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In some models dark energy is described by phantom scalar fields (scalar fields with ”wrong”
sign of the kinetic term in the lagrangian). In the current paper we study the effect of phan-
tom scalar field and/or phantom electromagnetic field on gravitational lensing by black holes
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1 Introduction

Modern observational programs including type Ia SNe, cosmic microwave background aniso-
tropy and mass power spectrum suggest that the universe is dominated by mysterious matter
termed dark energy (DE) which has negative pressure and violates the energy conditions
[1, 2, 3]. Considerable efforts are made to study the nature of DE. Different effective models
of dark energy have been proposed in literature (See [4] and [5] for recent exhaustive reviews).
In some of them the possibility of describing DE by phantom fields is considered.

The natural questions arises whether local manifestations of DE at astrophysical scale
can be observed. Exact solutions describing neutron stars containing DE have been obtained
in [6]. There have been also some recent efforts in that direction. In [7] the effect of DE
on the structure and on the spectrum of qusinormal frequencies of neutron stars has been
studied. Mixed stars containing both dark energy and ordinary matter have been presented
in a number of papers (See [6] and references therein). Solutions describing black holes
coupled to phantom fields have also been found. To our knowledge the first solutions of
phantom black holes have been obtained by Gibbons and Rasheed [8]. These solutions were
later elaborated by Clément et al. [9, 10] and Gao Zhang [11] for higher dimensions. Regular
black holes coupled to phantom scalar field have been reported by Bronnikov [12]. Recent
interest in phantom black holes have been connected with the study of their thermodynamics
and the possibility of phase transitions [13]. Similar study has been presented in [14] for
black holes with phantom electromagnetic field or the so-called anti-Reissner Nordström
black hole. In this solution the charged term in the metric has an opposite sign with respect
to the corresponding term of the standard Reissner Nordström black hole. Other works
in the field of theories with phantom dilaton and phantom Maxwell field have considered
gravitational collapse of a charged scalar field [15] and also light paths in black-hole space-
tims [16].

As we have already mentioned gravitational waves and the frequencies of quasinormal
ringing in particular can provide rich information for the structure of compact astrophysical
objects and thus can serve as a powerful tool for studying the local manifestation of DE. An-
other possibility could be provided by gravitational lensing especially in the strong deflection
regime. There has been considerable effort for the theoretical study of gravitational lensing
in the strong deflection regime (For more details on the matter we refer the reader to [17]
and references therein). In his papers [18, 19] Bozza proposed a method for the calculation
of the deflection angle in the regime of strong deflection in the particular case when both the
observer and the gravitational source lie in the equatorial plane† . His method has gained
popularity due to is simplicity and has been applied to study the gravitational lensing caused
by different exotic, compact objects. The particular cases in which both the scalar field and
the electromagnetic field have cannonical form, i.e. the EMD black hole has been already
reported by Bhadra [21]. The lensing by EMD black holes with de-Sitter and anti-de-Sitter
asymptotics have been studied by [22] and [23], respectively. In the last two cases the scalar
field has a non zero potential. Lensing in the strong field regime by black holes coupled to
electromagnetic field has been considered also in [24, 25, 26, 27, 28, 29].

†One should mention, however, that the precision of Bozza’s method has been questioned by Virbhadra
in his paper [20].
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Black holes with opposite sign of the charge term in the metric (as in the case of anti-
Reissner Nordström black hole) have been applied to model the object in the center of our
galaxy – Sgr A* and their lensing has been studied in [30] and [31]. In these black holes,
however, the charge is tidal and does not have electromagnetic origin. Lensing by black holes
with tidal charge gas been also considered in [32].

One of the aims of the current paper is to study the effect of phantom scalar field
(phantom dilaton) on gravitational lensing. In the presence of exotic matter such as phantom
fields wormholes may exist. Lensing by different wormholes, for example the Ellis’s and the
Janis-Newman-Winicour’s (JNW) wormholes, has attracted significent research interest [33]–
[44]. JNW naked singularities (naked singularities coupled to canonical massless scalar field)
acting as gravitational lens have been considered by Virbhadra et al. [45, 46, 47]. The lensing
of the JNW solution in the context of scalar-tensor theories has been studied by Bhadra [48].
Generalization with inclusion of rotation has been made in [49].

Our goal is apply the apparatus of gravitational lensing by black holes in the strong
deflection limit to study the possible local manifestation of dark energy. For this purpose we
model DE with phantom dilaton and phantom electromagnetic field. We compare the char-
acteristics of relativistic images of four black holes: the standard Einstein-Maxwell black hole
(EMD); the Einstein-anti-Maxwell-dilaton black hole which has a phantom electromagnetic
field (EMD)‡; the Einstein-Maxwell-anti-dilaton black hole which has a phantom dilaton
(EMD); and the Einstein-anti-Maxwell-anti-dilaton black hole in which both the dilaton
and the electromagnetic field are phantom (EMD).

2 Phantom black holes

When phantom dilaton and/or phantom electromagnetic field is considered the action of
Einstein-Maxwell-dilaton theory is generalized to the following form

S =
∫

dx4√−g
[

R− 2 η1g
µν∇µϕ∇νϕ+ η2 e

−2αϕF µνFµν

]

. (1)

R denotes the Ricci scalar curvature, ϕ is the dilaton, F is the Maxwell tensor and the
constant α determines the coupling between the dilaton and the electromagnetic field. For
the usual dilaton the dilaton-gravity coupling constant η1 takes the value η1 = 1 while for
phantom dilaton η1 = −1. Similarly, the Maxwell-gravity coupling constant η2 takes the
values η2 = 1 and η2 = −1 in the Maxwell and anti-Maxwell case, respectively.

2.1 Einstein Maxwell Dilaton black holes

The line element of the EMD black hole§ is

ds2 = −
(

1− r+
r

)(

1− r−
r

)γ

dt2 +
(

1− r+
r

)−1 (

1− r−
r

)−γ

dr2

+r2
(

1− r−
r

)1−γ

(dθ2 + sin2 θdφ2), (2)

‡We will adopt the abbreviations introduced in [8].
§This is the so-called Gibbons-Maeda-Garfinkle-Horowitz-Ströminger black-hole solution [50, 51].
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where the parameter γ = (1 − α2)/(1 + α2) has been introduced for convenience. It varies
in the interval [−1, 1] for α ∈ (−∞,∞), so stronger coupling corresponds to lower values of
γ. The solutions for the dilaton and the Maxwell field are

e2αϕ =
(

1− r−
r

)1−γ

, F =
Q

r2
dt ∧ dr (3)

For the magnetically charged solution the metric is the same but the sign of the scalar field
ϕ must be reversed and the Maxwell field becomes F = P sin θdθ ∧ dφ. The parameters r+
and r− are interpreted as an event horizon and an inner Cauchy horizon, respectively. The
ADM mass M and the charge Q can be expressed by r+ and r−

2M = r+ + γr−, 2Q2 = (1 + γ)r+r−. (4)

Relations (4) can be inverted to express the horizons in terms of the ADM mass M and the
charge Q

r+ = M






1 +

√

√

√

√1− 2γ

1 + γ

(

Q

M

)2






, r− =

M

γ






1−

√

√

√

√1− 2γ

1 + γ

(

Q

M

)2






(5)

The equation for r+ (or r−) obtained from (4) is biquadratic. The solutions are grouped in
two couples. The couple which contains the largest of all four roots is chosen. The same
choice is made in the other three classes of solutions considered in this paper. The two
horizons merge at

(

Q

M

)2

=
(

Q

M

)2

crit
=

2

1 + γ
(6)

and for lower values of (Q/M)2 the solution describes a naked singularity. In the limit γ → 1
the solution restores the Reissner-Nordström black hole. The charge is switched off when
one of the two parameters r+ and r− is equal to zero. In the latter case, the Schwarzschild
black hole is recovered with r+ = 2M corresponding to the event horizon. In the former
case, the EMD solution reduces to the Janis-Newman-Winicour solution also known as the
Fisher solution – a fact that was noticed for the first time by Virbhadra [52]. In this case,
at r− = 2M/γ a singularity is reached and γ ∈ [0, 1]. In the current work we will restrict
our considerations to gravitational lensing of black holes. That is why we have chosen the
Schwarzschild black hole as a reference. The gravitational lensing by the central object of
the JNW spacetime has been studied in [45, 46].

2.2 Einstein anti-Maxwell Dilaton black holes

In the case of EMD black hole the line element is again (2). The solutions for the dilaton
and the anti-Maxwell field are

e2αϕ =
(

1− r−
r

)1−γ

, F = −Q

r2
dt ∧ dr (7)

The ADM mass M and the anticharge Q are

2M = r+ + γr−, 2Q2 = −(1 + γ)r+r−. (8)
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The “horizons” expressed in terms of the ADM mass M and the anticharge Q are

r+ = M






1 +

√

√

√

√1 +
2γ

1 + γ

(

Q

M

)2






, r− =

M

γ






1−

√

√

√

√1 +
2γ

1 + γ

(

Q

M

)2






(9)

The parameter r+ is positive and is interpreted as an event horizon while r− is a negative
and can be considered as a singularity which is never reached since the singularity at r = 0
is reached before that. Hence, these black holes have the same causal structure as the
Schwarzschild black hole. Again, there is restriction for the parameter (Q/M)

(

Q

M

)2

≤
(

Q

M

)2

crit
= −1 + γ

2γ
. (10)

The limit γ → 1 corresponds to the anti-Reissner-Nordström black hole (a Reissner-Nordström
black hole black hole with imaginary charge). (Q/M) is unbound for positive γ. Again, the
particular solutions with zero electric charge are the Janis-Newman-Winicour solution and
the Schwarzschild solution.

2.3 Einstein Maxwell anti-Dilaton black holes

The line element of the EMD black hole is

ds2 = −
(

1− r+
r

)(

1− r−
r

)1/γ

dt2 +
(

1− r+
r

)−1 (

1− r−
r

)−1/γ

dr2

+r2
(

1− r−
r

)1−1/γ

(dθ2 + sin2 θdφ2), (11)

The solutions for the dilaton and the Maxwell field are

e2αϕ =
(

1− r−
r

)1−1/γ

, F =
Q

r2
dt ∧ dr (12)

When γ > 0, 0 ≤ r− ≤ r+, so the causal structure is the same as for the EMD case. For
γ < 0, however, r− ≤ 0 ≤ r+ and the black hole has the same causal structure as in the
EMD case. The ADM mass M and the charge Q are expressed by r+ and r− in the following
way

2M = r+ +
1

γ
r−, 2Q2 =

(1 + γ)

γ
r+r−. (13)

Relations (13) can be inverted to express the “horizons” in terms of the ADM mass M and
the charge Q

r+ = M






1 +

√

√

√

√1− 2

1 + γ

(

Q

M

)2






, r− = γM






1−

√

√

√

√1− 2

1 + γ

(

Q

M

)2






. (14)

For r+ and r− to be real the following relation must hold

(

Q

M

)2

≤
(

Q

M

)2

crit
=

1 + γ

2
. (15)
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Here in the limit γ → 1 the Reissner-Nordström black hole is restored. For r− = 0 the
Schwarzschild black hole is restored. If we put r+ = 0 and substitute γ = 1/κ the metric
obtains the form

ds2 = −
(

1− r−
r

)κ

dt2 +
(

1− r−
r

)−κ

dr2 + r2
(

1− r−
r

)1−κ

(dθ2 + sin2 θdφ2).

This is the anti-Fisher or anti-JNW solution since κ ∈ [−1,∞). Lensing in this spacetime
has been studied in [40].

2.4 Einstein anti-Maxwell anti-Dilaton black holes

In the case of EMD black hole the line element is given again by (11). The solutions for the
dilaton and the anti-Maxwell field are

e2αϕ =
(

1− r−
r

)1−1/γ

, F = −Q

r2
dt ∧ dr (16)

When γ > 0, r− ≤ 0 ≤ r+ and the causal structure is Schwarzschild-like. For γ < 0, however,
0 ≤ r− ≤ r+ and the black hole has two horizons, an event horizon and an inner Cauchy
horizon. The ADM mass M and the anticharge Q are

2M = r+ +
1

γ
r−, 2Q2 = −(1 + γ)

γ
r+r−. (17)

Relations (17) can be inverted to express the“horizons” in terms of the ADM mass M and
the charge Q

r+ = M






1 +

√

√

√

√1 +
2

1 + γ

(

Q

M

)2






, r− = γM






1−

√

√

√

√1 +
2

1 + γ

(

Q

M

)2






. (18)

Unlike all three cases discussed above in the current case there are no restrictions for (Q/M)2.
The limit γ → 1 corresponds, again, to the anti-Reissner-Nordström black hole. The par-
ticular solutions with zero electric charge are the anti-JNW solution and the Schwarzschild
solution.

3 Gravitational lensing in the strong field limit

Following Bozza’s notation we can express the metric of the general static spherically sym-
metric spacetime in the form

ds2 = A(x)dt2 −B(x)dx2 − x2(dθ2 + sin2 θdϕ2) (19)

where we have introduced the new variable x = r/M . The deflection angle can be expressed
as [45]

α(x0) = I(x0)− π (20)
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where

I(x0) = 2
∫ ∞

x0

√

B(x)
√

C(x)
√

C(x)A(x0)
C(x0)A(x)

− 1
dx (21)

and here x0 represents the minimum distance from the photon trajectory to the gravitational
source. The deflection angle diverges when the denominator of the above expression turns
to zero i.e. at the points where the following relation C ′(x)

C(x)
= A′(x)

A(x)
holds. We use prime (..)′

to denote the derivative with respect to x. The largest root of this equation gives the radius
of the photon sphere. For more details on photon surfaces we refer the reader to [53, 54, 46]

Here and bellow the following convention has been chosen Fm = F |r0=rm where F is an
arbitrary quantity.

Acoording to Bozza’s method [18, 19] the integral (21) is split in two parts – regular
IR(x0) and divergent ID(x0)

I(x0) = ID(x0) + IR(x0). (22)

In explicit form

ID(xps) =
∫ 1

0

ups
√

βps

√

Bps

Cps

xps

η
dη, (23)

IR(xps) =
∫ 1

0



ups

√

√

√

√

B(η)

C(η)
[R(η, ups)]

−1/2 xps

(1− η)2
− ups
√

βps

√

Bps

Cps

xps

η



 dη. (24)

In this formulas the following quantities have been introduced. The new variable

η = 1− xps

x0

, (25)

facilitates the numerical integration since it maps the open interval [xps,∞) to the closed
interval [0, 1]. The function

R(η, ups) =
C(η)

A(η)
− u2

ps (26)

is responsible for the divergence of the integrand. As the photon sphere is approached, i.e.

when η → 0 the leading order term of the integrand is (
√

βpsη)
−1. The coefficient in the

expansion is

βps =
1

2
x2
ps

C ′′
psAps − CpsA

′′
ps

A2
ps

. (27)

The expansion shows that divergence of the deflection angle is logarithmic [18, 19]

α(θ) = −a ln

(

θDOL

ups
− 1

)

+ b+O(u− ups). (28)

where DOL denotes the distance between observer and gravitational lens. The impact pa-
rameter is

ups =

√

Cps

Aps

. (29)
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The strong field limit coefficients a and b are expressed as,

a = xps

√

Bps

Apsβps
, (30)

b = −π + IR(xps) + a ln

(

2βps

u2
ps

)

. (31)

Since the spacetimes under consideration are asymptotically flat we can take advantage
of the strong deflection limit lens equation [56]

η =
DOL +DLS

DLS
θ − α(θ) mod 2π, (32)

where DLS is the lens-source distance, DOL is the observer-lens distance and η is the source
angular position, as seen from the lens. We will be interested also in the following observables.
Under the assumption ups ≪ DOL, one can show that up to terms of second order in ups/DOL

the angular separation between the lens and the n-th relativistic image is

θpron = θ0n

(

1− upse
pro
n (DOL +DLS)

aDOLDLS

)

, (33)

where
θ0n =

ups

DOL

(1 + epron ) , epron = e
b−|η|+2πn

a . (34)

We are considering only prograde photons and this is what pro stands for. It is usually
considered that only the first relativistic image can be observed separately and all other
relativistic images would be packed together at angular position θ∞. The angular separation
between the first relativistic image and the rest of the relativistic images is [18]

spro1 = θ1 − θ∞ = θ∞e
b−2π

a . (35)

The third observable that is usually considered is the ratio between the magnitude of the
first image µ1 and the total magnitude of all other relativistic images

∑∞
n=2 µn

r =
µ1

∑∞
n=2 µn

= e
2π
a , (36)

which in terms of stellar magnitudes is

rm = 2.5 lg(r). (37)

All observable quantities mentioned above are plotted in the paper for different values
of the charge Q/M and the metric parameter γ and under the following assumptions. We
consider the massive dark object Sgr A∗ in the center of our Galaxy as a lens. The observer is
positioned at distance DOL = 8.33 kpc from the lens. For the lens-source distance, following
[20], we have taken DLS = 0.005DOL, DLS = 0.05DOL and DLS = 0.5DOL. According to
[57] the lens mass is M = 4.31×106M⊙, so M/DOL ≈ 2.47×10−11. As in the Schwarzschild
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case¶ our results are practically insensitive to the angular source position η, and the source
distance DLS . For simplicity we will present the results for η = 0. In this specific case the
relativistic images are observed as Einstein rings [46].

We should also mention that significant information about the properties of the object
acting as a gravitational lens can be obtained from the time delay, however such study is not
in the scope of the present work. Expression for the time delay in general static spherically
symmetric spacetime can be found in [47].

3.1 Photon sphere

For both solutions with canonical scalar field, EMD and EMD, the expression for the photon
sphere is

xps =
3

4
x+ +

1

4
(2γ + 1)x− +

1

4

√

9x+
2 + (2γ + 1)2 x−

2 − 2 (2γ + 5)x+x−, (38)

where x+ = r+/M and x− = r−/M , r+ and r− are the parameters of the corresponding
black-hole solution. The photon sphere xps, the event horizon x+ and the inner horizon x−

of the EMD and EMD black holes are displayed on Fig. 1. In the EMD case for γ < 0 the
photon sphere and the event horizon merge when (Q/M) = (Q/M)crit. This situation has
been recently discussed in [55]. In the EMD case we can see that (Q/M) is restricted from
above only when γ < 0. The photon sphere and the event horizon do not merge for any
value of (Q/M) in this case. The inner ”horizon” x− is behind the central singularity and is
not present on the figure.

For the solutions with phantom scalar field, EMD and EMD, the photon sphere takes
the form

xps =
3

4
x+ +

1

4

(

2

γ
+ 1

)

x− +
1

4

√

√

√

√9x+
2 +

(

2

γ
+ 1

)2

x−
2 − 2

(

2

γ
+ 5

)

x+x−, (39)

¶See Fig. 3 in [20]

0.0 0.5 1.0 1.5 2.0
Q�M0

1

2

3

4

x-, x+, xps

0.0 0.2 0.4 0.6 0.8 1.0
Q�M1.0

1.5

2.0

2.5

3.0

3.5

x+, xps

Figure 1: The photon sphere xps (red), the event horizon x+ (blue) and the inner horizon x−
(black) of the EMD and EMD black holes for three values of γ: γ = −0.5 (dash-dot), γ = 0 (dash)
and γ = 0.5 (solid).
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1.5

2.0

2.5

3.0

x-, x+, xps

0.0 0.2 0.4 0.6 0.8 1.0
Q�M0

1

2

3

4

x-, x+, xps

Figure 2: The photon sphere xps (red), the event horizon x+ (blue) and the inner horizon x−
(black) of the EMD and EMD black holes for three values of γ: γ = −0.5 (dash-dot), γ = 0 (dash)
and γ = 0.5 (solid).

The photon sphere xps, the event horizon x+ and the inner horizon x− of the EMD and
EMD black holes are displayed on Fig. 2. In the EMD case (Q/M) is restricted from above.
When γ < 0 the inner ”horizon” x− is behind the central singularity and is not present on
the figure. There are no constraints on (Q/M) for the EMD black hole. In non of the two
cases with phantom scalar field the photon sphere and the event horizon merge.

3.2 Einstein Maxwell Dilaton black holes

The lens parameters a, b and ups for EMD case are given on Fig. 3. The observables are
given on Fig. 4. The dashed line represents the critical curves of the parameters. For
example, the critical curve for a is defined as acrit(γ) = a((Q/M)crit , γ), where (Q/M)crit is
the critical value of (Q/M) for the corresponding class of black-hole solutions. The critical
curves of all other quantities in the paper are defined analogously and are represented by
thin dashed lines. The regions beyond the critical curves on the figures correspond to naked
singularities and are outside the scope of the current research.

In our discussion we will take the Schwarzschild black hole as a reference. The values of
the different quantities corresponding to that case are presented by a straight grey line on
the figures which we term “reference line”. The first observation we can make is that on
both Fig. 3 and Fig. 4 all curves converge to the value for the Schwarzschild black hole at
γ = −1 for arbitrary value of Q/M – a fact with no trivial explanation. The lens parameter
a is monotonous function of γ. The slope is positive and becomes more significant with the
increase of the electric charge Q/M . The parameter b has a different behavior. Initially it
increases with γ but then it passes through a maximum and then decreases. The branch
with negative slope becomes very steep as Q/M is increased. Initially the EMD value of b
is higher than the Schwarzschild but for high enough values of γ the situation changes. The
lowest value of b is obtained at (Q/M)crit and γ = 0 which is the value of the coupling in
string theory [51]. For the EMD black holes the critical impact parameter ups is lower than
the Schwarzschild case for all non-zero values of Q/M . As Q/M increase ups decreases. This
effect, however, is compensated when stronger coupling and respectively lower value of γ is
considered.

As we can see from Fig. 4 with the increase of Q/M the relativistic images are attracted
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towards the black hole, they become less bright and the separation between them increases.
The most demagnified image is obtained for (Q/M)crit and γ = 0. The dependence on γ
becomes more pronounced for higher values of Q/M . All three observables are monotonous
functions of γ. The slope of θpro1 and rm as functions of γ are negative, while the slope of spro1

is positive. In the case of stronger coupling the effect of the electric charge is suppressed.
As a result, when γ → −1 for all values of Q/M the relativistic images of the EMD black
hole have the same angular position, brightness and separation as those of the Schwarzschild
black hole.

-1.0 -0.5 0.0 0.5 1.0
Γ

1.5

2.0

2.5

3.0
a

-1.0 -0.5 0.0 0.5 1.0
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-1.0 -0.5 0.0 0.5 1.0
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4.0

4.5

5.0

ups, @M D

Figure 3: The EMD lens parameters a, b and ups for the following values ofQ/M : Q/M = 0 (black),
Q/M = 0.25 (red), Q/M = 0.5 (orange), Q/M = 0.75 (green), Q/M = 1 (blue), Q/M = 1.25
(purple), Q/M =

√
2 (brown).
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Figure 4: The observables θpro1 , rm and spro1 for the EMD black hole. The values of Q/M are the
same as on Fig. 3.

3.3 Einstein anti-Maxwell Dilaton black holes

The results for the EMD case are presented on Fig. 5 and Fig. 6. On all of the graphics
for the EMD black hole the curves end on the critical curves, before the value γ = −1 is
reached. Beyond the critical curves the object is not a black hole anymore.

Unlike the previously discussed case, the lens parameter a decreases when Q/M is in-
creased. a is monotonous function of γ and as in the EMD case the slope of the curves is
positive. Here the stronger coupling enhances the effect of the electric charge. In the EMD
case b is monotonous function of γ but its behavior is again more complex than that of a.
The slope of the curves is negative. For high enough values of γ with the increase of Q/M ,
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b decreases. With the decrease of γ, however, the curves cross the reference line and the
value of b becomes higher than that for the Schwarzschild black hole. The behavior of ups

is converse to that of a – higher charge leads to higher values. The effect of the charge is
enhanced when the coupling is stronger.

What are the effect of the phantom electromagnetic field and the dilaton on the observ-
ables? The effect of the phantom electric charge is to repel the relativistic images from the
optical axis. The slope of the curves for θpro1 is negative. It is negligible for low values of
Q/M . The stronger coupling leads to a more pronounced effect of the phantom electric
charge. The qualitative behavior of the curves for rm is identical but the curves are much
steeper. The separation between the images spro1 has a converse behavior. It is lower for the
images that a farther from the optical axis. The slope of spro1 is positive.
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Figure 5: The EMD lens parameters a, b and ups for the following values ofQ/M : Q/M = 0 (black),
Q/M = 0.25 (red), Q/M = 0.5 (orange), Q/M = 0.75 (green), Q/M = 1 (blue), Q/M = 1.25
(purple), Q/M = 1.5 (brown).

3.4 Einstein Maxwell anti-Dilaton black holes

The lens parameters and the observable in the case of EMD are presented on Fig. 7 and Fig.
8, respectively. Here again the point γ = −1 is reached only when Q/M = 0. Otherwise the
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Figure 6: The observables θpro1 , rm and spro1 for the EMD black hole. The values of Q/M are the
same as on Fig. 5.
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curves end on the critical lines. The lens parameter a is a monotonous function of γ. For
Q/M 6= 0 it is higher than the reference value. The negative slope here means that the effect
of the electromagnetic field is enhanced when γ is decreased. The behavior of b and ups is
converse – they decrease as Q/M is increased. For b the effect of a stronger coupling is to
invoke a stronger effect of Q/M . The critical impact parameter is almost independent of γ as
we can see from the almost flat curves. As a result of that, the value of the angular position
of the images θpro1 is also slightly dependent on γ. The images are attracted to the optical
axis with the increase of Q/M . They become less bright as the electric charge is increased
and this effect is more significant for higher coupling. The behavior of s is converse – it is
higher for higher Q/M
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Figure 7: The EMD lens parameters a, b and ups for the following values of Q/M : Q/M = 0
(black), Q/M = 0.25 (red), Q/M = 0.5 (orange), Q/M = 0.75 (green), Q/M = 1 (blue).

3.5 Einstein anti-Maxwell anti-Dilaton black holes

Fig. 9 and Fig. 10 represent the results for the last case – the EMD black hole. As we
mentioned above, in this case there are no restrictions for the electric charge so no critical
curves occur on the graphics. Here, just as in the EMD case, all curve converge to the
Schwarzschild line when γ = −1. The lens parameter a is lower when Q/M is increased.
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Figure 8: The observables θpro1 , rm and spro1 for the EMD black hole. The values of Q/M are the
same as on Fig. 7.
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Figure 9: The EMD lens parameters a, b and ups for the following values ofQ/M : Q/M = 0 (black),
Q/M = 0.25 (red), Q/M = 0.5 (orange), Q/M = 0.75 (green), Q/M = 1 (blue), Q/M = 1.25
(purple), Q/M = 1.5 (brown).
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Figure 10: The observables θpro1 , rm and spro1 for the EMD black hole. The values of Q/M are the
same as on Fig. 9.

The effect of the phantom electric field, however, is suppressed in the strong coupling regime.
Again, b is not monotonous. It is lower than the Schwarzschild value for all values ofQ/M 6= 0
and γ 6= −1. With the decrease of γ, b initially decreases. Then, it passes through a minimum
and converges to the reference line. The negative slope becomes more steep with the increase
of Q/M . The critical impact parameter ups has behavior opposite to that of a. It is higher
for higher values of Q/M . Its dependence on γ is insignificant for high enough values of γ
but the curves become very steep as the point γ = −1 is approached.

Due to the phantom electromagnetic field the relativistic image are observed at higher
angular position θpro1 . The dependence of θpro1 on γ is almost negligible everywhere but in
the vicinity of γ = −1. Again the images that are observed farther from the optical axis are
also brighter. The slope of the curve for rm is bigger than that of the previous graphic when
equal values of Q/M are considered. The separation between the first and second relativistic
images spro1 has odd behavior. For low values of Q/M it is a monotonous function of γ. For
decreasing γ, s increases. For high enough values of Q/M as γ is decreased the curves for s
cross the reference line and becomes higher than the value for Schwarzschild. Then it has a
local maximum and finishes on the Schwarzschild line at γ = −1.
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4 Comparison between the four cases and summary of

the results

In this section we will compare between the four cases – (EMD), (EMD), (EMD) and (EMD)
– for black holes with same mass M and electric charge Q. For all of the discussed cases
on the same plot the photon sphere xps is presented on Fig. 11, the lens parameters a and
b – on Fig. 12, the impact parameter ups and the angular position θpro1 are on Fig. 13,
and the other two observables, rm and spro1 , are given on Fig. 14. On all graphics in the
current section M = 1 and Q = 0.8. For most of the quantities the curves corresponding
to black hole with canonical electromagnetic field lay on one side of the reference line while
those corresponding to phantom electromagnetic field – on the other. Exception from this
behavior is observed for the photon sphere xps and for the lens parameter b.

For weak coupling (γ close to 1) both black holes with canonical electromagnetic field
EMD and EMD have photon spheres with smaller radii than the Schwarzschild black hole
while the black holes with phantom electromagnetic field have bigger radii. The situation
changes when γ is decreased. The curve for EMD case does not remain below the reference
line but crosses it and diverges as γ = −1 is approached. The curve for EMD case also crosses
the reference line but downwards and disappears when the critical value of γ corresponding
to Q/M = 0.8 is reached. It is important to note that in none of the cases the photon sphere
converges to the reference line in the limit γ = −1.
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Figure 11: The photon sphere for Q/M = 0 corresponding to the Schwarzschild black hole (grey)
and Q/M = 0.8 for the other four cases – EMD (thick), EMD (dash-dot), EMD (dash), EMD
(dot).

As we can see from Fig. 12 for both black holes with canonical electromagnetic field,
EMD and EMD, a is higher than the Schwarzschild value in the whole interval of admissible
values of γ, while for the solutions with phantom electromagnetic field, EMD and EMD, it
is lower.

What is the role of the parameter γ responsible for the coupling between the dilaton and
the Maxwell field? Let us first consider the couple of black hole solutions with canonical scalar
field EMD and EMD. As it can be seen from Fig. 12 for lower values of γ, corresponding
to stronger coupling, a has lower values. In the phantom scalar field case (see the curves for
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Figure 12: The lens parameters a and b for Q/M = 0 corresponding to the Schwarzschild black
hole (grey) and Q/M = 0.8 for the other four cases – EMD (thick), EMD (dash-dot), EMD (dash),
EMD (dot).

the EMD and the EMD solutions) on the contrary – the stronger coupling leads to higher
values of a.

As a result, for the EMD and EMD black holes the stronger coupling suppresses the
effect of the Maxwell field and the curves for a converge to the reference line corresponding
to the Schwarzschild black hole, while for the EMD and EMD black holes the effects of the
two parameters Q/M and γ enhance each other and the curves diverge from the reference
line.

The curves for the lens parameter b have a more complex behavior. At γ = 1 forQ/M 6= 0
for all four of the considered black holes b has lower values than for the Schwarzschild black
hole. As the coupling is increased (and respectively γ is decreased) for both solutions with
canonical scalar field the curves cross the reference line and b takes higher values. For the
case of phantom scalar field in the whole interval of admissible values of γ the values of b
remain lower than those of the Schwarzschild case. As for the previously discussed parameter
the curves for b in the EMD and EMD cases converge to the Schwarzschild line at γ = −1.
In these cases b has one extremum – a maximum in the former case and a minimum in the
latter case.

The qualitative behavior of the curves for the impact parameter ups and for the observ-
ables θpro1 , rm and spro1 is similar to that of the curves for a in a sense that for the EMD
and EMD black holes the curves converge to corresponding Schwarzschild values, while for
the other couple of black holes, EMD and EMD, the curves diverge from them. All of these
quantities are monotonous functions of γ.

For all four solutions the following behavior is observed. Images that are closer to the
optical axis are dimmer but better separated while those that are farther – on the contrary.
In all cases spro1 has a converse behavior to that of θpro1 and rm – when the latter increase the
former decreases.

From the studied cases we can conclude that the canonical electromagnetic field attracts
the relativistic images towards the optical axis while the phantom electromagnetic field repels
them. In the case of canonical scalar field the higher coupling repels the images form the
optical axis while in the phantom scalar field case it attracts them.
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Figure 13: The impact parameter ups and the angular position of the first relativistic image for
prograde photons θpro1 for Q/M = 0 corresponding to the Schwarzschild black hole (grey) and
Q/M = 0.8 for the other four cases – EMD (thick), EMD (dash-dot), EMD (dash), EMD (dot).
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Figure 14: The flux ratio rm and the angular separation between the first and second relativistic
image for prograde photons spro1 for Q/M = 0 corresponding to the Schwarzschild black hole (grey)
and Q/M = 0.8 for the other four cases – EMD (thick), EMD (dash-dot), EMD (dash), EMD
(dot).
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In the limit of infinitely strong coupling for any value of Q/M the EMD and the EMD
black holes become practically indistinguishable from the Schwarzschild black hole on the
bases of observations for the angular position, the magnification and the separation of the
relativistic images.
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