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We find static charged black hole solutions in nonlinear massive gravity. In the parameter space of
two gravitational potential parameters (α, β) we show that below the Compton wavelength the black
hole solutions reduce to that of Reissner-Nordström via the Vainshtein mechanism in the weak field
limit. In the simplest case with α = β = 0 the solution exhibits the vDVZ discontinuity but ordinary
General Relativity is recovered deep inside the horizon due to the existence of electric charge, though
this case is observationally excluded. For α 6= 0 and β = 0, the post-Newtonian parameter of the
charged black hole evolves to that of General Relativity via the Vainshtein mechanism within a
macroscopic distance; however, a logarithmic correction to the metric factor of the time coordinate
is obtained. When α and β are both nonzero, there exist two branches of solutions depending on
the positivity of β. When β < 0, the strong coupling of the scalar graviton weakens gravity at
distances smaller than the Vainshtein radius. However, when β > 0 the metric factors exhibit only
small corrections compared to the solutions obtained in General Relativity, and under a particular
choice of β = α2/6 the standard Reissner-Nordström-de Sitter solution is recovered.

PACS numbers: 04.50.Kd, 14.70.Kv

I. INTRODUCTION

The question on whether there exits a consistent co-
variant theory for massive gravity, where the graviton
acquires a mass and leads to a modification of General
Relativity, was initiated by Fierz and Pauli (FP) [1]. It
was observed that at quadratic order the FP mass term
is the only ghost-free term describing a gravity theory
with five degrees of freedom [2]. However, it is not pos-
sible to recover linearized Einstein gravity in the limit
of vanishing graviton mass, due to the existence of the
van Dam-Veltman-Zakharov (vDVZ) discontinuity aris-
ing from the coupling between the longitude mode of the
graviton and the trace of the energy momentum tensor
[3, 4]. It was later observed that this troublesome mode
could be suppressed at macroscopic length scales due to a
nonlinear effect: the so-called Vainshtein mechanism [5].
However, these nonlinear terms, which are responsible for
the suppression of vDVZ discontinuity, lead inevitably to
the existence of the Boulware-Deser (BD) ghost [6], mak-
ing the theory unstable [7–10].

Although for many years it was believed that the the-
ory of massive gravity always contains BD ghosts, a fam-
ily of its nonlinear extension was recently constructed
by de Rham, Gabadadze and Tolley (dRGT) [11, 12].
This is a two parameter family of nonlinear generaliza-
tion of the FP theory, where the BD ghosts are removed
in the decoupling limit to all orders in perturbation the-
ory through a systematic construction of a covariant non-
linear action [13–16] (see [17] for a review). As a conse-
quence, the theoretical and phenomenological advantages
of the dRGT theory led to a wide investigation in the lit-
erature. For example, cosmological implications of the
dRGT theory are discussed in [18–39]; black holes and

spherically symmetric solutions were analyzed in [40–49];
and the theory’s connections to bi-metric gravity models
were studied in [50–63].

Among these phenomenological studies, is the search
for observationally suitable spherically symmetry solu-
tions. Theories of massive gravity can be strongly con-
strained due to the vDVZ discontinuity appearing in the
post-Newtonian parameters. Recently, a class of black
hole solutions in the theory of “ghost-free” massive grav-
ity was analyzed by Koyama, Niz and Tasinato (KNT)
[40, 41]. Their result shows that the behavior of lin-
earized solutions in General Relativity can only be repro-
duced below the Vainshtein distance in a certain region
of parameter space. An exact Schwarzschild-de Sitter
(SdS) solution was found for a group of specially selected
parameters [43].

In this paper we present a family of static, electrically
charged black hole solutions in the theory of ghost-free
massive gravity. The solutions posses a Vainshtein ra-
dius, below which the linearized solutions of Einstein
gravity are approximately recovered in the weak charge
limit. Electromagnetism is classically conformally invari-
ant, and thus it does not contribute to the trace of en-
ergy momentum tensor, which would strongly couple to
the longitudinal mode of gravitons in massive gravity.
However, the existence of an electric charge gives rise
to a classical contribution to the metric factors. As a
consequence, the behavior of the longitudinal model can
indeed be affected by a electromagnetic field.

The paper is organized as follows. In Section II, we re-
view the model of nonlinear massive gravity and present
the equations of motion for gravitational fields in a spher-
ically symmetric background. In section III we investi-
gate in detail a stellar background with a static electric
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field. In section IV we analyze the charged black hole so-
lutions both analytically and numerically, and we show
that the Vainshtein effect can be made manifest in a cer-
tain parameter space in the weak field limit. Finally,
section V summarizes our results.

II. GHOST-FREE MASSIVE GRAVITY

Massive gravity has an effective field theory descrip-
tion given by Einstein gravity plus the covariant FP mass
term. For the dRGT model Lagrangian the potentially
pathological term can be absorbed by total derivative
terms, leading to equations of motion that are at most
second order in time derivatives [12].

A. The dRGT action

The gravitational action is:

S =

∫

d4x
√
−g

1

16πG

[

R+m2U(g, φa)

]

, (1)

where R is the Ricci scalar, and U is a potential for the
graviton which modifies the gravitational sector. Specif-
ically, U is given by

U(g, φa) = U2 + α3U3 + α4U4 , (2)

in which α3 and α4 are dimensionless parameters. More-
over, U2, U3 and U4 are defined as

U2 ≡ [K]2 − [K2] , (3)

U3 ≡ [K]3 − 3[K][K2] + 2[K3] , (4)

U4 ≡ [K]4 − 6[K]2[K2] + 8[K][K3] + 3[K2]2 − 6[K4], (5)

with

Kµ
ν = δµν −

√

gµσηab∂σφa∂νφb , (6)

where the rectangular brackets denote the traces, namely
[K] = Kµ

µ. Finally, in the above relation the four-form
fields φa are the Stückelberg scalars introduced to restore
general covariance [7].

B. Generalized Einstein Equations

For convenience we choose the unitary gauge φa =
xµδaµ and thus the tensor gµν is the observable describing
the five degrees of freedom of the massive graviton. In
addition, we regroup the two parameters α3 and α4 of the
graviton potential (2) introducing two new parameters,
α and β, as

α3 =
α− 1

3
, α4 =

β

2
+

1− α

12
, (7)

to simplify the background equations of motion.

Varying the action with respect to gµν leads to the
modified Einstein equations:

Gµν +m2Xµν = 8πGTµν , (8)

where Xµν arises from the graviton potential 1

Xµν = Kµν −Kgµν

−α

{

K2
µν −KKµν +

[K]2 − [K2]

2
gµν

}

+6β

{

K3
µν −KK2

µν +
1

2
Kµν

{

[K]2 − [K2]
}

}

−βgµν
{

[K]3 − 3[K][K2] + 2[K3]
}

. (9)

In addition to the generalized Einstein equations, the
Bianchi identities lead to the constraint:

∇µXµν = 0 . (10)

III. GENERAL ANALYSIS ON SPHERICALLY

SYMMETRIC CHARGED BACKGROUND

Having derived the equations of motion we now study
the dynamics of a gravitational system described by mas-
sive gravity under a fixed background symmetry. Follow-
ing [40], we consider the most general form of the metric
respecting spherical symmetry,

ds2 = −N2(r)dt2 +
dr2

F 2(r)
+ 2D(r)dtdr +

r2dΩ2
2

H2(r)
, (11)

where dΩ2
2 = dθ2 + sin2 θdϕ2.

Notice that the identity g0rR00 − g00R0r = 0 yields
an algebraic constraint. By substituting the modified
Einstein equations (8) into this identity, one obtains

g0r(8πGT00−m2X00)−g00(8πGT0r−m2X0r) = 0 . (12)

The part related to the electromagnetic field g0rT00 −
g00T0r vanishes automatically in the system under con-
sideration by using (15) which will be introduced in the
following subsection. Consequently, the solution to (12)
is the same as the neutral case as studied in [40]. The
part related to the graviton potential leads to:

0 = g0rm
2X00 − g00m

2X0r

=
m2D(r)(2H(r) − 3)

√

N(r)2

F (r)2 +D(r)2

[ 1
F (r)2 +N(r)2 + 2

√

N(r)2

F (r)2 +D(r)2 ]1/2
, (13)

in our case. As a consequence, there are two solution
branches: either D(r) = 0, or H(r) = 3/2 (in general

1 Note that the Einstein equation shown in [47] contains a typo of
an extra 1/2 factor, however the equations of motion which give
rise to solutions were based on the method of varying the action
with respect to the metric factor directly.
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a constant metric factor H(r) with value depending on
specific backgrounds [47]), with the latter arising from
the fact that the effective energy density is proportional
to gtt. In the following we will focus on the more interest-
ing first case D(r) = 0, which corresponds to a diagonal
metric.

A. Charged spherical symmetric background in

General Relativity

We consider a generic Maxwell field Fµν in curved
spacetime, with standard Lagrangian. The Maxwell
equations are

∂µ(
√
−gFµν) = −

√
−gJν , (14)

where Jν is the current density. For a static electric
charge Q in the gravitational system, the components of
the Maxwell field are:

Er = F0r = E(r) , Eθ = Eϕ = 0 , ~B = 0 . (15)

With vanishing source term, the inhomogeneous
Maxwell law gives

∂r(
√−gF 0r) = 0 , (16)

yielding the solution:

E(r) =
QNH2

4πr2F
, (17)

where Q is an integration constant which is typically in-
terpreted as the electric charge. The factors N , F , and H
are the fields introduced in the background metric (11).
Varying the electromagnetic Lagrangian with respect to
the metric gives the energy momentum tensor:

Tµν = FµσF
σ
ν − F σρFσρ

4
gµν . (18)

It is well known that a static and spherically symmetric
solution under standard General Relativity is described
by the Reissner-Nordström (RN) solution:

ds2 = −
(

1 +
r2Q
r2

− rS
r

)

dt2 +
dr2

1 +
r2
Q

r2 − rS
r

+ r2dΩ2 ,(19)

with

rQ ≡
√

GQ2

4π
, rS ≡ 2GM (20)

being respectively the length scale associated with the
electric charge Q and the Schwarzschild radius deter-
mined by the mass of the spherical object M . The above
solution exhibits a singularity at r = 0, in which the met-
ric coefficient becomes zero and invariants like the Ricci
and Kretschmann scalars diverge, however it is usually

shielded by a horizon at r =
(

rS +
√

r2S − 4r2Q

)

/2, in

which the metric coefficients become zero in the above

coordinates but the invariants remain finite, thus satisfy-
ing the cosmic censorship and no-hair conjectures. Note
however that negative mass or highly charged solutions
do not have a horizon, and thus a naked singularity ap-
pears.

B. Equations of motion for spherically symmetric

charged background

Going beyond the above General Relativity solution,
in the case of nonlinear massive gravity, we must con-
sider the effects of the graviton potential. Thus one can
combine the generalized Einstein equations (8), the solu-
tion to the Maxwell field (17), and the energy momentum
tensor (18), and obtain three main equations of motion.

We consider the spherically symmetric metric Ansatz
(11) with D(r) = 0. The background equations of motion
are derived from the generalized Einstein equations (8).
After some algebra, we extract the equations of motion.
For the “00” component of generalized Einstein equation:

GQ2H6

4πr2
= (1 +m2r2)H4 + 2m2r2(F − 3)H3

−H2[2r(FḞ − 3m2r2) + 3m2r2F + F 2]

+2rFH [F (rḦ + 3Ḣ) + rḞ Ḣ ]− 5r2F 2Ḣ2

+m2r2(H − 1)H2[2H(1− α+ 3β)− 6β

+F (1− α+ 6β − 3H(1− α+ 2β))] . (21)

The “rr” component of generalized Einstein equation
takes the form:

GQ2NH6

4πr2
= (1 +m2r2)NH4 + 2m2r2(1− 3N)H3

+H2[N(6m2r2 − F 2)− r(2F 2Ṅ + 3m2r2)]

+2rF 2HḢ(rṄ +N)− r2F 2NḢ2

+m2r2(H − 1)H2[1− α+ 6β(1 −N)

−H(3(1− α)− 2N(1− α+ 3β) + 6β)] . (22)

Further, the generalized Einstein equation along the solid
angle is given by,

GQ2NH6

4πr3
= m2rH3[(3− F )N − 1] + 2rF 2NḢ2

−FH [rNḞ Ḣ + F (rNḦ + rṄḢ + 2NḢ)]

+H2[rF Ḟ Ṅ +NFḞ + F 2(rN̈ + Ṅ)

+m2rF (3N − 1)− 6m2rN + 3m2r]

+m2rH2{(1− α)[4N − 3 +H(2− 3N)

+F (2− 3N +H(2N − 1))]

+2(F − 1)(H − 1)(N − 1)(2− 2α+ 3β)} . (23)

The equations of motion may also be obtained by vary-
ing the action with respect to the metric fields N , F and
H , respectively. In addition, there is another constraint



4

equation from the Bianchi identity (10):

0 =
1

rNH

{

F

{

H [2− 3rṄ − 2N(3 + rḢ)]

+2(3N − 1)rḢ + 2H2(rṄ +N)

}

− 2H2[1 +N(H − 3)]

+(1− α)

{

2H2[2− 3N +H(2N − 1)]

+F [rṄH3 + 2rḢ(2− 3N) +H2(2− 4N − 4rṄ)

+H(6N − 4− 2rḢ + 3rṄ + 4rḢN)]

}

+2(2α− 3β − 2)(H − 1)

{

2H2(N − 1)

+F [rṄH2 + 2rḢ(N − 1)−H(2N − 2 + rṄ )]

}}

, (24)

where in the above equations the dot denotes a derivative
with respect to the radial coordinate r.

Note that when we take Q = 0 the above equations
of motion reduce to the case of the strong interactive
spherical system governed by nonlinear massive gravity,
discussed in [41]. Our expressions are in agreement with
theirs, expect that the radial metric factor is F 2 in our
case but becomes F in their convention. The relations
between the parameter spaces (α3, α4) and (α, β) are
already given in (7). Equation (24) obtained from the
Bianchi identity constraint is not an independent equa-
tion after we choose D(r) = 0.

C. The linearized treatment of nonlinear massive

gravity

Following the idea developed by KNT [40, 41], we
study the solutions to such a gravitational system in
the weak field limit. We can expand the metric factors
around a Minkowski background as

N(r) = 1 + n(r) ,

F (r) = 1 + f(r) ,

H(r) = 1 + h(r) , (25)

and then investigate the linear perturbations. However,
we need to be aware of the fact that the factors n and f
can be treated as linear perturbations as in General Rel-
ativity, while h could, in principle, take large values since
this factor corresponds to the strong interactive nature of
the scalar mode of graviton in solar system. Therefore,
we need to keep higher orders in h and truncate equations
of motion to leading order of n and f . We demonstrate
this behavior both in analytical and numerical calcula-
tions in the following.

Before expanding the background equations perturba-
tively, we rescale the radial coordinate by introducing a
new metric variable

ρ ≡ r

H
, (26)

and correspondingly introduce a new metric factor

1 + f̃ =
1 + f

1 + h+ ρh′
, (27)

where the prime denotes a derivative with respect to ρ.
As a consequence, the linearized metric can be expressed
as

ds2 = −[1 + 2n(ρ)]dt2 + [1− 2f̃(ρ)]dρ2 + ρ2dΩ2 (28)

which is asymptotic to Minkowski background when n
and f̃ become negligible.

Apart from the usual curvature invariants, nonlinear
massive gravity presents a new basic invariant incor-
porating both the metric and the Stückelberg scalars,
namely Iab ≡ gµν∂µφ

a∂νφ
b. Under unitary gauge it

seems that this invariant encounters a divergence on the
event horizon if one takes the Minkowskian asymptotic
at large scales [65], that is, one obtains singularities in
the place where General Relativity had simple horizons.
The authors of [47] argue that a black hole solution to
nonlinear massive gravity might be viable only when the
invariant Iab is non-singular. Though its divergence does
not bring any manifest problem to observable variables
at background level, it may be a problem for fluctuations
passing through the horizon. In the present paper, we
focus on the dynamics of background solutions outside
the horizon and thus we do not address this issue.

D. The post-Newtonian parameter and the vDVZ

discontinuity

To study the nontrivial effects of massive gravity we
consider the metric factor h as a perturbation mode. By
expanding the equations of motion (21), (22) and (24)
presented in the Appendix, consistent with the linearized
background (28), we get

(2 +m2ρ2)f̃ + 2ρf̃ ′ +m2ρ2(3h+ ρh′) = −GQ2

4πρ2 ,(29)

2ρn′ + 2f̃ +m2ρ2(2h− n) = −GQ2

4πρ2 (1 + n) , (30)

ρn′ + 2f̃ = 0 , (31)

up to leading order.
Under the above approximation the metric factors are:

n(ρ) ≃ −4GMe−mρ

3ρ
+

GQ2

8πρ2

+
GmQ2

16πρ

[

emρEi(−mρ)− e−mρEi(mρ)
]

, (32)

f̃(ρ) ≃ −2GMe−mρ(1 +mρ)

3ρ
+

GQ2

8πρ2

+
GmQ2

32πρ
× [(1−mρ)emρEi(−mρ)

−(1 +mρ)e−mρEi(mρ)
]

, (33)
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and

h(ρ) ≃ −2GMe−mρ

3m2ρ3
(1 +mρ+m2ρ2) +

GQ2

16πρ2

+
GQ2

32πmρ3
×
[

(1−mρ+m2ρ2)emρEi(−mρ)

−(1 +mρ+m2ρ2)e−mρEi(mρ)
]

, (34)

where “Ei” is the exponential integral function defined
by Ei(x) ≡

∫ x

−∞
et d ln t.

Let us now examine the post-Newtonian parameters
for nonlinear massive gravity. The post-Newtonian pa-
rameters are strongly constrained by solar system obser-
vations (see [64] for a detailed introduction and a com-
prehensive review), and therefore may be used to place
strong constraints on a given theory. The first post-
Newtonian parameter γ is defined as the ratio of f̃ and
n:

γ ≡ f̃

n
, (35)

in the weak field limit. In the case of General Relativity
γ = 1, as we can immediately read from the RN solu-
tion (19). However, in the regime of length scales much
smaller than the Compton wavelength (ρm = 1/m) in
nonlinear massive gravity, this parameter can be approx-
imately expressed as

γ ≃ 32πMρ(1 +mρ)− 6Q2emρ

64πMρ− 6Q2emρ
, (36)

where we have made the reasonable assumption that the
solar-system mass M is much larger than graviton mass.

It is straightforward to see that when the spherical sys-
tem does not carry an electric charge (Q = 0), we obtain
γ ≃ (1+mρ)/2, and thus in the massless limit it reduces
to γ = 1/2, which is in stark disagreement with the value
in General Relativity. This behavior exactly manifests
the vDVZ discontinuity, and thus we face the difficulty
of explaining solar-system observations at present. How-
ever, when the contribution of Q is taken into account,
the post-Newtonian parameter could approach to 1 when
ρ is much smaller than the length scale

ρG =
3Q2

32πM
. (37)

This result implies that the vDVZ discontinuity exists in
a charged spherical system governed by nonlinear mas-
sive gravity, but the explicit behavior is different from a
electro-neutral one.

Finally, from the solutions (32), (33) and (34) we find
that the weak-field limit is a good approximation at large
distances. However, when the radial coordinate ρ de-
creases below a critical value

ρV ≡
(

GM

m2

)1/3

, (38)

the absolute value of the factor h will increase exponen-
tially and become much larger than unity. This critical

radius is the so-called Vainshtein radius. We perform a
detailed analysis on the perturbation equations by keep-
ing all nonlinear order terms of h in the next section.

IV. CHARGED BLACK HOLES AND

VAINSHTEIN MECHANISM

Due to the famous Vainshtein mechanism [5] the scalar
degree of freedom in massive gravity becomes strongly
coupled in the limit of small graviton mass, and thus the
linearized treatment performed in equations (29), (30)
and (31) is no longer reliable. This is observed by follow-
ing the evolution of metric factor h below the Vainshtein
radius, where the absolute value of h becomes much
greater than unity. Consequently, although we can keep
treating n and f̃ as small perturbations in this regime,
higher order terms in h should be taken into account.

A. Perturbation equations with nonlinear

corrections

Keeping leading order in n and f̃ , the perturbed equa-
tions of motion including nonlinear corrections of h are
given by

2f̃ + 2ρf̃ ′ +m2ρ2
[

(1− 2αh+ 6βh2)[(1 + f̃)ρh′

+(1 + h)f̃ ] + 3h(1− αh+ 2βh2)

]

+
GQ2

4πρ2
= 0, (39)

2f̃ + 2ρn′ −m2ρ2
[

n− 2(1 + n+ αn)h

+(α+ αn+ 6βn)h2

]

+
GQ2(1 + n)

4πρ2
= 0 , (40)

ρn′[1− 2αh+ 6βh2] + 2f̃ [1− αh] = 0 , (41)

of which the first two correspond to the (00) and (rr)
components of the generalized Einstein equations and the
last one arises from the perturbed Bianchi constraint.
Note that the second derivative of h does not appear
in equation (39), since when we transform from r to ρ

variable, Ḟ acquires a term with the second derivative of
h which exactly cancels the one in Ḧ .

We first solve equation (39) by neglecting all high-order
terms proportional to m4, G2M2, m2GM , G2Q4, and
m2GQ2. Therefore, the metric factor f̃ can be expressed
in terms of h:

f̃ ≃ GQ2

8πρ2
− GM

ρ
− m2ρ2

2
(h− αh2 + 2βh3) . (42)

Inserting the expression (42) into the perturbation equa-
tion (40), we obtain the radial derivative of n as a func-
tion of h:

n′ ≃ −GQ2

4πρ3
+

GM

ρ2
− m2ρ

2
(h− 2βh3) , (43)
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and thus the metric factor n can be acquired by perform-
ing integration. The key to solving for the metric factors
n and f̃ is to extract the solution for h. Therefore, we
combine the expressions (42), (43), and the perturbed
Bianchi constraint (41), and then we derive the polyno-
mial equation:

GM

ρ

(

1− 6βh2
)

− GQ2

4πρ2
(

αh− 6βh2
)

=

m2ρ2
[

−3

2
h+ 3αh2 − (α2 + 4β)h3 + 6β2h5

]

, (44)

in which all nonlinear terms of h have been taken into
account.

After having obtained equations (42), (43) and (44),
we are able to calculate the explicit forms of the metric
factors n, f̃ and h under different parameter choices of
(α, β). In the following subsections, we investigate these
solutions further.

B. Case I: α = β = 0

Let us first consider the special subclass with α = β =
0. In this case all higher order terms of h vanish automat-
ically, and thus our task reduces to solving the linearized
equations (29), (30) and (31). Therefore, the correspond-
ing solutions of metric factors are already given in equa-
tions (32), (33) and (34).

The post-Newtonian parameter takes the value of 1/2
in the regime of length scales of interest. Although this
parameter increases to 1 at very small values of radial
coordinate due to the effect of electric charge, the cor-
responding length scale is deeply inside the horizon of
the black hole. As a consequence, the standard General
Relativity result can not be recovered in the spherical sys-
tem governed by massive gravity with such a parameter
choice, and therefore this case is already observationally
ruled out.

C. Case II: α 6= 0 and β = 0

We now proceed to the case with a vanishing β but non-
vanishing α. In principle, one can solve the h-equation
(41) exactly, however the resulting expression is quite
complicated, hiding the underlying physics. Therefore,
instead of finding an exact solution to h we solve the per-
turbed Bianchi equation approximately by keeping domi-
nant terms in h. Different from the electro-neutral case of
[41], both the solar-system mass M and its electric charge
Q contribute to the L.H.S of equation (44). Therefore,
we need to solve (44) by assuming its L.H.S is dominated
by M and Q respectively.

We first consider that the contribution of the electric
charge Q becomes dominant in the L.H.S of (44) when
ρ ≪ ρV . In this limit we solve equation (44) and expand

h up to order O(ρ2):

h ≃ −
ρ2Q

α1/2ρ2
+

3

2α
− ρ3V ρ

2αρ4Q
, (45)

where we have introduced a new parameter for a critical
length scale

ρQ ≡
(

GQ2

4πm2

)1/4

. (46)

One can see that the approximate expression for h is valid
only when ρ < ρQ. Comparing with the non-charged sys-
tem analyzed in [41], we find that the leading term of h
in a charged black hole is proportional to ρ−2 instead of
ρ−1. Moreover, the suppression scale is ρQ rather than
the Vainshtein radius ρV . However, since for a group
of canonical parameters accommodating with astronom-
ical data ρV is usually much bigger than ρQ, we deduce
that the contribution of the third term in the R.H.S. of
equation (45) is considerable in a wide regime of length
scales. Then, from equations (42) and (43) we can derive

the expressions for n and f̃ through a Taylor expansion

n ≃ GQ2

8πρ2
− GM

ρ
+

m2ρ2Q
2α1/2

ln(mρ) , (47)

f̃ ≃ GQ2

4πρ2
− GM

ρ
−

m2ρ2Q
α1/2

+
GMρ

2α1/2ρ2Q
, (48)

up to order O(ρ2). By observing (47) and (48), when
2GM < ρ < ρQ, the corrections of massive gravity to
the General Relativity results are quite small. When ρ
is larger than ρQ but smaller than ρV , the higher order
corrections are suppressed by ρV and the formulae are in
agreement with Ref. [41].

When the radial coordinate ρ evolves to the regime
which is close to ρQ but still smaller than ρV , the main
contribution of the L.H.S of (44) comes from the mass
term M . In this case, we only keep the leading order in
h, obtaining

h ≃ − ρV
α2/3ρ

, (49)

n ≃ GQ2

8πρ2
− GM

ρ
+

GMρ

2α2/3ρ2V
, (50)

f̃ ≃ GQ2

8πρ2
− GM

ρ
+

GM

2α1/3ρV
+

GMρ

2α2/3ρ2V
. (51)

Comparing our results with the analysis of [41] we find
that the above three solutions are consistent with those
in the spherical system without a charge. This implies
that there must exist an intermediate regime along the
radial coordinate in which the behaviors of the metric
factors of charged black holes are the same as those of
neutral black holes.

In order to provide a more transparent picture of the
dynamics of the charged black hole described by non-
linear massive gravity with the above parameter choice
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(α 6= 0 and β = 0), we numerically evolve the perturba-
tion equations. In particular, without loss of generality
we consider α = 1, and we choose the graviton mass
m = 10−20MP and the solar-system mass M = 106MP ,
setting also the Planck unit M2

P = 1/G = 1.2 Corre-
spondingly, this group of parameters yield the Comp-
ton wavelength ρm = 1020, which is much larger than
the Vainshtein radius ρV = 2.15 × 1015. Moreover,
we consider the source term of the matter field to be
a weak charge QW = 1.77 × 103 or a strong charge
QS = 3.54× 106, respectively.

In Fig 1 we depict the absolute value of the metric
factor h as a function of the radial coordinate ρ. From
the above parameter choices we find that the suppression
scales associated with the electric charges are given by
ρQW = 2.24 × 1011 (which is represented as a purple
dashed line for the weak charge QW ) and ρQS = 1013

(which is represented as a pink dashed line for the strong
charge QS). The wide sparse shadow regime denotes the
space between the inner horizon and outer horizon in the
case of the weakly charged black hole, and the narrow
dark shadow regime denotes the space between the two
horizons in the case of the strongly charged black hole.

2 We mention that the parameter choices for m and M are not
realistic, however they do correspond to the same qualitative
behavior with the realistic data, with the advantage that the
corresponding figures are much more transparent and compact.
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Figure 1. Plot of the evolutions of the absolute value of met-

ric factor h as functions of radial coordinate ρ in a charged

spherical system described by nonlinear massive gravity. The

model parameters are taken as: α = 1 and β = 0. In the

numerical calculation, we take m = 10−20 and M = 106. The

corresponding Compton wavelength ρm = 1020 and the Vain-

shtein radius ρV = 2.15 × 1015 are denoted on the top of the

figure. The values of weak and strong electric charges are pro-

vided in the plot. All dimensional parameters are in Planck

units.

From Fig. 1 we that there exist three different slopes
for the metric factor h along the radial coordinate ρ in
a charged spherical system. When ρ is greater than the
Vainshtein radius ρV but less than the Compton wave-
length ρm, |h| scales approximately as ρ−3 and its value
is much smaller than 1, and therefore the weak field limit
at large distances is valid. When ρ evolves to be smaller
than ρV , |h| becomes much larger than unity quickly and
scales as ρ−1. This behavior is in precise agreement with
(49). When ρ decreases to a regime which is much shorter
than ρQ, we observe that the slope of |h| changes again
which gives rise to |h| ∼ ρ−2. This transition on |h|-slope
implies that the contribution of electric chargeQ becomes
dominant in determining the dynamics of scalar graviton.
Moreover, the length scale for the slope transition on h
depends on the value of ρQ and thus it is determined by
the combination of Q and m. For a fixed graviton mass
m, the value of ρQ in a strongly charged spherical sys-
tem (denoted by the purple dashed line) is much larger
than that in the case of weak charge (denoted by the pink
dashed line). Correspondingly, the transition of |h|-slope
in the case of strong charge occurs at a larger distance as
shown in the red solid curve, while the transition of |h|-
slope in the case of weak charge takes place at a smaller
distance as shown in the blue dashed curve.

In Fig. 2 we depict the ratios n′/n′

GR and f̃ /f̃GR as
functions of radial coordinate ρ. From the upper graph
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we observe that the correction to the metric factor n from
the electric charge Q is very small, since the three curves
(a red solid line representing for strongly charged case, a
blue dashed line representing the weakly charged case,
and a black dotted line representing the non-charged
case) almost coincide. Additionally, when ρ is outside
the Vainshtein radius, the ratio of n′ in nonlinear mas-
sive gravity and n′ in General Relativity takes the value
of 4/3. This numerical result is in agreement with the
analytic result obtained in the previous section when one
compares the first term in the R.H.S of equation (32) and
the second term in the R.H.S of equation (47). However,
this ratio tends to 1 when ρ lies in the regime of ρ < ρV
due to the Vainshtein effect. As a consequence, the met-
ric factor n of nonlinear massive gravity roughly recovers
the General Relativity result inside the Vainshtein radius.
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Figure 2. Plot of the evolutions of the ratios n′/n′

GR and

f̃/f̃GR as functions of radial coordinate ρ in a charged spher-

ical system described by nonlinear massive gravity. In the

numerical calculation, the parameters are chosen to be the

same as those provided in Fig. 1. The “f” in the lower panel

represents for the metric factor f̃ in the main text.

From the evolutions of f in charged gravitational back-
grounds, depicted in the lower graph of Fig. 2, we can see
that they are different from the non-charged one when ρ
approaches to the inner horizons. This yields the non-
trivial modification to the post-Newtonian parameter at
small length scales as shown in Fig. 3. However, one
needs to be aware of the fact that in the regime of small
length scales the perturbative treatment of n and f̃ is not
valid and the definition of the horizons is not clear. In
the figures we depict this regime by the shadowed region,
and we would like to emphasize that an exact description
of this regime would require a complete non-perturbative

analysis. Such an analysis lies beyond the scope of the
present work, and it is left for a future investigation.
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Figure 3. Plot of the evolutions of the post-Newtonian parame-

ter γ as functions of radial coordinate ρ in a charged spherical

system described by nonlinear massive gravity. In numerical

calculation, the parameters are chosen to be the same as those

provided in Fig. 1.

D. Case III: β 6= 0

The case where both α,β parameters are non vanish-
ing can be divided in two subcases: β < 0 and β > 0.
Generally, we are unable to obtain the exact solution of
the metric factor h from equation (44). Therefore, we
can only solve the equations of motion semi-analytically
by keeping the leading order terms and then compare
with numerical computations. However, it is interest-
ing to notice that, in the case of β > 0 there exists
a class of exactly analytic solutions for a special fam-
ily of parameter choice β = α2/6, which was also ob-
served in Schwarzschild-like solutions in massive gravity
[43, 44, 47]3. In the following we will analyze these cases
in both analytical and numerical ways, respectively.

3 An RN solution was constructed in the de Sitter (dS) background
in [43, 47]. In the present work we solve the exact equations of
motion of a charged spherical system in massive gravity and we
obtain an exact form of RN-dS which will be shown in later
context.
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1. β < 0

Let us first consider the subcase β < 0. By solving
h numerically we find that there is only one branch of
solution which is real between the Schwarzschild radius
and infinity. It evolves from a very large value to a small
constant, as moving from the Schwarzschild radius to the
Compton wavelength. Around the Vainshtein radius it is
of order O(1). A strong charge suppresses the value of h
slightly when it is close to and inside the Schwarzschild
radius. Beyond this range the charge does not cause an
obvious effect. This can be seen in Fig. 4, where the
three curves almost coincide.
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Figure 4. Plot of the evolutions of metric factor h as functions

of radial coordinate ρ in a charged spherical system described

by nonlinear massive gravity. The parameters of the massive

gravity model are taken as: α = 1 and β = −1/2. Moreover,

m and M are the same as those provided in Fig 1.

As shown in this figure h >> 1 in the range rS < ρ <
ρQ. Thus, in the semi-analytical calculation, we keep the
leading order terms of the equations of motion for the
metric factors, and then we acquire

h ≃ 1

β1/3
(
ρQ

4

ρ4
− ρV

3

ρ3
)1/3, (52)

n′ ≃ − m2

2β1/3
(
ρQ

4

ρ
− ρV

3)1/3, (53)

f̃ ≃ −GQ2

8πρ2
+

αm2

2β2/3
(
ρQ

4

ρ
− ρV

3)2/3

− m2

2β1/3
(ρQ

4 − ρρV
3)1/3ρ2/3. (54)

From the above semi-analytic results we find that the
corrections to f̃ and n are so dramatic that the usual
Schwarzschild-like gravitational potential (in form of 1/ρ)

is exactly canceled. This result agrees with the conclu-
sion of [41] in which a neutral spherical system was con-
sidered.

Finally, for the gravitational potential associated with

the electric charge, the RN-like factor Q2

ρ2 in gtt also disap-

pears, but the dominant term in the small radius regime
roughly takes the form of ρ2/3. For the grr component

the sign in front of Q2

ρ2 changes from positive to nega-

tive compared to the General Relativity result. These
new features suggest that the charged spherical system
described by nonlinear massive gravity is much more
smooth near the origin than that described by General
Relativity. However, since below the Vainshtein radius
the difference from General Relativity is quite significant
in this case, the corresponding parameter space is likely
ruled out by local, solar system experiments.

2. β > 0

We now consider the subcase β > 0. Apart from the
previous solution in which h is large-valued below the
Vainshtein radius, there exists a second solution in which
the metric factor h always takes a small value outside
the Schwarzschild radius. This was first observed in [46]
within a spherically symmetric neutral background. Sim-
ilarly to the previous subcase we solve the equations of
motion numerically, obtaining the solution for the metric
factor h as shown in Fig. 5. In addition, we extract the
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evolutions of f̃ and n′ along the radial coordinate ρ. In
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order to provide a clearer picture of the difference of the
dynamics in massive gravity from that of General Rela-
tivity, in Fig. 6 we plot the ratios n′/n′

GR and f̃ /f̃GR,
respectively.
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sive gravity. The parameters of the massive gravity model are

taken as: α = 1, β = 3. Other parameters are the same as

those used in Fig. 4. The ‘f ’ in the plot represents the metric

factor f̃ in the main text.

From Fig. 5 we can see that in a strongly charged
spherical system the absolute value |h| can become larger
than 1 inside the Schwarzschild radius. As we move
away from the Schwarzschild radius h evolves to a con-
stant, which coincides with the value when the charge is
weak. After crossing the Vainshtein radius h approaches
0 rapidly. By comparing f̃ and n′ with the results of Gen-
eral Relativity, we can clearly see the Vainshtein mecha-
nism from Fig. 6.

Since |h| is always smaller than unity outside the
Schwarzschild radius, we can solve its equation of mo-
tion by neglecting the terms proportional to h3 and h5.
Correspondingly, the approximate solution is given by

h ≃ 3ρ4 − 2αρQ
4

12(αρ4 − 2βρQ4 + 2βρρV 3)
×

{

1−
[

1 +
48ρρV

3(αρ4 − 2βρQ
4 + 2βρρV

3)

(3ρ4 − 2αρQ4)2

]1/2
}

,

(55)

which proves to be in good agreement with the numer-
ical solution. The corresponding expressions for f̃ and
n′ are obtained from equations (42) and (43), however
they are quite complicated and thus we do not present

them explicitly. Furthermore, we would like to point out
that in this case the dynamical features of the metric fac-
tors f̃ and n are quite similar to the case of α 6= 0 and
β = 0, as can be seen by comparing Fig. 6 and Fig. 2.
This implies that the solution obtained in the β = 0 case
might be dynamically stable in the parameter space of
the nonlinear massive gravity model.

3. β = α2/6: An exact analytic solution

In last subsection we examine a family of solutions in
the model of nonlinear massive gravity under the partic-
ular parameter choice β = α2/6. This special parameter
choice was first noticed in [43], where the exact SdS and
RN-dS solutions were obtained with an arbitrary cosmo-
logical constant term. This relation was also applied by
the authors of [47], who constructed a special family of
black hole solutions on a fixed dS background.

We insert the relation β = α2/6 into the nonlinear
equation of motion (44) and we find that there exists a
special solution for h, namely

h =
1

α
, (56)

which implies a constant metric factor H = (1 + α)/α.
Then we substitute the solution (56) into the exact back-
ground equation of motion (8) and the Bianchi constraint
(24). It is easy to verify that the constraint equation (24)
is automatically satisfied. Working with the r coordinate
directly we see that the main equation (8) yields the fol-
lowing exact solution:

N2(r) = F 2(r)

=
(1 + α)2

α2
+

GQ2(1 + α)4

4πα4r2
− rM

r
− m2r2

3α
, (57)

where rM is an integration constant.
We can perform the following coordinate rescaling:

t → α

1 + α
t , r → 1 + α

α
r , (58)

and introduce two coefficients

r̃S ≡ α3rM
(1 + α)3

, rΛ ≡
√
3α

m
, (59)

which are related to the Schwarzschild radius and the de
Sitter radius, respectively. We get the exact form of the
RN-dS-like solution as

ds2 = −A(r)dt2 +
dr2

A(r)
+ r2dΩ2 , (60)

with

A(r) = 1 +
r2Q
r2

− r̃S
r

− r2

r2Λ
, (61)

where the forms of rQ, r̃S and rΛ are provided in (20)
and (59), respectively. The above solution can recover
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the standard RN result in General Relativity, and r̃S co-
incides to the usual Schwarzschild radius rS when we take
m = 0. Furthermore, our result is in agreement with the
one obtained in [43], however we did not introduce an
additional cosmological constant in order to see whether
and how a pure massive gravity model can yield a dS
background by itself.

Moreover, the coefficient rΛ is determined by the com-
bination of the graviton mass m and the model parameter
α. When α is of order O(1) we can apparently observe
that the property of dS background is completely deter-
mined by the graviton mass. If we apply this feature
in a cosmological setup, the existence of a tiny graviton
mass can drive a late-time acceleration of the universe
and thus might explain the present cosmological observa-
tions. However, if we tune α to an extremely large value
then the effect of the graviton mass can be decreased
and the background dynamics approach those of General
Relativity. Mathematically this effect can be seen by the
way K appearing in the graviton potential U is roughly
proportional to 1/α and thus it yields the amplitude of
the effective energy-momentum tensor Xµν in form of
1/α. Eventually, the behavior of nonlinear massive grav-
ity approaches standard Einstein gravity in the limit of
α ≫ 1.

V. CONCLUSIONS

In the present work, we theoretically investigated the
solutions of a spherically symmetric system involving a
static electric field in the context of nonlinear massive
gravity. Due to properties of the graviton potential in the
dRGT model, the BD ghost which historically plagues all
massive gravity theories can be removed. However, inher-
ited from other massive gravity models, the longitudinal
mode of gravitons is strongly coupled and thus greatly
affect the gravitational potential at macroscopic scales.
Therefore, this model is expected to be constrained by
solar system observations.

Depending on the different dynamics of our solutions,
the solution parameter space can be roughly categorized
into three parts:

• The first class corresponds to α = β = 0 and thus
the graviton’s potential takes a fixed form. The so-
lution in this subclass is well described at the per-
turbative level, but the vDVZ discontinuity cannot
be avoided. However, the post-Newtonian parame-
ter in this class fails to agree with General Relativ-
ity and thus the corresponding parameter choice is
observationally ruled out.

• In the second subclass, we keep β = 0 but we allow
α to be an arbitrary constant. The corresponding
solution shows that General Relativity can be re-
covered between the outer horizon of the black hole
and the Vainshtein radius by virtue of the Vain-
shtein mechanism. This scenario is similar to the

case of the neutral black hole in massive gravity.
However, the existence of an electric charge could
increase the value of the metric factor h within
a newly defined radius ρQ and thus the detailed
evolutions of time-like and space-like metric com-
ponents behave differently from those of a neutral
black hole. Namely, the metric factor n obtains a
logarithmic correction when the radius is close to
the outer horizon.

• The third subclass of parameter choice is the most
general in the parameter space, which requires both
α and β to be non-vanishing. In this case the dy-
namics of solutions behave dramatically different
depending on the positivity of β. When β < 0 the
strongly coupled scalar graviton greatly decreases
the strength of gravity at small length scales, and
thus the usual Schwarzschild-like gravitational po-
tential totally disappears which severely challenges
all astronomical observations. However, if β is
positive General Relativity can be recovered again
through the Vainshtein mechanism. This behav-
ior is similar to the solution in the second subclass
with β = 0. Therefore, the solution in this case,
together with the solution in the second subclass,
might provide a certain parameter space for nonlin-
ear massive gravity to conform with current solar
system observations.

• Finally, there exists a particular parameter choice
in the last subclass which suggests β = α2/6. Un-
der this condition the background equations of mo-
tion can be solved exactly and yield a solution
which is identical to the RN-dS form in which only
the dS radius rΛ contains the model parameter α.
The exact solution with such a special parameter
choice can recover the standard result in General
Relativity in the limit of either a vanishing graviton
mass or an extremely large value of the parameter
α.

Note that, the structure of solutions does not only de-
pend on the sign of β, but also on a diverse structure
in the parameter space of α and β. The authors of [42]
analyzed the whole parameter space of a neutral spher-
ical system under nonlinear massive gravity and found
that each region showed a completely different behavior
with respect to the inner solutions (near the body) and
the asymptotic solutions, and thus affect the Vainshtein
mechanism. It would be interesting to perform a global
analysis on the parameter space in our case too.

Lastly, we would like to mention that in the present
work we only focus on the analysis of background solu-
tions of a charged spherical system in the dRGT model,
without studying the perturbations. At the background
level the parameter space of model parameter has already
shown rich behaviors and a sizable regime has already
been ruled out by observations. Due to the Vainshtein
mechanism there exists an island in the parameter space
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which is consistent with astronomical data at the back-
ground level. Moreover, this situation could dramatically
changed if the perturbations were taken into account and
we expect the model parameters appearing in the nonlin-
ear massive gravity would be further constrained. How-
ever, we leave such a study for future investigation.
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