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An improved estimator for the amplitude fNL of local-type non-Gaussianity from the cosmic
microwave background (CMB) bispectrum is discussed. The standard estimator is constructed to
be optimal in the zero-signal (i.e., Gaussian) limit. When applied to CMB maps which have a
detectable level of non-Gaussianity the standard estimator is no longer optimal, possibly limiting
the sensitivity of future observations to a non-Gaussian signal. Previous studies have proposed an
improved estimator by using a realization-dependent normalization. Under the approximations of
a flat sky and a vanishingly thin last-scattering surface, these studies showed that the variance of
this improved estimator can be significantly smaller than the variance of the standard estimator
when applied to non-Gaussian CMB maps. Here this technique is generalized to the full sky and
to include the full radiation transfer function, yielding expressions for the improved estimator that
can be directly applied to CMB maps. The ability of this estimator to reduce the variance as
compared to the standard estimator in the face of a significant non-Gaussian signal is re-assessed
using the full CMB transfer function. As a result of the late time integrated Sachs-Wolfe effect, the
performance of the improved estimator is degraded. If CMB maps are first cleaned of the late-time
ISW effect using a tracer of foreground structure, such as a galaxy survey or a measurement of CMB
weak lensing, the new estimator does remove a majority of the excess variance, allowing a higher
significance detection of fNL.

PACS numbers: 98.70.Vc,98.80.Cq

I. INTRODUCTION

Over the past two decades our understanding of the physics of the early universe has gone from speculative to
precise. We have numerous data sets which probe both the overall expansion of the universe as well as the statistics
of the large-scale structure we see today. In addition to these observations, our standard cosmological model, with
only six free parameters, provides a good fit to all of these data sets (see, e.g. [1]). The standard cosmological model
relies on some basic assumptions about the origin and evolution of the universe: namely that soon after the big bang,
the universe underwent a period of cosmic inflation during which nearly Gaussian perturbations were produced in an
otherwise isotropic and homogeneous universe. After this period the universe was ‘reheated’– i.e., populated with a
thermal plasma of standard model particles. Particle physics dictates the interactions between the constituents of
this primordial fluid, while general relativity dictates how the perturbations grow to form the structures we observe
in both the clustering of galaxies, as well as in the anisotropies of the cosmic microwave background (CMB).

With increasingly precise observations, we may test the foundations of the standard cosmological model. Here we
will be concerned with testing the assumption that the statistics of CMB fluctuations are Gaussian. Although small
levels of non-Gaussianity may develop through non-linearities in the standard cosmological model [2–6], significant
departures from Gaussianity can only be explained by changes to the fundamental physics of the early universe.
For example, a detection of primordial non-Gaussianity could yield information on the interactions of the field (or
fields) that seed the primordial curvature perturbation. If this field is the one that drives inflation (the inflaton), the
measurement could yield insight into the detailed physics of inflation. If the curvature perturbation is seeded by a
field that is sub-dominant during inflation (as in the curvaton scenario [7–10]), the primordial fluctuations may also
be significantly non-Gaussian. Some more exotic possibilities, such as a non-canonical kinetic term for the inflaton
[11–13], spatially modulated reheating [14], and novel initial vacuum states for the fluctuations [15], could also be
probed by a detection or limit to non-Gaussianity in the CMB.

There are an infinite number of ways in which the statistics of the CMB may be non-Gaussian, although the effective
field theory approach shows that inflationary theories can only produce three forms for the non-Gaussian primordial
three-point correlation function [11]. In this study we restrict our attention to the ‘local model’ of non-Gaussianity, in
which the primordial curvature perturbation, Φ, can be written in terms of an auxiliary Gaussian field φ as [2, 16–19]

Φ(~x) = φ(~x) + fNL

[
φ2(~x)−

〈
φ2(~x)

〉]
, (1)

where the amplitude fNL parameterizes the level of non-Gaussianity. This model is particularly important because
if fNL 6= 0 were detected then all single-field slow-roll inflation models would be ruled out [20, 21]. In addition, the
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local-type non-Gaussianity is predicted by the curvaton model [8–10], and so a detection could provide support for,
or constraints to, this model.

Although there are several ways to estimate the level of non-Gaussianity in the CMB, an estimate of the harmonic
three-point function (known as the CMB bispectrum) is the most sensitive [18, 22]. Given the large number of
modes in the bispectrum (after restrictions due to statistical isotropy there are l5max terms in the bispectrum, where
lmax('

√
Npix) is the maximum multipole measured by a given experiment) a full exploration of the likelihood surface

is computationally prohibitive, and so attempts to constrain the level of non-Gaussianity are made through estimators
which have been constructed to minimize variance under the null hypothesis– i.e., when applied to CMB maps which
are purely Gaussian [23, 24].

A direct application of the minimum-variance null-hypothesis (MVNH) estimator of fNL from the CMB bispectrum
is also computationally expensive since the computation involves a very large number of terms (∼ l5max). The Planck
satellite [25] will measure lmax ∼ 2500 multipole moments so a blind application of this estimator will take ∼ 1015

operations to compute! The real computational expense is even higher, as thousands of simulations must be run
to characterize the statistics of this estimator. For a special set of non-Gaussian models (of which the local model
is one) fast Fourier transforms (FFTs) may be used to greatly reduce this computational expense [26, 27]. Using
FFTs the estimator may then be evaluated with a computation time that scales as l3max, considerably reducing the
computational expense [26, 28]. CMB data are currently consistent with vanishing non-Gaussianity [29, 30]; analysis
of the WMAP 7-year data yields the 2-σ constraint −10 < fNL < 74 [1].

If future data remain consistent with the null hypothesis, then the standard MVNH estimator should have the
minimum variance. As the data improves, if fNL is found to be significantly different from zero, then the standard
MVNH estimator is non-optimal and there may be other estimators which have a smaller variance (and hence increased
signal-to-noise, S/N). This is because the MVNH estimator was constructed to have the minimum variance when
fNL = 0 and when applied to data with fNL 6= 0 the variance is no longer minimized. In particular, when applied
to the local model, for fNL 6= 0 the MVNH estimator exhibits a variance which is proportional to f2

NL, leading to a
saturation of the S/N of the estimator, even for large values of lmax [31–33]. This indicates that a new method to
estimate fNL may extract a higher S/N from the measurements.

In one approach, estimators are abandoned, and the full likelihood surface is explored using Bayesian methods [34].
Although this approach has been shown to give improved constraints on fNL, it is computationally expensive, taking
over 150,000 CPU hours to compute a best fit-value and confidence interval for fNL with lmax = 512. In another
approach, an improved estimator is constructed by defining a new realization-normalized estimator (RNE) [31, 33, 35].
This method normalizes the MVNH estimator using a particular combination of observed multipoles which are chosen
so as to divide out the extra variance present. In Ref. [31] the RNE was derived in the flat sky and Sachs-Wolfe limit
(in which the temperature anisotropies are given by fluctuations in the gravitational potential at the surface of last
scattering, ∆T/T = −Φ/3 [36]). In these limits, it was shown in Ref. [31] that the RNE successfully removes all the
variance proportional to f2

NL of the MVNH estimator when fNL 6= 0.
In this work we generalize the RNE to include the full radiation transfer function and provide expressions that are

valid on all-sky CMB maps. We compute the variance of the RNE and find that, unlike in the Sachs-Wolfe limit, only
∼ 50% of the fNL-dependent variance is removed.

The residual O(f2
NL) variance is a result of the late-time, large-scale integrated Sachs-Wolfe (ISW) effect, in which

CMB anisotropies are generated by gravitational potential decay along the line-of-sight [37–43]. To understand why
the late-time ISW effect reduces our ability to remove this extra variance, we note that the form of the local-model
non-Gaussianities implies that the bispectrum signal is dominated by harmonic-space triangles which correlate one
large-scale mode with two small scale modes (i.e., ‘squeezed’ triangles). If the large-scale anisotropies are generated
only by the Sachs-Wolfe effect then they can be inverted to give a direct measurement of the value of the large-scale
gravitational potential at the surface of last scattering. These measurements, in turn, allow us to directly infer the
non-Gaussian contribution to the large-scale anisotropies, leading to a complete removal of all of the excess variance
when fNL 6= 0. However, in the presence of both the late-time ISW and Sachs-Wolfe effect, this inversion is not
possible, leading to a degradation of the performance of the RNE. We find, however, that if a tracer of foreground
structure (such as a wide-field galaxy survey or the deflection field responsible for weak lensing of the CMB) is first
applied to ‘clean’ a CMB map of the late-time ISW effect then ∼ 80 − 90% of the fNL-dependent variance may be
removed by using the RNE.

We begin by summarizing the non-Gaussian local model and its bispectrum in Sec. II. We provide an intuitive,
geometric argument for the origin of the fNL-dependent variance that afflicts the local-model MVNH estimator in
Sec. III. The realization-dependent normalization (RNE) is derived in Sec. IV using a method that applies in the
presence of the full radiation transfer function. In Sec. V we compute the variance of the RNE using the full radiation
transfer function, finding that the fNL-dependent variance of the MVNH estimator is only partially removed. In
Sec. VI, we show that the fNL-dependent variance is further reduced by first cleaning the CMB of the late-time
ISW contribution using a large-scale structure survey [such as the NRAO VLA Sky Survey (NVSS), or the next-
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generation Joint Dark Energy Mission (WFIRST) proposal] or a measurement of CMB lensing. Conventions for
flat-sky approximations employed in numerical calculations are stated in Appendix A. Detailed expressions needed
to obtain the variance are derived in Appendix B. In Appendix C we present a computationally efficient algorithm
(using fast Fourier transforms) to compute our estimator on full-sky CMB maps.

II. THE NON-GAUSSIAN LOCAL MODEL

First we will review the basic equations that relate to the definition and estimation of the CMB bispectrum,
restricting attention to the local model as defined in Eq. (1). The CMB bispectrum is defined by

Bm1m2m3

l1l2l3
≡ 〈al1m1

al2m2
al3m3

〉 = Gm1m2m3

l1l2l3
bl1l2l3 , (2)

where the alm are the usual multipole moments of the temperature map, bl1l2l3 is the reduced CMB bispectrum, and
the Gaunt integral is given by

Gm1m2m3

l1l2l3
≡
∫
d2n̂Yl1m1(n̂)Yl2m2(n̂)Yl3m3(n̂) =

√
(2l1 + 1) (2l2 + 1) (2l3 + 1)

4π

(
l1 l2 l2
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
(3)

and

(
l1 l2 l3
m1 m2 m3

)
is a Wigner 3J-coefficient. A product of three multipoles form an unbiased estimator for the

angle-averaged CMB bispectrum:

Bobs
l1l2l3 =

∑
m1m2m3

(
l1 l2 l3
m1 m2 m3

)
al1m1al2m2al3m3 (4)

The minimum-variance null-hypothesis (MVNH) estimator for fNL is given by [23, 24]

f̂NL = σ−2
0

∑
l1≤l2≤l3

Bobs
l1l2l3

Bl1l2l3
Cl1Cl2Cl3

, (5)

where

〈alma∗l′m′〉 = Clδll′δmm′ , (6)

and Bl1l2l3 is the primordial (i.e., theoretical) angle-averaged bispectrum. The normalization of this estimator is given
by the variance under the null hypothesis, σ2

0 [44]:

σ2
0 =

∑
l1≤l2≤l3

B2
l1l2l3

∆l1l2l3Cl1Cl1Cl3
, (7)

where ∆l1l2l3 = 1 if l1 6= l2 6= l3, 6 if l1 = l2 = l3, and 2 otherwise. Finally, the angle-averaged primordial bispectrum,
Bl1l2l3 , is given in terms of the reduced bispectrum

Bl1l2l3 =

√
(2l1 + 1) (2l2 + 1) (2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)
bl1l2l3 . (8)

Now restricting attention to the local-model bispectrum, at any radial location along the line of sight the primordial
curvature potential, Φ, can be decomposed into spherical harmonics. The local model ansatz in Eq. (1) then implies
that

Φl1m1
(r) = φl1m1

(r) + fNL(−1)m1

∑
l2l3

∑
m2m3

G−m1m2m3

l1l2l3
φl2m2(r)φl3m3(r). (9)

This allows us to write the reduced bispectrum in a line-of-sight integral:

bl1l2l3 = 2

(∫
r2drαl1(r)βl2(r)βl3(r) + cyclic permutations.

)
, (10)
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where the two filter-functions are given in terms of the transfer functions

αl(r) ≡
2

π

∫
k2dkjl(kr)Sl(k), (11)

βl(r) ≡
2

π

∫
k2dkjl(kr)Sl(k)P (k), (12)

and Sl(k) is the CMB temperature anisotropy transfer function [45]. The generalization to polarization is straightfor-
ward [44]; in this work we limit our attention to the signature of primordial non-Gaussianity in the CMB temperature.

Finally, we will need expressions for various auto and cross-correlations in terms of the distance along the line-of-
sight r. The power-spectrum for the auxiliary Gaussian field φ is〈

φ(~k)φ∗(~k′)
〉

= (2π)3δ(3)(~k − ~k′)P (k), (13)

where

φ(~x) =

∫
d3~k

(2π)3
φ(~k)ei

~k·~x. (14)

These expressions lead to the line-of-sight autocorrelation [46]

〈φlm(r)φ∗l′m′(r
′)〉 =

2

π
δl,l′δm,m′

∫
k2dkP (k)jl(kr)jl(kr

′)

≡ χ(r, r′)δl,l′δm,m′ . (15)

Similarly, the temperature multipole moments can be written as [26, 47]

alm =

∫
r2drαl(r)Φlm(r). (16)

With this we can write the line-of-sight cross-correlation

〈almφ∗l′m′(r)〉 =
2

π
δll′δmm′

∫
k2dkP (k)jl(kr)Sl(k)

≡ δll′δmm′βl(r). (17)

These expressions will be useful in the following discussion.

III. THE ORIGIN OF THE INCREASED VARIANCE

The standard non-Gaussian estimator written in Eq. (5) is only optimal under the null hypothesis: fNL = 0.
In the case where fNL 6= 0 the estimator becomes suboptimal (in the sense that it no longer saturates minimum
variance attainable according to the Cramer-Rao bound, see Refs. [23, 31]) and has a variance which depends on fNL.
Specifically, in the flat-sky Sachs-Wolfe limit the variance scales as [31, 33, 48]〈

(∆f̂NL)2
〉

= σ2
0 + f2

NLσ
2
1 ,

=
1

72Afskyl2max ln(lmax)
+ f2

NL

1

2 ln3(lmax)
, (18)

where A is the amplitude of the power-spectrum of the primordial curvature perturbations, P (k) = Ak−3. From this
expression we can see that for fNL 6= 0 that in the large lmax limit the variance flattens out and scales as ln−3(lmax).

To understand the origin of this fNL-dependent variance let us first consider a simple toy model. Let ai be a random

variable with 〈ai〉 = 0 and 〈aiaj〉 = σ2δij . As we will discuss further, the fNL-dependent variance in the f̂NL estimator
comes from terms which look like

X̂ ≡
∑
ij

aiaj . (19)
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The mean and variance of X̂ are 〈
X̂
〉

=
∑
ij

〈aiaj〉 = Nσ2, (20)〈
(∆X̂)2

〉
=
∑
ijkl

〈aiajakal〉 − σ4δijδkl = 2N2σ4 (21)

where N is the number of data points. From this, it is clear that the S/N of X̂ is given by

S

N
=

〈
X̂
〉

√〈
(∆X̂)2

〉 =
1√
2
. (22)

We can see that the S/N is a constant. The reason is simple: since the ai are uncorrelated, the off diagonal terms in

X̂ with i 6= j do not contribute to the signal; on the other hand, they do contribute to the noise, leading to a constant
S/N1. We will see that something similar happens for the MVNH estimator.

To understand the origin of the increased variance we expand the MVNH estimator in Eq. (5) in powers of fNL

f̂NL ≈ B0 + fNLB1, (23)

with

B0 = σ−2
0

∑
l1≤l2≤l3

∑
m1m2m3

aL
l1m1

aL
l2m2

aL
l3m3

Cl1Cl2Cl3
Bl1l2l3

(
l1 l2 l3
m1 m2 m3

)
, (24)

B1 = σ−2
0

∑
l1≤l2≤l3

∑
m1m2m3

aNL
l1m1

aL
l2m2

aL
l3m3

Cl1Cl2Cl3
Bl1l2l3

(
l1 l2 l3
m1 m2 m3

)
+ cyclic permutations, (25)

where

aL
lm =

∫
r2drαl(r)φlm(r), (26)

aNL
lm = (−1)m

∑
l1l2

∑
m1m2

G−mm1m2

ll1l2

∫
r2drαl(r)φl1m1(r)φl2m2(r). (27)

The total observed multipole moment is

alm ' aL
lm + fNLa

NL
lm . (28)

We now shed light on the origin of the increased variance by considering the flat-sky and Sachs-Wolfe limit of
Eq. (25). In this limit the radiation transfer function is given by Sl(k) = −jl(kr∗)/3 where r∗ is the conformal
distance to the surface of last scattering. We refer the reader to Appendix A for expressions which relate the full-sky
to flat-sky expressions. In these limits we have [31, 33]:

Cl =
A

9πl(l + 1)
, (29)

B1 = 3σ2
0

∑
~m,~n,~l2,~l3

bl1l2l3
2Ω3Cl1Cl2Cl3

{
a~ma~nδ~m+~n,~l1

}{
a~l2a~l3δ~l2+~l3,−~l1

}
, (30)

where the primordial power-spectrum is taken to be scale invariant, P (k) = A/k3. Rewriting B1 in this way we can

see that it is a product of two triangles with a shared side ~l1. We show a graphical representation of this in the top
section of Fig. 1. We can rewrite B1 schematically as

B1 =
∑
i,j

W (i)AiAj , (31)

1 Of course, if we were interested in estimating the variance we would choose a different weighting than in Eq. (19) and use the estimator∑
i a

2
i which has the same signal but a reduced variance compared to Eq. (19). As we will discuss further, the increased variance in the

f̂NL estimator cannot be reduced by choosing a new weighting.
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with i labeling the triangle i = {~l1,~l2,~l3} and j labeling the triangle j = {~l1, ~m,~n}.

FIG. 1: A graphical representation of the temperature configurations that are included in the B1 part of the bispectrum
estimator, Eq. (25). The full shape is composed of two distinct triangles. Only one triangle contributes to the mean, but all
triangles contribute to the variance, leading to a S/N which decreases slowly with lmax.

The mean is given by a sum over a single triangle, as shown in the right panel of Fig. 1:

〈B1〉 =
∑
i,j

W (i) 〈AiAj〉 =
∑
i

W (i)
〈
A2
i

〉
. (32)

Therefore, we can see that the mean is composed of a sum of (l2max)2 = l4max terms. On the other hand, Fig. 1 shows
that the variance of B1 is computed from a sum of a product of two triangles which gives (l2max)4 = l8max. As in the
simple example given above, this shows that there are a large number of terms which do not contribute to the mean
of B1 but do contribute to the variance, leading to a signal-to-noise (S/N) which does not decrease as fast as one
might have expected with increasing lmax.

It might seem that this can be corrected by choosing a different weight function W (i) = W~l1,~l2,~l3
. Since this weight

was chosen to optimize the estimator under the null (i.e., fNL = 0) hypothesis it is natural to think that a different
weighting will be needed when fNL 6= 0. Unfortunately, since the terms in B1 which contribute to the variance but

not the mean involve contractions between (~l1,~l2) and (~n,~m), it is clear that no choice of weight, which depends only

on the ‘observed’ indices (~l1,~l2,~l3), will remove these terms. Therefore, a new weighting cannot decrease the variance
of this estimator in the high S/N regime. Another way to remove the terms which do not contribute to the signal
but do contribute to the variance is to use a realization dependent normalization.

Before we discuss how to construct a realization dependent normalization that reduces the variance in B1 let us
first demonstrate in what sense the squeezed limit dominates the variance in B1. In the flat-sky Sachs-Wolfe limits,
it has been shown that the variance is well approximated by [33]

〈
(∆B1)2

〉
∝ σ4

0

∑
~l1+~l2+~l3=0

bl1l2l3
Cl1

∑
~s1+~s2=~l3

bs1s2s3
Cs1

δ~l3+~s3,0
. (33)

where {~l} indicates the sum is over ~l1 +~l2 +~l3 = 0. We can calculate this by first writing it in a less compact form:
In these limits the bispectrum is given by [23]

bl1l2l3 = −6{Cl2Cl3 + Cl3Cl1 + Cl1Cl2}. (34)

The second sum in Eq. (33) is given by∑
~s1+~s2=~l3

bs1s2s3
Cs1

δ~l3+~s3,0
= − 2

3π

∑
~s1+~s2=~l3

[
s1(s1 + 1)

s2(s2 + 1)l3(l3 + 1)
+

1

l3(l3 + 1)
+

1

s2(s2 + 1)

]
(35)

and the summand is dominated by triangles where one index is much less than the other two (i.e., the squeezed limit)
so that ∑

~s1+~s2=~l3

bs1s2s3
Cs1

∝ A
(
lmax

l3

)2

. (36)
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We then have that 〈
(∆B1)2

〉
∝ σ4

0l
2
maxA

2
∑

~l1+~l2+~l3=0

l21 + l22 + l23
l22l

4
3

. (37)

We can see from this expression that it will be dominated by the terms where l3 is smallest. Therefore, taking the
squeezed limit again we write l3 � l2 ' l1 and find that〈

(∆B1)2
〉
∝ σ4

0A
2 l

4
max

l2min

∝ ln(lmax)−2, (38)

where we have taken the limit lmax � lmin and used the expression for σ0 found in Eq. (18).
The numerical calculation found in Ref. [33] shows that the variance decreases slightly faster with

〈
(∆B1)2

〉
∝

ln(lmax)−3 - non-squeezed configurations do make some contribution to the estimator which causes the variance fall
off more rapidly with lmax. For other forms of non-Gaussianity, the O(fNL) term in the expansion of the estimator
can not be written simply as in Eq. (25). An expression analogous to Eq. (30), however, may still be written though
with a different weighting due to the shapes of the Fourier-space triangles which dominate the S/N in these cases.
Since these models are not dominated by the squeezed limit, they are not afflicted by the slow scaling with lmax of
the S/N that occurs for the local model.

IV. REALIZATION NORMALIZED ESTIMATOR

In order to improve the fNL estimator when fNL 6= 0, we will search for a realization dependent normalization which
removes some of the variance in those terms in the estimator which do not contribute to the signal but do contribute
to the noise. To do this we follow the approach presented in Ref. [31] and construct a new realization-dependent
normalization which will remove as much of the fNL-dependent variance of B1 as possible. In other words, we wish
to define a realization-dependent normalization that is highly correlated with B1.

We write the new realization-dependent normalization as an estimator for B1, B̂1, so that we obtain a new estimator
for fNL, the realization-normalized estimator (RNE):

(f̂NL)N =
f̂NL

B̂1

≈ B0

B̂1

+ fNL
B1

B̂1

. (39)

The extent to which the new realization-dependent normalization decreases the variance of this estimator is determined

by the correlation between B1 and B̂1; in the limit that these two terms are fully correlated the f2
NL variance is

completely removed.
Looking at the equation for B1 [Eq. (25)] the only term that cannot be immediately written in terms of observables

is aNL
lm . Therefore, when constructing the estimator B̂1 we must find a minimum variance estimator for aNL

lm . To do
this we define a weighted sum,

âNL
lm =

∑
l1l2

∑
m1m2

Wmm1m2

ll1l2
al1m1al2m2 , (40)

and demand that the weight minimizes the variance,

δ

δWmm1m2∗
ll1l2

〈∣∣∣∣âNL
lm − aNL

lm

∣∣∣∣2
〉

= 0. (41)

Choosing the weight

Wmm1m2

ll1l2
=
Gmm1m2

ll1l2

Cl1Cl2

∫
r2drαl(r)βl1(r)βl2(r), (42)

satisfies Eq. (41) and thus leads to a minimum variance estimator for aNL
lm . With this, the estimator for B1 can be

written

B̂1 = σ−2
0

∑
l1≤l2≤l3

∑
m1m2m3

âNL
lm al1m1al2m2

ClCl1Cl2
Bll1l2

(
l l1 l2
m m1 m2

)
+ cyclic permutations, (43)

= σ−2
0

∑
l1≤l2≤l3,lalb

∑
m1m2m3mamb

al1m1
al2m2

alama
albmb

2ClCl1Cl2ClaClb
Bll1l2Bllalb

(
l l1 l2
m m1 m2

)(
l la lb
m ma mb

)
, (44)
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where we have made the approximation aL
lm ' alm, which is true to lowest order in fNL.

We note that there are several other ways of arriving at the same estimator for B1. In particular, if we were to
instead search for a minimum variance estimator for Φlm as in Ref. [26], then we would again be lead to the estimator
for B1 in Eq. (44). Furthermore, the same relation between the underlying gravitational potential and the observed
multipoles appears when calculating the shape of the likelihood surface for the MVNH estimator as discussed in
Ref. [24].

As we now discuss, the improved estimator given by Eqs. (39) and (44) (the RNE), has two important properties.
First we show that in the case where the transfer function is just the Sachs-Wolfe transfer function, the RNE is the
same as the estimator presented in Ref. [31]. Our discussion then shows how the RNE, in this limit, is able to remove
all of the fNL-dependent variance from the standard MVNH estimator. Second, when the full transfer-function is
used, the combination of both the Sachs-Wolfe and late-time integrated Sachs-Wolfe (ISW) effects on large angular
scales causes the RNE to be less effective; it only removes part of the fNL-dependent variance. Using other tracers
of large-scale structure, as discussed in Ref. [49], allows us to improve the performance of the RNE, so that it can
remove most of the fNL-dependent variance. Finally, in Appendix C we discuss how our estimator can be rewritten
in terms of real-space quantities, so as to be computationally efficient.

V. PROPERTIES OF THE REALIZATION-NORMALIZED ESTIMATOR

To simplify the calculations in this section we work in the flat-sky approximation. Although the results presented
will differ when compared to full-sky calculations, since we are interested in calculating the fractional reduction of
the fNL-dependent variance (relative to the fNL-dependent variance of the standard MVNH estimator), we expect
the differences to be small.

To quantify the statistical properties of the RNE we must calculate the mean and variance of the ratios B0/(̂B1)

and B1/(̂B1). To do this we will use an approximate formula for the variance of the ratio of two stochastic variables.
Let x1 and x2 be two stochastic variables with means µ1 and µ2, variances σ2

1 and σ2
2 , and covariance ρ. We wish to

calculate the mean and variance of

W =
x1

x2
. (45)

The probability density function (PDF) of W may be computed analytically if x1 and x2 are normally distributed
[50]. However, the formula for the PDF is quite complicated and it does not immediately yield analytic formulae for
the mean, 〈W 〉, and variance

〈
(W − 〈W 〉)2

〉
≡
〈
∆W 2

〉
. Instead, we will derive an approximate expression. To do

this we write x1 = µ1 + δx1 and x2 = µ2 + δx2. We then assume δx1,2/µ1,2 = ε� 1; this will be true near the peak
of the normal distribution if µ1,2 � σ1,2 (we have verified that the stochastic quantities discussed we are interested
in satisfy this condition). We can write

W ≈ µ1

µ2
(1 + δx1/µ1 − δx2/µ2) +O(ε2). (46)

With this we can easily compute

〈W 〉 =
µ1

µ2
, (47)

〈
∆W 2

〉
=

σ2
1

µ2
1

+
σ2

2

µ2
2

− 2
ρ

µ1µ2
. (48)

A. The mean

We wish to show that 〈B1〉 =
〈
B̂1

〉
. To leading order in fNL in the flat-sky approximation,

〈B1〉 = σ2
0

∑
~l1+~l2+~l3=0

δ~k+~k′,~l1

B(l1, l2, l3)

2Ω2Cl1Cl2

∫
r2drαl1(r)

〈
aL
~L
aL
~l2
φ~k(r)φ~k′(r)

〉
, (49)

〈
B̂1

〉
= σ2

0

∑
~l1+~l2+~l3=0

δ~k+~k′,~l1

B(l1, l2, l3)

2Ω2Cl1Cl2

∫
r2drαl1(r)

βk(r)βk′(r)

CkCk′

〈
aL
~L
aL
~l2
aL
~k
aL
~k′

〉
. (50)
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The fact that |~l1| ≥ 2 requires that the Wick contraction which contains
〈
φ~k(r)φ~k′(r)

〉
does not contribute to the

mean. Therefore we are left with〈
a~l2a~Lφ~k(r)φ~k′(r)

〉
=
〈
a~l2φ~k(r)

〉 〈
a~Lφ~k′(r)

〉
+
〈
a~Lφ~k(r)

〉 〈
a~l2φ~k′(r)

〉
, (51)

= βl2(r)βL(r)
[
δ~l2,−~kδ~L,−~k′ + δ~l2,−~k′δ~L,−~k

]
. (52)

Now to calculate the equivalent expression for B̂1. Again, as with B1 only the ‘cross’ terms survive and we have

βk(r)βk′(r)

CkCk′

〈
a~l2a~La~ka~k′

〉
= βl2(r)βL(r)

[
δ~l2,−~kδ~L,−~k′ + δ~l2,−~k′δ~L,−~k

]
, (53)

so we have that 〈B1〉 =
〈
B̂1

〉
. With this we can conclude that the RNE is unbiased.

B. The variance

The variance of the first term can be approximated by〈(
∆

(B0)

(̂B1)

)2〉
≈
〈
(B0)2

〉
+
〈

(B0)2∆(̂B1)∆(̂B1)
〉

(54)

≈ 〈(B0)(B0)〉
(

1 +
〈

∆(̂B1)∆(̂B1)
〉)

, (55)

= σ2
0

(
1 +

〈
∆(̂B1)∆(̂B1)

〉)
. (56)

The variance of the second term can be written as〈(
∆

(B1)

(̂B1)

)2〉
≈ 〈∆(B1)∆(B1)〉+

〈
∆(̂B1)∆(̂B1)

〉
− 2

〈
∆(B1)∆(̂B1)

〉
. (57)

A tedious yet straight-forward calculation shows that the variance of the RNE is composed of four terms (we show
the details of the calculation in Appendix A). Of those four terms one dominates in the lmax � 1 limit so that we
have

〈∆(B1)∆(B1)〉 = 8σ4
0

∑
{~l},{~k}

B(l1, l2, l3)B(k1, k2, k3)

Cl1Cl2Ck1Ck2Ck3
δ~l3,~k3 (58)

×
∫
r2dr(r′)2dr′αl1(r)αk1(r′)βk2(r′)βl2(r)χl3(r, r′),〈

∆(̂B1)∆(̂B1)
〉

= 8σ4
0

∑
{~l},{~k}

B(l1, l2, l3)B(k1, k2, k3)

Cl1Cl2Ck1Ck2Ck3
δ~l3,~k3 (59)

×
∫
r2dr(r′)2dr′αl1(r)αk1(r′)βk2(r′)βl2(r)

βl3(r)βl3(r′)

Cl3
,〈

∆(B1)∆(̂B1)
〉

= 〈∆(B1)∆(B1)〉 . (60)

The variance is given by〈(
∆
B1

B̂1

)2
〉

= 8σ4
0

∑
{~l},{~k}

B(l1, l2, l3)B(k1, k2, k3)

2Cl1Cl2Ck1Ck2Ck3
δ~l3,~k3

×
∫
r2dr(r′)2dr′αl1(r)αk1(r′)βl2(r)βk2(r′)Dl3(r, r′), (61)

Dl(r, r′) ≡
[
χl(r, r

′)− βl(r)βl(r
′)

Cl

]
. (62)
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We are interested in calculating the fractional reduction of the fNL-dependent variance in the RNE, (f̂NL)N, relative

to the fNL-dependent variance in the standard MVNH estimator, f̂NL. To quantify this we will define

R ≡

〈(
∆
B1

B̂1

)2
〉/〈

∆B2
1

〉
. (63)

If R = 0 then all of the fNL-dependent variance has been removed; for 0 < R < 1 then there is a residual fNL-
dependent variance which the RNE does not remove.

FIG. 2: The ratio of the fractional reduction of the fNL-dependent variance in (f̂NL)N as a function of the value of the l3
multipole (which is the large scale in the squeezed limit). This figure was produced with lmax = 100 (we have checked that
other choices for lmax reproduce curve). From this figure we can see that ∼ 95% of the fractional reduction, R, is contained in
the quadrupole l3 = 2 justifying our approximation in Eq. (65).

Looking at Eq. (61) we can see that the extent to which we reduce the variance of the RNE depends on the function

Dl(r, r
′). In the squeezed limit (|~l3| ∼ lmin � |~l1| ' |~l2| and |~k3| ∼ lmin � |~k1| ' |~k2|), we have〈(

∆
B1

B̂1

)2
〉
∝
∑
l3

Dl3(r∗, r∗)
∑
{~l},{~k}

B(l1, l2, l3)B(k1, k2, l3)

Cl1Cl2Cl3Ck1Ck2
βl2(r∗)βk2(r∗), (64)

where we have made the substitution r2αl(r) ∝ δ(r − r∗) for l � lmin– i.e., to a very good approximation, all small-
scale power is sourced by physics that occurs at the surface of last scattering. This allows us to write the fractional
reduction of the fNL-dependent variance as

R ≈ D2(r∗, r∗)

χ2(r∗, r∗)
, (65)

where we have fixed l3 = lmin = 2 since that value contains upwards of 95% of the variance (see Fig. 2). We have
verified this approximation by calculating the full sum in Eq. (61) and found it to be accurate to a few percent. The
function χl(r, r

′) is calculated using P (k) = Akns−4, where we use ns = 1 to simplify the computation of the integral
over k (the dependence on the actual value of ns is negligible).

C. The fNL-dependent variance in the Sachs-Wolfe limit

Before calculating the improvement in the fNL-dependent variance in the case of a ΛCDM universe, let us first
analyze these expressions in the Sachs-Wolfe limit. In this limit αl(r) ∝ δ(r − r∗). From Eq. (62) it is clear that the
fNL-dependent variance will vanish (i.e., R = 0) since it depends on

Dl(r∗, r∗) = χl(r∗, r∗)− β2
l (r∗)/Cl = 0. (66)
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This result was found in Refs. [21, 31, 32].
We can understand this result in a slightly different way which will highlight how the Sachs-Wolfe limit is unique.

In the Sachs-Wolfe limit the estimator âNL
lm is fully correlated (up to order Af2

NL) with aNL
lm since

âNL
lm = −3

∑
l1l2

∑
m1m2

(−1)mG−mm1m2

ll1l2
al1m1al2m2 , (67)

= −1

3

∑
l1l2

∑
m1m2

(−1)mG−mm1m2

ll1l2
φl1m1

(r∗)φl2m2
(r∗) +O(Af2

NL) (68)

aNL
lm =

∑
l1l2

∑
m1m2

(−1)mG−mm1m2

ll1l2

∫
r2drαl(r)φl1m1

(r)φl2m2
(r) (69)

= −1

3

∑
l1l2

∑
m1m2

(−1)mG−mm1m2

ll1l2
φl1m1(r∗)φl2m2(r∗). (70)

In a ΛCDM universe, however, the large-scale anisotropies receive power from both the Sachs-Wolfe as well as the
late-time integrated Sachs-Wolfe (ISW) effects. This additional contribution to the large-scale power degrades the
correlation between âNL

lm and aNL
lm thus leaving some residual fNL-dependent variance.

D. The fNL-dependent variance for the full ΛCDM transfer function

We are now in a position to calculate the reduction of the fNL-dependent variance using the realization-dependent
normalization in a ΛCDM universe. As we already discussed, the value of the ratio Dl(r∗, r∗)/χl(r∗, r∗) at the
quadrupole (l = 2) gives a good estimate for the fractional reduction of the fNL-dependent variance, R.

FIG. 3: The transfer function, r2αl(r), for the quadrupole (l = 2) as a function of conformal distance in Mpc. The left-hand
panel shows the effects of late-time ISW. The dip around r ≈ 104 Mpc corresponds to reionization at z = 11. The right-hand
panel highlights the evolution of r2αl(r) around decoupling. Note that the scale is not the same in both panels.

In Fig. 3 we show how the quadrupole filter α2(r) [see Eq. (11)] depends on the line-of-sight distance r in a ΛCDM
universe. First note that there is a relatively large rise below r ≤ 103 Mpc, corresponding to the late-time ISW effect.
Furthermore at r ' 2 × 104 Mpc, the filter shows a sharp dip corresponding to the contribution from the surface of
last scattering. Therefore in a ΛCDM universe on large scales the observed multipoles alm have contributions from
two separate epochs: the ISW effect at late-times and the Sachs-Wolfe effect around the surface of last scattering.
This two-epoch contribution is central to understanding how the RNE works when applied to a ΛDCM universe.

To investigate how the late-time ISW effect impacts the improvement of the RNE, we modified the publicly available
Boltzmann code CAMB [51] to include a new parameter, AISW, which controls the amplitude of the late-time ISW
effect in the line-of-sight integral [45]. When AISW = 1 it takes on its standard value in the calculation of the Cls; when
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FIG. 4: Left : The realization-dependent normalization reduces the fNL-dependent variance to varying extents depending on the
level of the late-time ISW effect. From top to bottom we plot the function Dl(r∗, r∗)/χl(r∗, r∗) with varying levels of late-time
ISW: 1, 0.5, 0. The overall reduction of the fNL-dependent variance roughly corresponds to the value of D2(r∗, r∗)/χ2(r∗, r∗).
Right : The fractional improvement in the fNL-dependent variance, R, as a function of the amplitude of the late-time ISW.
When the late-time ISW is completely removed (i.e., AISW = 0) the fNL-dependent variance is nearly completely removed; for
an unmodified ISW level the fNL-dependent variance is reduced by a factor of ∼ 0.5.

it is zero the late-time ISW effect is absent. In Fig. 4 we show Dl(r∗, r∗)/χl(r∗, r∗) as a function of multipole, l, with
varying late-time ISW amplitude, AISW. On the right hand side of the figure, we can see R ' D2(r∗, r∗)/χ2(r∗, r∗)
falls off sharply as AISW decreases. Qualitatively this result can be understood by noting that with both the Sachs-
Wolfe and late-time ISW effects contributing to the large-scale anisotropies our estimator âNL

lm becomes less correlated
with the actual aNL

lm leading to a larger value for the fractional reduction R.
In order to better understand how the late-time ISW effect limits our ability to remove the fNL-dependent variance

quantitatively we can approximate the anisotropies on large-scales by [52]

alm ' −
1

3
Φlm(r∗) +AISWΦlm(rISW), (71)

where AISW controls the contribution of the ISW effect to the temperature multipoles, and rISW is the conformal
distance from the observer to the peak of the ISW visibility function. The ISW contribution extends from ∼ 500 Mpc
to 4000 Mpc (where the present time is 0 Mpc). Eq. (71) explicitly shows how the contribution of the late-time ISW
effect to the observed multipole moments alm limits our ability to reconstruct aNL

lm . Since the correlation between the
Sachs-Wolfe and ISW terms is at most 10% we neglect it and we have

R ' D2(r∗, r∗)

χ2(r∗, r∗)
' 1− CSW

l

CSW
l +A2

ISWC
ISW
2

, (72)

where CSW
l and CISW

l are the Sachs-Wolfe and the late-time ISW contribution to the power spectrum, respectively.
As shown on the right-hand panel in Fig. 4, in a ΛCDM universe with all of the late-time ISW effect included, the
fNL-dependent variance can only be reduced by a factor of 0.5 using the realization-dependent normalization defined
in Eqs. (39) and (43). When the late-time ISW contribution is completely removed, the fNL-dependent variance is
reduced by a factor of 20 (R = 0.05). This raises the question of whether or not probes of large-scale structure closer
to the present epoch can be used to ‘remove’ the late-time ISW contribution to the CMB anisotropies and further
reduce the fNL-dependent variance. Next we discuss how we may use such a tracer of the ISW effect to further reduce
the fNL-dependent variance of the RNE.

VI. ISW SUBTRACTION WITH FOREGROUND TRACERS

We have identified the late-time ISW effect as the cause of the residual variance scaling as f2
NL. If the late-time

ISW component of a temperature map could be estimated, and then cleaned out from the data, we expect that the
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corresponding generalization of the RNE would then be nearly free of the fNL-dependent variance.
Since the bulk of the late-time ISW effect in a ΛCDM cosmology comes from redshift z ∼ 1, a measurement of the

large-scale gravitational potential or density field around this redshift should yield information that we can use to
clean our map of the ISW effect. The use of an ISW-cleaned map to improve the sensitivity of the CMB to primordial
non-Gaussianity was first proposed in Ref. [49]. In that work, only the zeroth order variance

〈
(∆B0)2

〉
was computed,

and as a result the improvement in the S/N obtained by using ISW-cleaned maps was marginal. In contrast, here we
will see that using a large-scale structure tracer has the potential to reduce the fNL-dependent variance by up to ∼
90%.

For an arbitrary large-scale tracer tlm, the ISW-cleaned CMB temperature anisotropy is

ac
lm = alm −

〈
aISW
lm t∗lm

〉
〈tlm t∗lm〉

tlm, (73)

where aISW
lm is the portion of the total multipoles, alm, due to the late-time ISW effect, tlm is the multipole associated

with the large-scale tracer field, a superscript c indicates a quantity that has been ‘cleaned’ of the late-time ISW
effect, and a superscript t indicates a quantity associated with the tracer field. We note that if we use the lensing
potential for CMB weak lensing as our tracer field then tlm is obtained from some higher-order cumulant of the data.
This then implies that the tracer’s power spectrum must also take into account an additional noise term, as we discuss
in more detail below.

The RNE takes the same form as in Eq. (39) but written in terms of ISW-cleaned quantities:

Cc
l ≡ Cl − 2

CT,t
l CISW,t

l

Ctt
l

+

(
CISW,t
l

)2

Ctt
l

, (74)

αc
l (r) ≡ αl(r)− αt

l(r), (75)

βc
l (r) ≡ βl(r)− βt

l (r), (76)

where αt
l(r) and βt

l (r) are defined as in Eqs. (11) and (12) but with in terms of a transfer function corresponding to
the power spectrum of the tracer field. In order to evaluate the fractional reduction of the fnl-dependent variance
with an ISW cleaned CMB map, we evaluate Eq. (61) making the identification αl(r) → αc

l (r), βl(r) → βc
l (r), and

Cl → Ccl . Now that we have expressions for the fractional reduction of the fNL-dependent variance of an estimator

f̂NL

c
built from ISW-cleaned maps, we consider two specific tracers of foreground structure: weak lensing of the CMB

and galaxy surveys.

A. Reconstructed lensing potential

Weak lensing deflects the trajectories of CMB photons, remapping the temperature and polarization fields. The
projected potential Ψ(n̂) determines the trajectories of lensed CMB photons. A reconstruction of the projected
potential field from measurements of the CMB would allow a separate probe of large-scale structure up to redshifts
of ∼ a few.

Referring to the solid curves in the left-hand panel of Fig. 5 we show the correlation coefficient between the lensing
potential and the late-time ISW effect, as well as the correlation coefficient between the deflection and full temperature
fields. We see that the multipole moments of the deflection field are very strongly correlated with the late-time ISW
effect. The fractional reduction of variance obtained with the realization-dependent normalization for the perfectly
(via lensing) cleaned maps is controlled by the ratio DΨ

l (r∗, r∗)/χl(r∗, r∗) is shown in the right-hand panel of Fig. 5.
We find that the realization-dependent normalization removes ∼ 90% of the f2

NL variance if the map is ‘cleaned’ of
the late-time ISW effect using a perfect reconstruction of the CMB deflection potential.

Of course, even with a idealized noiseless CMB map, the deflection potential can not be perfectly reconstructed.
The lensing estimator relies on off-diagonal correlations of temperature multipoles, and in any given realization of the
power spectrum, there will be some overlap between the lensing estimator and chance correlations that arise from
cosmic variance. This leads to the reconstruction noise variance Nl [49, 53].

On the large scales relevant for ISW subtraction, the bulk of the S/N for lensing construction comes from very
high l, and so instrument noise can be neglected in our estimates. We make the replacement CΨΨ

l → CΨΨ
l + Nl

above to assess how much a realistic reconstruction of Ψ (and subsequent cleaning of the CMB temperature map)
could improve the performance of the RNE. We assume a reference experiment with temperature and polarization
noise ∆T = ∆P/

√
2 = 1 µK arcmin, and an angular resolution of σ = 4′, as discussed in detail in Ref. [54]. We note

that measurements using Planck will not be sensitive enough to realistically use the reconstructed lensing potential in
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FIG. 5: Left : The three black curves show the correlation between the lensing potential and the late-time ISW effect in the CMB
temperature: the solid curve shows the correlation without taking into account lensing reconstruction noise; the dot-dashed
curve shows the correlation between the late-time ISW effect and the reconstructed lensing potential using EB correlations,
including reconstruction noise; analogously the long-dashed curve shows the same correlation, but using TT correlations to
reconstruct the lensing potential. The two red curves show the correlation between the forecasted Euclid/WFIRST (dotted)
or NVSS (medium dashed) density fields, and the late-time ISW effect. Right : The fractional reduction in the quantity Dl for
the uncleaned CMB maps (cyan, medium-short dashed) and cleaned maps with line-types corresponding to the curves in the
left panel.

order to remove the late-time ISW effect. From the right-hand panel of Fig. 5, we see that if the temperature field is
used as to reconstruct the deflection field, the RNE can remove ∼ 70% of the variance proportional to f2

NL, whereas
if the polarization field (through the EB correlation) is used, the RNE can remove ∼ 80% of the excess variance2.

B. Galaxy survey

Alternatively, a galaxy survey with peak redshift near z ∼ 1 also probes the potential field at the epochs when the
late-time ISW effect is imprinted on the CMB. For a galaxy survey with selection function w(z), the transfer-function
is given by

Sgl (k) ≡
∫ r∗

0

drbk(r)Smk (r)w[z(r)]jl(kr) (77)

where bk(r) is the bias, z(r) is the redshift as a function of conformal distance, and Smk (r) is the time and scale-
dependent function which maps the primordial potential to the evolved matter density. We have taken [42, 43]

w(z) = CH(z)

(
zm

zm+1
0

)
exp

[
−
(
z

z0

)β]
, (78)

where for the NVSS survey we take z0 = 0.79, β = 1, and m = 1.18 as in Ref. [55]. On the other hand, for a futuristic
space-based all-sky dedicated dark energy, such as that described in the Joint Dark Energy Mission (WFIRST) [56]
and Euclid mission concept [57], or the Large Synoptic Survey Telescope [56] (LSST) we take z0 = 0.5, β = 1, m = 2
[56]. The presence of the Hubble parameter converts the selection function from galaxies per unit redshift, to galaxies
per unit conformal time. We do not need to specify the normalization constant C, as it divides out of all quantities
of interest.

2 Of course in a more complete analysis, we could include other correlation functions (EE, TE, EE, and BB) in the reconstruction of the
deflection field. We choose to focus on TT (since TT-based detection of CMB weak lensing have already been made) and EB (because it
vanishes in the null hypothesis of no lensing, and thus provides a strong probe of the deflection field). These other correlation functions
could themselves be used to look for non-Gaussianity– indeed, Refs. [23] and [44] introduce the MVNH that includes all of them. In
this work, we restrict ourself to the simple case discussed already and leave a more complete analysis for future work.
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We approximate the bias as constant in scale as well as in redshift [42, 43] so that it factors out of the computation
completely3. Referring to the dashed-lines in Fig. 5, we show the correlation coefficient between large-scale structure
(for both NVSS and Euclid/WFIRST parameters) and the late-time ISW effect, as well as the correlation coefficient
between large-scale structure and the full temperature field. We see that the multipole moments of the large-scale
density field are very strongly correlated with the late-time ISW effect.

The fractional reduction in the variance obtained with the RNE for the cleaned maps is shown in the right-hand
panel of Fig. 5. We find that the realization-dependent normalization removes ∼ 75% of the f2

NL variance if the ISW
effect is removed by cross-correlating a CMB map with a large-scale structure survey for the NVSS survey parameters,
and ∼ 90% of the f2

NL variance if WFIRST survey parameters are assumed. In Fig. 6, we see how the S/N for fNL is
improved if prior to the application of the realization-dependent normalization, the late-time ISW effect is removed
from maps using two different secondary tracers. This figure was produced assuming the variance of the standard
MVNH estimator given in Eq. (18) and the reduction in the fNL-dependent variance, R, using various large-scale
structure tracers to ‘clean’ the CMB maps of the late-time ISW effect,

S

N
=

fNL√
1

72Afskyl2max ln(lmax) +R f2
NL

2 ln3(lmax)

. (79)

Although the scaling with lmax and fNL given in the above equation was calculated in the flat-sky Sachs-Wolfe limit
[31, 33, 48], it has been shown to reproduce the lmax scaling calculated on the full sky and with the full transfer-function
[23, 32]. However, we note that the exact numerical factors may be different for the full sky and full transfer-function
case. It is thus possible that the fNL-dependent variance may be even more important at lower fNL than is indicated
by this expression. As future data is used to determine the level of non-Gaussianity in the CMB, the statistics of the
standard null-hypothesis estimator should be checked, especially if the data starts to indicate that fNL 6= 0.

We see from this figure that if primordial non-Gaussianity is of local type and fNL & 5, a significant improvement
in the S/N for fNL may be obtained by using cleaned maps. Of course in a real galaxy survey, there are additional
complications due to incomplete sky coverage, photometric redshift errors, and shot-noise due to a finite number
of galaxies in the survey volume. Here we neglect these important real-world effects to highlight the fact that a
measurement of the ISW effect can help reduce the f2

NL variance in the RNE. An increase in the S/N in an estimate
for fNL would not only lead to a more precise determination of the level of non-Gaussianity in the CMB, but would
also lead to a more precise estimation of additional parameters (such as a possible scale-dependence) associated with
primodial non-Gaussianity.

VII. CONCLUSIONS

We have investigated the origin of the fNL-dependent variance when applying the standard MVNH fNL estimator
to CMB maps with appreciable non-Gaussianity. We found that this variance is due to terms that appear in the
estimator which do not contribute to the signal but which do contribute to the noise.

Previous work in Ref. [34] has shown that a Bayesian analysis has the potential to provide an estimate of fNL from
the CMB which does not show an fNL-dependent increase in the variance when applied to maps with appreciable non-
Gaussianity. That approach, however, is computationally expensive and quite inefficient, taking 150,000 CPU hours
to compute the estimator on a simulated non-Gaussian CMB map. It is therefore desirable to find a computationally
simple and efficient method to estimate fNL from the CMB which remains optimal even when applied to maps with
appreciable non-Gaussianity.

We have found that a new realization-dependent estimator (RNE) can be constructed which is computationally
efficient (utilizing the scaling properties of fast-Fourier transforms) and reduces the fNL-dependent variance by a
factor of ∼ 2. Previous studies have shown this same realization-dependent normalization can completely remove
the fNL-dependent variance in the Sachs-Wolfe limit. When the full transfer-function is used, however, this limit is
a poor approximation to the CMB power-spectrum, especially at large-scales where the late-time ISW effect (due to
late-time acceleration) contributes about half of the power. We have artificially reduced the level of the late-time ISW
and found that when it is completely removed our new estimator has negligible fNL-dependent variance even with the
full transfer function. This implies that by using a tracer which effectively removes the late-time ISW contribution
to the CMB map we can use the RNE to further reduce the fNL-dependence.

3 In reality, local-type non-Gaussianity would also induce scale-dependent bias [58], and thus corrections to the variance of the cleaned
map. This effect, however, would be higher order in fNL, so we may neglect it without loss of generality.
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FIG. 6: The signal to noise (S/N) in an experiment with lmax = 2500 and fsky = 0.8 (corresponding to Planck) as a function
of fNL under the flat-sky and Sachs-Wolfe approximations. The top (solid) curve shows the S/N for the standard MVNH
estimator without taking into account the fNL-dependent variance. The curve second from the top (dot-dashed) shows the
S/N for the RNE after a tracer field has been used to remove most of the late-time ISW effect, leading to a reduction of the
fNL-dependent variance by a factor of R = 0.1. The curve third from the top (dotted) shows the S/N for the RNE using
only CMB data with R = 0.5. The bottom curve (long-dashed) shows the S/N for the standard MVNH estimator with the
(full) fNL-dependent variance with R = 1. As this figure shows, the cleaned maps can increase the S/N by several standard
deviations.

We considered two tracers of large-scale structure: the deflection field (which generates lensing in the CMB) and
a large-scale structure survey (considering survey parameters comparable to those of NVSS and Euclid/WFIRST)
with a mean redshift of z ∼ 1. Both tracers are highly correlated with the late-time ISW. We find that by using the
deflection field as a tracer, we can reduce the fNL-dependent variance by a factor of ∼ 0.1 using a futuristic CMB
experiment (the reconstruction of the deflection potential from Planck is not accurate enough to be useful). If the
large-scale structure measured by NVSS is used as a tracer, the variance could be reduced by a factor of ∼ 0.25, while
a next-generation mission like Euclid/WFIRST could reduce the variance by a factor of ∼ 0.1.

We show the improvement in the S/N for the estimation of fNL using the RNE assuming a satellite experiment
like Planck (lmax = 2500, fsky = 0.8) in Fig. 6. If the data indicate that fNL 6= 0, then the estimator discussed here
can be used to increase the S/N of the detection, thus shedding new light on primordial non-Gaussianity.
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Appendix A: Flat-sky approximation

To speed computation throughout the paper (by allowing the use of FFTs along both dimensions of the sky), we
use the flat-sky approximation as described in Refs. [33, 59], while providing whole-sky expressions for use on real
maps. In terms of the fractional temperature perturbation T (n̂) at position n̂, the temperature power spectrum Cl is



17

given by 〈
a~l1a~l2

〉
= Ωδ~l1+~l2,0

Cl, (A1)

a~l =

∫
d2~θ e−i

~l·~θT (~θ) ' Ω

Npix

∑
~θ

e−i
~l·~θT (~θ), (A2)

where Ω = 4πfsky is the survey area (in steradians), and δ~l1+~l2,0
is a Kronecker delta that sets ~l1 = −~l2 and we use

the convention δ2(~l) = Ωδ~l to convert between Kronecker and Dirac-δ functions. We convert between discrete sums

and integrals using the correspondence Σ~l ↔ Ω
∫
d2~l/ (2π)

2
[59]. We use the convention

P (k) = Akns−4, (A3)

and assume a scale-invariant power spectrum (ns = 1) for the duration of this paper. For a scale-invariant primordial

power spectrum in the Sachs-Wolfe approximation, the angular power spectrum for T (~θ) is [23]:

Cl =
A

9πl(l + 1)
, (A4)

where we take the amplitude A = 2π2∆2
Φ ' 2.43 × 10−9 × 2π2 ' 4.7 × 10−8 [1]. In the flat-sky limit, the reduced

bispectrum bl1l2l3 is given by 〈
a~l1a~l2a~l3

〉
= Ωδ~l1+~l2+~l3,0

bl1l2l3 . (A5)

The expression for bl1l2l3 in Eq. (10) itself [in terms of αl(r), βl(r)] is unchanged. The Kronecker delta insures that

the bispectrum is defined only for ~l1 + ~l2 + ~l3 = 0; i.e., only for triangles in Fourier space. Statistical isotropy then
dictates that the bispectrum depends only on the magnitudes l1, l2, l3 of the three sides of this Fourier triangle. To
derive various expressions in the text, we will use the flat-sky equivalent of the Wigner-3J coefficient [53]:√

(2l1 + 1) (2l2 + 1) (2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
→ δ~l1+~l2+~l3,0

Ω. (A6)

In the flat-sky limit, the MVNH is given (applying the same arguments used to derive it in the whole-sky case) by
[23, 59]

f̂NL ≡ σ2
0

∑
~l1+~l2+~l3=0

a~l1a~l2a~l3bl1l2l3

6Ω2Cl1Cl2Cl3
, (A7)

and it has inverse variance,

σ−2
0 =

∑
~l1+~l2+~l3=0

[bl1l2l3 ]
2

6ΩCl1Cl2Cl3
. (A8)

Appendix B: Details of the calculation of the variance

We will first compute the variance of B1. To do so we will concentrate on the part of the variance∫
r2dr(r′)2dr′αl1(r)αm1(r′)

〈
a~l2a~l3φ~k(r)φ~k′(r)|a

∗
~m2
a∗~m3

φ∗~p(r
′)φ∗~p′(r

′)
〉

× δ~l1+~l2+~l3,0
δ~k+~k′,~l1

δ~m1+~m2+~m3,0δ~p+~p′,~m1
. (B1)

We will first concentrate on identifying the various types of terms that will arise from the expectation value. First

note that the Kronecker deltas require that the only ‘internal’ contractions can be between the ~l or ~m terms with the



18

~ks or ~ps. Therefore the only contractions on the ‘off-diagonal’ [in which all a~ls are contracted with φl′(r)] are:

A1 =
〈
a~l2φ~k(r)

〉 〈
a∗~m2

φ∗~p(r
′)
〉 〈
a~l3a

∗
~m3

〉 〈
φ~k′(r)φ~p′(r

′)∗
〉
, (B2)

= δ~l2,−~kβl2(r)δ~m2,−~pβm2
(r′)Cl3δ~l3,~m3

χk′(r, r
′)δ~k′,~p′ , (B3)

A2 =
〈
a~l2φ~k(r)

〉 〈
a∗~m2

φ∗~p(r
′)
〉 〈
a~l3φ

∗
~p′(r
′)
〉 〈
φ~k′(r)a

∗
~m3

〉
, (B4)

= δ~l2,−~kβl2(r)δ~m2,−~pβm2
(r′)δ~l3,~p′βl3(r′)δ~m3,~k′

βm3
(r). (B5)

There are 4!=24 ‘diagonal’ contractions; however, not all are unique since the sum is symmetric in (~l1,~l2), (~k,~k′),
(~m1,~m2), (~p,~p′). Representing these pairs by numbered boxes in Fig. 7 we show the five unique combinations that
will make up the variance. The other three unique terms are:

FIG. 7: A graphical representation of the 5 combinations of 1 = (~l2,~l3), 2 = (~k,~k′), 3 = (~m2, ~m3), 4 = (~p, ~p′) which make up
the variance of B1.

A3 =
〈
a~l2a

∗
~m2

〉〈
a~l3a

∗
~m3

〉 〈
φ~k(r)φ∗~p(r

′)
〉 〈
φ~k′(r)φ

∗
~p′(r
′)
〉

(B6)

= Cl2δ~l2,~m2
Cl3δ~l3,~m3

χk(r, r′)δ~k,~pχk′(r, r
′)δ~k′,~p′ . (B7)

A4 =
〈
a~l2a

∗
~m2

〉〈
a~l3φ

∗
~p(r
′)
〉 〈
φ~k(r)a∗~m3

〉 〈
φ~k′(r)φ

∗
~p′(r)

〉
(B8)

= Cl2δ~l2,~m2
βl3(r′)δ~l3,~pβm3(r)δ~k,~m3

χk′(r, r
′)δ~k′,~p′ . (B9)

A5 =
〈
a~l2φ

∗
~p(r
′)
〉〈

a~l3φ
∗
~p′(r)

〉 〈
φ~k(r)a∗~m2

〉 〈
φ~k′(r

′)a∗~m3

〉
(B10)

= βl2(r′)δ~l2,~pβl3(r)δ~l3,~p′βm2
(r)δ~k,~m2

βm3
(r′)δ~m3,~k′

. (B11)

Therefore, in the end we have five unique combinations:

A1 = Cl3δ~l3,~m3
βl2(r)δ~l2,−~kβm2

(r′)δ~m2,−~pχk′(r, r
′)δ~k′,~p′ , (B12)

A2 = βl2(r)δ~l2,−~kβm3
(r)δ~m3,~k′

βl3(r′)δ~l3,~p′βm2
(r′)δ~m2,−~p, (B13)

A3 = Cl2δ~l2,~m2
Cl3δ~l3,~m3

χk(r, r′)δ~k,~pχk′(r, r
′)δ~k′,~p′ , (B14)

A4 = Cl2δ~l2,~m2
βm3

(r)δ~m3,~k
βl3(r′)δ~l3,~pχk′(r, r

′)δ~k′,~p′ , (B15)

A5 = βl3(r)δ~l3,~p′βm2
(r)δ~m2,~k

βl2(r′)δ~l2,~pβm3
(r′)δ~m3,~k′

. (B16)
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The last term, A5, has the Kronecker deltas δ~l3,~p′δ~l2,~p which implies the full term will have the Kronecker delta

δ~l1+~l2+~l3,0
δ~p+~p′,~l1δ~l3,~p′δ~l2,~p so that when summing over ~p and ~p′ we will have ~l2 = ~p and ~l3 = ~p′ so the final term will

be zero since |~l1| ≥ 2. Therefore A5 = 0 and we are left with four unique terms, which agrees with the appendix in

Ref. [33]. The same approach can be taken with the variance of B̂1〈
(∆B̂1)2

〉
∼ βk(r)βk′(r)

CkCk′

βp(r
′)βp′(r

′)

CpCp′

〈
a~l2a~l3a~ka~k′ |a

∗
~m2
a∗~m3

a∗~pa
∗
~p′

〉
, (B17)

and the covariance between B̂1 and B1,〈
∆B̂1∆B1

〉
∼ βk(r)βk′(r)

CkCk′

〈
a~l2a~l3a~ka~k′ |a

∗
~m2
a∗~m3

φ∗~p(r
′)φ∗~p′(r

′)
〉
. (B18)

Computing these terms shows that certain contractions dominate the sum so that [33]

〈∆(B1)∆(B1)〉 = 8
∑
{~l},{~k}

bl1l2l3bk1k2k3
Cl1Cl2Ck1Ck2Ck3

δ~l3,~k3 (B19)

×
∫
r2dr(r′)2dr′αl1(r)αk1(r′)βk2(r′)βl2(r)χl3(r, r′),〈

∆(̂B1)∆(̂B1)
〉

= 8
∑
{~l},{~k}

bl1l2l3bk1k2k3
Cl1Cl2Ck1Ck2Ck3

δ~l3,~k3 (B20)

×
∫
r2dr(r′)2dr′αl1(r)αk1(r′)βk2(r′)βl2(r)

βl3(r)βl3(r′)

Cl3
,〈

∆(B1)∆(̂B1)
〉

= 〈∆(B1)∆(B1)〉 . (B21)

Appendix C: Fast algorithm to compute RNE

As noted in Refs. [26, 28], due to the inefficiency of harmonic transforms, the MVNH estimator is expensive to
evaluate, requiring the computation of ∼ l5max terms. However, a more efficient computational algorithm can be used
once the MVNH estimator is written in terms real-space quantities- once this is done, the azimuthal part of the
harmonic transform can be computed using computationally efficient fast-Fourier transforms (FFTs). As is noted in
Ref. [26] the MVNH estimator can be rewritten as

f̂NL = σ−2
0

∫
r2dr

∫
d2n̂B2(n̂, r)A(n̂, r), (C1)

A(n̂, r) =
∑
lm

αl(r)Ylm(n̂)alm
Cl

, (C2)

B(n̂, r) =
∑
lm

βl(r)Ylm(n̂)alm
Cl

. (C3)

At each location along the line of sight, the resulting estimator only requires the computation of ∼ l3max terms. In
addition to this, the filter functions αl(r) and βl(r) are sufficiently smooth so that they must only be evaluated for
O(100) grid points. In Sec. IV, we generalized the realization-dependent normalization of Ref. [31] to treat the full
sky and include the radiation transfer function. Here we show how we may rewrite this estimator in order to utilize
FFTs to speed up their computation.

The estimator is given by

B̂1 = σ−2
0

∑
l≤l1≤l2,lalb

∑
m1m2mambm

al1m1al2m2alamaalbmb

2ClCl1Cl2ClaClb
Bll1l2Bllalb

(
l l1 l2
m m1 m2

)(
l la lb
m ma mb

)
. (C4)

Using Eq. (3), (C2), and (C3), we may rewrite Eq. (C4) in a form amenable to rapid computation using filtered
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real-space maps and FFTs:

B̂1 = σ−2
0

∑
lm

{
VlmV∗lm + 4UlmU

∗
lm + 2 (UlmV∗lm + U∗lmVlm)

2Cl

}
, (C5)

Vlm =

∫
drr2αl(r)B

(2)
lm (r), B

(2)
lm (r) =

∫
dn̂Y ∗lm(n̂)B2(r, n̂), (C6)

Ulm =

∫
drr2βl(r)

∫
dn̂Y ∗lm(n̂)A(r, n̂)B(r, n̂). (C7)

Written this way, the normalization of the estimator may be computed from a map, and may be efficiently evaluated
using FFTs, although the computation of Vlm via numerical integration does introduce a new bottleneck. The
operation count for these procedures is ∼ l3maxNint where Nint is the number of points sampled along the line of sight
for the radial integral. The l3max scaling follows from the computational expense of a harmonic transform (in which an
FFT is used for the azimuthal Fourier transform piece). In contrast, the direct evaluation of Eq. (44) would require
evaluating and summing ∼ l10

max terms. The computational savings is then a factor of l7max/Nint, a huge savings for
lmax ∼ 103, as is the case for the WMAP and Planck missions. In Ref. [26], it is found that to obtain convergence in
the bispectrum estimator itself, Nint ∼ 103 is more than adequate. We thus estimate that use of the real-space RNE
will to a computational savings factor of 1018 over the harmonic-space estimator.
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