Initial Data and Equation of State

The initial condition is given by a stable relativistic
polytrope. Specifically, we use a polytrope P = KρΓ

with Γ = 2 and Kini = 100 in the initial data construc-
tion. The initial data are generated via Hachisu’s self-
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FIG. 14. Rotating neutron star collapse: convergence analysis
of the “+” polarization of the GW strain Dh+,e as emitted in
the equatorial plane and extracted via CCE (top two panels),
central density ρc evolution (next two panels), and L2-norm
of the Hamiltonian constraint ‖H‖2 (bottom panel). The dif-
ferences in Dh+,e and ρc between medium and high resolution
are scaled for second-order convergence. At t − tBH = 0, the
density drops to zero due to hydrodynamic excision within the
horizon. The L2-norm of the Hamiltonian constraint (bot-
tom panel) does not converge initially due to numerical ar-
tifacts from the initial data solver, however, later converges
at second-order during black hole formation t− tBH ' 0 and
black hole ring-down t − tBH > 0. The convergence study is
performed using cell-centered AMR with ePPM.

consistent field method [128, 129]. The central density is
set to ρc = 3.116× 10−3M−2

� = 1.924× 1015 g cm−3. We
use an axes ratio of 0.65, which results in β = T/|W | =
7.6796 × 10−2 corresponding to a dimensionless spin of
a = J/M2 = 0.54354. In order to induce the gravita-
tional collapse, we introduce an artificial pressure deple-
tion of 2% by settingK = 98 at the onset of the evolution.
During evolution, we use an ideal fluid Γ-law equation of
state with Γ = 2. The initial parameters and properties
of the test case are summarized in Table V.

2. Numerical Setup

The GW extraction is carried out on the cubed-sphere
grid setup shown in Fig. 1. We pick the radius of the
outer boundary such that the wave-extraction zone and
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FIG. 15. Rotating neutron star collapse: we compare vertex-
centered (vc) AMR and oPPM reconstruction with cell-
centered (cc) AMR and ePPM reconstruction. The latter
setup is also shown using multirate RK time integration. The
top panel compares the central density evolution profile ρc(t).
The center panel compares the evolution of the L2-norm of
the Hamiltonian constraint ‖H‖2. The bottom panel com-
pares the conservation of baryonic mass MB . The setup “vc,
oPPM” produces slightly larger violations in the Hamiltonian
constraints, especially in the late collapse phase shortly before
the black hole forms. Due to refluxing, the cell-centered case
exhibits much better conservation of baryonic mass. Multi-
rate RK time integration does not lead to different results.
The comparison is done using baseline resolution r1.

the interior evolution are causally disconnected from the
outer boundary, which we set to RB = 800M�.

For our baseline grid setup r1, we make use of a radial
and Cartesian resolution of ∆r = ∆x = 1.28M� and
Nang = 25 cells per patch and per angular direction. The
boundary between central Cartesian and cubed-sphere
grids is located at RS = 65M�. The radial coordinate
spacing is increased from ∆r to 2∆r in the region between
R = 250M� and R = 600M�.

We employ five additional levels of AMR with half-
widths Rrl = [30M�, 18M�, 11M�, 5M�, 3M�] located
at the center of the Cartesian domain. With an ini-
tial radius of RNS ≈ 10M� along the equatorial plane,
this means that the finest two levels thread through the
neutron star. These two levels are required to resolve
the black hole formed in the collapse. For our base-
line resolution r1, we therefore have a grid spacing of
∆x = 0.16M� = 0.24 km on the third finest level en-
compassing the entire neutron star, and a resolution of
∆x = 0.04M� = 0.06 km on the finest level containing
the black hole.

In addition to r1, we also use a low resolution r0 with a
coarse grid spacing of ∆r = ∆x = 1.6M� and Nang = 20
cells per patch and per angular direction, and a high
resolution setup r2 with a coarse grid spacing of ∆r =
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FIG. 16. Rotating neutron star collapse: we show the total
ADM mass MADM (top panel; red dashed line) and the mass
of the apparent horizon MAH plus energy radiated in GWs
Erad as a function of time (blue straight line). The total
ADM angular momentum JADM of the spacetime (red dashed
line), and the angular momentum JAH as measured on the
apparent horizon (blue straight line) is shown in the bottom
panel. The inset plots show a close-up of the time evolution
of MAH + Erad and JAH. As all matter becomes trapped
in the event horizon, both, MAH + Erad and JAH , quickly
asymptote to the conserved ADM values of the spacetime.
Due to systematic (atmosphere) and numerical errors, the
asymptoted values do not agree with the initial ADM values.
Note that the mass radiated in GWs is negligible compared to
the total mass of the black hole and thus barely contributes to
MAH+Erad. No angular momentum is radiated in GWs. The
results are shown for resolution r2 using cell-centered AMR
with ePPM.

∆x = 1.024M� and Nang = 31 cells per patch and per
angular direction.

We set the damping coefficient of the Γ-driver gauge
condition to η = 1/2, and exponentially damp η to zero
starting from radius Rη = 65M� .

The artificial low-density atmosphere is 10−8 of initial
central density. We also perform a simulation with an
atmosphere density 10−10 of the central density, however,
we find only negligible differences in the accuracy of our
results.

3. Discussion

Following initial pressure depletion, the uniformly ro-
tating polytrope collapses. During collapse, the central
density ρc increases until time t−tBH = 0, the time when
an apparent horizon, and thus a black hole forms. After
formation of the horizon, the matter inside the horizon is
excised from the grid, and the remaining exterior matter
is rapidly dragged into the nascent black hole, leaving
behind the artificial low-density atmosphere. Upon for-
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FIG. 17. Rotating neutron star collapse: power spectral den-
sity of “+“ polarization of GW strain Dh+,e as emitted in the
equatorial plane and extracted via CCE. The blue straight
line is the spectrum of the entire waveform, while the green
dashed line is the spectrum of the ring-down signal. The red
vertical line denotes the (`,m) = (2, 0) prograde fundamental
(N = 0) quasi-normal mode frequency fQNM = 6.68 kHz of
a spinning black hole of mass M = 1.8602M� and dimen-
sionless spin a = 0.5435 as computed in [131]. Mass and
spin of the nascent black hole are determined on its apparent
horizon using the isolated horizon framework. The analysis
is done using baseline resolution r1 with cell-centered AMR
with ePPM.

mation, the black hole is highly excited and radiates GWs
until it settles to a Kerr state. This produces a character-
istic ring-down GW signal with a particular quasi-normal
mode frequency which depends only on mass and spin of
the black hole.

In Fig. 14, we show the emitted GW signal Dh+,e,
and the evolution of the central density ρc for the three
resolutions r0, r1 and r2, respectively. The simulations
are performed using cell-centered AMR, refluxing, and
ePPM reconstruction. The GW signal is extracted us-
ing CCE and we use FFI with a cut-off frequency of
f0 = 1 kHz to obtain Dh+,e. We note that the only sig-
nificant non-zero signal is contained in the (`,m) = (2, 0)
wave mode8 and we use (34) to getDh+,e. When compar-
ing the waveform obtained from CCE to the one obtained
from RWZM (not shown), we notice that the waveforms
from RWZM are more susceptible to numerical noise and
contain spurious high-frequency oscillations. This is con-
sistent with our findings in [21] (see also Sec. III B). The
waveforms extracted via RWZM are similar to those ob-
tained in [5, 92], which also use RWZM extraction. We

8 Earlier studies [5, 92] also found an (`,m) = (4, 0) wave mode.
In our case, this mode is three orders of magnitudes smaller than
the (`,m) = (2, 0) mode amplitude and comparable to the level
of numerical noise. Since the earlier study did not use causally
disconnected outer boundaries, did not compute the waveform
at future null infinity J+, and had less resolution in the wave-
extraction zone, we argue that a (`,m) = (4, 0) could have been
excited because of numerical artifacts and systematic errors.

TABLE V. Initial parameters and properties of the collaps-
ing neutron star. ADM mass MADM and angular momentum
JADM are computed from the initial data solver at spatial
infinity i0. The radiated energy Erad and angular momen-
tum Jrad are computed from waves extracted via the method
of CCE including modes up to ` = 6. The apparent hori-
zon mass MAH and angular momentum JADM are computed
on the apparent horizon surface after the black hole has set-
tled to an approximate Kerr state. The data are reported for
high resolution simulation r2. The value in brackets denotes
the numerical error in the last reported digit. Units are in
c = G = M� = 1, unless otherwise specified.

Initial polytropic scale Kini 100
Evolved polytropic scale K 98
Polytropic index Γ 2
Central rest-mass density [M−2

� ] ρc 3.116× 10−3

Axes ratio 0.65
Rotational / binding energy [%] T/|W | 7.68
Equatorial radius [M�] Re 9.6522
Baryonic mass [M�] MB 2.0443
ADM mass [M�] MADM 1.8605
ADM ang. mom. [M2

�] JADM 1.8814
Spin a 0.5435
Rad. energy [M�] Erad 8.14(3)× 10−7

Rad. ang. mom. [M2
�] Jrad 0(1)× 10−10

AH mass [M�] MAH 1.8602(3)
AH ang. mom. [M2

�] JAH 1.874(7)

thus believe that the results of [5, 92] also suffer from the
same spurious high-frequency noise.

We align all quantities at the coordinate time when
an apparent horizon appears (t − tBH = 0). By com-
puting the differences in low and medium, and medium
and high resolutions, we get an estimate for the conver-
gence of our simulations. In panels below the emitted
GW signal Dh+,e, and central density evolution ρc of
Fig. 14, respectively, we show the differences in GW sig-
nal and central density using the three different resolu-
tions. The differences between medium and high resolu-
tions are scaled for second-order convergence. At black
hole formation, the GW signal and central density exhibit
clear second-order convergence. During collapse, while
the central density shows second-order convergence, the
convergence of the GW signal is somewhat obscured due
to the oscillatory nature of the latter, especially when
the signal is not perfectly in phase. In the lower panel of
Fig. 14, we show the L2-norms of the Hamiltonian con-
straint ‖H‖2 for the three resolutions. Since the artificial
initial pressure depletion is not constraint satisfying, the
constraints do not converge initially. For this reason, we
do not introduce any rescaling for convergence. However,
the slopes for higher resolutions are smaller, resulting in
somewhat smaller constraint violations at later times. At
the time when an apparent horizon appears, and during
ring-down, the constraints exhibit second-order conver-
gence.

In Fig. 15, we compare performance of cell-centered
AMR with ePPM, vertex-centered AMR with oPPM,
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and cell-centered AMR with ePPM and multirate RK
time integration using baseline resolution r1. The
vertex-centered case with oPPM exhibits slightly larger
constraint violations than the cell-centered setup using
ePPM. Before the horizon forms, baryonic mass should
be exactly conserved. In practice, this is not the case,
even in the cell-centered case with refluxing. One reason
for non-conservation is the artificial low-density atmo-
sphere (see Appendix C). Another reason is the buffer-
zone prolongation in regions that thread the surface of
the star. Here, prolongation involving cells in the at-
mosphere can amplify mass non-conservation. We note,
however, that the cell-centered case with refluxing per-
forms better than the vertex-centered case. The simula-
tion using multirate time integration performs equally
well compared to the same simulation using standard
RK4 time integration.

In Fig. 16, we show the mass and spin evolution of
the apparent horizon. After t − tBH = 0, horizon mass
and spin are quickly growing until they asymptote to-
wards the ADM mass and angular momentum of the
spacetime, respectively. For a given spacetime, ADM
mass and angular momentum are always constant. Both
quantities are calculated in the initial data solver and
evaluated at spatial infinity. Since all matter falls into
the horizon, the black hole mass plus the radiated en-
ergy must be equal to the ADM mass. The same ap-
plies to the angular momentum. In the present case, we
have MADM = 1.8605M�. The black hole settles to a
horizon mass of MAH = 1.8602M�. Thus, the differ-
ence is 0.016%. Similarly, the angular momentum ini-
tially is JADM = 1.8814M2

�, and the black hole settles
to JAH = 1.874M2

�. This makes a difference of 0.39%.
The radiated energy is Erad = 8.14× 10−7M� and hence
is tiny compared to the rest mass of the system. This
value agrees to the estimate given in [5, 92]. Since the
only significant non-zero GW mode is the (`,m) = (2, 0)
mode, no angular momentum is radiated. We find that
by decreasing the atmosphere level and increasing the
resolution, the differences in horizon mass and angular
momentum compared to the initial ADM values are de-
creased. Hence, the error in mass and angular momen-
tum conservation is due to systematic (atmosphere) and
numerical error.

In Fig. 17, we investigate the power spectrum of the
emitted GW signal Dh̃+,e. The blue straight curve is
the power spectrum of the entire signal which peaks at
fpeak = 5.06 kHz. The green dashed curve is produced
by first applying a time-domain window function around
the black hole ring-down part of the waveform before tak-
ing the Fourier transform. Thus, the green dashed curve
is the power spectrum of the black hole ring-down part
of the waveform. This curve peaks at fpeak, ring-down =
6.47 kHz. We can compare this frequency with the the-
oretically obtained quasi-normal (QNM) ring-down fre-
quency for a perturbed black hole in vacuum. For the
black hole mass MAH = 1.8602M� and dimensionless
spin a = JAH/M

2
AH = 0.5414, the (`,m) = (2, 0) pro-
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FIG. 18. Binary neutron stars: Convergence study of the
(`,m) = (2, 2) mode of the GW strain Dh, and the L2-norm
of the Hamiltonian constraint ‖H‖2. The top panel shows
the “+” polarization of the (`,m) = (2, 2) mode for all three
resolutions. The panel below shows the GW phase φ of the
(`,m) = (2, 2) mode. The third panel from the top shows the
difference in phase φ, scaled for second-order convergence.
The vertical dashed line indicates appearance of an apparent
horizon in the high-resolution simulation. The bottom panel
shows the L2-norm of the Hamiltonian constraint scaled for
first-order convergence. The simulations were performed us-
ing cell-centered AMR, refluxing, and ePPM reconstruction.

grade fundamental (N = 0) quasi-normal frequency is
fQMN = 6.68 kHz [131]. Thus, the relative difference
is ' 3.3%. This is consistent with [5] who find ”good
agreement“ (unfortunately they do not provide numbers).
Note that we do not expect the two values to exactly co-
incide. The theoretical QNM frequency is strictly only
valid for perturbed Kerr black holes in vacuum. Since
matter is crossing the horizon initially, the ring-down sig-
nal will naturally be affected by black hole growth and
spin-up.

D. Binary Neutron Stars

We investigate accuracy and convergence of the in-
spiral and coalescence of a binary neutron star (BNS)
system. Previous studies in full general relativity were
restricted by the employed purely Cartesian grids (e.g.
[6–11, 132–134], also see [14] for a recent review), and
thus the accuracy of the GW extraction was limited.

For the first time in the context of binary neutron star
mergers, we use CCE for GW extraction at future null
infinity J + (see Sec. II F). This removes finite radius
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FIG. 19. Binary neutron stars: comparison between cell-
centered (cc) AMR with ePPM and vertex-centered (vc) AMR
with oPPM. The top panel shows the (`,m) = (2, 2) mode of
the “+” polarization of the GW strain Dh. The center panel
shows the L2-norm of the Hamiltonian constraint ‖H‖2. The
bottom panel shows conservation of baryonic mass MB . The
vertical dashed line indicates the appearance of an apparent
horizon in the baseline resolution simulation. The simulations
were performed using resolution r1, though for the conserva-
tion of mass, we also show the high resolution (r2) result.
The error in mass conservation converges with better than
second-order as the resolution is increased up to the point
when a new refinement level is switched on at t ' 7.5 ms.

and gauge errors and, combined with our multipatch grid,
allows us to extract the higher than leading order modes.

Finally, we also compare vertex centered AMR with
oPPM with cell-centered AMR with refluxing and ePPM.

1. Initial Conditions and Equation of State

The particular system we evolve is the initial data
set G2_I12vs12_D5R33_60km produced by the LORENE
code [57, 135]. This system, with the same parameters as
described below, has also been considered in [136, 137].

The system consists of two neutron stars initially de-
scribed by a polytropic equation of state P = KρΓ with
K = 123.6 and Γ = 2 with an initial coordinate sep-
aration of 45 km. We evolve the system using a Γ-law
equation of state of the form

P = (Γ− 1)ρε. (35)

These parameters yield neutron stars of individual bary-
onic mass MB = 1.78M� and ADM-mass in isolation
of MNS = 1.57M�. The total ADM mass of the sys-
tem is MADM = 3.2515M�, and the total ADM angular
momentum is JADM = 10.1315M2

�. The initial orbital
angular frequency of the binary is Ωini = 302 Hz. The
initial parameters and properties are listed in Table VI.
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FIG. 20. Binary neutron stars: GW modes (`,m) =
(3, 2), (4, 4), (6, 6), (8, 8) of “+” polarization of the strain Dh
unambiguously extracted via CCE. The waveforms are shown
for high resolution simulation r2. The vertical line indicates
the time of appearance of an apparent horizon. Following
appearance of an apparent horizon, a black hole ring-down
signal is visible.

2. Numerical Setup

The numerical setup consists of the six spherical
inflated-cube grids that surround the central Cartesian
cube. The inner spherical radius of the inflated cube
grids is located at a coordinate radius of RS = 75.84M�
and the outer (spherical) boundary is located at a ra-
dius of RB = 2800M�. The radial resolution at the
inner spherical inter-patch boundary matches the coarse-
grid Cartesian resolution of the central cube and is
∆x = 1.5M� = 2.22 km, ∆x = 1.2M� = 1.77 km and
∆x0.96M� = 1.42 km for the low, medium and high res-
olution runs, respectively. In the region 250M� < r <
800M� we smoothly transition to a coarser resolution
of 6.0M�, 4.8M� and 3.84M� for low (r0), medium
(r1) and high resolution (r2), respectively. The angular
resolution is constant along radial distances and we use
21, 25 and 31 angular grid points per angular direction
and spherical patch for the three resolutions. We use
4 initial levels of mesh refinement in the inner Cartesian
cube to resolve the neutron stars. We surround each neu-
tron star with a set of nested, refined cubes of half-width
13M�, 17.875M� and 26.125M�, where the finest level
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FIG. 21. Binary neutron stars: Phase convergence of the
(`,m) = (6, 6) mode of the GW strain Dh. The top panel
shows the “+” polarization component Dh66

+ , and the panel
below shows the phase φ, for low r0, medium r1, and high
r2 resolutions. The bottom panel shows the phase differ-
ences between low and medium, and medium and high reso-
lutions, scaled for second-order convergence. Convergence is
maintained throughout inspiral and merger. In the ring-down
phase, the coarsest resolution r0 is insufficient to accurately
resolve this mode, and the results cease to converge properly.
The vertical line indicates appearance of an apparent horizon
in the high resolution simulation.

completely covers the neutron star. All refined cubes sur-
rounding the stars are contained in the common, coarse
cube of half-width RS. In each refined level the resolu-
tion is twice that of the previous level. On the finest
level, the neutron stars are covered with a resolution of
∆x = 0.1875M� = 0.278 km, ∆x = 0.15M� = 0.222 km
and ∆x = 0.12M� = 0.176 km for the three resolutions
r0, r1 and r2, respectively.

When the two neutron stars are about to come into
contact, we remove the nested set of cubes surrounding
each individual star and surround the binary with a com-
mon set of nested cubes of half-width RS, 30M�, 15M�
and 7.5M� ensuring uniform resolution in the central
region. Once the lapse function drops to values that in-
dicate that an apparent horizon is about9 to form, we
switch on a final level of radius 3.5M� and resolution
9.38× 10−2M�, 7.5× 10−2M� and 6.00× 10−2M� for
the low, medium and high resolution runs respectively.
This level allows us to handle the steep metric gradients
developing inside of the newly formed apparent horizon.

During inspiral, we track the center of mass of each

9 This is a consequence of the 1 + log slicing condition (14) which
locally slows down time evolution (i.e. α < 1) in regions of strong
curvature. A closed surface of lapse of α . 0.3 has been found
to approximately resemble the apparent horizon shape.
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FIG. 22. Binary neutron stars: Amplitude convergence of
the (`,m) = (6, 6) mode of the GW strain Dh = Dh(φ) as
a function of phase φ. The top panel shows the “+” polar-
ization component Dh66

+ (φ), and the panel below shows the
amplitude A(φ), for low (r0), medium (r1), and high (r2)
resolutions. The bottom panel shows the amplitude differ-
ences between low and medium, and medium and high reso-
lutions, scaled for second-order convergence. Convergence is
maintained throughout inspiral and merger. In the ring-down
phase, however, the coarsest resolution r0 is insufficient to ac-
curately resolve this mode, and the results cease to properly
converge. The vertical line indicates appearance of an appar-
ent horizon in the high resolution simulation.

neutron star to keep the two fluid bodies close to the
center of their refined regions. We compute the center
of mass of an individual neutron star by integrating over
the conserved density within a radius R = 4.0M� of
the densest point on the grid. This method produces
smoother tracks than directly using the location of the
densest point, and helps reducing the jitter in the mesh
refinement boxes observed otherwise.

We set the damping coefficient of the Γ-driver gauge
condition to η = 1.

We set the dissipation strength to εdiss = 0.1 every-
where on the grid. The artificial low-density atmosphere
is 108 times lower than the initial central density.

3. Discussion

While the two neutron stars orbit each other, they lose
energy due to gravitational radiation, inspiral, and finally
merge. The nascent hypermassive neutron star remnant
has a mass which is well above the maximum mass of
neutron stars. It forms a black hole on a dynamical
timescale. The black hole is initially highly excited, and
relaxes to a Kerr state by emitting gravitational ring-
down radiation.

In Fig. 18, we show convergence of the dominant
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TABLE VI. Parameters of the binary neutron star system.
ADM mass MADM and angular momentum JADM are com-
puted by the initial data solver at spatial infinity i0. The
radiated energy Erad and angular momentum Jrad are com-
puted from waves extracted via CCE including modes up to
` = 6. The apparent horizon mass MAH and angular mo-
mentum JADM are computed after the black hole has settled
to an approximate Kerr state. Gravitational disk mass Mdisk

and angular momentum Jdisk are calculated from energy and
angular momentum conservation. The data are reported for
simulation r2. The value in brackets denotes the numerical
error in the last reported digit. Units are in c = G = M� = 1,
unless otherwise specified.

Lorene initial data set G2_I12vs12_D5R33_60km
Initial separation [km] d 45
Polytropic scale K 123.6
Polytropic index Γ 2
Initial orbital frequency [Hz] Ωini 302
ADM mass [M�] MADM 3.2515
ADM ang. mom. [M2

�] JADM 10.1315
Rad. energy [M�] (%) Erad 2.51(5)× 10−2 (0.77%)
Rad. ang. mom. [M2

�] (%) Jrad 1.206(9) (11.9%)
AH mass [M�] MAH 3.2249(3)
AH ang. mom. [M2

�] JAH 8.75(2)
AH spin a 0.841(2)
Grav. mass disk [M�] Mdisk 1.4(4)× 10−3

Bary. mass disk [M�] MB,disk 1.3(2)× 10−3

Ang. mom. disk [M2
�] Jdisk 0.16(4)

(`,m) = (2, 2) mode of the GW strain Dh, the L2-norm
of the Hamiltonian constraint ‖H‖2. The upper panel
shows the “+” polarization of the (`,m) = (2, 2) mode of
the GW strain for the resolutions r0, r1, and r2. The
waveform is extracted via CCE. To obtain Dh, we use a
cut-off parameter f0 = 507 Hz, which is below the initial
instantaneous (`,m) = (2, 2) mode frequency f22

ini deter-
mined from the initial orbital frequency by f22

ini = 2Ωini.
To assess the phase convergence, we plot the differences
in phase between low r0 and medium r1 resolution, and
medium and high r2 resolution, scaled for second-order
convergence. We also plot the L2-norm of the Hamilto-
nian constraint ‖H‖2 scaled for first-order convergence.
Similar to the isolated neutron star tests in Sec. III A,
the dominant constraint error is generated at the con-
tact discontinuity at the neutron star surface, where our
scheme locally reduces to first-order accuracy.

In Fig. 19, we compare cell-centered (cc) AMR and
ePPM reconstruction with vertex-centered (vc) AMR
and oPPM. The (`,m) = (2, 2) mode of the GW strain
Dh and the L2-norm of the Hamiltonian constraint ‖H‖2
do not show any significant differences between the two
numerical setups at this point. After black hole and disk
formation, the vertex-centered scheme exhibits a slightly
larger slope in constraint growth. In the bottom panel,
we show conservation of total baryonic mass MB . Dur-
ing early inspiral, both setups conserve mass to a high
degree, only affected by small errors due to our artifi-
cial atmosphere (see Appendix C). Note that both neu-

tron stars are completely contained on their finest grids.
Thus, there are no refinement boundaries directly influ-
encing the evolution of the two fluid bodies. As the in-
spiral progresses, we find that mass conservation is vio-
lated in the cell-centered case to a higher degree than in
the vertex-centered case (though the error converges as
the resolution is increased). This appears to be an arti-
fact of buffer zone prolongation close to the neutron star
surface in combination with low density matter slightly
above and at atmosphere values. Due to numerical er-
rors, small amounts of mass are leaking out of the neutron
star during inspiral and interact with the atmosphere. As
this low density matter reaches the buffer zones, numeri-
cal errors due to prolongation, which are by construction
larger in the cell-centered case, tend to amplify the nega-
tive effects of the atmosphere treatment. In experiments
with isolated neutrons stars, however, we find that when
the refinement boundaries are sufficiently far removed,
and/or the atmosphere level is further decreased, mass
can be conserved to a higher degree.

We also compare the simulations to a setup using mul-
tirate RK time integration and cell-centered AMR with
ePPM. Unfortunately, due to the large fluid bulk veloc-
ities in the inspiral phase, the orbital phase accuracy is
significantly affected by the lower order fluid time in-
tegration. Thus, we do not recommend application of
multirate RK schemes in the context of binary neutron
star mergers, especially when orbital phase accuracy is
paramount. The problem may be ameliorated by the use
of co-rotating coordinates (see, e.g., [71]).

In order to demonstrate the potential of the multipatch
scheme for more accurate wave extraction, we show in
Fig. 20 some of the higher harmonic GW modes that are
emitted during inspiral, merger, and ring-down. We show
(from top to bottom) the (`,m) = (3, 2), (`,m) = (4, 4),
(`,m) = (6, 6), and (`,m) = (8, 8) modes of “+” polar-
ization of the strain Dh. The modes are extracted from
a simulation using resolution r2, cell-centered AMR, and
ePPM. All modes up to (`,m) = (4, 4) show a clean in-
spiral, merger and ring-down signal, and converge with
resolution (see below). For higher modes, our lowest
resolution run r0 is insufficient to also allow for clean
convergence of the corresponding ring-down signals. Ac-
cordingly, those should be taken with a grain of salt. As
an example, in Figs. 21 and 22, we show convergence of
phase and amplitude of the (`,m) = (6, 6) mode of the
GW strain, respectively. Fig. 21 shows the GW ampli-
tude A reparametrized in terms of the gravitational phase
φ to disentangle phase from amplitude. Both figures indi-
cate that second-order convergence is maintained during
inspiral up to merger. The ring-down part, however, does
not exhibit clean second-order convergence. In that case,
the coarse resolution becomes insufficient, and the result
ceases to converges properly. We note that for the highest
extracted mode, (`,m) = (8, 8), the coarsest resolution
is insufficient to allow for clean convergence also in the
inspiral phase.

We compute the radiated energy Erad, radiated angu-
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lar momentum Jrad, the horizon mass MAH, and horizon
angular momentum JAH. For the computation of the ra-
diated quantities, we include modes ` 6 6 as extracted
via CCE. After the black hole has formed and settled to
an approximate Kerr state, some amount of material is
located in an accretion disk surrounding the black hole.
Hence, we do not expect that horizon mass and radiated
energy balance with the total ADM mass at this time.
Rather, the difference denotes the gravitational mass of
the accretion disk that has formed. Likewise, the same
is true for the balance of angular momentum. Given the
horizon mass, the spacetime’s total ADM mass, and the
radiated energy, we estimate the gravitational mass of
the accretion disk to be Mdisk = MADM−MAH−Erad =
(1.4 ± 0.4) × 10−3M�. The disk’s baryonic mass is
MB,disk = (1.3 ± 0.2) × 10−3M�, which we compute by
integrating over all material outside of the apparent hori-
zon and within a radius R < 40M�. Both, baryonic and
gravitational mass agree within their error bars. We note
that the mass of the disk, though clearly visible in den-
sity contour plots of our simulation (not shown), is tiny
and thus not much above the numerical error. Given the
horizon angular momentum, the spacetime’s total ADM
angular momentum, and the radiated angular momen-
tum, we estimate the disk’s angular momentum to be
Jdisk = JADM−JAH−Jrad = 0.16± 0.04M2

�. For conve-
nience, we list spacetime, black hole, disk, and radiated
mass (and angular momentum) in Table VI. All error
bars are estimated using medium and high resolution re-
sults. The results for mass and spin of the black hole
agree with the values that were found in [136].

In our binary neutron star merger problem, we also in-
vestigate the error inherent to finite-radius GW extrac-
tion. We compare Ψ4 as extracted via the NP formalism
at a finite radius with Ψ4 as extracted via CCE at future
null infinity J +. We align two given waveforms in the
early inspiral phase by minimizing their phase difference
over an interval t ∈ [2.5 ms, 3.5 ms] using the method de-
scribed in [138]. For the (`,m) = (2, 2) mode, we find
a total dephasing on the order of ∆φ ∼ 1 rad and an
amplitude difference of about ' 10% between the wave-
form obtained at R = 250M� and the one obtain at
J +. Waveforms extracted at smaller radii naturally yield
larger differences to the result at J +. While the ampli-
tude error is rather large, the dephasing is comparable
to the dephasing due to numerical error of the orbital
evolution of the two neutron stars. Since this numerical
error is convergent, but the systematic finite radius-error
is not, the finite-radius error becomes a non-neglegible
effect as the numerical resolution is increased. As shown
in [22, 23] for the case of binary black hole mergers, ex-
trapolation to infinity using finite-radius data can reduce
the errors to a tolerable level in cases where CCE is not
available.

Finally, we investigate the influence of the outer
boundary when it is not causally disconnected from the
wave extraction region and interior evolution. We com-
pare a setup with a causally connected outer boundary

located at RB = 2000M� and a causally disconnected
boundary located at RB = 2800M�. The former setup is
in causal contact with the interior and wave-extraction
region during the merger and ring-down phases. We find
a difference in GW phase and amplitude, and final spin
and mass of about ' 7%. More details are given in Ap-
pendix F.

By comparing our results with those of [136, 137], we
conclude that the accuracy of the orbital evolution of the
two neutron stars is very similar. The errors in satisfying
the Hamiltonian constraint and conserving baryonic mass
are of comparable size. This is not surprising, since we
find little difference between the new cell-centered AMR
scheme compared with the vertex-centered AMR scheme
that was also used in [136, 137]. Due to our multipatch
grids, causally disconnected outer boundaries, and CCE,
however, the waveforms that are extracted from our sim-
ulations are more accurate than what has been shown in
previous studies.

IV. SUMMARY AND CONCLUSIONS

We have presented a new GR hydrodynamics scheme
using multiple Cartesian/curvi-linear grid patches and
flux-conservative cell-centered adaptive mesh refinement
(AMR) to allow for a more efficient and accurate spatial
discretization of the computational domain. This is the
first study enabling GR hydrodynamic simulations with
multipatches and AMR. Our multipatch scheme consists
of a set of curvi-linear spherical “inflated-cube” grids with
fixed angular resolution and variable radial spacing, and
a central Cartesian grid with AMR. High-order Lagrange
interpolation is used to fill ghost zones at patch bound-
aries for variables that are smooth, and second-order
essentially non-oscillatory (ENO) interpolation for vari-
ables that contain discontinuities and shocks.

Apart from the successful implementation of mul-
tipatches and flux-conservative cell-centered AMR, we
have introduced a number of additional improvements
to the publicly available code GRHydro: (i) We have ap-
plied the enhanced piecewise-parabolic method (ePPM)
to ensure high-order reconstruction at smooth maxima, a
property that we have found to be crucial for cell-centered
AMR. (ii) To speed up the computation, we have applied
a multirate Runge-Kutta time integrator that exploits
the less restrictive Courant-Friedrich-Lewy (CFL) condi-
tion for the hydrodynamic evolution by switching the the
time integration to second order and thus reducing the
number of intermediate steps by a factor of two. Since the
hydrodynamic evolution dominates the curvature evolu-
tion in terms of computational walltime when complex
microphysics and neutrinos are included, the scheme can
yield a speedup of & 30% (e.g. [90]).

We have presented stable and convergent evolutions
for binary neutron star mergers, stellar collapse to a neu-
tron star, neutron star collapse to a black hole, and evo-
lutions of isolated unperturbed and perturbed neutron



27

stars. For each test case, due to the more efficient domain
discretization, we have been able to enlarge the domain
sufficiently so that the outer boundary is causally discon-
nected from the interior evolution and wave-extraction
zone. This has allowed us to remove the systematic error
that arises from the lack of constraint preserving bound-
ary conditions for the Einstein equations in the BSSN for-
mulation. In the case of the binary neutron star merger
problem, we have found that this error is on the order of
a few percent, and thus limits the accuracy of the simu-
lation and GW extraction.

In addition to enlarging the domain, multipatches have
also allowed us to significantly increase the resolution in
the GW extraction zone compared to previous studies.
For the neutron star merger problem, we have been able
to extract convergent spherical harmonic modes of the
GW strain Dh up to ` = 6. Previous studies have only
considered the dominant (`,m) = (2, 2) wave mode for
this problem.

Furthermore, we have been able to remove the sys-
tematic error inherent in finite-radius wave extraction by
application of Cauchy-characteristic extraction (CCE).
This wave-extraction method computes gauge-invariant
radiation at future null infinity J + using boundary data
from a worldtube at finite radius. This method has pre-
viously been applied in simulations of binary black holes
and stellar collapse [2, 21–24, 75, 76]. Here, we have
applied CCE also to simulations of binary neutron star
mergers, neutron star collapse to a black hole, and iso-
lated excited neutron stars. We have found that the error
due to finite-radius extraction can be as large as 10%.

Finally, for each test case, we have compared the orig-
inal vertex-centered AMR scheme using original PPM
with the new flux-conservative cell-centered AMR scheme
using enhanced PPM. The accuracy has been investi-
gated and compared to results from previous studies. We
have found that simulations of stellar collapse greatly
benefit from flux-conservative cell-centered AMR with
enhanced PPM compared to the original vertex-centered
AMR scheme with original PPM. Conservation of mass
and the satisfaction of the Hamiltonian constraint are
significantly better with the new scheme. The isolated
neutron star and binary neutron star test cases, on the
other hand, are not much affected by the choice of cell-
centered or vertex-centered AMR. This is mainly due to
the choice of grid setup: no matter is crossing any re-
finement boundaries so that flux-conservation is not im-
portant. It can become important, however, in the post-
merger phase of binary neutron star coalescence, espe-
cially in cases where a massive accretion torus forms.

The multipatch infrastructure, the associated curva-
ture and hydrodynamics evolution codes, and all other
computer codes used in this paper will be made (or are
already) publicly available via the EinsteinToolkit [91].
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Appendix A: Shock-tube Tests

We perform a number of basic Sod shock tube and
spherical blast wave tests on fixed backgrounds to en-
sure correctness and convergence of our scheme at mesh-
refinement and inter-patch boundaries.

In this appendix, we restrict our attention to a simple
Sod test to show convergence of the primitive variables
across inter-patch boundaries (see Sec. II C 3), and to
demonstrate mass, energy, and momentum conservation
at refinement boundaries when refluxing (see Sec. IID)
is used.

The Sod shock-tube test consists of setting the initial
fluid state according to [139]. The shock front is located
at a position x0. The background metric is set to the flat
space Minkowksi metric. The tests below use a gamma-
law equation of state P = (Γ− 1)ρε with Γ = 1.4.

If not stated otherwise, the tests below use cell-
centered AMR with refluxing, ePPM reconstruction,
second-order ENO inter-patch interpolation, RK4 time
integration with ∆t/∆x = 0.4, and the HLLE Riemann
solver.

1. Inter-patch Interpolation

In this particular test, we check that shock fronts are
correctly transported across inter-patch boundaries by
maintaining convergence, and without introducing local
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FIG. 23. L1-norm of the difference between exact and evolved
fluid state for a Sod shock tube problem on low r0, medium
r1, and high r2 resolutions. As the resolution is increased, the
error in primitive density ρ (upper panel), specific internal en-
ergy ε (middle panel), and x-component of the 3-velocity vx

(lower panel) correctly decrease by a factor of two in accor-
dance with first-order convergence.
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FIG. 24. Conservation of mass (top panel), energy (middle
panel), and momentum (bottom panel) as a function of time
for a shock front crossing a refinement boundary. The solid
(red/blue/green) lines are from a simulation with refluxing,
while the dashed (black) curves show the case without re-
fluxing. With refluxing, mass, energy, and momentum are
exactly conserved (to machine precision). Without refluxing,
conservation of mass, energy, and momentum is violated.

oscillations at the shock, even in the presence of non-
trivial Jacobians and coordinate transformations. We
setup a multipatch grid consisting of a central Cartesian
grid surrounded by the spherical inflated-cube grids. The
outer boundary extends to RB = 2.5M�. The bound-
ary between Cartesian and spherical grids is located at
RS = 0.5M�. No AMR is employed. For the coarsest
resolution (r0), we set the Cartesian and radial resolu-
tion to ∆x = ∆r = 0.05, and use (Nρ, Nσ) = (20, 20)
cells per spherical patch per direction. Medium (r1) and
high (r2) resolutions double and quadruple, respectively,
the resolution with respect to the coarsest resolution.

We set Sod initial data with x0 = 0 and evolve the
system for sufficiently long so that the shock propagates
across inter-patch boundaries. At each timestep, we com-
pare the evolved fluid state with a solution from an exact
special relativistic Riemann solver [140].

In Fig. 23, we show the L1-norm of the difference be-
tween exact and evolved primitive density ρ, specific in-
ternal energy ε, and the x-component of the 3-velocity
vx. All quantities are plotted for the three resolutions
r0, r1, and r2. As the resolution is increased, the error
correctly decreases by a factor of two between successive
resolutions, thus indicating first-order convergence. This
is consistent with the ENO operator, which reduces to
first-order at shocks.

2. Refluxing

In this simple test, we check the correctness of our re-
fluxing scheme with a shock front crossing a refinement
boundary. As the shock crosses the boundary, mass, mo-
mentum and energy must be conserved to machine pre-
cision.

The numerical grid consists of two levels of 2:1 AMR.
The coarse level extends from x = 0 to x = 1. The fine
level has a refinement half-width of r = 0.1 and is located
at x = 0.4. We set the Sod shock front [139] at location
x0 = 0.48. Thus, the shock starts off on the fine grid and
propagates onto the coarse grid.

A measure of conservation of energy and mass is given
by the sum of the conserved internal energy τ and the
conserved density D over the entire simulation domain,
respectively. Both sums must be constant for all times
t. A measure for conservation of momentum is given by
the balance between the conserved momentum and the
pressure gradient force Fpress per unit time. The bal-
ance as a sum over the entire simulation domain must
be constant as a function of time. In Fig. 24, we show
the sums of conserved density, energy, and momentum
when refluxing is used (solid lines). Without refluxing
(dashed lines), the conserved mass, energy, and momen-
tum grow significantly at time t ≈ 0.025 when the shock
front crosses the refinement boundary.
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FIG. 25. TOV star (from Sec. IIIA): the effect of original
PPM (oPPM) versus enhanced PPM (ePPM) on the Hamil-
tonian constraint as a function of x at time t = 0.76 ms. on
cell-centered (cc) and vertex-centered (vc) AMR grids. The
star’s radius is Re = 14.16 km. The original PPM results
in large constraint violations on the cell-centered grid. The
enhanced PPM clearly outperforms oPPM. For ePPM, the
error is dominated by the first-order error at the neutron star
surface, where the scheme reduces to first order.

Appendix B: Enhanced PPM Scheme

The PPM scheme seeks to find “left” and “right” in-
terpolated values, ai,L and ai,R at the left and right cell
interfaces of a primitive quantity ai defined on cell cen-
ters labeled by i = 0, .., N − 1. The left and right states
are defined on cell interfaces labeled by ai± 1

2
. Rather

than assuming a constant value for a cell-averaged quan-
tity within a given cell, the PPM scheme uses parabolas
to represent cell averages within a given cell.

The enhanced PPM reconstruction proceeds in three
steps: (i) Compute an approximation to a at cell in-
terfaces using a high-order interpolation polynomial, (ii)
limit the interpolated cell-interface values obtained in (i)
to avoid oscillations near shocks and other discontinu-
ities, (iii) constrain the parabolic profile so that no new
artificial maximum is created within one single cell. The
main difference to the original PPM scheme is in steps
(i) and (ii). Both, the limiter and the constraining of
the parabolic profiles is more restrictive in the original
PPM scheme, thus reducing the order of accuracy in cases
where it is not necessary.
a. First Step: Interpolation We compute an approx-

imation to a at cell interfaces, which, assuming a uniform
grid, is obtained via fourth order polynomial interpola-
tion

ai+ 1
2

=
7

12
(ai+1 + ai)−

1

12
(ai−1 + ai+2) , (B1)

using the cell center values of a from neighboring cells.
Ref. [86] also suggests to use a sixth-order polynomial.
This, however, requires more ghost points. In our tests,
we find no significant difference between fourth and sixth-
order interpolation. Hence, we stick to the fourth-order

interpolant.
b. Second Step: Limiting We require that the values

ai+ 1
2
satisfy

min(ai, ai+1) ≤ ai+ 1
2
≤ max(ai, ai+1) , (B2)

i.e., the interpolated value ai+ 1
2
must lie between adja-

cent cell values [86]. This is enforced by the following
conditions. If (B2) is not satisfied, then we define the
second derivatives,

(D2a)i+ 1
2

:= 3(ai − 2ai+ 1
2

+ ai+1) , (B3)

(D2a)i+ 1
2 ,L

:= (ai−1 − 2ai + ai+1) , (B4)

(D2a)i+ 1
2 ,R

:= (ai − 2ai+1 + ai+2) . (B5)

If (D2a)i+ 1
2
and (D2a)i+ 1

2 ,L,R
all have the same sign s =

sign((D2a)i+ 1
2
), we further define

(D2a)i+ 1
2 ,lim

:= smin(C|(D2a)i+ 1
2 ,L
|,

C|(D2a)i+ 1
2 ,R
|,

|(D2a)i+ 1
2
|) . (B6)

where C is a constant that we set according to [86] to
C = 1.25. Otherwise, if one of the signs is different10, we
set (D2a)i+ 1

2 ,lim
= 0. Then, we recompute (B1) by

ai+ 1
2

=
1

2
(ai + ai+1)− 1

3
(D2a)i+ 1

2 ,lim
. (B7)

c. Third Step: Constrain Parabolic Profiles Here,
we apply the refined procedure from [87]. We begin by
initializing left and right states according to the interpo-
lated (and possibly limited) ai+ 1

2
via

ai,R = ai+1,L = ai+ 1
2
, (B8)

so that the Riemann problem is trivial initially. The
conditions below potentially alter ai,R and ai+1,L, so that
the Riemann problem becomes non-trivial.

First, we check whether we are at a smooth local max-
imum. A condition for local smooth maxima is given by

(ai,L − ai)(ai − ai,R) ≤ 0 , or

(ai−2 − ai)(ai − ai+2) ≤ 0 . (B9)

If (B9) holds, we compute, similar to (B3),

(D2a)i = −12ai + 6(ai,L + ai,R) ,

(D2a)i,C = ai−1 − 2ai + ai+1 ,

(D2a)i,L = ai−2 − 2ai−1 + ai ,

(D2a)i,R = ai − 2ai+1 + ai+2 . (B10)

10 For the specific internal energy ε, we also set (D2a)i+ 1
2
,lim = 0,

in cases when (D2a)i+ 1
2
,lim > 1

2
(ai + ai+1). This is different

from the procedure in [87], but is necessary at very strong contact
discontinuities such as the surface of a neutron star to prevent ε
from becoming negative for equations of state that do not allow
ε < 0. In practice, this additional limiter has no effect on the
measured accuracy.
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If (D2a)i,[C,L,R] all have the same sign s = sign((D2a)i),
we compute

(D2a)i+ 1
2 ,lim

= smin(C|(D2a)i+ 1
2 ,L
|,

C|(D2a)i+ 1
2 ,R
|,

C|(D2a)i+ 1
2 ,C
|,

|(D2a)i+ 1
2
|) . (B11)

Otherwise, if one of the signs is different, we set
(D2a)i+ 1

2 ,lim
= 0. If

|(D2a)i| ≤ 10−12 ·max(|ai−2|, |ai−1|, |ai|, |ai+1|, |ai+2|)
(B12)

then we define and set ρi ≡ 0. Otherwise, we define

ρi ≡
(D2a)i+ 1

2 ,lim

(D2a)i
. (B13)

To avoid limiting at small oscillations induced by round-
off errors, we do not apply any limiter if ρi ≥ 1− 10−12.
Otherwise, we compute the third derivative according to

(D3a)i+ 1
2

= (D2a)i+1,C − (D2a)i,C . (B14)

We set

(D3a)min
i = min((D3a)i− 3

2
, (D3a)i− 1

2
,

(D3a)i+ 1
2
, (D3a)i+ 3

2
) (B15)

and

(D3a)max
i = max((D3a)i− 3

2
, (D3a)i− 1

2
,

(D3a)i+ 1
2
, (D3a)i+ 3

2
) . (B16)

Then, we test if

C3 ·max(|(D3a)max
i |,|(D3a)max

i |)
≤ (D3a)max

i − (D3a)min
i , (B17)

holds. In the expression above, C3 = 0.1, according to
Ref. [87]. If (B17) does not hold, a limiter is not applied.
Otherwise, we test the following conditions: (i) if (ai,L−
ai)(ai − ai,R) < 0, we set

ai,L = ai − ρi(ai − ai,L) ,

ai,R = ai + ρi(ai,R − ai) . (B18)

Otherwise, (ii) if |ai − ai,L| ≥ 2|ai,R − ai|, we set

ai,L = ai − 2(1− ρi)(ai,R − ai)− ρi(ai − ai,L) (B19)

or (iii) if |ai,R − ai| ≥ 2|ai − ai,L|, we set

ai,R = ai + 2(1− ρi)(ai − ai,L) + ρi(ai,R − ai) . (B20)

In the conditions (i)-(iii) above, we introduce a spe-
cial treatment for the specific internal energy ε. If
|ai − ai,L| > |ai| or |ai,R − ai| > |ai|, we set ai,L,R = ai

instead of using the full expressions, respectively. This is
different from the original procedure of Ref. [87]. It es-
sentially reduces the reconstruction of ε to first order in
cases when the correction becomes larger than the value
of the reconstructed quantity itself. This is similar to the
limiter step further above and is necessary at very strong
contact discontinuities such as the surface of a neutron
star. Without this additional limiter, ε may become ill-
conditioned. This typically happens when ε is very small
and the correction becomes larger than ε itself poten-
tially leading to negative ε. For some equations of state,
ε < 0 is ill-defined, causing the HLLE Riemann solver to
fail. In practice, this reduction does not affect the overall
accuracy of the scheme. We also note that this special
treatment does not forbid ε from becoming negative.

Finally, we recompute ai,L (ai,R) according to

ai,L(R) = ai + (ai,L(R) − ai)
(D2a)i+ 1

2 ,lim

(D2a)i
.

(B21)

In case the denominator becomes zero in the expression
above, we set the last term to zero.

Finally, if (B9) does not hold, we test whether
|ai,R(L) − ai| ≥ 2|ai,L(R) − ai| holds. In that case, we
set

ai,R(L) = ai − 2(ai,L(R) − ai) (B22)

for either ai,L or ai,R, respectively. In the case of recon-
structing the specific internal energy ε, if |ai−2ai,L(R)| >
ai|, we simply set ai,R(L) = ai. This is for the same rea-
son that has been mentioned above already.

After having obtained ai,L and ai,R, we apply the
“standard“ flattening procedure discussed in the Ap-
pendix of [98]. This completes the enhanced PPM scheme
applied in our code. Note that Ref. [87] (in contrast to
[86]) suggests to skip the second step. In our experiments
with an excited neutron star and a collapsing stellar core,
however, we find that when skipping this step, the scheme
becomes too dissipative.

The enhanced PPM scheme requires four ghost points.
For efficiency reasons, it may be desirable to use only
three ghost points, since less memory and interprocessor
communication is required. In order to reduce the num-
ber of required stencil points to three, we use fourth-order
polynomial interpolation (B1) instead of sixth-order in-
terpolation [86] in the first step, and we skip the check
(B17) involving the third derivatives (D3a)i, assuming
that it does hold. We also use a modified flattening
scheme which allows us to use only three ghost points.
This modified flattening scheme is the same as the one
presented in the Appendix of [98], but we drop the max-
imum and neglect the term f̃i+si in Eqn. (A.2) of [98],
i.e., we directly use fi = f̃i. Since f̃i involves derivatives
of the pressure, by dropping f̃i+si (where si can be +1 or
−1), we are able to reduce the number of required sten-
cil points by one. Effectively, this weakens the amount
of flattening that is applied, and thus potentially results
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in more oscillations at shocks. In our tests, however, we
have found only small differences between the four- and
three-point scheme. All simulations reported in this work
use the three-point scheme.

In Fig. 25, we show the effect of ePPM compared with
oPPM on the Hamiltonian constraint H along the x-axis
for the example of an isolated TOV star (Sec. IIIA) on
cell-centered and vertex-centered AMR grids. Clearly,
ePPM results in a significantly lower error compared to
oPPM on vertex-centered, and especially on cell-centered
AMR grids.

Appendix C: Atmosphere Treatment

In vacuum, obviously, the equations describing the
fluid dynamics break down. When simulating isolated
neutron stars or binary neutron star mergers, a large frac-
tion of the simulation domain is physically vacuum. At
the surface of the fluid bodies where a sharp transition
to vacuum occurs, the Riemann solver breaks down.

As a simple and common solution to this problem, we
keep a very low and constant density fluid (the atmo-
sphere) in the cells which would be vacuum otherwise.
We also keep track of where the evolution of the fluid
variables fails to produce a physical state and reset these
cells to atmosphere. Typically, there are few such cells,
which cluster around the surface of the star. The atmo-
sphere density ρatmo is usually chosen to be 8 to 10 orders
of magnitudes lower than the central density of the fluid
body. This ensures that the atmosphere does not con-
tribute noticeably to the total rest mass and energy in
the simulation.

Whether a given fluid cell is set to atmosphere val-
ues is decided depending on the local fluid density. If it
drops below atmosphere density ρatmo, the cell is set to
atmosphere density with zero fluid velocity.

More specifically, we proceed in the following way.

1. During each intermediate time step, we set an
“atmosphere” flag in an atmosphere mask MA if
τ +∆tRτ < 0 or D+∆tRD < 0, where Rτ and RD
are the right-hand sides of the τ and D equations
(5), respectively and ∆t is the temporal timestep
size. In addition to setting the atmosphere flag,
we also set all fluid right-hand sides for that cell
to zero, in effect freezing the further evolution of
this cell. In that case, we also skip conversion of
conserved to primitive variables of that cell.

2. After a full time step, we set all variables of those
cells to atmosphere values that are flagged as at-
mosphere.

3. Finally, we clear the atmosphere mask MA.

Furthermore, we perform the following operations in-
volving atmosphere checks:

1. After reconstruction, we check whether the recon-
structed primitive density is below atmosphere den-
sity. If this is the case, we enforce first order
reconstruction, i.e. we set left and right cell face
ai,L = ai,R = ai to the cell average ai for all prim-
itive variables.

2. At the end of conservative to primitive conversion,
we check whether the new set of primitive variables
is below atmosphere level for a given cell. If this is
the case, we reset that cell to atmosphere level.

In the two cases above, the atmosphere mask is not set.
To limit high-frequency noise in cells slightly above

atmosphere level, we set cells to atmosphere value if they
are within a given tolerance δ above atmosphere density,
i.e. we test whether

ρ ≤ ρatmo (1 + δ) . (C1)

In the cases considered here, we set δ = 0.001.
The particular treatment of vacuum regions by enforc-

ing a low density atmosphere is not ideal and has several
drawbacks. If a cell is forced to be not lower than a
particular minimum density, small amounts of baryonic
mass can be created or removed. This breaks the strictly
conservative nature of our hydrodynamics scheme and
can thus lead to small errors. As noted in [141], intro-
ducing an artificial atmosphere may also change the local
wave structure of the solution. An artificial low density
atmosphere can be avoided by modifying the Riemann
solver at those cells adjacent to vacuum cells [141]. In
practice, however, if the atmosphere level is sufficiently
low, the negative influence on the fluid evolution can be
neglected.

Appendix D: Scheduling of Ghost-Zone
Synchronization

We find that excessive inter-processor and inter-patch
synchronization of ghost zone information can lead to
significant performance drawbacks, especially on large
numbers of processing units (& 1000). We have thus op-
timized our ghost-zone update pattern and reduced the
number of necessary synchronization calls.

We distinguish between three different synchronization
update operations: (i) inter-processor and inter-patch
synchronizations performed after each intermediate time
step, and (ii) AMR buffer-zone prolongation performed
after each full time step, and (iii) AMR prolongation after
regridding (see [81] on the latter two cases for details).

We distinguish between two sets of vari-
ables. One set is comprised of the spacetime
variables

{
φ, γ̃ij ,K, Ãij , Γ̃

i, α, βi, Bi
}

describing
the curvature evolution and gauge (Sec. II B),
and the other set is comprised of variables{
D, τ, Si, ρ, ε, v

i, ṽi, P,W, Ye, Y
con
e , T, s

}
describing

the evolution of the fluid elements (Sec. IIA). The
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TABLE VII. Required synchronizations for each quantity for the three synchronization operations. See text for more details.

Operation inter-processor/inter-patch sync. prolongation (buffer zone) prolongation (regridding)
Quantities

{
φ, γ̃ij ,K, Ãij , Γ̃

i, α, βi, Bi
} {

φ, γ̃ij ,K, Ãij , Γ̃
i, α, βi, Bi

} {
φ, γ̃ij ,K, Ãij , Γ̃

i, α, βi, Bi
}

{D, τ, Si, Y con
e }

{
D, τ, Si, Y

con
e , ρ, ε, vi, T

} {
D, τ, Si, Y

con
e , ρ, ε, vi, Ye, T, s

}
{MA} {MA}

primitive electron fraction Ye, the conserved electron
fraction Y con

e , the temperature T , and the specific
entropy s are only necessary when microphysical
finite-temperature equations of state are used. In
addition to these two sets of variables, we also need
to consider the ”pseudo-evolved” atmosphere mask MA

described in Appendix C. Thus, in total, we have
24 + 19 + 1 = 44 evolved components that potentially
need to be synchronized.

As described in Sec. II B, the update terms for the
spacetime variables are computed via finite differences
and thus require ghost-zone synchronization after each
intermediate step. In addition, they are also subject to
AMR buffer-zone synchronization via prolongation to ob-
tain valid ghost data from the coarse grid in the buffer
zone.

As described in Sec. II A, the update terms for the
evolved conserved fluid variables are computed from re-
constructed primitive variables at cell interfaces and thus
also require ghost and buffer-zone synchronization in the
same way as the spacetime variables. The conservative
to primitive conversion requires the conserved variables
and valid initial guesses for the primitive variables. Typ-
ically, these initial guesses are taken from the last valid
time step on the given cell. Since cells located in the
buffer zone become invalid during time integration sub-
steps and need to be refilled via buffer-zone prolongation
after a full time step, we also need to synchronize those
primitive variables that are used as initial guesses in the
conservative to primitive conversion. In our case, these
are ρ, ε, vi, and T . Note that we do not need to syn-
chronize the global primitive velocity ṽi since it is later
obtained from a coordinate transformation.

Furthermore, we need to update the atmosphere mask
MA in each intermediate step via inter-processor and
inter-patch synchronization, and also via buffer-zone pro-
longation after each full time step. This is necessary be-
cause the atmosphere mask is only set on cells of the
evolved grid (i.e. all cells excluding ghost zones). Op-
erations like conservative to primitive conversion, which
depend on the atmosphere mask, are performed on the
entire grid, including ghost zones. Thus they require a
synchronized atmosphere mask. In addition, the syn-
chronization order of the atmosphere mask is important
during buffer-zone prolongation. Before prolongating all
other required quantities, we first prolongate the atmo-
sphere mask. Immediately afterwards, cells are set to at-
mosphere values according to the atmosphere mask. The
atmosphere mask itself is cleared (also see Appendix C).

This completes the evolution step and all variables are
in their final state for the given evolution step. Now, it
is possible to prolongate also all remaining variables as
discussed above.

Finally, we need to synchronize all variables (except
for the atmosphere mask11) via prolongation after regrid-
ding. A subsequent conservative to primitive conversion
ensures that the two conservative and primitive sets of
hydrodynamical variables are consistent with each other.
Even though regridding requires all variables to be syn-
chronized and is thus rather expensive, fortunately, this
operation usually does occur only infrequently, say every
64 iterations, when moving the fine grids during binary
neutron star evolution, and only very infrequently, say
every couple of thousands of iterations, when adding ad-
ditional refinement levels during stellar collapse or neu-
tron star collapse.

In Table VII, we explicitly list all quantities that must
be updated during one of the three possible synchro-
nization operations. The most frequent operation, inter-
processor and inter-patch synchronization require the
least number of variables to be updated. Prolongation
during regridding, which is the least frequent synchro-
nization operation, requires the full set of variables (ex-
cept for the atmosphere maskMA which is invalid outside
of a full time integration step). Also note that the global
primitive velocity ṽi never needs to be synchronized be-
cause it is obtained from the local primitive velocity vi
via a coordinate transformation after each synchroniza-
tion step. Similarly, the Lorentz factor W and the pres-
sure P are never synchronized since they are computed in
the conservative to primitive routine, which is exectued
after each synchronization operation.

Appendix E: Volume Integration

Several quantities in our code require volume integra-
tion over the entire numerical grid. For instance, the
total baryonic mass is given by

MB =

∫
d3xD(x, y, z) (E1)

11 The atmosphere mask does not need to be synchronized because
it is not valid during regridding. As explained in Appendix C, it
is only valid during time integration substeps where regridding
is not allowed. We clear it in any new grid region.
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in terms of the conserved density D in the Cartesian ten-
sor basis12. In Cartesian coordinates, this can be approx-
imated numerically by

MB = ∆x∆y∆z
∑
ijk

Dijk , (E2)

where ∆x, ∆y, and ∆z is the grid spacing and the indices
i, j, k, in this context, denote grid indices. In generic
curvi-linear coordinates, the global grid spacing is not
constant anymore. In order to compute the volume inte-
gral with respect to global coordinates, we make use of
the local volume element

d3u = ∆u∆v∆w , (E3)

where ∆u, ∆v, and ∆w denote the local uniform grid
spacing, and we make use of the relation between local
volume form d3u and global volume form

d3x = d3u

∣∣∣∣det
∂xi

∂uj

∣∣∣∣ . (E4)

The volume form d3x is introduced as an additional grid
function which can be computed once the coordinates
and grids are set up.

Next, we need to take into account the non-trivial over-
lap between neighboring grid patches. For instance, the
spherical boundary of the spherical outer grid (Fig. 1)
cuts through cells of the central Cartesian patch, i.e.,
parts of the Cartesian cells reach into the nominal do-
main of the spherical grid. Consequently, the volume
associated with each of those cells is only a fraction of
the volume of the entire cell. In practice, we set up a
weight mask Wijk defining the contribution of each cell
to the total volume. A cell fully contained on the nom-
inal grid has a weight of Wijk = 1. Correspondingly, a
cell completely outside of the nominal grid has a weight
ofWijk = 0. Cells, whose vertices are not all on the nom-
inal grid, carry a weight 0 < Wijk < 1. In that case, we
determine the weight by using 3D Monte-Carlo integra-
tion [e.g., 112] of the volume fraction of the overlapping
regions. The weights need to be calculated only once af-
ter the grids have been setup and therefore the cost of
Monte Carlo volume integration is negligible compared
to the total cost of the simulation.

For simplicity, we absorb the weight mask into the vol-
ume form (E4), i.e., we effectively store

(d3x)ijk = ∆u∆v∆w

∣∣∣∣det
∂xl

∂um

∣∣∣∣
ijk

Wijk , (E5)

12 We remark that our code uses the conserved densityD in the local
coordinate basis. Since D is a densitized scalar, (E1) requires an
additional Jacobian factor to transform D to the global basis.
For simplicity of discussion, we omit this here and temporarily
assume that D is given in the global basis.

6.5 7.0 7.5 8.0 8.5 9.0
0
1
2
3
4
5

RB,2000M�
RB,2800M�

10−2

10−1 |RB,2800M� − RB,2000M�|
0

40
80 RB,2000M�

RB,2800M�

−0.003

0.000

0.003

BNS

D
Ψ

4[
M
−

1
�

]
φ

[r
ad

]
‖H
‖ 1

[1
0−

7 ]

∆
φ

[r
ad

]

t [ms]

RB,2000M�
RB,2800M�

FIG. 26. Binary neutron stars: influence of the outer bound-
ary on the accuracy of the wave extraction and evolution. The
upper panel shows the “+” polarization of the Weyl scalar
DΨ4 extracted via CCE for the two setups with different
outer boundary locations. At time t ' 7.5 ms, when the
outer boundary in the setup with RB = 2000M� comes in
causal contact with the interior evolution, differences start to
become visible for the RB = 2000M� setup: the amplitude
of DΨ4 deviates by ' 7%, the phase φ deviates by ' 0.2 rad,
and the L1-norm of the Hamiltonian constraint ‖H‖1 is larger
by ' 15%.

where the indices i, j, k label grid points and are not sub-
ject to the Einstein sum convention. Similar to the Jaco-
bians introduced for computing global Cartesian deriva-
tives from local finite differences, any volume integration
needs to take into account (E5). For instance (E2) takes
the form

MB =
∑
ijk

Dijk(d3x)ijk . (E6)

Appendix F: Influence of the Outer Boundary

All GR binary neutron star merger simulations to date
employ grids which are too small to allow for causally dis-
connected outer boundaries. Since no constraint preserv-
ing boundary conditions are known for the BSSN evolu-
tion system, the simulations may be affected by incoming
constraint violations. Thus, it is interesting to investigate
the influence of the outer boundary condition on the inte-
rior evolution and extracted GWs of the binary neutron
star merger problem considered in Sec. IIID when the
boundary is not causally disconnected.

We compare a simulation with outer boundary at
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RB = 2000M� to the simulations in Sec. IIID, which
use an outer boundary at RB = 2800M�. The setup
with RB = 2000M� has an outer boundary wich is
in causal contact with the interior evolution and the
wave-extraction region during the merger and ring-down
phases. All simulations impose an approximate and
non-constraint preserving radiative boundary condition
(e.g. [21]). We focus on baseline resolution r1. We ex-
pect the simulations to be very similar at least up to
the point when the constraint violations from the outer
boundary reach the wave-extraction region which hap-
pens at t ' 7.5 ms.

In Fig. 26, we show the “+” polarization of the leading
order harmonic (`,m) = (2, 2) mode of the complex Weyl
scalar DΨ4 computed via CCE. The difference in ampli-
tude are on the order of ' 7%. The effects on the phase
are more subtle and not clearly visible from a simple in-
spection of the waveform itself. Therefore, in the two
panels below, we plot the phase φ of the (`,m) = (2, 2)
mode. The maximum dephasing in the two simulations is
' 0.2 rad and thus, the systematic dephasing due to the
influence from the outer boundary is only slightly below
the one due to the convergent numerical error. This in-
dicates that when the resolution is further increased, the
error due to constraint violations from the outer bound-
ary cannot be neglected anymore.

In the same, figure, we also show the L1-norm13 of
the Hamiltonian constraint ‖H‖1 for the two simulations.
We find that the difference of ' 15% is smaller than the
difference of ' 25% between the numerical resolutions r1
and r2, but not so small that it can be ignored.

Finally, we also compare mass and spin of the merger
remnant, and find that the differences are on the order
of the numerical error between resolutions r1 and r2.

Overall, we find that causally disconnected outer
boundaries have a non-negligible impact on the accu-
racy of the binary neutron star simulation presented in
Sec. IIID. It is thus likely that longer inspiral simulations
are even more strongly affected.

13 We show here the L1-norm since it does not require a log-scaling.
Thus, subtle differences are better visible. We note, however,
that the L2-norm ‖H‖2 shows similar differences.
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