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Massive spectroscopic surveys will measure the redshift space distortion (RSD) induced by galaxy
peculiar velocity to unprecedented accuracy and open a new era of precision RSD cosmology. We
develop a new method to improve the RSD modeling and to carry out robust reconstruction of the
3D large scale peculiar velocity through galaxy redshift surveys, in light of RSD. (1) We propose a
mathematically unique and physically motivated decomposition of peculiar velocity into three eigen-
components: an irrotational component completely correlated with the underlying density field (vδ),
an irrotational component uncorrelated with the density field (vS) and a rotational (curl) component
(vB). The three components have different origins, different scale dependences and different impacts
on RSD. (2) This decomposition has the potential to simplify and improve the RSD modeling. (I) vB

damps the redshift space clustering. (II) vS causes both damping and enhancement to the redshift
space power spectrum P s(k, u). Nevertheless, the leading order contribution to the enhancement
has a u4 directional dependence, distinctively different to the Kaiser formula. Here, u ≡ kz/k, k is
the amplitude of the wavevector and kz is the component along the line of sight. (III) vδ is of the
greatest importance for the RSD cosmology. We find that the induced redshift clustering shows a
number of important deviations from the usual Kaiser formula. Even in the limit of vS → 0 and
vB → 0, the leading order contribution ∝ (1 + fW̃ (k)u2)2. It differs from the Kaiser formula by

a window function W̃ (k). Nonlinear evolution generically drives W̃ (k) ≤ 1. We hence identify a
significant systematical error causing underestimation of the structure growth parameter f by as
much as O(10%) even at relatively large scale k = 0.1h/Mpc. (IV) The velocity decomposition
reveals the three origins of the finger of God (FOG) effect and suggests to simplify and improve the
modeling of FOG by treating the three components separately. (V) We derive a new formula for the
redshift space power spectrum. Under the velocity decomposition scheme, all high order Gaussian
corrections and non-Gaussian correction of order δ3 can be taken into account without introducing

extra model uncertainties. Here δ is the nonlinear overdensity. (3) The velocity decomposition
clarifies issues in peculiar velocity reconstruction through 3D galaxy distribution. We discuss two
possible ways to carry out the 3D vδ reconstruction. Both use the otherwise troublesome RSD in
velocity reconstruction as a valuable source of information. Both have the advantage to render the
reconstruction of a stochastic 3D field into the reconstruction of a deterministic window function
W s(k, u) of limited degrees of freedom. Both can automatically and significantly alleviate the galaxy
bias problem and, in the limit of a deterministic galaxy bias, completely overcome it. Paper I of
this series of works lays out the methodology. Companion papers [1] will extensively evaluate its
performance against N-body simulations.

PACS numbers: 98.80.-k; 98.80.Es; 98.80.Bp; 95.36.+x

I. INTRODUCTION

The observed galaxy clustering pattern in redshift
space is modified by peculiar velocity of galaxies and
shows characteristic anisotropies [2–7]. This redshift
space distortion (RSD) effect provides a promising way
to measure peculiar velocity at cosmological distance and
makes itself a powerful probe of the dark universe. It has
allowed the measurement of the structure growth rate in
spectroscopic surveys such as 2dF [8, 9], SDSS [10, 11],
VVDS [12], WiggleZ [13, 14] and BOSS [15, 16]. Such
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growth rate measurement is highly valuable in probing
the nature of dark energy [17–24] and gravity [25–32].
In particular, with both the expansion rate measurement
from BAO [33–36] and structure growth rate measure-
ment from RSD, spectroscopic redshift surveys are well
suited to test consistency relations in general relativity
and to discriminate between dark energy and modified
gravity [37]. For these reasons, RSD has become one of
the key science goals of the planned stage IV dark en-
ergy projects such as the BigBOSS experiment [38] and
the Euclid cosmology mission [39]. It can also be used
to measure the stochastic galaxy bias [40] and the galaxy
(pairwise) velocity dispersion [41], both are valuable for
studying galaxy formation.

These applications heavily relies on the RSD model-
ing. However, modeling RSD to accuracy matching stage
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IV dark energy projects is very challenging, especially
due to three sources of nonlinear and the associated non-
Gaussianity. (1) The nonlinear mapping from real space
clustering to redshift space clustering. Due to this non-
linearity, even the lowest order statistics in redshift space
involves correlations between density and velocity fields
to infinite order (e.g. [42–45]). (2) The nonlinear evolu-
tion in the real space matter density and velocity fields.
(3) The nonlinear and nonlocal galaxy-matter relation.
The galaxy density bias is known to have non-negligible
nonlinearity and stochasticity (e.g. [46]). The galaxy
velocity bias may also be needed for precision modeling
(e.g. [47]). To proceed, layers of approximations and
simplifications have been made.

Here we elaborate on some of these approxima-
tions/simplifications with example of matter clustering
in redshift space. One of the most commonly used RSD
formulae connecting the isotropic real space power spec-
trum Pδδ(k) to the anisotropic redshift space power spec-
trum P s

δδ(k, u) is P
s
δδ(k, u) ≃ Pδδ(k)(1+fu

2)2DFOG(ku).
It is a phenomenological combination and extension of
the linear Kaiser effect and the finger of God (FOG) ef-
fect due to random motions. Here, f ≡ d lnD/d ln a and
D ≡ D(z) is the linear density growth factor at redshift
z = 1/a − 1. Throughout this paper, the superscript
“s” denotes the property in redshift space. P s

δδ depends
on both k and u ≡ k‖/k. Throughout the paper we
adopt the z-axis as the line of sight, so k‖ = kz . Ap-
proximations/simplifications made include (1) the par-
allel plane approximation [48], (2) linear evolution in
the velocity-density relation and (3) no stochasticity be-
tween the velocity and density field [22]. (4) It also
neglects most high order correlations between the den-
sity and velocity fields [43, 44]. (5) DFOG(ku) is a phe-
nomenological description of the FOG effect, the overall
damping caused by random motion. Both a Gaussian
form DFOG(ku) = exp(−(kuσv/H)2) and a Lorentz form
DFOG(ku) = 1/(1 + (kuσP /H)2/2) are widely adopted.
However, the physical meaning of the velocity dispersion
σv and especially the pairwise velocity dispersion σP is a
bit ambiguous. Furthermore, deviations from the above
forms have been found in simulations [49].

Various approaches have been investigated to improve
the RSD modeling. A far from complete list includes the
Eulerian and Lagrangian perturbation theory [42, 47, 50–
56], the halo model [49, 57–60], the streaming model
[4, 61, 62], the recently proposed distribution function
approach [43–45] and combinations between them. Fur-
thermore, due to significant nonlinearities involved, RSD
modeling often resorts to numerical simulations on cal-
ibration and testing (e.g. [42, 49, 59, 62–65]). Despite
these efforts, RSD modeling has not yet achieved the ac-
curacy required for precision RSD cosmology. For exam-
ple, recent tests against N-body simulations find that the
inferred f can be biased low by O(10%) or more [63–68],
significantly larger than the O(1%) statistical error in f
for surveys like BigBOSS and Euclid.

Since RSD is induced by peculiar velocity, it is of cru-

cial importance to understand the peculiar velocity field.
We find that, an appropriate velocity decomposition has
the potential to simplify and improve the RSD model-
ing. We also find that the same decomposition may
enable robust reconstruction of 3D peculiar velocity in
spectroscopic surveys. It has the advantage to render
the otherwise troublesome RSD in velocity reconstruc-
tion into valuable source of information. The current
paper aims to lay out the methodology of the proposed
velocity decomposition, RSD modeling and 3D velocity
reconstruction. Extensive tests against simulations and
mock catalogs are required to clarify/justify/quantify nu-
merous technical issues. These numerical results will be
presented in companion papers [1].
This paper is organized as follows. In §II we decompose

the peculiar velocity fields into three eigen-modes (vδ, vS

and vB) and discuss related statistics. Among them, vδ

is the velocity component completely correlated with the
density distribution and is the one contains most cos-
mological information. In §III we show that the three
velocity components affect RSD in different ways and
their impacts can be treated separately. We are then able
to derive the exact RSD formula. Furthermore we pro-
pose reasonable approximations for realistic calculation.
Through this methodology, we explicitly identify a signif-
icant systematical error in RSD cosmology. §IV proposes
a method to reconstruct the 3D vδ from redshift surveys
and the appendix D proposes an alternative. For brevity,
the above sections focus on the matter field. But these
results can be extended to the galaxy field straightfor-
wardly, as briefly discussed in §V. We further argue that
the velocity reconstruction is insensitive to the galaxy
bias. At the end of each sections, we list key statistics
to be investigated in future works. We also prepare four
appendices for more technical issues.

II. PECULIAR VELOCITY DECOMPOSITION

Any vector field can be decomposed into a irrotational
(gradient) part and a rotational (curl) part. Analogous
to the electric and magnetic fields (and also the CMB
polarization field and the cosmic shear field), we denote
the first one with a subscript “E” and the later one with
a subscript “B”. Hence the peculiar velocity v can be
decomposed as

v(x) = vE(x) + vB(x) . (1)

By definition, ∇ × vE = 0 and ∇ · vB = 0. In Fourier

space, we have vE(k) = [v(k) · k̂]k̂ and vB(k) = v(k) −
vE(k).
vE can be completely described by its divergence

θ(x) ≡ −∇ · v(x)/H ≡ −∇ · vE(x)/H . To conveniently
describe the velocity-density relation, we carry out a fur-
ther decomposition,

vE(x) = vδ(x) + vS(x) . (2)
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Both vδ and vS are irrotational (∇ × vδ = 0 and
∇ × vS = 0). We require that θδ ≡ −∇ · vδ/H is com-
pletely correlated with the overdensity δ. So we denote
this component with a subscript “δ”. In Fourier space,
we then have

θδ(k) = δ(k)W (k) . (3)

Here W (k) is a deterministic function of k to be deter-
mined later.
On the other hand, we require that θS ≡ −∇ · vS/H

is uncorrelated with δ. So 〈θS(x)δ(x + r)〉 = 0. Equiv-

alently 〈θS(k
′

)δ(k)〉 = 0 for any k and k
′

. θS is the
source of stochasticity in the δ-θ relation, so we denote
this component with a subscript “S”.
We define the power spectrum between field A and

field B through 〈A(k)B(k
′

)〉 ≡ (2π)3δ3D(k+k
′

)PAB(k).
We often use the notation ∆2

AB ≡ k3PAB/(2π
2),

which enters into the ensemble average 〈A(x)B(x)〉 =
∫

∆2
AB(k)dk/k. Through the relation 〈δ(k

′

)θ(k)〉 =

〈δ(k
′

)θδ(k)〉 = 〈δ(k
′

)δ(k)〉W (k), we obtain

W (k) =W (k) =
Pδθ(k)

Pδδ(k)
. (4)

Notice that, due to the isotropy of the universe, Pδθ(k) =
Pδθ(k) and Pδδ(k) = Pδδ(k). So W does not depend on
the direction of k.
Hence we prove that the velocity decomposition into

vδ, vS and vB is mathematically unique, with no as-
sumptions on the underlying density and velocity field.
But the decomposition has strong physical motivation
too. The three components are associated with different
physical processes in the structure formation. We now
proceed to their physical meanings.

A. The vδ field

In the limit k ≪ kNL, vδ is the only velocity compo-
nent. Here kNL is the nonlinear scale, defined through
∆2

δδ(kNL) = 1. vB is a decay mode before shell cross-
ing so it is negligible in the linear regime [69, 70]. On
the other hand, in the limit k ≪ kNL, vE is completely
correlated with the density field, with a deterministic re-
lation θ = fδ. So vS vanishes too. vδ, being the most
linear velocity component, is of the greatest interest to
cosmology.
Nevertheless, nonlinear evolution leaves non-negligible

imprints in the vδ field. A crucial point is that nonlinear
evolution affects the density field and the velocity field
in different or even opposite ways (e.g. [42, 69]). The
third order Eulerian perturbation shows that, when the
effective power index neff

>
∼ −1.9, nonlinear evolution

actually suppresses the velocity growth, while enhances
the overdensity growth (Fig. 12, [69]). Even for neff

<
∼

−1.9, θ grows more slowly than the overdensity (Fig.
12, [69]). Furthermore, nonlinear evolution generates a

FIG. 1: Solid lines are W̃ (k, z) predicted by the third
order Eulerian perturbation theory at redshift z =
0.0, 0.5, 1.0, 1.5, 2.0 (bottom up). We adopt a flat ΛCDM cos-
mology with Ωm = 0.26, Ωb = 0.044, ΩΛ = 0.74, h = 0.71,
σ8 = 0.8 and ns = 1. Nonlinearity drives W̃ down from
unity. Later we will show that what inferred from redshift
space distortion is fW̃ . So the structure growth rate f can
be biased low by O(10%), consistent with recent findings
(e.g. [63–68]). To demonstrate the vS component, we also

plot
√

Pθθ/Pδδ, normalized to unity at k → 0 (dash lines).
√

Pθθ/Pδδ = Pδθ/Pδδ ×
√
1 + η. η ≡ PθSθS/Pθδθδ quanti-

fies the relative amplitude of vS with respect to the veloc-
ity component vδ. It also quantifies the velocity divergence-
density stochasticity (Eq. 7). In the limit k → 0, η → 0 and
√

Pθθ/Pδδ → Pδθ/Pδδ. The nonlinear evolution generates vS

and causes the two sets of curves to deviate from each other.
Since the third order Eulerian perturbation theory has lim-
ited range of applicability, numerical results shown in this plot
are mainly presented to demonstrate the major impacts of the
nonlinear evolution such as driving W̃ down from unity and
driving η up from zero. Robust quantifications of W̃ and η
will be presented in companion papers [1].

stochastic velocity component vS , further reducing θδ
with respect to δ. In the deeply nonlinear regime, after
many orbit crossings, the velocity field eventually loses its
correlation with the density field and we expect vδ → 0.
Hence we should use Eq. 4 to describe the θδ-δ re-

lation, instead of the linear relation θδ = fδ. For the
convenience of highlighting the deviation from the linear
relation, we define the normalized W̃ through

W̃ (k) ≡
W (k)

W (k → 0)
=
W (k)

f
=

1

f

Pδθ(k)

Pδδ(k)
. (5)

W̃ calculated using the third order Eulerian perturba-
tion theory is shown in Fig. 1. In companion papers
[1] we will numerically evaluate this key quantity using
high resolution N-body simulations. In the limit k → 0,
W̃ → 1 as expected. But nonlinear evolution soon drives
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W̃ to deviate W̃ < 1. Even at relatively high redshift
z = 2 and pretty linear scale k = 0.1h/Mpc, the devi-
ation already reaches O(1%). The derivation increases
towards low redshift and exceeds 10% at z <∼ 0.5.

To better understand this behavior, we can express W̃
as

W̃ (k) = rδθ(k)

√

Pθθ(k)

f2Pδδ(k)
≤

√

Pθθ(k)

f2Pδδ(k)
≤ 1 . (6)

Here, rδθ(k) is the cross correlation coefficient between
δ and θ. By definition, rδθ(k) ≤ 1. Given the fact that
velocity growths more slowly the density, Pθθ < f2Pδδ.
So we expect W̃ < 1 in nonlinear regime. Furthermore,
when k ≫ kNL, rδθ → 0. So we expect W̃ → 0 when
k ≫ kNL.
The recognition of the velocity component vδ has sev-

eral important applications. (1) It lays out a promis-
ing way to reconstruct the 3D peculiar velocity from 3D
density distribution, which is accessible from galaxy spec-
troscopic redshift surveys. W̃ mimics a window function
with a smoothing scale comparable to the nonlinear scale.
It exerts on the density field and suppresses small scale
inhomogeneities so that the smoothed density field pro-
vides a honest estimation on the underlying velocity field
vδ. One can find a similar window function exerting on
the redshift space density, which is directly observable.
Hence the reconstruction of the stochastic 3D vector field
is simplified to the reconstruction of a deterministic win-
dow function with limited degrees of freedom. This is
one of the most important applications of the velocity
decomposition proposed in this paper. Later in §IV we
will present more detailed investigation. (2) It simplifies

the RSD modeling. Since W̃ → 0 toward small scales,
nonlinearity and non-Gaussianity in the vδ field are sig-
nificantly suppressed. (3) It identifies a severe system-
atical error in RSD cosmology. Later in §III C we will
show that RSD is determined by fW̃ instead of f . If the
factor W̃ is not included in the RSD cosmology, f will be
biased low by ∼ 2% at z = 2 and ∼ 10% at z = 0, even
if we restrict the analysis to k <∼ 0.1h/Mpc. To our best
knowledge, this is the first time such systematical error is
diagnosized explicitly. This source of systematical error
could explain recent findings of O(10%) underestimation
in f inferred from simulated RSD data [63–68]. We will
present more discussions on its cosmological implications
in §III E.

B. The vS field

To the opposite of vδ, vS vanishes in the linear regime
and begins to grow due to the nonlinear evolution. For
this reason, it lacks large scale power and hence its cor-
relation length is smaller than that of vδ. For the same
reason, it is intrinsically non-Gaussian. Being uncorre-
lated to the density field, vS induce stochasticities in the

velocity-density relation. We have the relation

rδθ(k) ≡
Pδθ(k)

√

Pδδ(k)Pθθ(k)
=

1
√

1 + η(k)
, (7)

where η(k) ≡ PθSθS(k)/Pθδθδ(k). When vS overwhelms
over vδ (η ≫ 1), rδθ → 0 and the velocity field loses its
correlation with the density field.

Based on the third order perturbation calculation, we
find that PθSθS already reaches ≃ 1% of Pθδθδ (namely
η ≃ 1%) at k = 0.1h/ Mpc and z <∼ 1, as can be in-
ferred from Fig. 1. As expected, the situation is less
severe at higher redshifts. But even at z = 2, η ≃ 1% at
k = 0.2h/Mpc. Hence in general, vS is a non-negligible
velocity component even at scales which are often con-
sidered as linear. Nevertheless, it is still subdominant to
vδ at scale k <∼ 1h/Mpc, as one can infer from Fig. 1
of [22], in combination with our Eq. 7. Our numerical
evalulations obtain similiar results [1].

What cosmological information does vS contain? One
particularly interesting piece of information is likely the
nature of gravity. For modified gravity models to pass
the solar system tests and to drive the late time cosmic
acceleration, gravity must behave upon the environment
(e.g. review articles [71, 72]). Such environmental depen-
dence often becomes prominent in the nonlinear regime,
so it can significantly affects the velocity divergence (e.g.
[32]). Arisen from nonlinear evolution, vS would be sen-
sitive to this generic feature of modified gravity, making
it attractive for testing gravity.

In §III we will show that the vS induced RSD differs
from the vδ induced RSD (§III). We argue that these
differences can be used to separate the different velocity
components and to make statistical measurement of vS

possible.

C. The vB field

vB decays as long as the single fluid approximation
for the dark matter distribution holds [69]. vB grows
only when the nonlinearity is sufficiently large that shell
crossing happens. In the deeply nonlinear regime, we
may even expect equi-partition in the velocity distribu-
tion and vB can dominate over vE . So we expect that its
power concentrates at even smaller scales than vS . In-
deed, numerically studies [70] show that the power of this
velocity component concentrates at small scales, with
r.m.s. much smaller than that of vE . Our numerical
evalulations found similar behavior [1]. Later in §III A
we will show that these behaviors significantly simplify
the modeling of vB induced RSD. We refer the readers
to [70] and references therein for in depth study of vB.
In [1], we will present our numerical evaluations on RSD
related statistics of vB.
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D. Statistical description of the three velocity

components

This paper is not at a position to calculate the statistics
of these velocity components. Instead, we present some
general discussions here and postpone any quantitative
calculations into future works. First, since the three ve-
locity components have different origins, the halo model
scenario [41, 73–75] provides an unified way to describe
the three components. Nevertheless, a number of exten-
sions/corrections may be necessary. (1) Since the linear
perturbation theory fails to describe the emergence of vS

and deviations from the linear theory prediction of the
halo bulk motion have been diagnosized [76], a natural
extension to describe the halo bulk motion is the third or-
der perturbation. (2) Peculiar velocity has been treated
as the sum of the halo bulk velocity and the random
velocity inside of the virialized halos [77]. It may be ex-
tended to include the more complicated motion around
the halo outskirt, which may be a significant source of
vB [70]. Nevertheless, treatment of vB is trickier and we
refer the readers to [70] for detailed discussions.
One important statistics relevant to RSD is the ve-

locity correlation function. Due to symmetry considera-
tions, it can be decomposed as [4]

〈vi(x1)vj(x2)〉 = ψ⊥(r)δij +
[

ψ‖(r) − ψ⊥(r)
] rirj
r2

. (8)

Here r ≡ x1 − x2 is the pair seperation vector and i =
x, y, z is the Cartesian axes. ψ‖ is the correlation function
when both vi and vj are along r. ψ⊥ is the one when both
velocities are perpendicular to r.
ψ‖ and ψ⊥ are not independent. For a potential flow

(vδ and vS), we have the textbook result [4]

ψ‖(r) =
d(rψ⊥(r))

dr
, (9)

ψ⊥(r) = H2

∫

∆2
θθ

sin(kr)

kr

dk

k3
. (10)

Here we have defined the velocity power spectrum
through 〈v(k) · v(k

′

)〉 ≡ (2π)3δ3D(k + k
′

)Pvv(k). Its
covariance is defined as ∆2

vv ≡ Pvvk
3/2π2.

On the other hand, vB does not follow this relation.
Using the fact that vB can be expressed as the vorticity
of a vector A (vB = ∇ × A), we derive the following
relations,

ψ⊥(r) = ψ‖(r) +
1

2
r
dψ‖(r)

dr
, (11)

ψ‖(r) =

∫

∆2
vBvB (k)

dk

k

1

3

[

sin kr

(kr)3
−

cos kr

(kr)2

]

. (12)

E. To do list

In companion papers [1], we will use N-body simula-
tions to numerically evaluate statistics of these velocity
fields. An incomplete list includes

• The power spectra Pvδvδ (k, z), PvSvS (k, z) and
PvBvB (k, z). Their scale and redshift dependences
are helpful to understand the impact of nonlinear
evolution.

• The correlation function ψvδvδ (r, z), ψvSvS (r, z)
and ψvBvB (r, z), of the “‖” mode and the “⊥”
mode. These statistics quantify the correlation
length of the three velocity components and tell
us at which separation we can treat the velocities
at two positions as independent.

• The PDFs of vδ, vS and vB . The PDFs determine
the overall damping (FOG) to the redshift power
spectrum. We will also calculate the cumulants to
quantify non-Gaussianity of these velocity compo-
nents.

• W̃ (k, z). As we have addressed, W̃ is of crucial im-
portance in the 3D velocity reconstruction and in
the RSD cosmology. Through N-body simulations,
we will robustly measure its dependence on k and
z. Furthermore, we want to quantify the W̃ (k, z)-
∆2

δδ(k, z) relation to better understand its depen-
dence on the nonlinearity. Especially, we want to
know if it can be well approximated by a simple
function with only a few parameters.

III. MODELING THE REDSHIFT SPACE

DISTORTION

Now we proceed to the RSD modeling with the aid
of the proposed velocity decomposion. Following [42],
we utilize the matter conservation ((1 + δs(xs))d3xs =
(1 + δ(x))d3x) to derive

δs(k) =

∫

[1 + δ(x)] exp

(

i
kzvz
H

)

exp(ik · x)d3x (13)

In the above expression, we have neglected a Dirac fun-
tion which only shows up when k = 0, irrelevant to
our calculation. This equation adopts the plane par-
allel approximation and adopts the line of sight as the
z-axis. It also assumes no multiple streaming. Exten-
tion to this more complicated situation can be done by
the phase space distribution function approach [43–45].
Phenomenologically speaking, multiple streaming can be
described by an overall damping to the redshift space
power spectrum. Hence we do not expect major changes
to the results presented in this paper.
The redshift space power spectrum is given by [42]

P s
δδ(k) =

∫

〈(1 + δ1)(1 + δ2) expλ〉 exp(−ik · r)d3r(14)

where δi ≡ δ(xi) and x2 ≡ x1 + r. The ensemble average
〈· · ·〉 is averaged over all x1 with fixed r. For brevity, we
have denoted λ ≡ ikz(v1z−v2z)/H . We also denote λα ≡
ikz(v1z,α − v2z,α)/H where α = δ, S,B. Due to the axial
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symmetry along the line of sight, P s
δδ(k) only depends on

k and u. Hereafter we often write it as P s
δδ(k, u).

An immediate result is that δs(k⊥, kz = 0) =
δ(k⊥, kz = 0) and P s

δδ(k⊥, kz = 0) = Pδδ(k⊥). A sim-
ilar relation holds for the bispectrum, Bs

3(k1,k2,k3) =
B3(k1,k2,k3) when k1,z = k2,z = k3,z = 0. Later we will
show that these relations are very useful in RSD model-
ing. Notice that no such relations exist in real space. For
example, ξs(r⊥, rz = 0) 6= ξ(r⊥).

A. The role of vB

Now we will apply the velocity decomposition to Eq.
14. Since only vδ is correlated with the overdensity, Eq.
14 can be reduced to

P s
δδ(k, u) =

∫

{〈(1 + δ1)(1 + δ2) expλδ〉 (15)

× DS(kz , r)DB(kz , r)} exp(−ik · r)d3r .

The two function DS(kz , r) and DB(kz , r) completely de-
scribe the redshift distortion caused by vS and vB respec-
tively.

DS(kz, r) ≡

〈

exp

(

i
kz(v1z,R − v2z,R)

H

)〉

, (16)

DB(kz, r) ≡

〈

exp

(

i
kz(v1z,B − v2z,B)

H

)〉

. (17)

Due to the symmetry between kz and −kz, DS,B(kz , r) =
DS,B(|kz |, r).
We have DS ≤ 1 and DB ≤ 1, so both vS and vB

suppress the clustering presented by terms inside of the
bracket of Eq. 15. However, vS and vB can have their
own clusterings and hence can in principle increase the
overall clustering in redshift space. We can also define a
corresponding function for vδ,

Dδ(kz , r) ≡

〈

exp

(

i
kz(v1z,δ − v2z,δ)

H

)〉

. (18)

But since vδ is correlated with the density field, its role
in RSD is too complicated to be described by a single
function Dδ.
In general, these functions depend on the pair separa-

tion r, due to correlations in the corresponding velocity
fields. To describe this effect, we define

1 + ǫα(r, kz) ≡
Dα(kz , r)

Dα(kz , r → ∞)
. (19)

Here, α = δ, S, B respectively. The limit r → ∞
corresponds to the limit of no velocity correlation. In
this limit, peculiar velocity only causes damping (FOG).
Hence we denote D at this limit with a superscript
“FOG”,

Dα(kz, r → ∞) ≡ DFOG
α (kz) (20)

=

∣

∣

∣

∣

〈

exp

(

i
kzvz,α
H

)〉∣

∣

∣

∣

2

.

As discussed in §II, vB arises mostly in the deeply non-
linear regime, so we expect a correlation length shorter
than scales of interest for RSD cosmology. Hence we can
neglect correlation in the vB field. Namely, we can make
the approximation

ǫB ≃ 0 , DB(kz , r) ≃ DFOG
B (kz) . (21)

Since DFOG
B is independent of r, Eq. 15 is simplified as

P s
δδ(k, u) =

{∫

〈(1 + δ1)(1 + δ2) expλδ〉 (22)

DS(kz , r) exp(−ik · r)d3r
}

DFOG
B (kz) .

The damping function DFOG
B is related to its velocity

PDF through

√

DFOG
B (kz) =

∫ ∞

−∞

exp

(

i
kzvz,B
H

)

PB(vz,B)dvz,B

=

∫ ∞

−∞

cos

(

kzvz,B
H

)

PB(vz,B)dvz,B .

Through the cumulant expansion theorem, we can ex-
press DFOG

B in cumulants of vz,B. The cumulant expan-
sion theorem states that

〈

exp

(

i
kzv

H

)〉

= exp

(

∞
∑

n=1

(

ikz
H

)n
〈vn〉c
n!

)

(23)

= exp

(

−
k2zσ

2
v

2H2

)

exp





∞
∑

j≥2

(−1)j
(

kzσv
H

)2j
K2j

(2j)!





= exp

(

−
x

2

[

1−
K4

12
x+

K6

360
x2 + · · ·

])

.

Here, v denotes vz,B. 〈· · ·〉c is the corresponding cumu-
lant of the quantity inside of the bracket. For a Gaussian
velocity distribution, we have 〈vj〉c = 0 for j ≥ 3 and
recover the Gaussian FOG. For non-Gaussian distribu-
tion, higher order terms show up. Since 〈v2j+1〉c = 0,
only even cumulants contribute. Kj ≡ 〈vj〉c/σ

j
v is the

reduced cumulant and x ≡ (kzσv/H)2.

Non-Gaussianity in vB could be significant and we may
expect that high order cumulants must be included to
robustly model DFOG

B . Fortunately, the reality can be
much simpler due to the fact that vB has a σvmuch
smaller than that of vE [1, 70]. Hence for the scales
of interest (e.g. k < 1h/Mpc), we have x≪ 1. Then the
vB induced FOG can be well described by the following
Gaussian form,

DFOG
B (kz) ≃ exp

(

−
k2zσ

2
vB

H2

)

. (24)

σvB is hard to calculate from first principle, so it shall be
treated as a free parameter to be fitted by the data.
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B. The role of vS

The situation for vS is more complicated. Since a sig-
nificant fraction of vS comes from bulk motion, vS can
be still correlated over O(10) Mpc separation. So we are
no longer able to make the approximation ǫS = 0. In-
stead, we have, with the aid of the cumulant expansion
theorem,

1 + ǫS(r, kz) = exp

[

k2z〈v1z,Sv2z,S〉

H2

]

(25)

×e[k
4

z〈3v
2

1z,Sv
2

2z,S−2(v3

1z,Sv2z,S+1↔2)〉c/12H
4+···]

= 1 +
k2z〈v1z,Sv2z,S〉

H2
+O(v4S) .

Due to the symmetry v ↔ −v, odd terms in v do not show
up in the above equation. Plugging it into Eq. 22, we
find that the leading order contribution to P s

δδ is PθSθSu
4

(Eq. 26), which enhances P s
δδ. Notice that, since vS is

uncorrelated with the density field, it does not contribute
a u2 term as vδ does. Higher order contributions come
from both fourth and higher order velocity correlations
(Eq. 25) and from the convolution of ǫS with 〈(1+δ1)(1+
δ2) expλδ〉 (Eq. 15). These corrections are of the order
δ4 or higher. We group all these contributions into a
single function CS(k, u) (Eq. 26). Later we argue that
we may be able to set CS = 0 in the RSD modeling.
On the other hand, vS causes an overall damping, char-

acterized by DFOG
S ,

√

DFOG
S (ku) =

∫ ∞

−∞

exp

(

i
kuvz,S
H

)

PS(vz,S)dvz,S

=

∫ ∞

−∞

cos

(

kuvz,S
H

)

PS(vz,S)dvz,S .

Since vS arises from nonlinear evolution, it is intrinsi-
cally non-Gaussian. We will check if DFOG can be well
described by the first several cumulants, with the aid of
the cumulant expansion theorem (Eq. 23).

C. The role of vδ

Due to coupling between the velocity and the density
fields, redshift distortion induced by vδ is complicated,
although analytical expression in the Gaussian limit ex-
ists [42]. We group the Gaussian terms with order higher
than δ2 as CG. We also derive the non-Gaussian cor-
rections and group them as CNG in the appendix. Both
terms are consequeces of the vδ-δ correlation.
In Fourier space, we have

P s
δδ(k, u) =

{

Pδδ(k)(1 + fW̃ (k)u2)2 + u4PθSθS (k)

+CNG(k, u) + CG(k, u) + CS(k, u)}

×DFOG
δ (ku)DFOG

S (ku)DFOG
B (ku) . (26)

Here, CG and CNG are the Fourier transforms of the
corresponding terms in real space (CG(r, kz), Eq. A6
and CNG(r, kz), Eq. A8).

vδ also causes a FOG effect, described by DFOG
δ . vδ

is largely Gaussian due to the suppression of W̃ < 1 in
the nonlinear and non-Gaussian regime. However, due to
the large amplitude of σvδ , it is unclear whether we can
neglect the K4 and/or K6 corrections. Here σvδ is the
the one dimension velocity dispersion of vδ,

σ2
vδ

≡ 〈v2δ,z〉 =
1

3

∫

∆2
vδvδ

(k)
dk

k
(27)

=
1

3

∫

H2

k2
∆2

δδ(k)W
2(k)

dk

k
.

The CNG, CG and CS terms are the sums of infinite
power series of δ. To carry out realistic calculation, we
need to truncate them in a reasonable way. The first line
terms in the right hand side of Eq. 26 exhaust contri-
butions of the order δ2. It can be rewritten in a more
familiar form Pδδ + 2u2Pδθ + u4Pθθ (e.g. [42]) and con-
firmes previous results. The second line terms are higher
order in δ. The leading order term of CNG is ∝ δ3, while
those of CG and CS are ∝ δ4. In this sense, for Eq. 26
to be complete at the order of δ3, we can set CG = 0 and
CS = 0.

But in term of the linear density δL, the situation is
different. (1) PθSθS vanishes in the linear perturbation
theory, but emerges in the second or higher order Eule-
rian perturbation theory. So PθSθS itself is of the order
δ4L and CS is of the order δ6L. (2) In the Eulerian pertur-
bation theory, leading order terms of CG and CNG are of
the order δ4L. So up to the order δ4L, we can set CS = 0.

Hence no matter in power series of δ or in power series
of δL, we can set CS = 0 when calculating the leading
order corrections to the usual RSD formula. But whether
or not we shall set CG = 0 is an issue for numerical
examination.

The inclusion of CG and CNG may appear to introduce
more difficulties and uncertainties to the RSD modeling.
However, this is not the case. We will show that, the in-

clusion of CG and leading order terms in CNG does not

introduce extra degrees of freedom in the RSD modeling.
So the inclusion of these terms is capable of reducing sys-
tematical errors, without degrading cosmological param-
eter constraints. This is definitely a desirable property,
made possible by the proposed velocity decomposition.

1. The CG correction

CG is an analytical (but nonlinear) function of the two
point density and velocity (vδ) correlation functions (Eq.
A6). Since Pδδ is directly measurable from the kz = 0
Fourier modes in redshift surveys, CG up to any order
can be calculated strictly without introduce any extra
parameters.

CG does not contain terms of odd order in δ. So we can
split CG as CG(k, u) =

∑

j CG,2j(k, u) where j = 2, 3 · · ·.
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In reality, we may only need the leading order

CG,4(k, u) =

∫

d3k1

(2π)3
Pδδ(k1)Pδδ(k2)

k1zk2zk
2
zW1W2

k21k
2
2

× G(k,k1,k2) . (28)

Here, k2 = k+ k1 and Wi ≡W (ki). The kernel G is

G =
k1zW1/k

2
1

k2zW2/k22
−1+

2k1zkzW1

k21
+
k1zk2zk

2
zW1W2

2k21k
2
2

. (29)

With Pδδ an observable and W a function to be fitted
anyway, calculating CG requires no extra free parameters
and hence does not induce new model uncertainties.

2. The CNG correction

CNG(k, u) =
∑

j≥3 CNG,j(k, u) contains connected

part of j-th order correlation (〈vjδ〉, 〈δv
j−1
δ 〉 and 〈δδvj−2

δ 〉)
to j → ∞ (Eq. A8). These terms are the consequence
of nonlinear and non-Gaussian evolution, so we expect
them to become non-negligible only in nonlinear regime
and may become dominant in deeply nonlinear regime.
However, since W̃ → 0 in deeply nonlinear regime, their
contributions to P s

δδ are significantly suppressed. For the

same reason, CNG,j+1 is suppressed by a factor ∼ W̃ ,
with respect to CNG,j. Hence we propose to keep only
the j = 3 term and neglect higher order corrections.
Fourier transforming CNG,3(r, kz) (Eq. A8), we obtain

CNG,3(k, u) =

∫

d3k1

(2π)3
B3(k1,k2,k)

k1zkz
k21

W (k1)

×

[

2
k2z
k2
W (k) + 2

kzk2z
k22

W (k2)− 1

]

.(30)

Here, k2 = −k1−k. B3(k1,k2,k3) is the real space mat-
ter bispectrum. We notice that the ensemble average of
B3(k1,k2,k3) is directly available from the same redshift
surveys used for RSD measurement. Since

∑

i ki = 0,
k1, k2 and k3 lie in the same plane. Due to the isotropy
of the universe, B3(k1,k2,k3) does not depend on the
inclination of the plane. So its value is equal to the
case where all k lie in the plane perpendicular to the
line of sight (namely the x-y plane). Redshift distor-
tion does not alter the kz = 0 Fourier mode. Namely,
δs(k⊥, kz = 0) = δ(k⊥, kz = 0). This means that B3 can
be directly measured from the observed Fourier mode
with ki,z = 0. Hence including CNG,3 in the calculation
does not introduce extra fitting parameters and hence
does not weaken the cosmological constraints.
The same trick does not apply to CNG,j≥4. They in-

volve 4-th or higher order correlation 〈δ(k1), · · · , δ(kj)〉,
with k1 + · · ·+ kj = 0. In general, ki(i = 1, 2, 3, 4 · · · , j)
do not lie in the same plane. We are no longer able to
infer their values from the kz = 0 modes. However, due
to extra suppression caused by W̃ < 1, we do not expect
these terms to be important. Nevertheless, the accuracy
of neglecting these higher order terms must be quantified
through N-body simulations.

D. A new formula on the redshift space power

spectrum

We then propose the following formula for the redshift
space power spectrum,

P s(k, u) ≃

{

Pδδ(k)
(

1 + fW̃ (k)u2
)2

(31)

+u4PθSθS (k) + CG(k, u) + CNG,3(k, u)
}

× DFOG
δ (ku)DFOG

S (ku) exp

[

−
k2u2σ2

vB

H2

]

.

In Eq. 31, W (k) ≡ fW̃ (k) and PθSθS (k) are the cos-
mological information we seek for. We address one more
time that, CG and CNG,3 are not free functions. They

are uniquely determined by W . This valuable property is
achieved by the proposed velocity decomposition and, in
particular, by the deterministic relation θδ = δW .
There are only very limited degrees of freedom in the

FOG terms. Through Eq. 23, DFOG
δ (ku) and DFOG

S (ku)
may be well described by σvδ , σvS and/or K4,vδ , K4,vS ,
K6,vδ , K6,vS . Among them, σvδ is determined byW (Eq.
27) and σvS is determined by PθSθS . So in principle nei-
ther σvδ nor σvS are free parameters [86]. Furthermore,
since σ2

vB ≪ σ2
vδ [1, 70], we may be able to set σvB = 0,

depending on the desired accuracy.

1. Comparing to existing models

Here we compare the proposed RSD formula (Eq. 31)
with a few existing RSD formulae. We choose these for-
mulae because they can be compared with ours relatively
straightforwardly. So this comparison is by no means
complete. For brevity, we focus on the matter power
spectrum for which we do not need to worry about the
galaxy bias, especially the nonlinear/non-deterministic
bias. (1) The Kaiser formula plus the FOG effect (here-
after KF),

P s
δδ(k, u) ≃ Pδδ(k)(1 + fu2)2DFOG(ku) . (32)

This is perhaps the most commonly used RSD formula.
(2) The Desjacques & Sheth 2010 formula (hereafter
DS10, [47]),

P s
δδ(k, u) = Pδδ(k)(1 + fu2)2

× exp(−k2zσ
2
v/H

2)Vvir(kz) . (33)

Here, Vvir is the damping caused by random motions of
virialized particles in halos. σv is the velocity dispersion
of bulk motion. It improves over the KF formula by
correctly recognizing the two velocity components (bulk
motion and random motion). (3) The Scoccimarro 2004
formula (hereafter S04, [42]),

P s
δδ(k, u) =

(

Pδδ(k) + 2u2Pδθ(k) + u4Pθθ(k)
)

× exp(−k2zσ
2
v/H

2) . (34)
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Here, σv can be treated as the one calculated from the
perturbation theory or as a free parameter. It improves
over KF by taking into account differences in the den-
sity and velocity nonlinear evolution. As a consequence,
it does not assume a deterministic relation between den-
sity and velocity. (4) The Taruya et al. 2010 formula
(hereafter T10, [53]),

P s
δδ(k, u) =

(

Pδδ(k) + 2u2Pδθ(k) + u4Pθθ(k) (35)

+ A(k, u) +B(k, u)) exp(−k2u2σ2
v/H

2) .

The extra term A involves integral over the bispectrum.
The term B involves convolution of two real space power
spectra.
Comparing to Eq. 31, we recognize a number of cor-

rections to existing formulae. Here we briefly summarize
the most significant ones. (1) Both KF and DS10 fail to

capture the W̃ correction on f . So f based on KF and
DS10 is underestimated by a factor W̃ . (2) S04 and T10
improve over KF and DS10 by correctly capturing the
W̃ correction, although S04 and T10 do not make this
correction explicitly. T10 further improves over S04 by
including next order corrections (A and B). In the ap-
pendix B, we prove that A = CNG,3 in the limit vS → 0.
However, T10 adopted the approximation ǫδ = 0 in some
intermediate steps. so it fails to capture some terms of
the same order as A and B, as we do (Eq. A7). More
importantly, calculating A and B requires heavy model-
ing or simulation calibration. Our Eq. 31 avoids these
uncertainties. (3) The FOG effect is caused by three dis-
tinctly different velocity components, so it may not follow
a simple function form. For this point, the closest match
to our formula is DS10. These complexities can bias the
interpretation of the inferred σv from RSD.

E. Implications on the RSD cosmology

Our analysis above shows that what one can infer
from RSD is the combination fW̃ (k) instead of f . Since

W̃ (k) ∼ 0.9 at k = 0.1h/Mpc and z = 0, this can cause
10% underestimation in f . We expect that it is at least
a significant source causing the recently found underesti-
mation in f [63–68]. This systematical error overwhelms
the 1% level statistical accuracy in f by stage IV dark en-
ergy projects. With robust modeling of W̃ , it is promis-
ing to eliminate this systematical error in the RSD cos-
mology.
The W̃ correction affects many applications of redshift

distortion. For example, [25] proposed an EG estimator
combining weak lensing and redshift distortion to test
general relativity at cosmological scale. This estimator
is insensitive to galaxy bias and is also less affected by
initial fluctuations. [28] made the first EG measurement
and found EG = 0.39± 0.06 at an effective redshift 0.32
and O(10)Mpc/h scale. This measurement confirms gen-
eral relativity within ∼ 20% observational uncertainties.
This result has been used to perform consistency tests

of the ΛCDM cosmology and confirmed its validity [78].

Given the existence of W̃ 6= 1, the expectation value of
EG should be corrected by a factor 1/W̃ ,

EG =

[

Geff

GN

Ω0

f

]

1

W̃ (k)
. (36)

Future experiments such as BigBOSS+LSST, Big-
BOSS+Planck CMB lensing, Euclid, SKA or other com-
binations of spectroscopic surveys and imaging surveys
are capable of measuring EG to 1% level statistical accu-
racy [25]. For these measurements, The 1/W̃ correction
is needed in order to correctly interpret the measured
EG.

F. To do list

Most statistics discussed in this section are too compli-
cated to evaluate analytically. In companion papers [1],
we will use N-body simulations to numerically evaluate
these statistics. An incomplete investigation list includes

• The damping function DFOG
δ (ku), DFOG

S (ku) and
DFOG

B (ku). In particular, we will investigate the
usage of the cumulant expansion theorem (Eq. 23).
We will check if including K4 and/or K6 describes
DFOG

δ (ku) and DFOG
S (ku) accurately at scales of

interest. We will also check the accuracy of Eq. 24.

• ǫδ, ǫS and ǫB. In particular, we will quantify the
accuracy of Eq. 21 & 25.

• The accuracy of the proposed RSD formula (Eq.
31). We will measure CG,j and CNG,j from simu-
lations. We will also quantify the relative contri-
bution of the leading terms, namely CG,4 to CG,
CNG,3 to CNG and PθSθS with respect to CS . We
will seek the possibility to further improve the RSD
modeling, if needed.

IV. RECONSTRUCTION OF THE 3D

VELOCITY FIELD IN REDSHIFT SURVEYS

So far we focus on inferring the statistical average of
the velocity field including W ∝ Pδθ, PvSvS , σvδ , σvS
and σvB . Can we go a step further to construct the full
3D velocity field? The gain would be huge since the 3D
velocity field contains much more information and has
much more applications. One of such applications is the
kinetic Sunyaev Zel’dovich (kSZ) tomography [79, 80].
The diffuse kinetic Sunyaev Zel’dovich (kSZ) effect [81]

caused by the intergalactic medium is a potentially pow-
erful probe for missing baryons. Unfortunately, mea-
suring kSZ is very difficult, due to the weakness of the
kSZ signal, the lack of spectral feature and various over-
whelming contaminations such as primary CMB, the
thermal SZ effect and cosmic infrared background. The
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state of art experiments such as ACT [82, 83] and SPT
[84, 85] has reported the first detection of the kSZ effect
of galaxy clusters [83]. Nevertheless, the diffuse kSZ is
still elusive.
The measurement can be revolutionized by the kinetic

SZ tomography [79, 80]. The key is to reconstruct the
galaxy velocity field and then construct the galaxy mo-
mentum field. We then correlate the projected momen-
tum field with CMB to measure the kSZ effect. This
kSZ tomography automatically eliminating all contami-
nations of scalar type. A combination of BigBOSS and
Planck is promising to measure kSZ to better than 10σ
at a number of redshift bins [80].

A. Proposals on the velocity reconstruction

How to reconstruct the 3D velocity field? If we can,
which velocity component can be reconstructed? There
are numerous works over a long history. We are not at
a stage to overview these works. Rather, we outline our
approach, based upon the proposed velocity decomposi-
tion.
Since observationally we only have the density field,

which is a scalar field, the information budget does not
allow us to reconstruct all the three vδ, vS and vB vec-
tor fields. However, since vδ is completely correlated with
the density field, it is promising to reconstruct vδ from
the observed density field. Eq. 3 guides us to propose a
linear estimator for the 3D peculiar velocity reconstruc-
tion through the 3D density field. Since we observe the
redshift space overdensity δs instead, this linear estima-
tor should operate on δs(k),

θ̂δ(k) = δs(k)Ŵ s(k) . (37)

We use the superscript “s” to denote properties in red-
shift space. W̃ s corresponds to an anisotropic window
function operating on the anistropic density field in red-
shift space. Now the reconstruction of the stochastic 3D
velocity filed is simplified into the reconstruction of a
deterministic function W s. Due to the axial symmetry
along the light of sight, W s(k) = W s(k, u). So it only
has 2D degrees of freedom. These degrees of freedom are
further limited by the asymptotic behaviors of W s(k, u)
at ku→ 0 and at k → ∞.
We want the peculiar velocity estimator (Eq. 37) to

have no multiplicative error. This requires

Ŵ s(k) =
W (k)

Cv(k)
=

W (k)

rδδs(k)

√

Pδδ(k)

P s
δδ(k)

. (38)

W s differs from the real space one by a direction depen-
dent factor 1/Cv(k). This factors arises because the red-
shift space density δs is not completely correlated with
the real space density δ. To better understand this point
and to derive Eq. 38, we carry out a decomposition of δs

into two parts,

δs = δsv + δsS . (39)

We require δsv to be completely correlated with the un-
derlying overdensity δ and hence to θδ. This is the part
that we can use to recover the peculiar velocity. For this
reason, we label this part with a subscript “v”. δsS is
uncorrelated with δ and θδ. It causes the stochasticity in
δ-δs relation and contaminates the velocity reconstruc-
tion. So it is labelled with a subscript “S”. Since δv is
completely correlated with δ,

δsv(k) = δ(k)Cv(k) , (40)

with the deterministic function Cv to be determined.
Through the relation 〈δ(k)δs(k

′

)〉 = 〈δ(k)δsv(k
′

)〉 =

〈δ(k)δ(k
′

)〉Cv(k), we obtain

Cv(k) =
Pδδs(k)

Pδδ(k)
= rδδs(k)

√

P s
δδ(k, u)

Pδδ(k)
. (41)

Here, Pδδs is the cross power spectrum between δ and δs.
rδδs is the corresponding cross correlation coefficient. It
has the asymptotic behavior rδδs → 1 when ku→ 0 and
rδδs → 0 when ku → ∞. Notice that rδδs depends on
both k and u. So do Cv and W s. Hereafter we will write
them as rδδs(k, u), W

s(k, u) and Cv(k, u) to highlight
these dependences.
Both Pδδ(k) and P

s
δδ(k, u) are observables. To evaluate

Ŵ s requires just one extra input, rδδs(k, u). rδδs has a
well defined asymptotic behavior rδδs → 1 when ku→ 0
and rδδs → 0 when |ku| → ∞. In the appendix C, we
show that r is uniquely fixed by W and other quantities
which can be inferred from P s

δδ(k, u). Hence the observed
RSD allows us to figure out W s and then carry out the
velocity reconstruction. In this sense, RSD is a source

of information crucial for the velocity reconstruction, in-

stead of source of noise as in many other apprroaches of

velocity reconstruction.
In the appendix D, we propose another approach to

reconstruct the 3D velocity field. It shows more clearly
the crucial role of RSD in the velocity reconstruction.

B. Reconstruction errors and remodies

A correctW s(k, u) allows to reconstruct vδ free of mul-
tiplicative error. Unfortunately, additive errors persist,
due to the stochastic component δsS . The reconstructed
velocity divergence is

θ̂δ(k) = θδ(k) + θsS(k) , (42)

θsS(k) ≡ δsS(k)Ŵ
s(k, u) .

The additive error in the reconstructed velocity is then

vsS(k) =
iHθsS(k)k

k2
. (43)

If we measure the velocity power spectrum directly
through the reconstructed velocity field, it will suffer



11

from an additive error. So cosmological applications of
the directly measured auto power spectrum can be very
limited, if any. Fortunately, one can circumvent this
problem straightforwardly.
We start with a valuable property, that the cross power

spectrum between the reconstructed velocity and the
density distribution is unbiased,

P̂δθ = Pδθ = Pδθδ . (44)

For the same reason, the additive error does not bias the
kSZ tomography [79, 80] and hence does not bias the
effort to search for missing baryons.
Since θδ is completely correlated with the matter den-

sity, we can measure the auto power spectrum, through
the relation

Pθδθδ =
P 2
δθδ

Pδδ
. (45)

The auto power spectrum measured in this way is free of
additive error discussed above.

C. To do list

Through N-body simulations, a number of key issues
will be investigated in future works,

• rδδs(k, u),W
s(k, u) and Cv(k, u). We are then able

to quantify the additive error in the reconstructed
velocity. Furthermore, we want to understand the
origin of δsS , which causes the stochasticity in the
δ-δs relation and degrades the reconstruction per-
formance.

• The accuracy of Eq. C6 to model rδδs .

• The accuracy of the velocity reconstruction. It is
determined by the accuracy of the inferredW from
the observed RSD and the accuracy of the modeled
rδδs . Measurement errors in the galaxy distribu-
tion such as shot noise further complicates the re-
construction. We will take them into account for
more realistic quantification of the reconstruction
performance.

• Further investigation of the velocity reconstruction
approach proposed in the appendix D.

V. FROM MATTER DISTRIBUTION TO

GALAXY DISTRIBUTION

In reality, we have 3D galaxy distribution instead of 3D
matter distribution. The matter-galaxy relation is com-
plicated. Nevertheless, the above methods to model the
matter redshift space distortion and to carry out velocity
reconstruction can be extended to the 3D galaxy distri-
bution straightforwardly and robustly. The procedure is
as follows.

A. The redshift space galaxy power spectrum

First, we decompose the galaxy velocity vg into a irro-
tational part vE,g and a rotational part vB,g. For clar-
ity, we use the subscript “g” to denote galaxy properties.
This step is essentially the same as the case of the matter
field.
But the next step is different. Now we need to decom-

pose the irrotional galaxy velocity vE,g into two eigen-
modes such that one part (vδg ) is completely correlated
with the galaxy overdensity δg and the other part (vS,g)
is completely uncorrelated with δg. Following §II, we ob-
tain the θδg -δg relation,

θδg (k) =Wg(k)δg(k) . (46)

Here θδg is the divergence of vδg . The window function
Wg is given by

Wg(k) ≡
Pδgθg (k)

Pδgδg (k)
. (47)

We recognize that Wg(k → 0) = f/bg(k → 0) = β. Here,
bg(k → 0) is the linear galaxy bias. We have assumed no
galaxy velocity bias at sufficiently large scale. We also
define

W̃g(k) ≡
Wg(k)

Wg(k → 0)
=
Wg(k)

β
=

1

β

Pδgθg

Pδgδg

. (48)

One can compare Eq. 46, 47, 48 with Eq. 3, 4, 5, respec-
tively. There are important differences. For example, W
andWg differ by a factor bg at large scale. Consequently,

the relation W = fW̃ is replaced by Wg = βW̃g .
The final step is to replace quantities of the matter

field in previous sections by corresponding galaxy quan-
tities to obtain results applicable to the galaxy field. The
transformation is,

δ → δg , θ → θg , W →Wg , W̃ → W̃g , f → β , (49)

v → vg , vδ → vδg , vS → vS,g , vB → vB,g ,

Dδ → Dδg , DS → DS,g , DB → DB,g , · · ·

We explicitly show one example. In §III D, we suggest
to use Eq. 31 to model the matter power spectrum in
redshift space. Applying the above transformation (Eq.
49) to Eq. 31, we obtain the formula for the redshift
space galaxy power spectrum,

P s
δgδg (k, u) ≃

{

Pδgδg (k)(1 + βW̃g(k)u
2)2 (50)

+ u4PθS,gθS,g
(k) + CG,g(k, u) + CNG,3g(k, u)

}

× DFOG
δg (ku)DFOG

S,g (ku) exp



−
k2u2σ2

v2

B,g

H2



 .

Here, CNG,3g and CG,g are defined by applying the
transformation in Eq. 49 to Eq. A8 and A6. In the
limit k → 0, we recover the correct behavior P s

δgδg
→

Pδgδg (1 + βu2)2.
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B. On the interpretation of EG

The above transformation is in general straightforward
to apply. Nevertheless, extra care should be given for
some special cases. For example, it turns out that the
W̃ in the EG estimator (Eq. 36) may still be interpreted
as that of the matter field instead of the galaxy field,
for the complexity that it involves not only the galaxy
field (redshift distortion), but also the matter field (weak
lensing) and the galaxy field.
By construction, EG is proportional to the ratio of

galaxy-lensing cross correlation and galaxy-velocity cross
correlation [25]. Namely EG ∝ Pδgδ/Pδgθg . Notice that
δ is the matter overdensity. In the large scale limit
vδg → vδ (θδg → θδ = δW ), we have EG ∝ 1/W =

1/(fW̃ ), even for the galaxy field. This property is de-

sirable since the correction term W̃ can be robustly quan-
tified through N-body simulations, free of uncertainties
in modeling galaxy formation. Nevertheless, we shall use
simulations to quantify the accuracy of the key approxi-
mation θδg ≃ θδ and the scale where this approximation
breaks.

C. Velocity reconstruction through 3D galaxy

distribution

Following the case of velocity reconstruction through
3D redshift space matter distribution, we derive the lin-
ear estimator to reconstruct vδg from 3D redshift space
galaxy overdensity δsg,

θ̂δg (k) = δsg(k)Ŵ
s
g (k) . (51)

The anisotropic window function Ŵ s
g (k) is derived to be

Ŵ s
g (k) =

Wg(k)

Cv,g(k)
=

Wg(k)

rδgδsg (k)

√

Pδgδg (k)

P s
δgδg

(k)
. (52)

Here, rδgδsg is the cross correlation coefficient between
the real space δg and the redshift space δsg. It can be
computed by applying the transformation Eq. 49 to Eq.
C6. One can compare between Eq. 37 & 51 and between
Eq. 38 & 52 for similiarities and differences.
Our velocity reconstruction method significantly alle-

viates the problem of galaxy bias in some existing veloc-
ity reconstruction methods. Even better, in the limit of
a deterministic bias (δg = bgδ), it completely overcomes
it. Since Wg ∝ 1/bg, the reconstructed 3D velocity is
∝Wgδg ∝ b0g, independent of bg. This is also the case for
the inferred velocity power spectrum,

Pθδg θδg (k) =
P 2
δgθδg

(k)

Pδgδg (k)
∝ b0g . (53)

In future works we will redo the numerical analysis of
the matter density field for the halo number density field,

through N-body simulations of O(10) Gpc3 volume in to-
tal. We will then proceed to mock catalogs of galaxies.
Eventually we plan to develop efficient and sophisticated
codes applicable to real data of spectroscopic redshift sur-
veys.

VI. DISCUSSIONS AND SUMMARY

We have laid out the methodology to carry out 3D
velocity reconstruction from 3D matter and galaxy dis-
tribution. The method is based upon a velocity decom-
position into three eigen-modes with physical motivation
and of mathematical uniqueness. The same decomposi-
tion also helps us to derive a potentially more robust RSD
formula. Through it we find that the inferred structure
growth rate based upon some simplified versions of RSD
modeling can be severely underestimated. In a series of
companion papers [1] we will analyze N-body simulations
to measure statistics of the three velocity eigen-modes,
to test the accuracy of the proposed RSD formula and to
quantify the performance of the proposed velocity recon-
struction.
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Appendix A: Calculating the vδ induced RSD

Throughout this section we only deal with the ve-
locity component vδ. Hence for brevity we neglect
the subscript “δ” and denote v1z,δ = v1, v2z,δ = v2,
λ1,2 ≡ ikzv1,2/H and λδ ≡ λ1 − λ2. We will adopt two
tricks in [42, 53] to faciliate the derivation. The first
is the relation 〈δ1 expλδ〉 = ∂

∂a1

〈exp(λδ + a1δ1)〉a1=0.
In combination with the cumulant expansion theorem
〈expX〉 = exp(

∑

〈Xn〉c/n!), we have

〈δ1 expλδ〉 = 〈expλδ〉
∑

n≥1

n〈λn−1
δ δ1〉c
n!

= 〈expλδ〉
∑

n≥0

〈λnδ δ1〉c
n!

= 〈expλδ〉
∑

n≥0

〈λnδ δ1〉c
n!

. (A1)

The second relation is 〈δ1δ2 expλδ〉 = ∂2

∂a1∂a2
〈exp(λδ +

a1δ1 + a2δ2)〉a1=0,a2=0. Again with the cumulant expan-
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sion theorem, we have

〈δ1δ2 expλδ〉 = 〈expλδ〉 × (A2)




∑

j≥1

〈λjδδ1〉c
j!

∑

n≥1

〈λnδ2〉c
n!

+
∑

n≥0

〈δ1δ2λ
n
δ 〉c

n!



 .

Putting all pieces together, we obtain

〈(1 + δ1)(1 + δ2) expλδ〉 = DFOG
δ (kz)(1 + ǫδ(r, kz))



1 +
∑

n≥1

〈λnδ (δ1 + δ2)〉c
n!

+
∑

n≥0

〈δ1δ2λ
n
δ 〉c

n!
(A3)

+
∑

j≥1

〈λjδδ1〉c
j!

∑

n≥1

〈λnδ δ2〉c
n!



 .

Through the cumulant expansion theorem, we have

1 + ǫδ(r, kz) = exp





∑

α+β≥2

〈λα+β
δ 〉c

(α + β)!
−

〈λα1 〉c
α!

〈−λβ2 〉c
β!





= exp

[

k2z〈v1v2〉

H2
+O(v4)

]

. (A4)

Here, terms odd in the power of v vanish. For example,
due to symmetry of v ↔ −v, we have 〈(v1 − v2)

3〉 =
0, 〈v31〉 = 〈v32〉, and hence 〈v1v

2
2〉 − 〈v21v2〉 = 0.For this

reason, the next leading order terms in Eq. A4 is of
the order v4, whose exact expression can be obtained
following Eq. 25.
Collecting terms of the same orders together, we have

〈(1 + δ1)(1 + δ2) expλδ〉 = DFOG
δ (kz)

×

[

1 + 〈δ1δ2〉+ i
kz
H

〈δ2v1 − δ1v2〉+
k2z
H2

〈v1v2〉 (A5)

+CNG(r, kz) + CG(r, kz)] .

Two correction terms CG and CNG show up. Both arise
from the nonlinear real space-redshift space mapping.
But CG exhausts all high order corrections if the density
and velocity fields are Gaussian. So we denote it with a
subscript “G”. It has an exact analytical expression,

CG(r, kz) =

[

exp

(

k2z〈v1v2〉

H2

)

− 1

]

×

(

〈δ1δ2〉+ i
kz
H

〈δ2v1 − δ1v2〉

)

(A6)

+
k2z
H2

〈δ1v2〉〈δ2v1〉 exp

(

k2z〈v1v2〉

H2

)

+

[

exp

(

k2z〈v1v2〉

H2

)

−
k2z
H2

〈v1v2 − 1〉

]

.

We notice that this analytical result for Gaussian field
has been derived by [42] and shown as their Eq. 32.

As shown in §III, CG can be robustly calculated com-
bining observations without knowing the underlying cos-
mology and without introducing extra unknown parame-
ters. The leading order term is 4-th power in the density
field, with

CG,4(r, kz) =
k2z〈v1v2〉

H2

(

〈δ1δ2〉+ i
kz
H

〈(v1 − v2)(δ1 + δ2)〉

)

+
k2z
H2

〈δ1v2〉〈δ2v1〉+
1

2

k4z
H4

〈v1v2〉
2 . (A7)

CNG exhausts all high order corrections arising from
non-Gaussianities in the density and veocity fields. For
this reason, we denote it with the subscript “NG”. It is
the sum of an infinite series of j-th order correlations
with j ≥ 3.

CNG =
∑

j≥3

CNG,j(r, kz) (A8)

=

[

i
kz〈δ1δ2(v1 − v2)〉c

H
−
k2z〈(v1 − v2)

2(δ1 + δ2)〉c
2H2

]

+ · · · .

In the above equation, we only show the explicit expres-
sion of CNG,j=3.
So far the results are exact. However, to realistically

evaluate CNG, we need to truncate somewhere in the
CNG,j series. We argue that, due to extra suppression

W̃ ≪ 1 in the deeply nonlinear region, j > 3 terms
should be smaller than CNG,j=3. So it may be reason-
ably accurate to keep only CNG,j=3. Nevertheless, we
will check this approximation through N-body simula-
tions and investigate if CNG,j≥4 should be included in
the calculation.
In the appendix B, we will prove that CNG,j=3 is

equivalent to the term A in [53]. Strictly speaking, its
Fourier transform CNG,j=3(k, u) = A(k, u) in the limit
of vS → 0.

Appendix B: The CNG,3-A relation

The term A is derived by [53] as an additive correction
to the Kaiser formula. [53] does not distinguish between
vδ and vS , so the velocity showing up in the expression
of A is vE = vδ + vS . We consider the limit vS = 0.
Re-expressed in our notations, A in [53] is

A(k, u) = i
kz
H

∫

〈(v1 − v2)(δ1 −
∇1v1
H

)(δ2 −
∇2v2
H

)〉

exp(−ik · r)d3r (B1)

= ikz

∫

〈(v1 − v2)δ1δ2〉 exp(−ik · (r)d3r

+ i
kz
H2

∫

〈(v2δ2∇1v1 − v1δ1∇2v2 + δ1v2∇2v2

−δ2v1∇1v1)〉 exp(ik · (x1 − x2))d
3
x1d

3
x2

1

V
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+ i
kz
H3

〈(v1 − v2)∇1v1∇2v2〉

exp(ik · (x1 − x2))d
3
x1d

3
x2

1

V
.

Here V is the total volume. Since v2δ2∇1v1 exp(ik·x1) =
∇1[v2δ2v1 exp(ik · x1)]− ikzv2δ2v1 exp(ik · x1) and since
∇1(· · ·) integrates to zero, the term v2δ2∇1v1 in the
above equation can be replaced by the term −ikzv2δ2v1.
In total we can do the following replacements in Eq. B1,

v2δ2∇1v1 → −ikzv2δ2v1 ,

v1δ1∇2v2 → ikzv1δ1v2 ,

δ1v2∇2v2 → ikz
1

2
δ1v

2
2 ,

δ2v1∇1v1 → −ikz
1

2
δ2v

2
1 ,

v1∇1v1∇2v2 → k2z
1

2
v21v2 ,

v2∇1v1∇2v2 → k2z
1

2
v22v1 (B2)

Comparing to Eq. A7, we prove that, in the limit vS →
0, CNG,3(k, u) = A(k, u).
On the other hand, our CG,4 is not equal to the B term

in [53], due to differences in the methods and differences
in approximations made. For example, [53] sets ǫδ = 0 in
their Eq. 18. Inclusion of ǫδ 6= 0 in our derivation brings
up new terms such as the term 〈v1v2〉

2 in Eq. A8. In
future works we will test against N-body simulations to
compare the two results.

Appendix C: Modeling rδδs(k, u)

Following the derivation of P s
δδ, the real space -redshift

space density cross power spectrum Pδδs is given by

Pδδs(k, u) =

∫

〈(1 + δ1)(1 + δ2) exp[ikzv1z/H ]〉 (C1)

exp(−ik · r)d3r

=

∫ 〈

(1 + δ1)(1 + δ2) exp

(

i
kzv1δ,z
H

)〉

exp(−ik · r)d3r
√

DFOG
S (kz)DFOG

B (kz) .

Replacing λδ in Eq. A3 with λ1, we obtain

〈(1 + δ1)(1 + δ2) expλ1〉 = 〈expλ1〉


1 +
∑

n≥1

〈λn1 (δ1 + δ2)〉c
n!

+
∑

n≥0

〈δ1δ2λ
n
1 〉c

n!
(C2)

+
∑

j≥1

〈λj1δ1〉c
j!

∑

n≥1

〈λn1 δ2〉c
n!



 .

We then have

Pδδs(k, u) =
[

Pδδ(k)(1 + fW̃ (k)u2) + Crs
NG(k, u)

]

(C3)

×
√

DFOG
δ (kz)DFOG

S (kz)DFOG
B (ku) .

The high order correction term

Crs
NG(k, u) = y × Pδδ(k)fW̃u2 +

∫

exp(−ik · r)d3r (C4)

×





∑

n≥1

〈δ1δ2λ
n
1 〉c

n!
+
∑

n≥2

〈λn1 δ2〉c
n!

(1 + y)



 .

Here, y ≡
∑

j≥1〈λ
j
1δ1〉c/j! =

∑

j≥2〈λ
j
1δ1〉c/j!. We can

resum Crs
NG in order of the power of δ,

Crs
NG(k, u) =

∑

j≥3

Crs
NG,j(k, u) (C5)

=

∫

e−ik·rd3r

[

〈δ1δ2λ1〉c +
〈λ21δ2〉c

2!

]

+ · · ·

The last expression only shows Crs
NG,3. Finally we obtain

the expression for rδδs ,

rδδs(k, u) ≃
1 +

Crs
NG,3(k,u)

Pδδ(k)(1+fW̃ (k)u2)
√

1 +
PθSθS

(k)u4+CNG,3(k,u)+CG(k,u)

Pδδ(k)(1+fW̃ (k)u2)2

. (C6)

Evaluating rδδs requires Pδδ, B3, W and PθSθS . The first
two quantities are observables, as discussed in §III. The
last two can be inferred from the observed P s

δδ (§III D).
So there is little uncertainty involved in predicting rδδs .
This will also be the case for the window function W s

(Eq. 38) required for velocity reconstruction.

Appendix D: An alternative approach to reconstruct

the 3D velocity field

As shown in §IV, the key to reconstruct the 3D vδ is
to infer the correct window function W s. The approach
discussed in §IV is straightforward. But it relies on the
RSD modeling and is hence susceptible to inaccuracies
therein. Here we propose an alternative to simultane-
ously estimate W s and reconstruct vδ. It avoids mod-
eling the vδ induced RSD, the most difficult part in the
RSD modeling. So it is less susceptible to uncertainties
in the RSD modeling.
The guideline is that, if we construct W s and vδ cor-

rectly, we can move particles/galaxies back to their real
space positions. This will eliminate the vδ induced RSD
and hence reduce anisotropies in the power spectrum af-
ter moving (hereafter we denote it as P s

move(k)). To fur-
ther demonstrate this point, let us consider the limit of
vS = 0, vB = 0, δsS = 0 and no measurement noise.
Under this limit, a correct guess of W s will faithfully re-
cover vδ. Moving the particles back to their real space
positions using this vδ, anisotropies in Pmove(k) will be
completely eliminated and we recover the isotropic real
space power spectrum (Pmove(k) = P (k)). This suggests
that, by tuning W s until the Pmove(k) reaches isotropy,
we can recover the correct W s and hence recontruct the
velocity correctly.
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The real situation is more complicated, due to the fact
that vS 6= 0, vB 6= 0, δsS 6= 0 and the existence of mea-
surement noise such as shot noise in the galaxy num-
ber distribution. However, none of them is correlated
with the real space density and none of them can cause
anisotropic pattern the same as vδ. This significantly
simplfies the modeling of Pmove. After we move the par-
ticles back according to vδ reconstructed with the correct
W s (no multiplicative error), we have

Pmove(k, u) =

∫

(1 + 〈δ1δ2〉)Dmove(kz , r)e
−ik·rd3r .(D1)

Like P s, Pmove only depends on k and u. So we write
these dependences explicitly. Here

Dmove(kz, r) ≡
〈

eλS+λB−ikz(v
s
1z,S−vs

2z,S)/H
〉

. (D2)

vsS is the additive error defined in Eq. 43. We also define
a ǫmove through

1+ǫmove(kz , r) ≡
Dmove(kz , r)

Dmove(kz , r → ∞) = DFOG
move(kz)

(D3)

The expression on DFOG
move can be further simplified.

(1) Since vB is uncorrelated with vS and v
s
S , we have

DFOG
move = DFOG

B (kz)〈e
ikz∆vS/H〉2. Here, ∆vS ≡ vz,S −

vsz,S . (2) So far we have neglected shot noise in the galaxy
distribution. Since it does not correlate with other com-
ponents, it only causes damping. This effect can be com-
pletely described by a damping function DFOG

shot (ku), the
same as the case of vB . For brevity, we will not consider
this measurement noise hereafter.
The impact of vs

S is harder to deal with, largely due to
correlation between vS and v

s
S . To see their correlation,

let us check the limit k → 0. Now we have δs ≃ δ −
∇zvz/H , the starting point to derive the Kaiser formula.
Since δs = (δ −∇zvz,δ/H)−∇zvz,S/H , we obtain δsS ≃

−∇zvz,S/H . Through the relation θsS(k) = δsS(k)W
s(k),

we have v
s
S(k) ≃ (vS(k) · k̂)u

2W s(k)k̂. Notice that the

velocity field v
s
S is statistically anisotropic. Under this

limit, vs
S is completely correlated with v

s.
Due to this correlation, we can not calculate 〈· · ·〉2

seperately for vz,S and vsz,S . Neverthless, using the rela-
tion

1 + ǫmove(kz , r) = ek
2

z〈∆v1S∆v2S〉/H2+O(∆v4

S) , (D4)

we obtain

Pmove(k, u) =
[

Pδδ(k) + P∆v∆v(k, u)u
4 + · · ·

]

×DFOG
move(kz) . (D5)

Here, P∆v∆v(k, u) is the power spectrum of ∆vS ≡ vS −
v
s
S . Due to the intrinsically anisotropic v

s
S , P∆v∆v(k) is

also anisotropic and depends on both k and u. At large
scale limit,

P∆v∆v(k) ≃ PθSθS (k)(1 − u2W s(k))2

≃ PθSθS (k)
1

(1 + fW̃u2)2
. (D6)

This results shows a generic property
P∆v∆v(k, u)/Pδδ(k) → 0 when k → 0, since both
vS and v

s
S vanish at large scales. We propose that, by

tuning W s such that Pmove follows a form like Eq. D5,
we could obtain the correct W s and hence the correct
vδ field.
The above result is obtained in the large scale limit.

The situation beyond this limit is too complicated to dis-
cuss analytically and will be postponed for future study.
For the same reason, we still lack of a rigorous math-
ematical proof nor numerical verification for the above
proposal. However, given its potential in reconstructing
the 3D peculiar velocity in a less model dependent way,
we hope to explore this possibility in future works.
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