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Realistic models of high-energy physics include multiple scalar fields. Renormal-

ization requires that the fields have nonminimal couplings to the spacetime Ricci

curvature scalar, and the couplings can be large at the energy scales of early-universe

inflation. The nonminimal couplings induce a nontrivial field-space manifold in the

Einstein frame, and they also yield an effective potential in the Einstein frame with

nontrivial curvature. The ridges or bumps in the Einstein-frame potential can lead

to primordial non-Gaussianities of observable magnitude. We develop a covariant

formalism to study perturbations in such models and calculate the primordial bispec-

trum. As in previous studies of non-Gaussianities in multifield models, our results

for the bispectrum depend sensitively on the fields’ initial conditions.
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I. INTRODUCTION

Inflationary cosmology remains the leading account of the very early universe, consistent

with high-precision measurements of the cosmic microwave background radiation (CMB) [1–

3]. A longstanding challenge, however, has been to realize successful early-universe inflation

within a well-motivated model from high-energy particle physics.

Realistic models of high-energy physics routinely include multiple scalar fields [4, 5].

Unlike single-field models, multifield models generically produce entropy (or isocurvature)

perturbations. The entropy perturbations, in turn, can cause the gauge-invariant curvature

perturbation, ζ, to evolve even on the longest length-scales, after modes have been stretched
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beyond the Hubble radius during inflation [6–13]. Understanding the coupling and evolution

of entropy perturbations in multifield models is therefore critical for studying features in the

predicted power spectrum, such as non-Gaussianities, that are absent in simple single-field

models. (For reviews see [12–17].)

Recent reviews of primordial non-Gaussianities have emphasized four criteria, at least

one of which must be satisfied as a necessary (but not sufficient) condition for observable

power spectra to deviate from predictions of single-field models. These criteria include

[15, 17]: (1) multiple fields; (2) noncanonical kinetic terms; (3) violation of slow-roll; or (4)

an initial quantum state for fluctuations different than the usual Bunch-Davies vacuum. As

we demonstrate here, the first three of these criteria are generically satisfied by models that

include multiple scalar fields with nonminimal couplings to the spacetime Ricci curvature

scalar.

Nonminimal couplings arise in the action as necessary renormalization counterterms for

scalar fields in curved spacetime [18–23]. In many models the nonminimal coupling strength,

ξ, grows without bound under renormalization-group flow [21]. In such models, if the non-

minimal couplings are ξ ∼ O(1) at low energies, they will rise to ξ � 1 at the energy

scales of early-universe inflation. We therefore expect realistic models of inflation to incor-

porate multiple scalar fields, each with a large nonminimal coupling. (Non-Gaussianities in

single-field models with nonminimal couplings have been studied in [24].)

Upon performing a conformal transformation to the Einstein frame — in which the grav-

itational portion of the action assumes canonical Einstein-Hilbert form — the nonminimal

couplings induce a field-space manifold that is not conformal to flat [25]. The curvature of

the field-space manifold, in turn, can induce additional interactions among the matter fields,

beyond those included in the Jordan-frame potential. Moreover, the scalar fields necessarily

acquire noncanonical kinetic terms in the Einstein frame. These new features can have a

dramatic impact on the behavior of the fields during inflation, and hence on the primordial

power spectrum.

Chief among the multifield effects for producing new features in the primordial power

spectrum is the ability of fields’ trajectories to turn in field-space as the system evolves.

Such turns are not possible in single-field models, which include only a single direction of

field-space. In the case of multiple fields, special features in the effective potential, such as

ridges or bumps, can focus the background fields’ trajectories through field space or make
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them diverge. When neighboring trajectories diverge, primordial bispectra can be amplified

to sufficient magnitude that they should be detectable in the CMB [13–16, 26–32].

To date, features like ridges in the effective potential have been studied for the most part

phenomenologically rather than being strongly motivated by fundamental physics. Here we

demonstrate that ridges arise naturally in the Einstein-frame effective potential for mod-

els that incorporate multiple fields with nonminimal couplings. Likewise, as noted above,

models with multiple nonminimally coupled scalar fields necessarily include noncanonical

kinetic terms in the Einstein frame, stemming from the curvature of the field-space mani-

fold. Both the bumpy features in the potential and the nonzero curvature of the field-space

manifold routinely cause the fields’ evolution to depart from slow-roll for some duration of

their evolution during inflation.

Recent analyses of primordial non-Gaussianities have emphasized two distinct types of

fine-tuning needed to produce observable bispectra: fine-tuning the shape of the effective po-

tential to include features like ridges; and separately fine-tuning the fields’ initial conditions

so that the fields begin at or near the top of these ridges [29–32]. Here we show that the first

of these types of fine-tuning is obviated for multifield models with nonminimal couplings;

such features of the potential are generic. The second type of fine-tuning, however, is still

required: even in the presence of ridges and bumps, the fields’ initial conditions must be

fine-tuned in order to produce measurable non-Gaussianities.

In Section II we examine the evolution of the fields in the Einstein frame and emphasize

the ubiquity of features such as ridges that could make the fields’ trajectories diverge in

field space. Section III introduces our covariant, multifield formalism for studying the evo-

lution of background fields and linearized perturbations on the curved field-space manifold.

In Section IV we analyze adiabiatic and entropy perturbations and quantify their coupling

using a covariant version of the familiar transfer-function formalism [11, 13, 35]. In Section

V we build on recent work [36–38] to calculate the primordial bispectrum for multifield

models, applying it here to models with nonminimal couplings. We find that although the

nonminimal couplings induce new interactions among the entropy perturbations compared

to models in which all fields have minimal coupling, the dominant contribution to the bis-

pectrum remains the familiar local form of fNL, made suitably covariant to apply to the

curved field-space manifold. Concluding remarks follow in Section VI. We collect quantities

relating to the curvature of the field-space manifold in the Appendix.
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II. EVOLUTION IN THE EINSTEIN FRAME

We consider N scalar fields in (3 + 1) spacetime dimensions, with spacetime metric

signature (−,+,+,+). We work in terms of the reduced Planck mass, Mpl ≡ (8πG)−1/2 =

2.43 × 1018 GeV. Greek letters label spacetime indices, µ, ν = 0, 1, 2, 3; lower-case Latin

letters label spatial indices, i, j = 1, 2, 3; and upper-case Latin letters label field-space

indices, I, J = 1, 2, ...,N .

In the Jordan frame, the scalar fields’ nonminimal couplings to the spacetime Ricci cur-

vature scalar remain explicit in the action. We denote quantities in the Jordan frame with

a tilde, such as the spacetime metric, g̃µν(x). The action for N scalar fields in the Jordan

frame may be written

SJordan =

∫
d4x
√
−g̃
[
f(φI)R̃− 1

2
G̃IJ g̃µν∂µφI∂νφJ − Ṽ (φI)

]
, (1)

where f(φI) is the nonminimal coupling function and Ṽ (φI) is the potential for the scalar

fields in the Jordan frame. We have included the possibility that the scalar fields in the Jor-

dan frame have noncanonical kinetic terms, parameterized by coefficients G̃IJ(φK). Canon-

ical kinetic terms correspond to G̃IJ = δIJ .

We next perform a conformal transformation to work in the Einstein frame, in which

the gravitational portion of the action assumes Einstein-Hilbert form. We define a rescaled

spacetime metric tensor, gµν(x), via the relation,

gµν(x) = Ω2(x) g̃µν(x), (2)

where the conformal factor is related to the nonminimal coupling function as

Ω2(x) =
2

M2
pl

f(φI(x)). (3)

Eq. (1) then takes the form [25]

SEinstein =

∫
d4x
√
−g
[
M2

pl

2
R− 1

2
GIJgµν∂µφI∂νφJ − V (φI)

]
. (4)

The potential in the Einstein frame is scaled by the conformal factor,

V (φI) =
1

Ω4(x)
Ṽ (φI) =

M4
pl

4f 2(φI)
Ṽ (φI). (5)
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The coefficients of the noncanonical kinetic terms in the Einstein frame depend on the

nonminimal coupling function, f(φI), and its derivatives, and are given by [25, 39]

GIJ(φK) =
M2

pl

2f(φI)

[
G̃IJ(φK) +

3

f(φI)
f,If,J

]
, (6)

where f,I = ∂f/∂φI .

As demonstrated in [25], the nonminimal couplings induce a field-space manifold in the

Einstein frame, associated with the metric GIJ(φK) in Eq. (6), which is not conformal to flat

for models in which multiple scalar fields have nonminimal couplings in the Jordan frame.

Thus there does not exist any combination of conformal transformation plus field-rescalings

that can bring the induced metric into the form GIJ = δIJ . In other words, multifield models

with nonminimal couplings necessarily include noncanonical kinetic terms in the Einstein

frame, even if the fields have canonical kinetic terms in the Jordan frame, G̃IJ = δIJ . When

analyzing multifield inflation with nonminimal couplings, we therefore must work either with

a noncanonical gravitational sector or with noncanonical kinetic terms. Here we adopt the

latter. Because there is no way to avoid noncanonical kinetic terms in the Einstein frame

in such models, we do not rescale the fields. For the remainder of the paper, we restrict

attention to models with canonical kinetic terms in the Jordan frame, G̃IJ = δIJ , in which

the curvature of the field-space manifold in the Einstein frame depends solely upon f(φI)

and its derivatives.

Varying the action of Eq. (4) with respect to gµν(x) yields the Einstein field equations,

Rµν −
1

2
gµνR =

1

M2
pl

Tµν , (7)

where

Tµν = GIJ∂µφI∂νφJ − gµν
[

1

2
GIJgαβ∂αφI∂βφJ + V (φI)

]
. (8)

Varying Eq. (4) with respect to φI yields the equation of motion,

�φI + gµνΓIJK∂µφ
J∂νφ

K − GIKV,K = 0, (9)

where �φI ≡ gµνφI;µ;ν and ΓIJK(φL) is the Christoffel symbol for the field-space manifold,

calculated in terms of GIJ .

We expand each scalar field to first order around its classical background value,

φI(xµ) = ϕI(t) + δφI(xµ), (10)
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and also expand the scalar degrees of freedom of the spacetime metric to first order, per-

turbing around a spatially flat Friedmann-Robertson-Walker (FRW) metric [11, 12, 40],

ds2 = gµν(x) dxµdxν

= − (1 + 2A) dt2 + 2a (∂iB) dxidt+ a2 [(1− 2ψ)δij + 2∂i∂jE] dxidxj,
(11)

where a(t) is the scale factor. To background order, the 00 and ij components of Eq. (7)

may be combined to yield the usual dynamical equations,

H2 =
1

3M2
pl

[
1

2
GIJ ϕ̇Iϕ̇J + V (ϕI)

]
,

Ḣ = − 1

2M2
pl

GIJ ϕ̇Iϕ̇J ,
(12)

where H ≡ ȧ/a is the Hubble parameter, and the field-space metric is evaluated at back-

ground order, GIJ = GIJ(ϕK).

Both the curvature of the field-space manifold and the form of the effective potential in

the Einstein frame depend upon the nonminimal coupling function, f(φI). The requirement

of renormalizability for scalar matter fields in a (classical) curved background spacetime

dictates the form of f(φI) [18–21]:

f(φI) =
1

2

[
M2

0 +
∑
I

ξI
(
φI
)2

]
, (13)

where M0 is some mass-scale that could be distinct from Mpl, and the nonminimal couplings

ξI are dimensionless constants that need not be equal to each other. If any of the fields

develop nonzero vacuum expectation values, 〈φI〉 = vI , then one may expect M2
pl = M2

0 +∑
I ξI(v

I)2. Here we will assume either that vI = 0 for each field or that
√
ξI v

I � Mpl, so

that M0 'Mpl.

The nonminimal couplings ξI could in principle take any “bare” value. (Conformal cou-

plings correspond to ξI = −1/6; we only consider positive couplings here, ξI > 0.) Under

renormalization-group flow the constants vary logarithmically with energy scale. The exact

form of the β functions depends upon details of the matter sector, but for models whose

content is akin to the Standard Model the β functions are positive and the flow of ξI has

no fixed point, rising with energy scale without bound [21]. Studies of the flow of ξ in the

case of Higgs inflation [41] indicate growth of ξ by O(101 − 102) between the electroweak

symmetry-break scale, Λ ∼ 102 GeV, and typical inflationary scales, Λ ∼ 1016 GeV [42].
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Hence we anticipate that realistic models will include nonminimal couplings ξI � 1 during

inflation.

Renormalizable potentials in (3+1) spacetime dimensions can include terms up to quartic

powers of the fields. A potential in the Jordan frame that assumes a generic renormalizable,

polynomial form such as

Ṽ (φI) =
1

2

∑
I

m2
I

(
φI
)2

+
1

2

∑
I<J

gIJ
(
φI
)2 (

φJ
)2

+
1

4

∑
I

λI
(
φI
)4

(14)

will yield an effective potential in the Einstein frame that is stretched by the conformal

factor in accord with Eq. (5). As the Jth component of φI becomes arbitrarily large the

potential in that direction will become asymptotically flat,

V (φI) =
M4

pl

4

Ṽ (φI)

f 2(φI)
→

M4
pl

4

λJ
ξ2
J

(15)

(no sum on J), unlike the quartic behavior of the potential in the large-field limit in the

Jordan frame. (The flatness of the effective potential for large field values was one inspiration

for Higgs inflation [41].) Inflation in such models occurs in a regime of field values such that

ξJ(ϕJ)2 �M2
pl for at least one component, J . As emphasized in [41], for large nonminimal

couplings, ξJ � 1, all of inflation therefore may occur for field values that satisfy |ϕJ | < Mpl,

unlike the situation for ordinary chaotic inflation with polynomial potentials and minimal

couplings.

Although the effective potential in the Einstein frame will asymptote to a constant value

in any given direction of field space, the constants will not, in general, be equal to each

other. Thus at finite values of the fields, the potential will generically develop features,

such as ridges or bumps, that are absent from the Jordan-frame potential. Because the

asymptotic values of V (φI) in any particular direction are proportional to 1/ξ2
J , the steepness

of the ridges depends sharply on the ratios of the nonminimal coupling constants. If some

explicit symmetry, such as the SU(2) electroweak gauge symmetry obeyed by the Higgs

multiplet in Higgs inflation [41], forces all the couplings to be equal — ξI = ξ, m2
I = m2,

and λI = gIJ = λ for all I, J — then the ridges in the Einstein-frame potential disappear

and the potential asymptotes to the same constant value in each direction of field space.

We study the dynamics of such special cases in [43]. For the remainder of this paper, we

consider models in which the constants are of similar magnitude but not exactly equal to

each other.
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FIG. 1. The Einstein-frame effective potential, Eq. (18), for a two-field model. The potential

shown here corresponds to the couplings ξχ/ξφ = 0.8, λχ/λφ = 0.3, g/λφ = 0.1, and m2
φ = m2

χ =

10−2 λφM
2
pl.

For definiteness, consider a two-field model with a potential in the Jordan frame of the

form

Ṽ (φ, χ) =
1

2
m2
φφ

2 +
1

2
m2
χχ

2 +
1

2
gφ2χ2 +

λφ
4
φ4 +

λχ
4
χ4 (16)

and nonminimal coupling function given by

f(φ, χ) =
1

2

[
M2

pl + ξφφ
2 + ξχχ

2
]
. (17)

In the Einstein frame the potential becomes

V (φ, χ) =
M4

pl

4

(
2m2

φφ
2 + 2m2

χχ
2 + 2gφ2χ2 + λφφ

4 + λχχ
4
)[

M2
pl + ξφφ2 + ξχχ2

]2 . (18)

See Fig. 1.

In addition to the ridges shown in Fig. 1, other features of the Einstein-frame potential

can arise depending on the Jordan-frame couplings. For example, the tops of the ridges

can develop small indentations, such that the top of a ridge along χ ∼ 0 becomes a local

minimum rather than a local maximum. In that case, field trajectories that begin near the

top of a ridge tend to focus rather than diverge, keeping the amplitude of non-Gaussianities

very small. For the two-field potential of Eq. (18), we find [44](
∂2
χV
)
|χ=0

=
1[

M2
pl + ξφφ2

]3 [(gξφ − λφξχ)φ4 +
(
ξφm

2
χ − 2ξχm

2
φ + gM2

pl

)
φ2 +m2

χM
2
pl

]
.

(19)
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For realistic values of the masses that satisfy m2
φ,m

2
χ � M2

pl, and at early times when

ξφφ
2 �M2

pl, the top of the ridge along the χ ∼ 0 direction will remain a local maximum if

gξφ < λφξχ. (20)

When the couplings satisfy Eq. (20), the shape of the potential in the vicinity of its ridges

is similar to that of the product potential, V = m2e−λφ
2
χ2, which has been studied in detail

in [30, 32]. Trajectories of the fields that begin near each other close to the top of a ridge

will diverge as the system evolves; that divergence in trajectories can produce a sizeable

amplitude for the bispectrum, as we will see below.

Even potentials with modest ratios of the nonminimal couplings can produce trajectories

that diverge sharply, as shown in Fig. 2. As we will see in Section V, trajectory 2 of Fig. 2

(solid red line) yields a sizeable amplitude for the bispectrum that is consistent with present

bounds, whereas trajectories 1 and 3 produce negligible non-Gaussianities. We will return

to the three trajectories of Fig. 2 throughout the paper, as illustrations of the types of field

dynamics that yield interesting possibilities for the power spectrum.

Unlike the product potential studied in [30, 32], the potential of Eq. (18) contains valleys

in which the system will still inflate. For trajectories 1 (orange dotted line) and 2 (red solid

line) in Fig. 2, for example, the system begins near χ ∼ 0 and rolls off the ridge; because

λχ/ξ
2
χ 6= 0, the valleys in the χ direction are also false vacua and hence the system continues

to inflate as the fields relax toward the global minimum at φ = χ = 0. Near the end of

inflation, when ξφφ
2 + ξχχ

2 < M2
pl, the fields oscillate around the global minimum of the

potential, which can drive a period of preheating. See Fig. 3.

Evolution of the fields like that shown in Fig. 3 is generic for this class of models when the

fields begin near the top of a ridge, and can produce interesting phenomenological features

in addition to observable bispectra. For example, the oscillations of φ around φ = 0 when

the system first rolls off the ridge could produce an observable time-dependence of the

scale factor during inflation, as analyzed in [45]. The added period of inflation from the

false vacuum of the χ valley could lead to scale-dependent features in the power spectrum

associated with double-inflation [46].

In the class of models we consider here, neighboring trajectories may also diverge if we

include small but nonzero bare masses for the fields. For example, in Fig. 4 we show the

evolution of the fields for the same initial conditions as trajectory 3 of Fig. 2 — the black,
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FIG. 2. Parametric plot of the fields’ evolution superimposed on the Einstein-frame potential.

Trajectories for the fields φ and χ that begin near the top of a ridge will diverge. In this case, the

couplings of the potential are ξφ = 10, ξχ = 10.02, λχ/λφ = 0.5, g/λφ = 1, and mφ = mχ = 0.

(We use a dimensionless time variable, τ ≡
√
λφ Mpl t, so that the Jordan-frame couplings are

measured in units of λφ.) The trajectories shown here each have the initial condition φ(τ0) = 3.1

(in units of Mpl) and different values of χ(τ0): χ(τ0) = 1.1 × 10−2 (“trajectory 1,” yellow dotted

line); χ(τ0) = 1.1 × 10−3 (“trajectory 2,” red solid line); and χ(τ0) = 1.1 × 10−4 (“trajectory 3,”

black dashed line).

FIG. 3. The evolution of the Hubble parameter (black dashed line) and the background fields, φ(τ)

(red solid line) and χ(τ) (blue dotted line), for trajectory 2 of Fig. 2. (We use the same units as

in Fig. 2, and have plotted 100H so its scale is commensurate with the magnitude of the fields.)

For these couplings and initial conditions the fields fall off the ridge in the potential at τ = 2373 or

N = 66.6 efolds, after which the system inflates for another 4.9 efolds until τend = 2676, yielding

Ntotal = 71.5 efolds.
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FIG. 4. Models with nonzero masses include additional features in the Einstein-frame potential

which can also cause neighboring field trajectories to diverge. In this case, we superimpose the

evolution of the fields φ and χ on the Einstein-frame potential. The parameters shown here are

identical to those in Fig. 2 but with m2
φ = 0.075 λφ M

2
pl and m2

χ = 0.0025 λφ M
2
pl rather than 0.

The initial conditions match those of trajectory 3 of Fig. 2: φ(τ0) = 3.1 and χ(τ0) = 1.1× 10−4 in

units of Mpl.

dashed curve that barely deviates from the middle of the ridge. The evolution shown in Fig.

2 was for the case mφ = mχ = 0. If, instead, we include nonzero masses, then the curvature

of the effective potential at small field values becomes different from the zero-mass case. In

particular, for positive, real values of the masses, the ridges develop features that push the

fields off to one side, recreating behavior akin to what we found in trajectories 1 and 2 of

Fig. 2.

Because the field-space manifold is curved, the fields’ trajectories will turn even in the

absence of tree-level couplings from the Jordan-frame potential: the fields’ geodesic motion

alone is nontrivial. The Ricci scalar for the field-space manifold in the two-field case is given

in Eq. (115). In Fig. 5 we plot the fields’ motion in the curved manifold for the case when

Ṽ (φ, χ) = V (φ, χ) = 0. The curvature of the manifold is negligible at large field values but

grows sharply near φ ∼ χ ∼ 0.

Given the nonvanishing curvature of the field-space manifold, we must study the evolution

of the fields and their perturbations with a covariant formalism, to which we now turn.
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FIG. 5. Parametric plot of the evolution of the fields φ and χ superimposed on the Ricci curvature

scalar for the field-space manifold, R, in the absence of a Jordan-frame potential. The fields’

geodesic motion is nontrivial because of the nonvanishing curvature. Shown here is the case ξφ = 10,

ξχ = 10.02, φ(τ0) = 0.75, χ(τ0) = 0.01, φ′(τ0) = −0.01, and χ′(τ0) = 0.005.

III. COVARIANT FORMALISM

A gauge-invariant formalism for studying perturbations in multifield models in the Jordan

frame was developed in [47, 48]. In this paper we work in the Einstein frame, following the

approach established in [7–10, 27–38]. Our approach is especially indebted to the geometric

formulation of [32]. In [32], the authors introduce a particular tetrad construction with

which to label the field-space manifold locally, which they dub the “kinematical basis.”

The adoption of the kinematical basis simplifies certain expressions and highlights features

of physical interest in the primordial power spectrum, but it does so at the expense of

obscuring the relationship between observable quantities and the fields that appear in the

original Lagrangian, in terms of which any given model is specified. Rather than adopt the

kinematical basis here, we develop a covariant approach in terms of a single coordinate chart

that covers the entire field manifold. This offers greater insight into the global structure

of the manifold, as illustrated in Fig. 5. We also keep coordinate labels explicit, which

facilitates application of our formalism to the original basis of fields, φI , that appears in the
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governing Lagrangian. Also unlike [32], we work in terms of cosmic time, t, rather than the

number of efolds during inflation, N , because we are interested in applying our formalism

(in later work) to eras such as preheating, for which N is a poor dynamical parameter.

Because of these formal distinctions from [32], we briefly introduce our general formalism in

this section.

We expand each scalar field to first order around its classical background value, as in

Eq. (10). The background fields, ϕI(t), parameterize classical paths through the curved

field-space manifold, and hence can be used as coordinate descriptions of the trajectories.

Just like spacetime coordinates in general relativity, xµ, the array ϕI is not a vector in the

field-space manifold [49]. Infinitesimal displacements, dϕI , do behave as proper vectors, and

hence so do derivatives of ϕI with respect to an affine parameter such as t.

For any vector in the field space, AI , we define a covariant derivative with respect to the

field-space metric as usual by

DJAI = ∂JA
I + ΓIJKA

K . (21)

Following [8, 27, 32], we also introduce a covariant derivative with respect to cosmic time

via the relation

DtAI ≡ ϕ̇JDJAI = ȦI + ΓIJKA
J ϕ̇K , (22)

where overdots denote derivatives with respect to t. The construction of Eq. (22) is essen-

tially a directional derivative along the trajectory.

For models with nontrivial field-space manifolds, the tangent space to the manifold at

one time will not coincide with the tangent space at some later time. Hence the authors of

[36, 37] introduce a covariant means of handling field fluctuations, which we adopt here. As

specified in Eq. (10), the value of the physical field at a given location in spacetime, φI(xµ),

consists of the homogenous background value, ϕI(t), and some gauge-dependent fluctuation,

δφI(xµ). The fluctuation δφI represents a finite coordinate displacement from the classical

trajectory, and hence does not transform covariantly. This motivates a construction of a

vector QI to represent the field fluctuations in a covariant manner. The two field values,

φI and ϕI , may be connected by a geodesic in the field-space manifold parameterized by

some parameter λ, such that φI(λ = 0) = ϕI and φI(λ = 1) = ϕI + δφI . These boundary

conditions allow us to identify a unique vector, QI , that connects the two field values, such
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that DλφI |λ=0 = QI . One may then expand δφI in a power series in QI [36, 37],

δφI = QI − 1

2!
ΓIJKQJQK +

1

3!

(
ΓILMΓMJK − ΓIJK,L

)
QJQKQL + ... (23)

where the Christoffel symbols are evaluated at background order in the fields, ΓIJK =

ΓIJK(ϕL). To first order in fluctuations δφI → QI , and hence at linear order we may treat

the two quantities interchangeably. When we consider higher-order combinations of the

field fluctuations below, however, such as the contribution of the three-point function of

field fluctuations to the bispectrum, we must work in terms of the vector QI rather than

δφI .

We introduce the gauge-invariant Mukhanov-Sasaki variables for the perturbations [11,

12, 40],

QI ≡ QI +
ϕ̇I

H
ψ. (24)

Because both QI and ϕ̇I are vectors in the field-space manifold, QI is also a vector. The

Mukhanov-Sasaki variables, QI , should not be confused with the vector of field fluctuations,

QI . The QI are gauge-invariant with respect to spacetime gauge transformations up to first

order in the perturbations, and are constructed from a linear combination of field fluctuations

and metric perturbations. The quantity QI does not incorporate metric perturbations; it is

constructed from the (gauge-dependent) field fluctuations and background-order quantities

such as the field-space Christoffel symbols. At lowest order in perturbations, QI → QI in

the spatially flat gauge.

Using Eq. (24), Eq. (9) separates into background and first-order expressions,

Dtϕ̇I + 3Hϕ̇I + GIKV,K = 0, (25)

and

D2
tQ

I + 3HDtQI +

[
k2

a2
δIJ +MI

J −
1

M2
pla

3
Dt
(
a3

H
ϕ̇Iϕ̇J

)]
QJ = 0. (26)

The mass-squared matrix appearing in Eq. (26) is given by

MI
J ≡ GIK (DJDKV )−RI

LMJ ϕ̇
Lϕ̇M , (27)

where RI
LMJ is the Riemann tensor for the field-space manifold. All expressions in Eqs.

(25), (26), and (27) involving GIJ , ΓIJK , RI
LMJ , and V are evaluated at background order

in the fields, ϕI .
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The system simplifies further if we distinguish between the adiabatic and entropic direc-

tions in field space [7]. The length of the velocity vector for the background fields is given

by

|ϕ̇I | ≡ σ̇ =
√
GIJ ϕ̇Iϕ̇J . (28)

Introducing the unit vector,

σ̂I ≡ ϕ̇I

σ̇
, (29)

the background equations, Eqs. (12) and (25), simplify to

H2 =
1

3M2
pl

[
1

2
σ̇2 + V

]
,

Ḣ = − 1

2M2
pl

σ̇2

(30)

and

σ̈ + 3Hσ̇ + V,σ = 0, (31)

where we have defined

V,σ ≡ σ̂IV,I . (32)

The background dynamics of Eqs. (30) and (31) take the form of a single-field model with

canonical kinetic term, with the exception that V (ϕI) in Eqs. (30) and (31) depends on all

N independent fields, ϕI .

The directions in field space orthogonal to σ̂I are spanned by

ŝIJ ≡ GIJ − σ̂I σ̂J . (33)

The quantities σ̂I and ŝIJ obey the useful relations

σ̂I σ̂
I = 1,

ŝIJ ŝIJ = N − 1,

ŝIAŝ
A
J = ŝIJ ,

σ̂I ŝ
IJ = 0 for all J.

(34)

Therefore we may use σ̂I and ŝIJ as projection operators to decompose any vector in field

space into components along the direction σ̂I and perpendicular to σ̂I as

AI = σ̂I σ̂JA
J + ŝIJA

J . (35)
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FIG. 6. The slow-roll parameters ε (blue dashed line) and |ησσ| (solid red line) versus N∗ for

trajectory 2 of Fig. 2, where N∗ is the number of efolds before the end of inflation. Note that |ησσ|
temporarily grows significantly larger than 1 after the fields fall off the ridge in the potential at

around N∗ ∼ 5.

In particular, ṠI ≡ ŝIJ ϕ̇
J vanishes identically, ṠI = 0. Thus all of the dynamics of the

background fields are captured by the behavior of σ̇ and σ̂I .

Given the simple structure of the background evolution, Eqs. (30) and (31), we introduce

slow-roll parameters akin to the single-field case. We define

ε ≡ − Ḣ

H2
=

3σ̇2

(σ̇2 + 2V )
(36)

and

ησσ ≡M2
pl

Mσσ

V
, (37)

where we have defined

MσJ ≡ σ̂IMI
J = σ̂K (DKDJV ) ,

Mσσ ≡ σ̂I σ̂
JMI

J = σ̂K σ̂J (DKDJV ) .
(38)

The term in MI
J involving RI

LMJ vanishes when contracted with σ̂I or σ̂J due to the first

Bianchi identity (since the relevant term is already contracted with σ̂Lσ̂M), and henceMσσ

is independent of RI
LMJ . For trajectory 2 of Fig. 2 (solid red line), we see that slow-roll is

temporarily violated when the fields roll off the ridge of the potential. See Fig. 6.

A central quantity of interest is the turn-rate [32], which we denote ωI . The turn-rate is
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FIG. 7. The turn-rate, ω = |ωI |, for the three trajectories of Fig. 2: trajectory 1 (orange dotted

line); trajectory 2 (red solid line); and trajectory 3 (black dashed line). The rapid oscillations in

ω correspond to oscillations of φ in the lower false vacuum of the χ valley. For trajectory 1, ω

peaks at N∗ = 34.5 efolds before the end of inflation; for trajectory 2, ω peaks at N∗ = 4.9 efolds

before the end of inflation; and for trajectory 3, ω remains much smaller than 1 for the duration

of inflation.

given by the (covariant) rate of change of the unit vector, σ̂I ,

ωI ≡ Dtσ̂I = − 1

σ̇
V,K ŝ

IK , (39)

where the last expression follows upon using the equations of motion, Eqs. (25) and (31).

Because ωI ∝ ŝIK , we have

ωI σ̂I = 0. (40)

Using Eqs. (33) and (39), we also find

DtŝIJ = −σ̂IωJ − ωI σ̂J . (41)

For evolution of the fields like that shown in Fig. 2, the turn-rate peaks when the fields roll

off the ridge; see Fig. 7.

We may decompose the perturbations along directions parallel to and perpendicular to

σ̂I :

Qσ ≡ σ̂IQ
I ,

δsI ≡ ŝIJQ
J .

(42)

Note that δsI may be defined either in terms of the field fluctuations or the Mukhanov-

Sasaki variables, since ŝIJδφ
J = ŝIJQ

J . Though δsI is a vector in field-space with N
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components, only N − 1 of these components are linearly independent. We will isolate

particular components of interest in Section IV.

Taking a Fourier transform, such that for any function F (t, xi) we have a2(t)∂i∂
iF (t, xi) =

−k2Fk(t) where k is the comoving wavenumber, Eq. (26) separates into two equations of

motion (we suppress the label k on Fourier modes),

Q̈σ + 3HQ̇σ +

[
k2

a2
+Mσσ − ω2 − 1

M2
pla

3

d

dt

(
a3σ̇2

H

)]
Qσ

= 2
d

dt

(
ωJδs

J
)
− 2

(
V,σ
σ̇

+
Ḣ

H

)(
ωJδs

J
) (43)

and

D2
t δs

I +
[
3HδIJ + 2σ̂IωJ

]
DtδsI +

[
k2

a2
δIJ +MI

J − 2σ̂I
(
MσJ +

σ̈

σ̇
ωJ

)]
δsJ

= −2ωI

[
Q̇σ +

Ḣ

H
Qσ −

σ̈

σ̇
Qσ

]
.

(44)

Although the effective mass of the adiabatic perturbations, m2
eff =Mσσ−ω2, is independent

of RI
LMJ , the curvature of the field-space manifold introduces couplings among components

of the entropy perturbations, δsI , by means of theMI
J term in Eq. (44). The quantities Qσ

and (ωJδs
J) are scalars in field space, so the covariant time derivatives in Eq. (43) reduce

to ordinary time derivatives.

From Eqs. (43) and (44), it is clear that the adiabatic and entropy perturbations decouple

if the turn-rate vanishes, ωI = 0. Moreover, Eq. (43) for Qσ is identical in form to that of

a single-field model (with m2
eff =Mσσ − ω2), but with a nonzero source term that depends

on the combination ωJδs
J . Even in the presence of significant entropy perturbations, δsI ,

the power spectrum for adiabatic perturbations will be devoid of features such as non-

Gaussianities unless the turn-rate is nonzero, ωI 6= 0.

IV. ADIABATIC AND ENTROPY PERTURBATIONS

In Section III we identified the vector of entropy perturbations, δsI , which includes N −1

physically independent degrees of freedom. As we will see in this section, these N − 1

physical components may be further clarified by introducing a particular set of unit vectors

and projection operators in addition to σ̂I and ŝIJ . With them we may identify components

of δsI of particular physical interest.
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We denote the gauge-invariant curvature perturbation as Rc, not to be confused with the

Ricci scalar for the field-space manifold, R. The perturbation Rc is defined as [11, 12, 40]

Rc ≡ ψ − H

(ρ+ p)
δq, (45)

where ρ and p are the background-order energy density and pressure for the fluid filling the

FRW spacetime, and δq is the energy-density flux of the perturbed fluid, T 0
i ≡ ∂iδq. Given

Eq. (8), we find

ρ =
1

2
σ̇2 + V,

p =
1

2
σ̇2 − V,

δq = −GIJ ϕ̇IδφJ = −σ̇σ̂JδφJ ,

(46)

and hence, upon using Eqs. (24) and (42),

Rc = ψ +
H

σ̇
σ̂Jδφ

J =
H

σ̇
Qσ. (47)

We thus find that Rc ∝ Qσ, and that the righthand side of Eq. (44) is proportional to Ṙc.

Recall that these expressions hold to first order in fluctuations, for which δφI → QI .

In the presence of entropy perturbations, the gauge-invariant curvature perturbation need

not remain conserved, Ṙc 6= 0. In particular, the nonadiabatic pressure perturbation is given

by [11, 12]

δpnad ≡ δp− ṗ

ρ̇
δρ = − 2V,σ

3Hσ̇
δρm + 2σ̇

(
ωJδs

J
)
, (48)

where δρm ≡ δρ−3Hδq is the gauge-invariant comoving density perturbation. The perturbed

Einstein field equations (to linear order) require [11, 12]

δρm = −2M2
pl

k2

a2
Ψ, (49)

where Ψ is the gauge-invariant Bardeen potential [11, 12, 40]

Ψ ≡ ψ + a2H

(
Ė − B

a

)
. (50)

Therefore in the long-wavelength limit, for k � aH, the only source of nonadiabatic pressure

comes from the entropy perturbations, δsI . Using the usual relations [11, 12] among the

gauge-invariant quantities Rc and ζ ≡ −ψ + (H/ρ̇)δρ, we find

Ṙc =
H

Ḣ

k2

a2
Ψ +

2H

σ̇

(
ωJδs

J
)
. (51)
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Thus even for modes with k � aH, Rc will not be conserved in the presence of entropy

perturbations if the turn-rate is nonzero, ωI 6= 0.

Eqs. (43) and (51) indicate that a particular component of the vector δsI is of special

physical relevance: the combination (ωJδs
J) serves as the source for Qσ and hence for Ṙc.

Akin to the “kinematical basis” of [32], we may therefore introduce a new unit vector that

points in the direction of the turn-rate, ωI , together with a new projection operator that

picks out the subspace perpendicular to both σ̂I and ωI :

ŝI ≡ ωI

ω
,

γIJ ≡ GIJ − σ̂I σ̂J − ŝI ŝJ ,
(52)

where ω = |ωI | is the magnitude of the turn-rate vector. Using the relations in Eq. (34),

the definitions in Eq. (52) imply

ŝIJ = ŝI ŝJ + γIJ ,

γIJγIJ = N − 2,

ŝIJ ŝJ = ŝI ,

σ̂I ŝ
I = σ̂Iγ

IJ = ŝIγ
IJ = 0 for all J.

(53)

We then find

DtŝI = −ωσ̂I − ΠI ,

DtγIJ = ŝIΠJ + ΠI ŝJ
(54)

where

ΠI ≡ 1

ω
MσKγ

IK , (55)

and hence, from Eq. (53),

σ̂IΠ
I = ŝIΠ

I = 0. (56)

The vector of entropy perturbations, δsI , may then be written as

δsI = ŝIQs +BI , (57)

where

Qs ≡ ŝJQ
J ,

BI ≡ γIJQ
J .

(58)
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The quantity that sources Qσ and Rc is now easily identified as the scalar, ωJδs
J = ωQs,

which corresponds to just one component of the vector δsI .

Making use of Eqs. (30), (47), and (51), the equation of motion for δsI in Eq. (44)

separates into

Q̈s + 3HQ̇s +

[
k2

a2
+Mss + 3ω2 − Π2

]
Qs

= 4M2
pl

ω

σ̇

k2

a2
Ψ−Dt

(
ΠJB

J
)
− ΠJDtBJ −MsJB

J − 3H
(
ΠJB

J
) (59)

and

D2
tB

I +
[
3HδIJ + 2

(
σ̂IωJ − ŝIΠJ

)]
DtBJ

+

[
k2

a2
δIJ + γIAMAJ − σ̂IMσJ − ŝI (3HΠJ +DtΠJ)

]
BJ

= 2ΠIQ̇s − γIAMAsQs +
(
3HΠI +DtΠI

)
Qs.

(60)

In analogy to (38), we have introduced the projections

MsJ ≡ ŝIMI
J ,

Mss ≡ ŝI ŝ
JMI

J .
(61)

Note, however, that unlike MσJ , the term in MI
J proportional to RI

LMJ does not vanish

upon contracting with ŝI or ŝJ . Hence the Riemann-tensor term inMI
J induces interactions

among the components of δsI .

For models with N ≥ 3 scalar fields, we may introduce additional unit vectors and

projection operators with which to characterize components of BI . The next in the series

are given by

ûI ≡ ΠI

Π
,

qIJ ≡ γIJ − ûI ûJ .
(62)

Repeating steps as before, we find

DtûI = ΠŝI + τ I ,

DtqIJ = −ûIτJ − τ I ûJ ,
(63)

where

τ I ≡ 1

Π

[
MsK +

σ̇

ω
σ̂Aσ̂L

(
DAML

K

)]
qIK . (64)
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We then have

BI = ûIQu + CI (65)

in terms of

Qu ≡ ûJQ
J ,

CI ≡ qIJQ
J .

(66)

This decomposition reproduces the structure in the “kinematical basis” [32] but can be

applied in any coordinate basis for the field-space manifold: Qσ is sourced by Qs; Qs is

sourced by Qσ and Qu (though we have used Eq. (51) to substitute the dependence on Q̇σ

for the ∇2Ψ term in Eq. (59)); Qu is sourced by Qs and Qv ≡ τJQ
J/|τ I |, and so on.

For our present purposes the two-field model will suffice. The perturbations then consist of

two scalar degrees of freedom, Qσ and Qs, which obey Eqs. (43) and (59) (with BI = ΠI = 0)

respectively. The effective mass-squared of the entropy perturbations becomes

µ2
s ≡Mss + 3ω2. (67)

If the entropy perturbations are heavy during slow-roll, with µs > 3H/2, then the amplitude

of long-wavelength modes, with k � aH, will fall exponentially: Qs ∼ a−3/2(t) during quasi-

de Sitter expansion. For trajectories that begin near the top of a ridge, on the other hand,

the entropy modes will remain light or even tachyonic at early times, since µ2
s is related to the

curvature of the potential in the direction orthogonal to the background fields’ trajectory.

Once the background fields roll off the ridge, the entropy mass immediately grows very large,

suppressing further growth in the amplitude of Qs. See Fig. 8.

The perturbations in the adiabatic direction are proportional to the gauge-invariant cur-

vature perturbation, as derived in Eq. (47). Following the usual convention [35], we may

define a normalized entropy perturbation as

S ≡ H

σ̇
Qs. (68)

In the long-wavelength limit, the coupled perturbations obey general relations of the form

[35]

Ṙc = αHS +O
(

k2

a2H2

)
,

Ṡ = βHS +O
(

k2

a2H2

)
,

(69)
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FIG. 8. The effective mass-squared of the entropy perturbations relative to the Hubble scale,

(µs/H)2, for the trajectories shown in Fig. 2: trajectory 1 (orange dotted line); trajectory 2 (red

solid line); and trajectory 3 (black dashed line). For all three trajectories, µ2
s < 0 while the fields

remain near the top of the ridge, since µ2
s is related to the curvature of the potential in the direction

orthogonal to the background fields’ evolution. The effective mass grows much larger than H as

soon as the fields roll off the ridge of the potential.

in terms of which we may write the transfer functions as

TRS(t∗, t) =

∫ t

t∗

dt′ α(t′)H(t′)TSS(t∗, t
′),

TSS(t∗, t) = exp

[∫ t

t∗

dt′ β(t′)H(t′)

]
.

(70)

The transfer functions relate the gauge-invariant perturbations at one time, t∗, to their

values at some later time, t. We take t∗ to be the time when a fiducial scale of interest first

crossed outside the Hubble radius during inflation, defined by a2(t∗)H
2(t∗) = k2

∗. In the

two-field case, both Rc and S are scalars in field space, and hence α, β, TRS , and TSS are

also scalars. Thus there is no time-ordering ambiguity in the integral for TSS in Eq. (70).

In the two-field case, Eq. (51) becomes

Ṙ = 2ωS +O
(

k2

a2H2

)
. (71)

Comparing with Eq. (69), we find

α(t) =
2ω(t)

H(t)
. (72)

The variation of the gauge-invariant curvature perturbation is proportional to the turn-rate.
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For Ṡ we take the long-wavelength and slow-roll limits of Eq. (59):

Q̇s ' −
µ2
s

3H
Qs. (73)

Eq. (69) then yields

β = − µ2
s

3H2
− ε+

σ̈

Hσ̇
. (74)

Taking the slow-roll limit of Eq. (31) for σ̇, we have

3Hσ̇ ' −σ̂IV,I . (75)

Taking a covariant time derivative of both sides, using the definition of ωI in Eq. (39), and

introducing the slow-roll parameter

ηss ≡M2
pl

Mss

V
, (76)

we arrive at

β = −2ε− ηss + ησσ −
4

3

ω2

H2
, (77)

where ησσ is defined in Eq. (37). For trajectories that begin near the top of a ridge, ηss will

be negative at early times (like µ2
s), which can yield β > 0. In that case, TSS(t∗, t) will grow.

If one also has a nonzero turn-rate, ω — and hence, from Eq. (72), a nonzero α within the

integrand for TRS(t∗, t) — then the growing entropy modes will source the adiabatic mode.

The power spectrum for the gauge-invariant curvature perturbation is defined by [11, 12]

〈Rc(k1)Rc(k2)〉 = (2π)3δ(3)(k1 + k2)PR(k1), (78)

where the angular brackets denote a spatial average and PR(k) = |Rc|2. The dimensionless

power spectrum is then given by

PR(k) =
k3

2π2
|Rc|2, (79)

and the spectral index is defined as

ns ≡ 1 +
∂ lnPR
∂ ln k

. (80)

Using the transfer functions, we may relate the power spectrum at time t∗ to its value at

some later time, t, as

PR(k) = PR(k∗)
[
1 + T 2

RS(t∗, t)
]
, (81)
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where k corresponds to a scale that crossed the Hubble radius at some time t > t∗. The

scale-dependence of the transfer functions becomes [12, 13, 32, 35],

1

H

∂TRS
∂t∗

= −α− βTRS ,

1

H

∂TSS
∂t∗

= −βTSS ,
(82)

and hence the spectral index for the power spectrum of the adiabatic fluctuations becomes

ns = ns(t∗) +
1

H

(
∂TRS
∂t∗

)
sin (2∆) (83)

where

cos ∆ ≡ TRS√
1 + T 2

RS
. (84)

Given Eq. (43) in the limit ωJδs
J = ωQs � 1, the spectral index evaluated at t∗ matches

the usual single-field result to lowest order in slow-roll parameters [11, 12, 50]:

ns(t∗) = 1− 6ε(t∗) + 2ησσ(t∗). (85)

Scales of cosmological interest first crossed the Hubble radius between 40 and 60 efolds

before the end of inflation. In each of the scenarios of Fig. 2 the fields remained near

the top of the ridge in the potential until fewer than 40 efolds before the end of inflation.

As indicated in Fig. 9, TRS remains small between N∗ = 60 and 40 for each of the three

trajectories, with little sourcing of the adiabatic perturbations by the entropy perturbations.

This behavior of TRS is consistent with the behavior of ω = αH/2 as shown in Fig. 7: ω

(and hence α) remains small until the fields roll off the ridge in the potential. Only in

the case of trajectory 1, which began least high on the ridge among the trajectories and

hence fell down the ridge soonest (at N∗ = 34.5 efolds before the end of inflation), does TRS

become appreciable by N∗ = 40. In particular, we find TRS(N40) = 0.530 for trajectory 1;

TRS(N40) = 0.011 for trajectory 2; and TRS(N40) = 0.001 for trajectory 3.

Fixing the fiducial scale k∗ to be that which first crossed the Hubble radius N∗ = 60

efolds before the end of inflation, we find ns(t∗) = 0.967 for each of the three trajectories of

Fig. 2, in excellent agreement with the observed value ns = 0.971±0.010 [3]. Corrections to

ns from the scale-dependence of TRS remain negligible as long as TRS remains small between

N∗ = 60 and 40. Consequently, we find negligible tilt in the spectral index across the entire

observational window for trajectories 2 and 3, whereas the spectral index for trajectory 1
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FIG. 9. The transfer function TRS for the three trajectories of Fig. 2: trajectory 1 (orange dotted

line); trajectory 2 (red solid line); and trajectory 3 (black dashed line). Trajectories 2 and 3, which

begin nearer the top of the ridge in the potential than trajectory 1, evolve as essentially single-field

models during early times, before the fields roll off the ridge.

FIG. 10. The spectral index, ns, versus N∗ for the three trajectories of Fig. 2: trajectory 1 (orange

dotted line); trajectory 2 (red solid line); and trajectory 3 (black dashed line). The spectral indices

for trajectories 2 and 3 coincide and show no tilt from the value ns(N60) = 0.967.

departs appreciably from ns(t∗) for scales that crossed the Hubble radius near N∗ = 40. See

Fig. 10.
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V. PRIMORDIAL BISPECTRUM

In the usual calculation of primordial bispectra, one often assumes that the field fluctua-

tions behave as nearly Gaussian around the time t∗, in which case the three-point function

for the field fluctuations should be negligible. Using the QI construction of Eq. (23), the

authors of [36, 37] calculated the action up to third order in perturbations and found several

new contributions to the three-point function for field fluctuations, mediated by the Rie-

mann tensor for the field space, RI
JKL. The presence of the new terms is not surprising;

we have seen that RI
JKL induces new interactions among the perturbations even at linear

order, by means of the mass-squared matrix, MI
J in Eq. (27). Evaluated at time t∗, the

three-point function for QI calculated in [37] takes the form

〈QI(k1)QJ(k2)QK(k3)〉∗ = (2π)3δ(3)(k1 + k2 + k3)
H4
∗

k3
1k

3
2k

3
3

×
[
AIJK∗ + BIJK∗ + CIJK∗ +DIJK∗

]
.

(86)

Upon using the definition of σ̂I in Eq. (29), the background equation of Eq. (30) to relate

Ḣ to σ̇2, and the definition of ε in Eq. (36), the terms on the righthand side of Eq. (86)

may be written [37, 51]

AIJK∗ =

√
2ε

Mpl

σ̂IGJKfA(k1,k2,k3) + cyclic permutations,

BIJK∗ =
4Mpl

√
2ε

3
σ̂ARI(JK)AfB(k1,k2,k3) + cyclic permutations,

CIJK∗ =
2M2

pl ε

3
σ̂Aσ̂BR(I|AB|J ;K)fC(k1,k2,k3) + cyclic permutations,

DIJK∗ = −
8M2

pl ε

3
σ̂Aσ̂BRI(JK)A;BfD(k1,k2,k3) + cyclic permutations,

(87)

where RIABJ ;K = GKMDMRIABJ , and fI(ki) are shape-functions in Fourier space that de-

pend on the particular configuration of triangles formed by the wavevectors ki. Comparable

to the findings in [28, 29], each of the contributions to the three-point function for the field

fluctuations is suppressed by a power of the slow-roll parameter, ε� 1.

The quantity of most interest to us is not the three-point function for the field fluctua-

tions but the bispectrum for the gauge-invariant curvature perturbation, ζ, which may be

parameterized as

〈ζ(k1)ζ(k2)ζ(k3)〉 ≡ (2π)3δ(3) (k1 + k2 + k3)Bζ(k1,k2,k3). (88)
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Recall that the two gauge-invariant curvature perturbations, Rc and ζ, coincide in the long-

wavelength limit when working to first order in metric perturbations [11, 12]. In terms of

QI , the δN expansion [53–56] for ζ on super-Hubble scales becomes [37]

ζ(xµ) = (DIN)QI(xµ) +
1

2
(DIDJN)QI(xµ)QJ(xµ) + ... (89)

where N = ln |a(tend)H(tend)/k∗| is the number of efolds after a given scale k∗ first crossed

the Hubble radius until the end of inflation. At t∗, Eqs. (86) and (89) yield

〈ζ(k1)ζ(k2)ζ(k3)〉∗ = N,IN,JN,K〈QI(k1)QJ(k2)QK(k3)〉∗

+
1

2
(DIDJN)N,KN,L

×
∫

d3q

(2π)3
〈QI(k1 − q)QK(k2)〉∗〈QJ(q)QL(k3)〉∗ + cyclic perms.

(90)

The bottom two lines on the righthand side give rise to the usual form of fNL, made suit-

ably covariant to reflect GIJ 6= δIJ . Adopting the conventional normalization, this term

contributes [12–16]:

〈ζ(k1)ζ(k2)ζ(k3)〉fNL
= (2π)3δ(3) (k1 + k2 + k3)

H4
∗

k3
1k

3
2k

3
3

×
[
−6

5
fNL

(
N,IN

,I
)2
] [
k3

1 + k3
2 + k3

3

] (91)

where

fNL = −5

6

N ,AN ,BDADBN
(N,IN ,I)2 . (92)

The term on the first line of Eq. (90), proportional to the nonzero three-point function for

the field fluctuations, yields new contributions to the bispectrum. However, the three-point

function 〈QIQJQK〉∗ is contracted with the symmetric object, N,IN,JN,K . Hence we must

consider each term within AIJK with care.

In general, the field-space indices, I, J,K, and the momentum-space indices, ki, must

be permuted as pairs: (I,k1), (J,k2), (K,k3). This is because the combinations arise

from contracting the external legs of the various propagators, such as 〈QI(k1)QJ(k2)〉

and 〈QJ(k2)QK(k3)〉, with the internal legs of each three-point vertex [37, 57]. Let us

first consider the special case of an equilateral arrangement in momentum space, in which
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k1 = k2 = k3 = k∗. Then the term proportional to AIJK contributes

〈ζ(k1)ζ(k2)ζ(k3)〉A = (2π)3δ(3)(k1 + k2 + k3)
H4
∗

4k9
∗

×
√

2ε

Mpl

(N,IN,JN,K)
[
σ̂IGJK + σ̂JGKI + σ̂KGIJ

]
fA(k)

= (2π)3δ(3)(k1 + k2 + k3)
H4
∗

4k9
∗

× 3
√

2ε

Mpl

[(
σ̂IN,I

) (
N,AN

,A
)]
fA(k),

(93)

where fA(k) depends only on k. Taking the equilateral limit of the relevant expression in

Eq. (3.17) of [37], we find fA(k) → −5k3
∗/4. Using Eqs. (22), (29), (30), and (36), we also

have

σ̂IN,I =
1

σ̇
ϕ̇IDIN =

1

σ̇
DtN =

H

σ̇
=

1

MplH
√

2ε
, (94)

and hence

〈ζ(k1)ζ(k2)ζ(k3)〉A = (2π)3δ(3)(k1 + k2 + k3)
H4
∗

4k9
∗

[
3

M2
pl

(
N,AN

,A
)]
fA(k). (95)

The term arising from BIJK contributes

〈ζ(k1)ζ(k2)ζ(k3)〉B = (2π)3δ(3)(k1 + k2 + k3)
H4
∗

4k9
∗

× 4Mpl

√
2ε

3
σ̂AN,IN,JN,K

[
RIJKA +RIKJA + cyclic

]
fB(k).

(96)

But from the symmetry properties of the Riemann tensor we have RIJKA = RKAIJ =

−RAKIJ , and from the first Bianchi identity,

RA[KIJ ] = 0. (97)

The antisymmetry of the Riemann tensor in its last three indices means that any contraction

of the form

OIJKRAKIJ = 0 (98)

for objects OIJK that are symmetric in the indices I, J,K. In our case, we have OIJK =

N,IN,JN,K and thus every term in the square brackets of Eq. (96) including the cyclic

permutations may be put in the form of Eq. (98). We therefore find

〈ζ(k1)ζ(k2)ζ(k3)〉B = 0 (99)
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identically in the equilateral limit.

The term arising from CIJK contributes

〈ζ(k1)ζ(k2)ζ(k3)〉C = (2π)3δ(3)(k1 + k2 + k3)
H4

4k9
∗

×
2M2

pl ε

3
σ̂Aσ̂BN,IN,JN,KR(I|AB|J ;K)fC(k).

(100)

In the equilateral limit, we find fC(k∗) ' 15k3
∗, based on the limit of the appropriate expres-

sion in Eq. (3.17) of [37]. We may identify the nonzero terms in Eq. (100) using the Bianchi

identities. The first Bianchi identity is given in Eq. (97), and the second Bianchi identity

may be written

RAB[CD;E] = 0. (101)

Using the (anti)symmetry properties of the Riemann tensor and Eqs. (97) and (101), to-

gether with the fact that the combinations OIJK ≡ N,IN,JN,K and ΩAB ≡ σ̂Aσ̂B are sym-

metric in their indices, we find the only nonzero term within Eq. (100) to be

〈ζ(k1)ζ(k2)ζ(k3)〉C = (2π)3δ(3)(k1 + k2 + k3)
H4

4k9
∗

×
2M2

pl ε

3
σ̂Aσ̂BN,IN,JN,KRIABJ ;KfC(k).

(102)

The final term to consider arises from DIJK . In particular, in the equilaterial limit we

have

〈ζ(k1)ζ(k2)ζ(k3)〉D = (2π)3δ(3)(k1 + k2 + k3)
H4

4k9
∗

×−
4M2

pl ε

3
σ̂Aσ̂BN,IN,JN,K

[
RIJKA;B +RIKJA;B + cyclic

]
fD(k).

(103)

Again we may use RIJKA = RKAIJ = −RAKIJ and Eq. (97) to put the first term in square

brackets in Eq. (103) in the form

OIJKRAKIJ ;B = 0 (104)

for OIJK symmetric. The same occurs for the second term in square brackets in Eq. (103)

and for all cyclic permutations of I, J,K. Hence we find

〈ζ(k1)ζ(k2)ζ(k3)〉D = 0 (105)
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identically in the equilateral limit.

The new nonvanishing terms in Eqs. (95) and (102) remain considerably smaller than

the fNL term of Eq. (91) for the family of models of interest. The term stemming from

AIJK in Eq. (95) is proportional to (N,AN
,A), whereas the fNL term is multiplied to the

square of that term. For models of interest here, in which the potential includes ridges,

the gradient term is significant. For each of the three trajectories of Fig. 2, for example,

(N,AN
,A) = O(103) across the full range N∗ = 60 to N∗ = 40. The gradient increases as the

ratio of ξχ/ξφ increases, and hence the fNL term will dominate the term coming from AIJK

whenever |fNL| > 10−3.

For the term involving RIABJ ;K in Eq. (102), we may take advantage of the fact that for

two-field models the Riemann tensor for the field space may be written

RABCD = K(φI) [GACGBD − GADGBC ] , (106)

where K(φI) is the Gaussian curvature. In two dimensions, K(φI) = 1
2
R(φI), where R is

the Ricci scalar. Since DKGAB = GAB;K = 0 and K(φI) is a scalar in the field space, the

covariant derivative of the Riemann tensor is simply proportional to the ordinary (partial)

derivative of the Gaussian curvature, K. In particular, we find

σ̂Aσ̂BN,IN,JN,KRIABJ ;K = −
(
ŝIJN,IN,J

) (
N,KK,K

)
, (107)

where ŝIJ ≡ GIJ − σ̂I σ̂J is the projection operator for directions orthogonal to the adiabatic

direction. We calculate K in Eq. (115). At early times, as the system undergoes slow-roll

inflation, we have ξφφ
2 +ξχχ

2 �M2
pl. For the trajectories as in Fig. 2, moreover, the system

evolves along a ridge such that ξφφ
2 � ξχχ

2. In that case, we find

K ' 1

108ξ2
φM

2
pl

[1 + 6(ξφ + ξχ) + 36ξφ(ξχ − ξφ)] ∼ φ0, χ0, (108)

and hence K,I ∼ 0. Thus, in addition to being suppressed by the slow-roll factor, ε, the

contribution to the primordial bispectrum from the RIABJ ;K term is negligible in typical

scenarios of interest, because of the weak variation of the Gaussian curvature of the field-

space manifold around the times N∗ = 60 to N∗ = 40 efolds before the end of inflation.

This matches the behavior shown in Fig. 5: the field-space manifold is nearly flat until one

reaches the vicinity of φ, χ ∼ 0, near the end of inflation.

Though these results were derived in the equilateral limit, for which k1 = k2 = k3 = k∗, we

expect the same general pattern to apply more generally, for example, to the squeezed local
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configuration in which k1 ' k2 = k∗ and k3 ' 0. As one departs from the equilateral limit the

exact cancellations of Eqs. (99) and (105) no longer hold, though each of the components

of the field-space Riemann tensor and its gradients remains small between N∗ = 60 to

N∗ = 40 efolds before the end of inflation for models of the class we have been studying here.

Meanwhile, the k-dependent functions, fI(ki) in Eq. (87), remain of comparable magnitude

to the k-dependent contribution in Eq. (91) [37] — each contributes as [O(1)−O(10)]× k3

— while the coefficients of the additional terms arising from AIJK , BIJK , CIJK , and DIJK

are further suppressed by factors of ε. For models of the class we have been studying here,

we therefore expect the (covariant version of the) usual fNL term to dominate the primordial

bispectrum. Moreover, given the weak dependence of the Gaussian curvature K(φI) with

φI between N∗ = 60 and N∗ = 40, we do not expect any significant contributions to the

running of fNL with scale to come from the curvature of the field-space manifold, given the

analysis in [38].

We calculate the magnitude of fNL numerically, following the definition in Eq. (92). The

discrete derivative of N along the φ direction is constructed as

N,φ =
N(φ+ ∆φ, χ)−N(φ−∆φ, χ)

2∆φ
, (109)

where N(φ, χ) is the number of efolds between t∗ and tend, where tend is determined by the

physical criterion that ä = 0 (equivalent to ε = 1). For each quantity, such as N(φ+ ∆φ, χ),

we re-solve the exact background equations of motion numerically and measure how the small

variation in field values at t∗ affects the number of efolds of inflation between t∗ and the

time at which ä = 0. The discrete derivatives along the other field directions and the second

derivatives are constructed in a corresponding manner. Covariant derivatives are calculated

using the discrete derivatives defined here and the field-space Christoffel symbols evaluated

at background order. For the trajectories of interest, the fields violate slow-roll late in their

evolution (after they have fallen off the ridge of the potential), but they remain slowly rolling

around the time t∗; if they did not, as we saw in Section IV, then the predictions for the

spectral index, ns(t∗) would no longer match observations. We therefore do not consider

separate variations of the field velocities at the time t∗, since in the vicinity of t∗ they are

related to the field values. Because the second derivatives of N are very sensitive to the step

sizes ∆φ and ∆χ, we work with 32-digit accuracy, for which our numerical results converge

for finite step-sizes in the range ∆φ,∆χ = {10−6, 10−5}.
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FIG. 11. The non-Gaussianity parameter, |fNL|, for the three trajectories of Fig. 2: trajectory 1

(orange dotted line); trajectory 2 (solid red line); and trajectory 3 (black dashed line). Changing

the fields’ initial conditions by a small amount leads to dramatic changes in the magnitude of the

primordial bispectrum.

For the three trajectories of Fig. 2, we find the middle case, trajectory 2, yields a value

of fNL of particular interest: |fNL| = 43.3 for fiducial scales k∗ that first crossed the Hubble

radius N∗ = 60 efolds before the end of inflation. Note the strong sensitivity of fNL to the

fields’ initial conditions: varying the initial value of χ(τ0) by just |∆χ(τ0)| = 10−3 changes

the fields’ evolution substantially — either causing the fields to roll off the hill too early

(trajectory 1) or not to turn substantially in field space at all (trajectory 3) — both of

which lead to negligible values for fNL. See Fig. 11.

VI. CONCLUSIONS

We have demonstrated that multifield models with nonminimal couplings generically

produce the conditions required to generate primordial bispectra of observable magnitudes.

Such models satisfy at least three of the four criteria identified in previous reviews of pri-

mordial non-Gaussianities [15, 17], namely, the presence of multiple fields with noncanonical

kinetic terms whose dynamics temporarily violate slow-roll evolution.

Two distinct features are relevant in this class of models: the conformal stretching of the

effective potential in the Einstein frame, which introduces nontrivial curvature distinct from

features in the Jordan-frame potential; and nontrivial curvature of the induced manifold for
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the field space in the Einstein frame. So long as the nonminimal couplings are not precisely

equal to each other, the Einstein-frame potential will include bumps or ridges that will tend

to cause neighboring trajectories of the fields to diverge over the course of inflation. Such

features of the potential are generic to this class of models, and hence are strongly motivated

by fundamental physics.

We have found that the curvature of the potential dominates the effects of interest at

early and intermediate stages of inflation, whereas the curvature of the field-space manifold

becomes important near the end of inflation (and hence during preheating). The generic na-

ture of the ridges in the Einstein-frame potential removes one of the kinds of fine-tuning that

have been emphasized in recent studies of non-Gaussianities in multifield models, namely,

the need to introduce potentials of particular shapes [16, 29, 31, 32]. (We are presently

performing an extensive sweep of parameter space to investigate how fNL behaves as one

varies the couplings ξI , λI , and mI . This will help determine regions of parameter space

consistent with current observations.) On the other hand, much as in [16, 29, 31, 32], we

find a strong sensitivity of the magnitude of the bispectrum to the fields’ initial conditions.

Thus the production during inflation of bispectra with magnitude |fNL| ∼ O(50) requires

fine-tuning of initial conditions such that the fields begin at or near the top of a ridge in the

potential.

A subtle question that deserves further study is whether the formalism and results derived

in this paper show any dependence on frame. Although we have developed a formalism

that is gauge-invariant with respect to spacetime gauge transformations, and covariant with

respect to the curvature of the field-space manifold, we have applied the formalism only

within the Einstein frame. The authors of [48] recently demonstrated that gauge-invariant

quantities such as the curvature perturbation, ζ, can behave differently in the Jordan and

Einstein frames for multifield models with nonminimal couplings. The question of possible

frame-dependence of the analysis presented here remains under study. Whether quantities

such as fNL show significant evolution during reheating for this family of models, as has

been emphasized for related models [31, 58], likewise remains a subject of further research.
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APPENDIX A: FIELD-SPACE METRIC AND RELATED QUANTITIES

Given f(φI) in Eq. (17) for a two-field model, the field-space metric in the Einstein

frame, Eq. (6), takes the form

Gφφ =

(
M2

pl

2f

)[
1 +

3ξ2
φφ

2

f

]
,

Gφχ = Gχφ =

(
M2

pl

2f

)[
3ξφξχφχ

f

]
,

Gχχ =

(
M2

pl

2f

)[
1 +

3ξ2
χχ

2

f

]
.

(110)

The components of the inverse metric are

Gφφ =

(
2f

M2
pl

)[
2f + 6ξ2

χχ
2

C

]
,

Gφχ = Gχφ = −

(
2f

M2
pl

)[
6ξφξχφχ

C

]
,

Gχχ =

(
2f

M2
pl

)[
2f + 6ξ2

φφ
2

C

]
,

(111)

where we have defined the convenient combination

C(φ, χ) ≡M2
pl + ξφ(1 + 6ξφ)φ2 + ξχ(1 + 6ξχ)χ2

= 2f + 6ξ2
φφ

2 + 6ξ2
χχ

2.
(112)

The Christoffel symbols for our field space take the form

Γφφφ =
ξφ(1 + 6ξφ)φ

C
− ξφφ

f
,

Γφχφ = Γφφχ = −ξχχ
2f

,

Γφχχ =
ξφ(1 + 6ξχ)φ

C
,

Γχφφ =
ξχ(1 + 6ξφ)χ

C
,

Γχφχ = Γχχφ = −ξφφ
2f

,

Γχχχ =
ξχ(1 + 6ξχ)χ

C
− ξχχ

f

(113)

For two-dimensional manifolds we may always write the Riemann tensor in the form

RABCD = K(φI) [GACGBD − GADGBC ] , (114)
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where K(φI) is the Gaussian curvature. In two dimensions, K(φI) = 1
2
R(φI), where R(φI)

is the Ricci scalar. Given the field-space metric of Eq. (110), we find

R(φI) = 2K(φI) =
2

3M2
plC

2

[
(1 + 6ξφ)(1 + 6ξχ)(4f 2)− C2

]
. (115)
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