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Higgs inflation is a simple and elegant model in which early-universe inflation is

driven by the Higgs sector of the Standard Model. The Higgs sector can support

early-universe inflation if it has a large nonminimal coupling to the Ricci spacetime

curvature scalar. At energies relevant to such an inflationary epoch, the Goldstone

modes of the Higgs sector remain in the spectrum in renormalizable gauges, and

hence their effects should be included in the model’s dynamics. We analyze the

multifield dynamics of Higgs inflation and find that the multifield effects damp out

rapidly after the onset of inflation, because of the gauge symmetry among the scalar

fields in this model. Predictions from Higgs inflation for observable quantities, such

as the spectral index of the power spectrum of primordial perturbations, therefore

revert to their familiar single-field form, in excellent agreement with recent measure-

ments. The methods we develop here may be applied to any multifield model with

nonminimal couplings in which the N fields obey an SO(N ) symmetry in field space.

PACS numbers: 04.62+v; 98.80.Cq. Preprint MIT-CTP 4411

I. INTRODUCTION

The recent discovery at CERN of a scalar boson with Higgs-like properties [1] heightens

the question of whether the Standard Model Higgs sector could have played interesting roles

in the early universe, at energies well above the electroweak symmetry-breaking scale. In

particular, the suggestive evidence for the Higgs boson raises the possibility to return to an

original motivation for cosmological inflation, namely, to realize a phase of early-universe

acceleration driven by a scalar field that is part of a well-motivated model from high-energy
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particle physics [2–4].

Higgs inflation [5] represents an elegant approach to building a workable inflationary

model based on realistic ingredients from particle physics. In this model, a large nonminimal

coupling of the Standard Model electroweak Higgs sector drives a phase of early-universe

inflation. Such nonminimal couplings are generic: they arise as necessary renormalization

counterterms for scalar fields in curved spacetime [6–9]. Moreover, renormalization-group

analyses indicate that for models with matter akin to the Standard Model, the nonminimal

coupling, ξ, should grow without bound with increasing energy scale [9]. Previous analyses of

Higgs inflation have found that ξ typically grows by at least an order of magnitude between

the electroweak symmetry-breaking scale and the inflationary scale [10–12].

The Standard Model Higgs sector includes four scalar degrees of freedom: the (real) Higgs

scalar and three Goldstone modes. In renormalizable gauges, all four scalar fields remain in

the spectrum at high energies [12–14, 16, 17]. Thus the dynamics of Higgs inflation should be

studied as a multifield model with nonminimal couplings. An important feature of multifield

models, which is absent in single-field models, is that the fields’ trajectories can turn within

field space as the system evolves. Such turns are a necessary (but not sufficient) condition

for multifield models to depart from the empirical predictions of simple single-field models

[18–24].

In this paper we analyze the background dynamics of Higgs inflation, in which all four

scalar fields of the Standard Model electroweak Higgs sector have nonminimal couplings.

We find that multifield dynamics damp out quickly after the onset of inflation, before per-

turbations on cosmologically relevant length scales first cross the Hubble radius. As regards

observable quantities like the power spectrum of primordial perturbations, the model there-

fore behaves effectively as a single-field model. The multifield dynamics remain subdominant

in Higgs inflation because of the particular symmetries of the Higgs sector. Closely related

models, which lack those symmetries, can produce conspicuous departures from the single-

field case [24].

We are principally interested here in the behavior of classical background fields and

long-wavelength perturbations, which behave essentially classically. Therefore we bracket,

for this analysis, the question of the unitarity of Higgs inflation. Conflicting conclusions

have been advanced regarding whether the appropriate renormalization cut-off scale for this

model should be Mpl, Mpl/
√
ξ, or Mpl/ξ, where Mpl ≡ (8πG)−1/2 is the reduced Planck mass



3

[12, 14–16, 25]. Even if Higgs inflation might conclusively be shown to violate unitarity, the

techniques developed here for the analysis of multifield dynamics will be relevant for related

models that incorporate multiple scalar fields with nonminimal couplings and symmetries

(such as gauge symmetries) that enforce specific relations among the couplings of the model.

In particular, we expect that multifield effects in models with N scalar fields, in which the

scalar fields obey an SO(N ) symmetry, should damp out rapidly.

In Section II, we briefly introduce the multifield formalism and establish notation. We

apply the formalism to Higgs inflation in Section III, and in Section IV we analyze the

behavior of the turn-rate, which quantifies the rate at which the background trajectory of

the system deviates from a single-field case. We study how quickly the turn-rate damps

to zero, both analytically and numerically, confirming that for Higgs inflation the turn-rate

becomes negligible within a few efolds after the start of inflation. In Section V we turn

to implications for observable features of the primordial power spectrum, confirming that

multifield Higgs inflation reproduces the empirical predictions of previous single-field studies.

Concluding remarks follow in Section VI.

II. MULTIFIELD DYNAMICS

Following the approach established in [24], we consider models with N scalar fields in

(3+1) spacetime dimensions. We use Greek letters to label spacetime indices, µ, ν = 0, 1, 2, 3;

lower-case Latin letters to label spatial indices, i, j = 1, 2, 3; and upper-case Latin letters

to label field-space indices, I, J = 1, 2, ...,N . We also work in terms of the reduced Planck

mass, Mpl ≡ (8πG)−1/2. In the Jordan frame, the action takes the form

SJordan =

∫
d4x
√
−g̃
[
f(φI)R̃− 1

2
δIJ g̃

µν∂µφ
I∂νφ

J − Ṽ (φI)

]
. (1)

Here f(φI) is the nonminimal coupling function, and we use tildes for quantities in the

Jordan frame. We perform a conformal transformation to the Einstein frame by rescaling

the spacetime metric tensor,

gµν(x) =
2

M2
pl

f(φI(x)) g̃µν(x), (2)

so that the action in the Einstein frame becomes [26]

SEinstein =

∫
d4x
√
−g
[
M2

pl

2
R− 1

2
GIJgµν∂µφI∂νφJ − V (φI)

]
. (3)
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The potential in the Einstein frame, V , is related to the Jordan-frame potential, Ṽ , as

V (φI) =
M4

pl

4f 2(φI)
Ṽ (φI), (4)

and the coefficients of the noncanonical kinetic terms are [26, 27]

GIJ(φK) =
M2

pl

2f(φI)

[
δIJ +

3

f(φI)
f,If,J

]
, (5)

where f,I = ∂f/∂φI . The nonminimal couplings induce a field-space manifold in the Einstein

frame that is not conformal to flat; GIJ serves as a metric on the curved manifold [26].

Therefore we adopt the covariant approach of [24], which respects the curvature of the

field-space manifold.

Varying Eq. (3) with respect to φI yields the equation of motion,

�φI + gµνΓIJK∂µφ
J∂νφ

K − GIKV,K = 0, (6)

where �φI ≡ gµνφI;µ;ν and ΓIJK(φL) is the Christoffel symbold for the field-space manifold,

calculated in terms of GIJ . We expand each scalar field to first order around its classical

background value,

φI(xµ) = ϕI(t) + δφI(xµ), (7)

and also expand the scalar degrees of freedom of the spacetime metric to first order around

a spatially flat Friedmann-Robertson-Walker (FRW) metric [28–30]

ds2 = −(1 + 2A)dt2 + 2a(∂iB)dxidt+ a2 [(1− 2ψ)δij + 2∂i∂jE] dxidxj, (8)

where a(t) is the scale factor. We further introduce a covariant derivative with respect to

the field-space metric and a directional derivative along the background fields’ trajectory,

such that for any vector AI in the field-space manifold we have

DJAI = ∂JA
I + ΓIJKA

K ,

DtAI ≡ ϕ̇JDJAI = ȦI + ΓIJKA
J ϕ̇K ,

(9)

where overdots denote derivatives with respect to cosmic time, t.

To background order, Eq. (6) becomes

Dtϕ̇I + 3Hϕ̇I + GIKV,K = 0, (10)
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where all quantities involving GIJ(φK), V (φI), and their derivatives are evaluated at back-

ground order in the fields: GIJ → GIJ(ϕK) and V → V (ϕI). Following [18] we distinguish

between adiabatic and entropic directions in field space by introducing a unit vector

σ̂I ≡ ϕ̇I

σ̇
, (11)

where

σ̇ ≡ |ϕ̇I | =
√
GIJ ϕ̇Iϕ̇J . (12)

The operator

ŝIJ ≡ GIJ − σ̂I σ̂J (13)

projects onto the subspace orthogonal to σ̂I . Eq. (10) then simplifies to

σ̈ + 3Hσ̇ + V,σ = 0 (14)

where

V,σ ≡ σ̂IV,I . (15)

The background dynamics likewise take the simple form

H2 =
1

3M2
pl

[
1

2
σ̇2 + V

]
,

Ḣ = − 1

2M2
pl

σ̇2,

(16)

where H ≡ ȧ/a is the Hubble parameter.

We may also separate the perturbations into adiabatic and entropic directions. Working

to first order in perturbations, we introduce the gauge-invariant Mukhanov-Sasaki variables

[28–31]

QI ≡ δφI +
ϕ̇I

H
ψ (17)

and the projections

Qσ ≡ σ̂IQ
I ,

δsI ≡ ŝIJQ
J .

(18)

The gauge-invariant curvature perturbation may be defined as Rc ≡ ψ − [H/(ρ + p)]δq,

where the perturbed energy-momentum flux is given by T 0
i = ∂iδq [29, 30]. We then find

that Rc is proportional to Qσ [24]

Rc =
H

σ̇
Qσ. (19)



6

Expanding Eq. (6) to first order and using the projections of Eq. (18), the perturbations

Qσ and δsI obey [24]

Q̈σ + 3HQ̇σ +

[
k2

a2
+Mσσ − ω2 − 1

M2
pla

3

d

dt

(
a3σ̇2

H

)]
Qσ

= 2
d

dt

(
ωJδs

J
)
− 2

(
V,σ
σ̇

+
Ḣ

H

)(
ωJδs

J
) (20)

and

D2
t δs

I +
[
3HδIJ + 2σ̂IωJ

]
DtδsI +

[
k2

a2
δIJ +MI

J − 2σ̂I
(
MσJ +

σ̈

σ̇
ωJ

)]
δsJ

= −2ωI

[
Q̇σ +

Ḣ

H
Qσ −

σ̈

σ̇
Qσ

]
,

(21)

where the mass-squared matrix is

MI
J ≡ GIK (DJDKV )−RI

LMJ ϕ̇
Lϕ̇M ,

MσJ ≡ σ̂IMI
J , Mσσ ≡ σ̂I σ̂

JMI
J .

(22)

The turn-rate [23, 24] is given by

ωI ≡ Dtσ̂I = − 1

σ̇
V,K ŝ

IK , (23)

and ω ≡ |ωI |. Eqs. (20) and (21) decouple if the turn-rate vanishes, ωI = 0. In that case,

Qσ evolves just as in the single-field case [23, 24, 28–30]. Given Eq. (19), that means that

the power spectrum of primordial perturbations, PR, would also evolve as in single-field

models. Thus a necessary (but not sufficient) condition for multifield models of this form

to deviate from the empirical predictions of simple single-field models is for the turn-rate to

be nonnegligible for some duration of the fields’ evolution, ωI 6= 0.

III. APPLICATION TO HIGGS INFLATION

The matter contribution to Higgs inflation [5] consists of the Standard Model electroweak

Higgs sector, which may be written as a doublet of complex scalar fields,

h =

 h+

h0

 . (24)
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The complex fields h+ and h0 may be further decomposed into (real) scalar degrees of

freedom,

h+ =
1√
2

(
χ1 + iχ2

)
,

h0 =
1√
2

(
φ+ iχ3

)
,

(25)

where φ is the Higgs scalar and χa (with a = 1, 2, 3) are the Goldstone modes. In the Jordan

frame, the potential Ṽ (φI) depends only on the combination

h†h =
1

2

[
φ2 + χ2

]
, (26)

where χ = (χ1, χ2, χ3) is a 3-vector of the Goldstone fields. In particular, the symmetry-

breaking potential may be written

Ṽ (φI) =
λ

4

(
φ2 + χ2 − v2

)2
, (27)

in terms of the vacuum expectation value, v. For the Standard Model, v = 246 GeV�Mpl.

For Higgs inflation, the nonminimal coupling function is given by

f(φI) =
M2

0

2
+ ξh†h =

1

2

[
M2

0 + ξ
(
φ2 + χ2

)]
, (28)

where M2
0 ≡ M2

pl − ξv2 and ξ > 0 is the dimensionless nonminimal coupling constant. In

Higgs inflation, we take ξ ∼ O(104) [5], and therefore we may safely set M2
0 = M2

pl. In

the Einstein frame, the potential gets stretched by the nonminimcal coupling function f(φI)

according to Eq. (4). Given Eqs. (27) and (28), this yields

V (φI) =
λM4

pl (φ
2 + χ2 − v2)2

4
[
M2

pl + ξ (φ2 + χ2)
]2 . (29)

The model is thus symmetric under rotations among φ and χa that preserve the magnitude√
φ2 + χ2. When written in the “Cartesian” field-space basis of Eq. (25), in other words,

the SU(2) electroweak gauge symmetry manifests as an SO(4) spherical symmetry in field

space.

For any model with N real-valued scalar fields that respects an SO(N ) symmetry, the

background dynamics depend on just three initial conditions: the initial magnitude and ini-

tial velocity along the radial direction in field space, and the initial velocity perpendicular to

the radial direction. Without loss of generality, therefore, we may analyze the background
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FIG. 1. The potential for Higgs inflation in the Einstein frame, V (φ, χ). Note the flattening of

the potential for large field values, which is quite distinct from the behavior of the Jordan-frame

potential, Ṽ (φ, χ) in Eq. (27).

dynamics of Higgs inflation in terms of just two real-valued scalar fields, φ and χ, and we

may set χ(0) = 0, specifying only initial values for φ(0), φ̇(0), and χ̇(0). This reduction in

the effective number of degrees of freedom stems entirely from the gauge symmetry of the

Standard Model electroweak sector. The remaining dependence on χ̇, meanwhile, distin-

guishes the background dynamics from a genuinely single-field model, in which one neglects

the Goldstone fields altogether. For the remainder of this paper, we exploit the gauge sym-

metry to consider only a single Goldstone mode, χ → χ, reducing the problem to that

of a two-field model. Then f(φI) and V (φI) depend on the background fields only in the

combination

r ≡
√
φ2 + χ2. (30)

Previous analyses [5, 27, 32–34] which considered single-field versions of this model (ne-

glecting the Goldstone modes) found successful inflation for field values ξφ2 � M2
pl. We

confirm this below for the multifield case including the Goldstone modes. The reason is easy

to see from Eq. (29). In the limit ξ(φ2 + χ2) = ξr2 � M2
pl, the potential in the Einstein

frame becomes very flat, approaching

V (φI)→
λM4

pl

4ξ2

[
1 +O

(
M2

pl

ξr2

)]
. (31)

See Fig. 1.

Given ξ ∼ 104, the initial energy density for this model lies well below the Planck scale,
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ρ ' V ' λM4
pl/ξ

2 ∼ 10−9M4
pl. In fact, as we will see, successful slow-roll inflation (pro-

ducing at least 70 efolds of inflation) occurs for initial values of the fields below the Planck

scale, unlike in models of chaotic inflation with polynomial potentials that lack nonminimal

couplings. Moreover, as emphasized in [5], the flattening of the potential in the Einstein

frame at large field values makes Higgs inflation easily compatible with the latest observa-

tions of the spectral index, ns. Ordinary chaotic inflation with a λφ4 potential and minimal

coupling, on the other hand, yields a spectral index outside the 95% confidence interval for

the best-fit value of ns [35, 36]. Below we confirm this behavior for Higgs inflation even

when the Goldstone degrees of freedom are included.

The field-space metric GIJ is determined by the nonminimal coupling function, f(φI),

and its derivatives. Explicit expressions for the components of GIJ for a two-field model

with arbitrary couplings, ξφ and ξχ, are given in the Appendix of [24]. In the case of Higgs

inflation, the SU(2) gauge symmetry enforces ξφ = ξχ = ξ. Given this symmetry, the

convenient combination, C(φI), introduced in the Appendix of [24] becomes

C(φI) = 2f + 6ξ2
(
φ2 + χ2

)
= M2

pl + ξ(1 + 6ξ)r2. (32)

For ξφ = ξχ = ξ, the Ricci curvature scalar for the field-space manifold, as calculated in [24],

takes the form

R =
4ξ

C2

[
C + 3ξM2

pl

]
. (33)

During inflation, when ξr2 �M2
pl, this reduces to

R → 2

3ξr2
�M−2

pl , (34)

indicating that the field-space manifold has a spherical symmetry with radius of curvature

rc ∼
√
ξ r. As shown in [24], the curvature of the field-space manifold remains negligible in

such models until the fields satisfy ξr2 �M2
pl, near the end of inflation.

From Eq. (10), and using the expressions for GIJ and ΓIJK in the Appendix of [24], the

equation of motion for the background field φ(t) takes the form

φ̈+ 3Hφ̇+
ξ(1 + 6ξ)

C
φ
(
φ̇2 + χ̇2

)
− ḟ

f
φ̇+ λM4

pl

φ(φ2 + χ2)

2fC
= 0. (35)

The equation for χ follows upon replacing φ←→ χ. Using Eq. (12), the square of the fields’

velocity vector becomes

σ̇2 =

(
M2

pl

2f

)[(
φ̇2 + χ̇2

)
+

3ḟ 2

f

]
, (36)



10

and the gradient of the potential in the direction σ̂I becomes

σ̂IV,I = V,σ =
λM6

pl (φ
2 + χ2)

ξ(2f)3
ḟ

σ̇
. (37)

We may verify that multifield Higgs inflation exhibits slow-roll behavior for typical choices

of couplings and initial conditions. First consider the single-field case, in which we set

χ = χ̇ = 0. Near the start of inflation (with ξφ2 � M2
pl), the terms in Eq. (35) that stem

from the field’s noncanonical kinetic term take the form

ξ(1 + 6ξ)

C
φφ̇2 − ḟ

f
φ̇→ − φ̇

2

φ
. (38)

The usual slow-roll requirement for single-field models, |φ̇| � |Hφ|, ensures that the terms

in Eq. (38) remain much less than the 3Hφ̇ term in Eq. (35). Neglecting φ̈, the single-field,

slow-roll limit of Eq. (35) becomes

3Hφ̇ ' −
λM4

pl

6ξ3φ
, (39)

or, upon using H2 ' V/(3M2
pl),

φ̇ ' −
√
λM3

pl

3
√

3 ξ2φ
. (40)

Setting ξ = 104 and fixing the initial field velocity by Eq. (40) requires φ(0) ≥ 0.1Mpl to

yield N ≥ 70 efolds of inflation in the single-field case.

A much broader range of initial conditions yields N ≥ 70 efolds in the two-field case.

From Eq. (16) we see that inflation (with ä > 0) requires σ̇2 � V . Given the SO(N )

symmetry of the model, we may set χ(0) = 0 without loss of generality, and parameterize

the fields’ initial velocities as

φ̇(0) =

√
λM3

pl

3
√

3 ξ2φ(0)
x,

χ̇(0) =

√
λM3

pl

3
√

3 ξ2φ(0)
y

(41)

in terms of dimensionless constants x and y. (The single-field case corresponds to x =

−1, y = 0.) Near the start of inflation, when ξr2 = ξφ2 �M2
pl, Eq. (36) becomes

σ̇2|χ(0)=0 →
(
λM4

pl

4ξ2

)(
M2

pl

ξφ2(0)

)2
4

27ξ

[
(1 + 6ξ)x2 + y2

]
. (42)

The first term in parentheses is just the value of the potential, V , near the start of inflation,

as given in Eq. (31). The second term in parentheses is small near the beginning of inflation,
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FIG. 2. The evolution of H(t) (black dashed line) and the fields φ(t) (red solid line) and χ(t) (blue

dotted line). The fields are measured in units of Mpl and we use the dimensionless time variable

τ =
√
λMplt. We have plotted 103H so that its scale is commensurate with the magnitude of the

fields. The Hubble parameter begins large, H(0) = 8.1 × 10−4, but quickly falls by a factor of 30

as it settles to its slow-roll value of H = 2.8× 10−5. Inflation proceeds for ∆τ = 2.5× 106 to yield

N = 70.7 efolds of inflation. The solutions shown here correspond to ξ = 104, φ(0) = 0.1, χ(0) = 0,

φ̇(0) = −2 × 10−6, and χ̇(0) = 2 × 10−2. For the same value of φ(0), Eq. (40) corresponds to

φ̇(0) = −2× 10−8 for the single-field case.

given ξr2 � M2
pl. Hence the initial values for φ̇ and χ̇, parameterized by the coefficients x

and y, may be substantially larger than in the single-field case while still keeping σ̇2 � V .

Fig. 2 shows H(t), φ(t), and χ(t) for a scenario in which φ̇(0) and χ̇(0) greatly exceed

the single-field relation of Eq. (40): |x| = 102 and |y| = 106. As is evident in the figure, the

large initial velocities cause the fields to oscillate rapidly. The extra kinetic energy makes

the initial value of H(t) larger than in the corresponding single-field case. The increase in

H, in turn, causes the fields’ velocities to damp out even more quickly, due to the 3Hφ̇ and

3Hχ̇ Hubble-drag terms in each field’s equation of motion. Thus the system rapidly settles

into a slow-roll regime that continues for 70 efolds. As shown in Fig. 3, we may achieve

N ≥ 70 efolds with even smaller initial field values by making the initial field velocities

correspondingly larger.
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FIG. 3. Contour plots showing the number of efolds of inflation as one varies the fields’ initial

conditions, keeping ξ = 104 fixed. In each panel, the vertical axis is χ̇(0) and the horizontal axis

is φ̇(0). The panels correspond to φ(0) = 10−1 Mpl (top left), 10−2 Mpl (top right), 5 × 10−3 Mpl

(bottom left) and 10−4 Mpl (bottom right), and we again use dimensionless time τ =
√
λMplt. In

each panel, the line for N = 70 efolds is shown in bold. Note how large these initial velocities are

compared to the single-field expectation of Eq. (40).

IV. TURN RATE

The components of the turn-rate, ωI in Eq. (23), take the form

ωφ = −
λM4

pl

σ̇

r2

2f

[
φ

C
−
M2

pl

4f 2

φ̇

σ̇2

(
φφ̇+ χχ̇

)]
. (43)

The other component, ωχ, follows upon replacing φ ←→ χ. The length of the turn-rate

vector is given by

ω = |ωI | =
√
GIJωIωJ =

1

σ̇

√
ŝKMV,KV,M , (44)
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FIG. 4. Evolution of the turn rate. The left picture shows the evolution with initial conditions as

in Fig. 2. The right figure has initial conditions φ(0) = 0.1, χ(0) = φ̇(0) = 0, and χ̇(0) = 2× 10−5

in units of Mpl and τ =
√
λMplt. In both cases we set ξ = 104. Recall from Fig. 2 that inflation

lasts until τend ∼ O(106) for these initial conditions; hence we find that ω damps out within a few

efolds after the start of inflation.

where the final expression follows upon using the definition of ωI in Eq. (23) and the identity

ŝKM = ŝKAŝ
MA, which follows from Eq. (13). We find

σ̇2ω2 = ŝKMV,KV,M =
λ2M10

pl

(2f)5C
r6
[
C − ξ2r2

]
− (V,σ)2 . (45)

The evolution of the turn rate for typical initial conditions is shown in Fig. 4.

In order to analyze the evolution of the background fields, it is easier to move from

Cartesian to polar coordinates, in which the angular velocity and turn rate have more

intuitive behavior. In addition to the radius, r2 = φ2 + χ2, we also define the angle

γ ≡ arctan

(
χ

φ

)
. (46)

Single-field trajectories correspond to constant γ(t). In the polar coordinate system, the

background dynamics of Eq. (16) may be written

H2 =
1

12f

[
ṙ2 + r2γ̇2 +

3ξ2

f
r2ṙ2 +

λM2
pl

2

r4

(M2
pl + ξr2)

]
,

Ḣ = − 1

4f

[
ṙ2 + r2γ̇2 +

3ξ2

f
r2ṙ2

]
.

(47)

The equations of motion become

r̈ + 3Hṙ − rγ̇2 +
ξ(1 + 6ξ)

C
r
(
ṙ2 + r2γ̇2

)
− ξ

f
ṙ2r + λM4

pl

r3

2fC
= 0 (48)
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and

γ̈ +

(
3H + 2

ṙ

r

M2
pl

(M2
pl + ξr2)

)
γ̇ = 0. (49)

In this new basis the turn rate may be written compactly as

ω2 =
λ2M8

pl

2fC

(
r4γ̇

r2γ̇2(M2
pl + ξr2) + ṙ2C

)2

(50)

This expression vanishes in both the limits |γ̇| → 0 and |γ̇| → ∞: if the angular velocity is

either too large or too small, the fields’ evolution reverts to effectively single-field behavior

(either purely radial motion or purely angular motion). Of the two limits, however, only

pure-radial motion is stable. It is ultimately the evolution of γ(t) that will determine the

fate of the turn rate.

It is obvious from Eq. (49) that the line γ̇ = 0 is the fixed point of the angular motion.

The character of the fixed point is defined by the sign of the γ̇ term, which is less trivial.

It can be negative close to r = 0 due to the high curvature of the field manifold and the

small value of the Hubble parameter, but in the slow-roll regime of the radial field, with

ξr2 �M2
pl, the sign of γ̇ is safely positive. That means that we can treat the angular motion

as damped throughout inflation.

For large nonminimal coupling and/or slow rolling of the radial field the last term in Eq.

(49) may be neglected, which yields

γ̈ + 3Hγ̇ = 0. (51)

The only complicated object in Eq. (51) is the Hubble parameter, which may be simplified

in the limit of a slow rolling radial field and large nonminimal coupling upon making use of

Eq. (47):

H ' 1√
6ξ

√
γ̇2 +

λM2
pl

2ξ
. (52)

Then Eq. (51) becomes

γ̈ +
3√
6ξ

√
γ̇2 +

λM2
pl

2ξ
γ̇ ' 0. (53)

Although Eq. (53) can be solved exactly (see the Appendix), it is instructive to examine

the two limits of large and small γ̇, which provide most of the relevant information.
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For small angular velocity, γ̇ �
√
λM2

pl/2ξ, we recover the linear limit

γ̈ +
3

ξ

√
λM2

pl

12
γ̇ ' 0 (54)

with the solution

γ̇ = γ̇0 exp

[
−
√

3λ

2ξ
Mpl t

]
∝ e−3N , (55)

where N = Ht. It is very easy to measure time in efolds in this limit, since the Hubble

parameter is nearly constant. Eq. (55) illustrates that any small, initial angular velocity

will be suppressed within a couple of efolds, or equivalently within a time of the order of

ξ/(
√
λMpl).

In the opposite limit, γ̇ �
√
λM2

pl/2ξ, which we call the nonlinear regime, Eq. (53)

becomes

γ̈ + 3
1√
6ξ
γ̇2 ' 0 (56)

with the solution

γ̇ =

[
1

γ̇0
+

3t√
6ξ

]−1
. (57)

Given Eqs. (55) and (57), we may follow the evolution of any initial angular velocity. If γ̇

begins large enough it will start in the nonlinear regime, where it will stay until it becomes

of order
√
λM2

pl/2ξ. We parameterize the cross-over regime as

γ̇ =
√
λMpl

z√
2ξ

(58)

where z is some constant of order one. The cross-over time may then be estimated by

inverting Eq. (57) to find

tnl =

√
6ξ

3

[√
2ξ

λ

1

Mpl z
− 1

γ̇0

]
. (59)

There exists an upper limit on the time it takes for the angular velocity to decay, namely

√
λMpl tnl,max =

2√
3

ξ

z
. (60)

We have verified all of these analytic predictions using numerical calculations of the

exact equations for the coupled two-field system in an expanding universe. In Fig. 5 we

plot the number of efolds from the beginning of inflation at which the turn rate reaches its

maximum value, as we vary the fields’ initial velocities. Note that for any combination of
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FIG. 5. Contour plots showing the number of efolds at which the maximum of the turn rate occurs,

as one varies the fields’ initial conditions. In each panel, the vertical axis is χ̇(0) and the horizontal

axis is φ̇(0). The panels correspond to φ(0) = 10−1Mpl (top left), 10−2Mpl (top right), 5×10−3Mpl

(bottom left) and 10−4Mpl (bottom right). We set ξ = 104 and use the dimensionless time-variable

τ =
√
λ Mplt. The thick black curve is the contour line of initial conditions that yield N = 70

efolds.

initial conditions that yields at least Ntot = 70 efolds, ω reaches its maximum value between

N(ωmax) = 3.5 and 5 efolds from the start of the fields’ evolution (for the range of initial

conditions considered there). In Fig. 6 we plot ω as a function of time as we vary the initial

angular velocity, γ̇(0). The curves in red correspond to initial conditions in the linear regime,

while the curves in blue start in the nonlinear regime. Note that the curves starting in the

nonlinear regime have the same amplitude. The existence of a maximum time, tnl,max, is

evident from the bunching of the blue curves. We find
√
λMpltnl,max = τnl,max ∼ few×ξ ∼ 104,

as expected from Eq. (60). In these units and for the initial conditions used in Fig. 6,

inflation lasts until τend ∼ O(106), so τnl,max occurs very early after the onset of inflation.

Eq. (55) shows that the linear region lasts at most a few efolds, so the duration of

the nonlinear region is what will ultimately determine whether or not multifield effects will
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FIG. 6. The turn rate as a function of time for different values of the initial angular velocity. The

parameters used are ξ = 104, φ(0) = 0.1Mpl, φ̇(0) = χ(0) = 0, and 0.01√
2ξ
≤ γ̇(0) ≤ 100√

2ξ
, in terms

of dimensionless time, τ =
√
λ Mplt. In these units and for φ(0) = 0.1Mpl, inflation lasts until

τend ∼ O(106).

persist until observationally relevant length scales first cross the Hubble radius. In the

nonlinear regime, Eq. (52) yields H ' γ̇/
√

6ξ with γ̇ given by Eq. (57). The number of

efolds for which the nonlinear regime persists is given by

Nnl =

∫ tnl

0

Hdt ' 1√
6ξ

∫ tnl

0

γ̇dt =
1

3
ln

(√
2ξ

λ

γ̇0
Mpl z

)
. (61)

We examine Eq. (61) numerically by fixing ξ = 104 and φ(0) = 0.1Mpl and choosing pairs

of initial velocities, φ̇(0) and χ̇(0), that yield 70 efolds (see Fig. 7, left); and also by setting

φ̇(0) to various constant values and varying χ̇(0) (Fig. 7, right). The results fall neatly

along a least-squares logarithmic fit, as expected from Eq. (61). The function Nnl grows

slowly. In order for multifield effects to remain important more than a few efolds after the

start of inflation, the initial angular velocity would need to be enormous: at least ten orders

of magnitude larger than typical values of the initial field velocity for single-field inflation,

as given in Eq. (40). We do not know of any realistic mechanism that could generate initial

field velocities so large. Moreover, for many combinations of initial conditions shown in the

righthand side of Fig. 7, Ntot > 70 efolds (several sets of initial conditions yield Ntot ∼ 90

efolds). For those scenarios, the turn rate reaches its maximum value deep within the early

phase of the system’s evolution, long before observationally relevant perturbations first cross

the Hubble radius. The multifield dynamics for this model thus behave similarly to those

in related multifield models of inflation that involve the Higgs sector, such as [37].

We may consider the behavior of a(t) and H(t) in the two different regimes more closely.
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FIG. 7. Number of efolds until the maximum value of the turn rate is reached, as a function of

χ̇(0). On the left we plot N(ωmax) for initial conditions that yield Ntot = 70 efolds; on the right

we plot the same quantity for various values of φ̇(0). The logarithmic fit is an excellent match to

our analytic result, Eq. (61).

From the definition of H and Ḣ in Eq. (47) and neglecting the terms proportional to ṙ

(which is equivalent to requiring the field to be slow rolling along the radial direction), we

find
ä

a
= Ḣ +H2 =

1

12f

(
−2r2γ̇2 +

λM2
pl

2

r4

M2
pl + ξr2

)
. (62)

When the potential dominates we recover what we called the linear regime in the analysis

of the decay of ω. In that regime
ä

a
> 0, (63)

which is an accelerated expansion or cosmological inflation. However, in the nonlinear

regime, when γ̇ dominates, the situation reverses and we find

ä

a
= − 1

6f
r2γ̇2 < 0, (64)

which is an expansion and a very rapid one (because of the large value of H), but it is not

inflation. Regardless of whether we have true inflation or simply rapid expansion at early

times, we may always define the number of efolds as

N =

∫ tend

tin

Hdt. (65)

Thus we may use N as our clock and measure time in efolds from the beginning of the

system’s evolution, regardless of whether it is in the inflationary phase or not. The fact

that in the nonlinear regime the universe is not inflating only makes our results stronger: all
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multifield effects decay before the observable scales exit the horizon in a model that produces

enough inflation to solve the standard cosmological problems.

As a final test of our analysis we set ξ = 102 instead of ξ = 104. The smaller value of

the nonminimal coupling does not lead to a viable model of Higgs inflation — the WMAP

normalization of the power spectrum requires a larger value of ξ [5] — but we may nonetheless

study the dynamics of such a model. We collect the important information about the

dynamics of this model in Fig. 8. As expected, the model can provide 70 or more efolds of

inflation for a wide range of parameters, and the corresponding turn rate peaks well before

observationally relevant length scales first crossed the Hubble radius, even when we increase

χ̇(0) to a few hundred in units of τ =
√
λMplt. The excellent logarithmic fit of the time

at which the turn rate is maximum versus χ̇(0) is again evident. Finally the curves of the

turn rate versus time show the same qualitative and quantitative characteristics as Fig. 6

for ξ = 104. Specifically, if one rescales time and the turn rate appropriately by ξ, the two

sets of curves would be hardly distinguishable.

V. IMPLICATIONS FOR THE PRIMORDIAL SPECTRUM

We have found that in models with an SO(N ) symmetry among the scalar fields, the turn

rate quickly damps to negligible magnitude within a few efolds after the start of inflation.

In this section we confirm that such behavior yields empirical predictions for observable

quantities like the primordial power spectrum of perturbations that reproduce expectations

from corresponding single-field models.

For models that behave effectively as two-field models, which includes the class of SO(N )-

symmetric models we investigate here, we may distinguish two scalar perturbations: the

perturbations in the adiabatic direction, Qσ defined in Eq. (18), and a scalar entropic

perturbation [24],

Qs ≡
ωI
ω
δsI . (66)

We noted in Eq. (19) that Qσ is proportional to the gauge-invariant curvature perturbation,

Rc. We adopt a similar normalization for the entropy perturbation,

S ≡ H

σ̇
Qs. (67)
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FIG. 8. Dynamics of our two-field model with ξ = 102, φ(0) = 1Mpl, and χ(0) = 0. Clockwise from

top left: (1) Contour plot showing the number of efolds as one varies the fields’ initial conditions.

The thick curve corresponds to 70 efolds. (2) Contour plot showing the number of efolds at which

the maximum of the turn rate occurs, as one varies the fields’ initial conditions. The thick curve

corresponds to Ntot = 70 efolds. (3) Number of efolds until the maximum value of the turn rate

is reached for initial conditions giving Ntot = 70 efolds, along with a logarithmic fit. (4) The turn

rate as a function of time for different values of the initial angular velocity, with φ̇(0) = 0 and
0.01√
2ξ
≤ γ̇(0) ≤ 100√

2ξ
, in units of τ =

√
λMplt.

In the long-wavelength limit, the adiabatic and entropic perturbations obey [24, 38]

Ṙc = αHS +O
(

k2

a2H2

)
,

Ṡ = βHS +O
(

k2

a2H2

)
,

(68)

so that we may define the transfer functions

TRS(t∗, t) =

∫ t

t∗

dt′ α(t′)H(t′)TSS(t∗, t
′),

TSS(t∗, t) = exp

[∫ t

t∗

dt′ β(t′)H(t′)

]
.

(69)
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We take t∗ to be the time when a fiducial scale of interest first crossed the Hubble radius

during inflation, defined by a2(t∗)H
2(t∗) = k2∗. In [24], we calculated

α(t) =
2ω(t)

H(t)
(70)

and

β(t) = −2ε− ηss + ησσ −
4

3

ω2

H2
, (71)

where ε ≡ −Ḣ/H2 and the other slow-roll parameters are defined as

ησσ ≡M2
pl

Mσσ

V
,

ηss ≡M2
pl

ωIω
JMI

J

ω2V
.

(72)

The dimensionless power spectrum is given by

PR =
k3

2π2
|Rc|2 (73)

and hence, from Eqs. (68) and (69),

PR(k) = PR(k∗)
[
1 + T 2

RS(t∗, t)
]
, (74)

where k corresponds to a length scale that crossed the Hubble radius at some time t > t∗.

The spectral index is then given by

ns(t) = ns(t∗)− [α(t) + β(t)TRS(t, t∗)] sin(2∆), (75)

where

cos ∆ ≡ TRS√
1 + T 2

RS
. (76)

In the limit (ω/H)� ησσ, the spectral index evaluated at N∗ assumes the single-field form

[29, 30, 34],

ns(t∗) = 1− 6ε(t∗) + 2ησσ(t∗). (77)

Crucial to note is that the turn rate, ω, serves as a window function within TRS(t, t∗):

once the coefficient α = 2ω/H becomes negligible, there will effectively be no transfer of

power from the entropic to the adiabatic perturbations, much as we had found by examining

the source terms on the righthand sides of Eqs. (20) and (21). The question then becomes

whether ω(t), and hence TRS(t∗, t), can depart appreciably from zero at times when pertur-

bations on length scales of observational interest first cross the Hubble radius.
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χ̇(0) ω(N∗ = 63) TRS(max) ns(N∗ = 63) ns(N∗ = 60)

10−2 1.16× 10−10 2.68× 10−6 0.969 0.967

10−1 1.20× 10−9 2.76× 10−5 0.969 0.967

1 9.41× 10−9 2.18× 10−4 0.969 0.967

101 1.18× 10−7 2.72× 10−3 0.969 0.967

102 1.12× 10−6 2.59× 10−2 0.973 0.967

TABLE I. Numerical results for measures of multifield dynamics for Higgs inflation with ξ = 104.

We use dimensionless time τ =
√
λMplt.

The longest length scales of interest are often taken to be those that first crossed the

Hubble radius N∗ = 55 ± 5 efolds before the end of inflation [28–30]. Closer analysis

suggests that length scales that first crossed the Hubble radius N∗ = 62 − 63 efolds before

the end of inflation correspond to the size of the present horizon [39]. Meanwhile, we follow

[29] in assuming that successful inflation requires Ntot ≥ 70 efolds to solve the horizon and

flatness problems. The question then becomes whether ω(t), and hence TRS(t∗, t), can differ

appreciably from zero for N∗ ≤ 63. Given the analysis in Section IV, the best chance for this

to occur is for initial conditions that produce the minimum amount of inflation, Ntot = 70.

In Table I, we present numerical results for key measures of multifield dynamics. In each

case we set ξ = 104, φ(0) = 0.1Mpl, and χ(0) = 0. We vary χ̇(0) as shown and adjust φ̇(0)

in each case so as to produce exactly Ntot = 70 efolds of inflation. Because TRS remains so

small in each of these cases, there is no discernible running of the spectral index within the

window N∗ = 63 to N∗ = 40 efolds before the end of inflation. If we consider a fiducial scale

k∗ that first crosses the Hubble radius at N∗ = 63 efolds before the end of inflation, then we

find ns = 0.97 across the whole range of initial conditions, in excellent agreement with the

measured value of ns = 0.971± 0.010 [36]. If instead we set k∗ as the scale that first crossed

the Hubble radius N∗ = 60 efolds before the end of inflation, we find ns = 0.967 across the

entire range of initial conditions, again in excellent agreement with the latest measurements.

VI. CONCLUSIONS

In this paper we have analyzed Higgs inflation as a multifield model with nonminimal

couplings. Because the Goldstone modes of the Standard Model electroweak Higgs sector
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remain in the spectrum at high energies in renormalizable gauges, we have incorporated

their effects in the dynamics of the model. Because of the high symmetry of the Higgs

sector — guaranteed by the SU(2) electroweak gauge symmetry, which manifests as an

SO(4) symmetry among the scalar fields of the Higgs sector — the nonmiminal couplings

for the various scalar fields take precisely the same value (ξφ = ξχ = ξ), as do the tree-level

couplings in the Jordan-frame potential (λφ = λχ = λ, and so on). The effective potential in

the Einstein frame therefore contains none of the irregular features, such as bumps or ridges,

that were highlighted in [24] for the case of multiple fields with arbitrary couplings. With

no features such as ridges off of which the fields may fall during their evolution, Hubble

drag will always cause any initial angular motion within field space to damp out rapidly.

Increasing the initial angular velocity to arbitrarily large values — well into what we call the

nonlinear regime — only increases the value of H at early times, which makes the Hubble

drag even more effective and hence hastens the damping out of the multifield effects.

The rapidity with which the turn-rate damps to zero combined with the requirement

of Ntot ≥ 70 efolds for successful inflation means that the multifield dynamics become

negligible before perturbations on scales of observational relevance first cross the Hubble

radius. Even if we push the observational window of interest back to N∗ = 63 efolds before

the end of inflation, rather than the usual assumption of N∗ = 55 ± 5, we find that the

model relaxes to effectively single-field dynamics prior to N∗. Hence the predictions from

Higgs inflation for observable quantities, such as the spectral index of the power spectrum

of primordial perturbations, reduce to their usual single-field form. Moreover, the absence

of multifield effects for times later than N∗ means that this model should produce negligible

non-Gaussianities during inflation, in contrast to the broader family of models studied in

[24].

The methods we introduce here may be applied to any multifield model with nonminimal

couplings and an SO(N ) symmetry among the fields in field space. The conclusion therefore

appears robust that such highly symmetric models should behave effectively as single-field

models, at least within the observational window of interest between N∗ = 63 and N∗ = 40

efolds before the end of inflation. Of course, multfield effects could become important in

such models at the end of inflation, during epochs such as preheating [40]. Such processes

remain under study.



24

APPENDIX A: ANGULAR EVOLUTION OF THE FIELD

For completeness, let us integrate the angular equation of motion, Eq. (53), for all values

of γ̇ (in the slow roll regime of the radial field). This yields

γ̇(t)
(√

λMpl +
√

2ξγ̇20 + λM2
pl

)
γ̇0

(√
λMpl +

√
2ξγ̇2(t) + λM2

pl

) = exp

[
−
√

3λMplt

2ξ

]
. (78)

In the two limits, γ̇0 �
√
λMpl/

√
2ξ and γ̇0 �

√
λMpl/

√
2ξ, we may solve Eq. (78) and

recover the forms of γ(t) presented in Eqs. (55) and (57).
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